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Abstract

In this article, we state and prove a general criterion which prevent some groups
from acting properly on finite-dimensional CAT(0) cube complexes. As an application,
we show that, for every non-trivial finite group F , the lamplighter group F o F2 over a
free group does not act properly on a finite-dimensional CAT(0) cube complex (although
it acts properly on a infinite-dimensional CAT(0) cube complex). We also deduce from
this general criterion that, roughly speaking, given a group G acting on a CAT(0) cube
complex of finite dimension and an infinite torsion subgroup L ≤ G, either the normaliser
NG(L) is close to be free abelian or, for every k ≥ 1, NG(L) contains a non-abelian free
subgroup commuting with a subgroup of L of size ≥ k.
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1 Introduction
In the last decades, it has been proved that finding a proper action of a given group on
a CAT(0) cube complex provides interesting information on the group. For instance,
if such an action exists, then the group has to satisfy the Haagerup property [NR97],
its polycyclic subgroups must be virtually abelian [Cor13, Gen19], and as soon as our
group is finitely generated its free abelian subgroups are necessarily undistorted [Cor13,
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Woo17]. But if it turns out that the cube complex can be chosen finite-dimensional, then
some additional information is obtained, including weak amenability [Miz08, GH10], RD
property [CR05] and Tits alternative [SW05, CS11].

Consequently, given a group acting properly on a CAT(0) cube complex, a natural
question is: can the cube complex be finite-dimensional? An easy obstruction is given the
following observation: if a group acts properly on a CAT(0) cube complex of dimension
d, then a free abelian subgroup must have rank at most d. Therefore, a group containing
a free abelian group of arbitrary large rank cannot act properly on a finite-dimensional
CAT(0) cube complex. Such groups include for instance Thompson-like groups. But
otherwise, if there exists a bound on the rank of free abelian subgroups, the question is
delicate.

The main result of this article provides a general criterion preventing some groups from
acting properly on finite-dimensional CAT(0) cube complexes. More precisely, we prove:

Theorem 1.1. Let C be a collection of finitely generated groups. Assume that:

• for every group G ∈ C and every finite-index subgroup H ≤ G, there exists a
subgroup of H which belongs to C;

• for every group G ∈ C, there exists a subgroup of the commutator subgroup [G,G]
which belongs to C;

• every group of C contains a non-abelian free subgroup and a δ-normal subgroup
which is (locally finite)-by-(free abelian).

Then no group of C acts properly on a finite-dimensional CAT(0) cube complex.

Given a group G and a subgroup H ≤ G, one says that H is δ-normal if, for every finite
collection g1, . . . , gn ∈ G, the intersection

n⋂
i=1

giHg
−1
i is infinite.

In the specific case where the collection C is reduced to a single finitely generated group,
one obtains the following statement:

Corollary 1.2. Let G be a finitely generated group. Assume that:

• the commutator subgroup [G,G] and every finite-index subgroup of G contains a
copy of G;

• G contains a non-abelian free subgroup and a δ-normal subgroup which is (locally
finite)-by-(free abelian).

Then G does not act properly on a finite-dimensional CAT(0) cube complex.

For instance, this criterion applies to wreath products, namely:

Proposition 1.3. For every non-trivial finite group F , the wreath product F o F2 does
not act properly on a finite-dimensional CAT(0) cube complex.

Recall that, given two groups A and B, the wreath product A o B is defined as the
semi-direct product ⊕

g∈B
A

oB,

where B acts on the direct sum by permuting the coordinates. It has been proved in
[CSV12] (see also [Gen17b]) that acting properly on a CAT(0) cube complex is a property
which is stable under wreath products. However, it is not clear when such a complex
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can be taken finite-dimensional. For instance, it is proved in [Gen17a, Proposition
9.33] that, for every finite group F and every n ≥ 1, the wreath product F o Zn acts
properly on a CAT(0) cube complex of dimension 2n. On the other hand, as observed
in [CSV08], the wreath product F o F2 does not act metrically properly on a finite-
dimensional CAT(0) cube complex. So Proposition 1.3 improves slightly this observation
by replacing “metrically proper” with “proper”.

The argument of [CSV08] is indirect, based on weak amenability. The main motivation
of the article was to understand cubically what prevents F o F2 from acting properly on
a finite-dimensional CAT(0) cube complex.

Another interesting consequence of Theorem 1.1 is more theoretical. It provides infor-
mation on normalisers of infinite torsion subgroups of groups acting properly on finite-
dimensional CAT(0) cube complexes. Roughly speaking, given a group G acting on a
CAT(0) cube complex of finite dimension and an infinite torsion subgroup L ≤ G, one
shows that either the normaliser NG(L) is close to be free abelian or, for every k ≥ 1,
NG(L) contains a non-abelian free subgroup commuting with a subgroup of L of size
≥ k. More precisely:

Theorem 1.4. Let G be a group acting properly on a finite-dimensional CAT(0) cube
complex X. Assume that G contains an infinite torsion subgroup L. Either the nor-
maliser NG(L) contains a finite-index subgroup which is (locally finite)-by-Zn for some
n ≤ dim(X); or, for every k ≥ 1, NG(L) contains a contains a non-abelian free subgroup
centralising a subgroup of L of cardinality ≥ k.

Notice that Proposition 1.3 also follows from this statement. As F oF2 acts properly on an
infinite-dimensional CAT(0) cube complex, it follows that the conclusion of Theorem 1.4
does not hold if we drop the hypothesis of finite dimension.

Acknowledgments. This work was supported by a public grant as part of the Fon-
dation Mathématique Jacques Hadamard.

2 Preliminaries
A cube complex is a CW complex constructed by gluing together cubes of arbitrary
(finite) dimension by isometries along their faces. It is nonpositively curved if the link
of any of its vertices is a simplicial flag complex (ie., n + 1 vertices span a n-simplex
if and only if they are pairwise adjacent), and CAT(0) if it is nonpositively curved and
simply-connected. See [BH99, page 111] for more information.

Fundamental tools when studying CAT(0) cube complexes are hyperplanes. Formally,
a hyperplane J is an equivalence class of edges with respect to the transitive closure of
the relation identifying two parallel edges of a square. Geometrically, a hyperplane J is
rather thought of as the union of the midcubes transverse to the edges belonging to J
(sometimes referred to as its geometric realisation). See Figure 1.

There exist several metrics naturally defined on a CAT(0) cube complex. For instance,
one can extend in a standard way the Euclidean metrics defined on each cube to a
global length metric, and the distance one obtains in this way turns out to be CAT(0).
However, in this article, we are mainly interested in the graph metric defined on the one-
skeleton of the cube complex, referred to as its combinatorial metric. Unless specified
otherwise, we will always identify a CAT(0) cube complex with its one-skeleton, thought
of as a collection of vertices endowed with a relation of adjacency.

The following theorem will be often used along the article without mentioning it.
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Figure 1: A hyperplane (in red) and the associated union of midcubes (in green).

Theorem 2.1. [Sag95] Let X be a CAT(0) cube complex.

• If J is a hyperplane of X, the graph X\\J obtained from X by removing the
(interiors of the) edges of J contains two connected components. They are convex
subgraphs of X, referred to as the halfspaces delimited by J .

• For every vertices x, y ∈ X, the distance between x and y coincides with the number
of hyperplanes separating them.

2.1 Wallspaces, cubical quotients

Given a set X, a wall {A,B} is a partition of X into two non-empty subsets A,B,
referred to as halfspaces. Two points of X are separated by a wall if they belong to two
distinct subsets of the partition.

A wallspace (X,W) is the data of a set X and a collection of walls W such that any
two points are separated by only finitely many walls. Such a space is naturally endowed
with the pseudo-metric

d : (x, y) 7→ number of walls separating x and y.

As shown in [CN05, Nic04], there is a natural CAT(0) cube complex associated to
any wallspace. More precisely, given a wallspace (X,W), define an orientation σ as a
collection of halfspaces such that:

• for every {A,B} ∈ W, σ contains exactly one subset among {A,B};

• if A and B are two halfspaces satisfying A ⊂ B, then A ∈ σ implies B ∈ σ.

Roughly speaking, an orientation is a coherent choice of a halfspace in each wall. As
an example, if x ∈ X, then the set of halfspaces containing x defines an orientation.
Such an orientation is referred to as a principal orientation. Notice that, because any
two points of X are separated by only finitely many walls, two principal orientations are
always commensurable, ie., their symmetric difference is finite.

The cubulation of (X,W) is the cube complex

• whose vertices are the orientations within the commensurability class of principal
orientations;

• whose edges link two orientations if their symmetric difference has cardinality two;
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Figure 2: A CAT(0) cube complex and one of its cubical quotients.

• whose n-cubes fill in all the subgraphs isomorphic to one-skeleta of n-cubes.

See Figure 2 for an example.

Definition 2.2. Let X be a CAT(0) cube complex and J be a collection of hyperplanes.
LetW(J ) denote the set of partitions ofX induced by the hyperplanes of J . The cubical
quotient X/J of X by J is the cubulation of the wallspace (X,W(J )).

See Figure 2 for an example. It can be shown that X/J can be obtained from X in
the following way. Given a hyperplane J ∈ J , cut X along J to obtain X\\J . Each
component of X\\J contains a component of N(J)\\J = N1 tN2. Notice that N1 and
N2 are naturally isometric: associate to each vertex of N1 the vertex of N2 which is
adjacent to it in N(J). Now, glue the two components of X\\J together by identifying
N1 and N2. The cube complex obtained is still CAT(0) and its set of hyperplanes
corresponds naturally to H(X)\{J} if H(X) denotes the set of hyperplanes of X. Thus,
the same construction can repeated with a hyperplane of J \{J}, and so on. The cube
complex which is finally obtained is the cubical quotient X/J .

Notice that a quotient map is naturally associated to a cubical quotient, namely:{
X → X/J
x 7→ principal orientation defined by x .

The next lemma relates the distance between two vertices of X to the distance between
their images in X/J .

Lemma 2.3. Let X be a CAT(0) cube complex and J a collection of hyperplanes. If
π : X → X/J denotes the canonical map, then

dX/J (π(x), π(y)) = # (W(x, y)\J )

for every vertices x, y ∈ X, where the set W(x, y) denotes the collection of the hyper-
planes of X separating x and y.

2.2 Roller boundary

Let X be a CAT(0) cube complex. An orientation of X is an orientation of the wallspace
(X,W(J )), as defined in the previous section, where J is the set of all the hyperplanes
of X. The Roller compactification X of X is the set of the orientations of X. Usually,
we identify X with the image of the embedding{

X → X
x 7→ principal orientation defined by x
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Figure 3: Roller compactification of R2. It contains nine cubical components.

and we define the Roller boundary of X by RX := X\X.

The Roller compactification is also naturally a cube complex. Indeed, if we declare that
two orientations are linked by an edge if their symmetric difference has cardinality two
and if we declare that any subgraph isomorphic to the one-skeleton of an n-cube is filled
in by an n-cube for every n ≥ 2, then X is a disjoint union of CAT(0) cube complexes.
Each such component is referred to as a cubical component of X. See Figure 3 for an
example. Notice that the distance (possibly infinite) between two vertices of X coincides
with the number of hyperplanes which separate them, if we say that a hyperplane J
separates two orientations when they associate distinct halfspaces to J . In the sequel,
we also say that an orientation σ belongs to a halfspace D if σ(J) = D where J is the
hyperplane bounding D.

An elementary but useful observation is that cubical components in the Roller boundary
have dimensions smaller than the cube complex. More precisely:

Lemma 2.4. Let X be a finite-dimensional CAT(0) cube complex. For every cubical
component Y of RX, the inequality dim(Y ) < dim(X) holds.

Let us conclude this subsection with two remarks. First, the Roller compactification X
of a CAT(0) cube complex can be endowed with a ternary operation µ : X×X×X → X
which extends the median operation in X. Namely,

Definition 2.5. Let X be a CAT(0) cube complex and σ1, σ2, σ3 three orientations.
The median point µ(σ1, σ2, σ3) is the orientation corresponding to the set of halfspaces
which belong to at least two orientations among {σ1, σ2, σ3}.

Next, if X is a CAT(0) cube complex and J a collection of hyperplanes, it is worth
noticing that the quotient map π : X → X/J extends to the Roller compactifications
as

π :
{
X → X/J
σ 7→ σ|W\J

,

where W denotes the collection of all the hyperplanes of X.
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2.3 Busemann morphisms

An interesting observation is that, if T is a simplicial tree and α ∈ ∂T a point at
infinity, then the Busemann function βα turns out to define a morphism stab(α) → Z.
This morphism can be described in the following way. Fixing a basepoint x ∈ T and
an isometry g ∈ stab(α), notice that g · [x, α) ∩ [x, α) contains a infinite subray. So g
acts like a translation on a ray pointing to α. The value of βα(g) is precisely the length
of this translation (positive it is directed to α, and negative otherwise). Moreover, it
follows from this description that the kernel of the Busemann morphism coincides with
the set of elliptic isometries of stab(α).
Interestingly, this construction can be extended to finite-dimensional CAT(0) cube com-
plexes, namely:
Theorem 2.6. Let X be a finite-dimensional CAT(0) cube complex and α ∈ RX a
point at infinity. There exist a subgroup stab0(α) of stab(α) ≤ Isom(X) of index at
most dim(X)! and a morphism β : stab0(α)→ Zn, where n ≤ dim(X), such that

ker(β) = {g ∈ stab0(α) | g is X-elliptic}.

Consequently, stab(α) is virtually (locally X-elliptic)-by-(free abelian).
We refer to the appendix of [CFI16] and to [Gen19, Theorem 2.12] for more details.

2.4 Strongly contracting isometries

In our proof of Theorem 1.1, the notion of strongly contracting isometries will play a
fundamental role.
Definition 2.7. Let X be a CAT(0) cube complex. Two hyperplanes J and H are
strongly separated if no hyperplane is transverse to both J and H. An isometry g ∈
Isom(X) is strongly contracting if there exists two halfspaces A ⊂ B bounded by two
strongly separated hyperplanes such that g ·B ( A.
As noticed by [CS11, Lemma 6.2], strongly contracting isometries turn out to define
rank-one isometries (or equivalently, contracting isometries).
In the sequel, the following lemma will be also useful:
Lemma 2.8. Let X be a CAT(0) cube complex and (Di) a decreasing sequence of
halfspaces bounded by pairwise strongly separated hyperplanes. Then there exists exactly
one point of RX which belongs to Di for every i.
Proof. The orientation σ sending each hyperplane J to the halfspace D bounded by J
which contains all but finitely many Di defines a point of RX which belongs to Di for
every i.
Next, assume for contradiction that there exist two points α, β ∈ RX which belong to
Di for every i. Let J be a hyperplane separating α and β, and fix two vertices x, y ∈ X
separated by J . Without loss of generality, suppose that x and α belong to the same
halfspace delimited by J . If a ∈ X is a fixed vertex which does not belong to D0, it
follows from the fact that there exist only finitely many hyperplanes separating a from
either x or y that there exists some k such that x and y do not belong to Di for every
i ≥ k. Consequently, J separates {α, x} and {β, y} and, for every i ≥ k, Di contains
α and β but not x nor y. We conclude that J must be transverse to the hyperplane
bounding Di for every i ≥ k, which is impossible.

For convenience, we introduce the following definition for future use:
Definition 2.9. Let X be a CAT(0) cube complex. A point α ∈ RX is strongly
contracting if there exists
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2.5 Tits alternative

Theorem 2.10. Let G be a group acting on a CAT(0) cube complex X of finite dimen-
sion d.

• If G does not have a finite orbit in X, then it contains a non-abelian free subgroup.

• Otherwise, G contains a finite-index subgroup which is (locally X-elliptic)-by-(free
abelian of rank ≤ dim(X)).

Proof. If G has a bounded orbit in X, then there is nothing to prove, so, from now on,
we assume that G has unbounded orbits in X.

According to [CS11, Theorem F], if G does not have a finite orbit in the visual boundary
of X, then G contains a non-abelian free subgroup. Otherwise, if G has a finite orbit
in the visual boundary of X, it follows from [CFI16, Proposition 2.26] that either G
has a finite orbit in RX or there exists a finite-index subgroup G′ ≤ G and convex
subcomplex Y ⊂ RX such that G′ acts on Y with unbounded orbits and with no finite
orbit in the visual boundary of Y . In the latter case, applying [CS11, Theorem F] once
again implies that G contains a non-abelian free subgroup; and in the former case, the
desired conclusion follows from Theorem 2.6.

Corollary 2.11. If a group acts properly on a finite-dimensional CAT(0) cube complex
X and fixes a point in RX, then it must be (locally finite)-by-(free abelian). Conversely,
if a (locally finite)-by-(free abelian) group acts on a finite-dimensional CAT(0) cube
complex X, then it must have a finite orbit in RX.

3 Proof of the general criterion
This section is dedicated to the proof of the main result of the article, namely:

Theorem 3.1. Let C be a collection of finitely generated groups. Assume that:

• for every group G ∈ C and every finite-index subgroup H ≤ G, there exists a
subgroup of H which belongs to C;

• for every group G ∈ C, there exists a subgroup of the commutator subgroup [G,G]
which belongs to C;

• every group of C contains a non-abelian free subgroup and a δ-normal subgroup
which is (locally finite)-by-(free abelian).

Then no group of C acts properly on a finite-dimensional CAT(0) cube complex.

Recall that, given a group G and a subgroup H ≤ G, one says that H is δ-normal if, for
every finite collection of elements g1, . . . , gn ∈ G, the intersection

n⋂
i=1

giHg
−1
i is infinite.

For clarity, we decompose the proof into three steps.

3.1 Step 1: A dichotomy

The first step towards the proof of Theorem 3.1 is to show that, if a group G acts
on a finite-dimensional CAT(0) cube complex X, then either G stabilises a cubical
component of RX or X essentially decomposes as a product X1 × · · · × Xn such that
(a finite-index subgroup of) G acts on each factor with a strongly contracting isometry.
Such a dichotomy is essentially contained into [CS11].
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Proposition 3.2. Let G be a group acting on a finite-dimensional CAT(0) cube complex
X. Assume that G does not stabilise a cubical component of RX. Then G contains a
subgroup G′ of index ≤ dim(X)! and X contains a convex subcomplex Y which decom-
poses as a Cartesian product X1 × · · · × Xn of n ≥ 1 irreducible and unbounded cube
complexes so that:

• Y is G-invariant and G preserves the product structure of Y ;

• for every 1 ≤ i ≤ n, at least one element of G′ defines a strongly contracting
isometry of Xi.

We begin by proving the following preliminary lemma:

Lemma 3.3. Let G be a group acting on a CAT(0) cube complex X. If G fixes a point
in the visual boundary of X, then it stabilises a cubical component of RX.

Proof. For every CAT(0)-geodesic ray σ, denote by α(σ) the collection of the halfspaces
of X in which σ eventually lies. The CAT(0)-convexity of halfspaces ensures that α(σ)
defines an orientation. Moreover, as σ goes to infinity, α(σ) cannot be principal, so that
it defines a point the Roller boundary RX.

Let ρ be a CAT(0)-geodesic ray representing a point of the visual boundary of X which
is fixed by G. So, for every g ∈ G, the Hausdorff distance between ρ and g · ρ is finite.
Consequently, the number of hyperplanes separating these two rays eventually must be
finite, so that the symmetric difference between α(ρ) and α(g ·ρ) = g ·α(ρ) must be finite.
We conclude that G stabilises the cubical component of RX which contains α(ρ).

Proof of Proposition 3.2. As a consequence of Lemma 3.3, G does not fix a point in the
visual boundary of X, so that it follows from [CS11, Proposition 3.5] that there exists a
convex subcomplex Y ⊂ X on which G acts essentially, i.e., no orbit stays within finite
Hausdorff distance from a halfspace. Following [CS11, Proposition 2.6], decompose Y
as a product of irreducible cube complexes X1 × · · · ×Xn, where n ≥ 1, and let G′ be
a finite-index subgroup of G which preserves the product structure of Y . Notice that,
because the action Gy Y is essential and fixed-point free in the visual boundary, then
so are the actions G′ y X1, . . . , Xn. As a consequence, for every 1 ≤ i ≤ n, the cube
complex Xi must be unbounded, and [CS11, Theorem 6.3] applies so that G′ acts on Xi

with at least one strongly contracting isometry.

3.2 Step 2: Elementary actions

As a consequence of Proposition 3.2, we need to consider two cases: when the action
of our group stabilises a cubical component of the Roller boundary, and when the cube
complex decomposes as a product in such a way that (a finite-index subgroup of) the
group acts on each factor with a strongly contracting isometry. The section is dedicated
to the former case. More precisely, we prove:

Proposition 3.4. Let C be a collection of groups satisfying the following two conditions:

• for every group G ∈ C and every finite-index subgroup H ≤ G, there exists a
subgroup of H which belongs to C;

• for every group G ∈ C, there exists a subgroup of the commutator subgroup [G,G]
which belongs to C;

• every group of C is finitely generated and it contains a non-abelian free subgroup.
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Assume that at least one group of C acts properly on a finite-dimensional CAT(0) cube
complex, and let d denote the smallest dimension of a CAT(0) cube complex on which a
group of C may act properly. If a group G ∈ C acts properly on a CAT(0) cube complex
X of dimension d, then no finite-index subgroup of G stabilises a cubical component
of RX.

Proof. Assume for contradiction that there exists a group G ∈ G which acts properly on
a CAT(0) cube complex X of dimension d and which contains a finite-index subgroup
stabilising a cubical component Y ⊂ RX. In fact, as we know by assumption that such
a finite-index subgroup must contain a subgroup which belongs to C, we will suppose
without loss of generality that G itself stabilises Y .

Let H1 denote the collection of the hyperplanes of X which separate at least two vertices
of Y , and let H2 denote the complement of H1. Notice that the image of Y in the Roller
boundary of the cubical quotient X/H1 is reduced to a single vertex ξ. Therefore, G
acts on X/H1 by fixing the point ξ. The Busemann morphism of ξ is only defined on
a finite-index of G. By assumption, such a subgroup must contain a group G′ ∈ C. Let
β : G′ → A denote the restriction of the Busemann morphism of ξ to G′. Once again,
we know that ker(β) has to contain a group G′′ ∈ C. Notice that G′′ is X/H1-elliptic as
a consequence of Theorem 2.6.

We claim that G′′ acts properly on X/H2.

For convenience, for i = 1, 2 let πi denote the projection X → X/Hi. Fix a vertex
x ∈ X. Then, if S denotes the stabiliser of π2(x) in G′′, we have

dX(x, g · x) = dX/H1(π1(x), g · π1(x)) + dX/H2(π2(x), g · π2(x))

= dX/H1(π1(x), g · π1(x))

for every g ∈ S. As G′′ is X/H1-elliptic, it follows that S must be X-elliptic. But G
acts properly on X, which implies that S must be finite, concluding the proof of our
claim.

Finally, notice that the dimension of X/H2 coincides with the dimension of Y , which
is smaller than the dimension d of X. Thus, we have found a group G′′ ∈ C which
acts properly on a CAT(0) cube complex of dimension < d, contradicting the definition
of d.

3.3 Step 3: Actions with rank-one isometries

We now turn to the second case of the dichotomy provided by Proposition 3.2. Namely,
we are interested in actions on cube complexes with strongly contracting isometries.
Our main result is the following:

Proposition 3.5. Let G be a group acting essentially on a CAT(0) cube complex X.
Assume that no finite-index subgroup of G stabilises a cubical component of RX and
that G contains at least one strongly contracting isometry. If G contains a subgroup N
which is (locally finite)-by-(free abelian), then there exist a finite-index subgroup N ′ ≤ N
and elements a, b, c ∈ G such that the intersection

aN ′a−1 ∩ bN ′b−1 ∩ cN ′c−1

is X-elliptic. As a consequence, if N is δ-normal, then G does not act properly on X.

Recall that a group acts essentially on a CAT(0) cube complex if no orbit stays within
finite Hausdorff distance from a halfspace.

10



It is worth noticing that, in the statement of Proposition 3.5, the fact that G does not act
properly on X when N is δ-normal also follows from that the facts that a group which is
not virtually cyclic and which acts on a geodesic metric space with a contracting isometry
must be acylindrically hyperbolic [Sis18, BBF15], and that s-normal subgroups (which
include δ-normal subgroups) of acylindrically hyperbolic groups must be acylindrically
hyperbolic as well [Osi16, Lemma 7.2]. However, Proposition 3.5 does not only shows
that the action is not proper, it identifies an infinite subgroup which has a bounded orbit.
Knowing explicitly such a subgroup will be fundamental in the proof of Theorem 3.1.

Before turning to the proof of Proposition 3.5, we begin by proving two preliminary
lemmas.

Lemma 3.6. Let X be a CAT(0) cube complex and A,B,C a facing triple of pairwise
strongly separated hyperplanes. Let A+, B+, C+ denote respectively the halfspaces de-
limited by A,B,C which do not contain two hyperplanes among {A,B,C}. If α ∈ A+,
β ∈ B+ and γ ∈ C+ are three points of RX, then the median point of {α, β, γ} belongs
to X.

Recall that a facing triple is the data of three hyperplanes such that no one separates
the other two.

Proof of Lemma 3.6. Fix a vertex x ∈ (A+∪B+∪C+)c. Notice that, if D is a halfspace
which contains α and β but not x, then, because A and B are strongly separated,
necessarily D has to contain either A+ or B+. Consequently, D separates x from either
A or B. Similarly, if D contains α and γ (resp. β and γ) but not x, then D has to
separate x from either A and C (resp. B and C). Therefore, if x and the median point µ
of {α, β, γ} are thought of as orientations, then the symmetric difference between x and
µ has cardinality at most 2(d(x,A) + d(x,B) + d(x,C)). As a consequence, µ belongs
to the same cubical component as x, namely X.

Lemma 3.7. Let G be a group acting essentially on a CAT(0) cube complex X without
fixed point in the visual boundary. Let A ⊂ B be two halfspaces. For every point α ∈ RX
which belongs to B, there exists some g ∈ G such that g · α ∈ A.

Proof. The Double Skewer Lemma [CS11] precisely says that there exists some g ∈ G
such that g ·B ( A. The desired conclusion follows immediately.

We are now ready to prove our proposition.

Proof o Proposition 3.5. As a consequence of Corollary 2.11, N must have a finite orbit
in X. If N does not have a finite orbit in RX, then it must be X-elliptic, and there
is nothing to prove. So suppose that N has a finite orbit in RX. Up to replacing N
with a finite-index subgroup, we suppose without loss of generality that N fixes a point
ξ ∈ RX.

Claim 3.8. X contains a facing quadruple of pairwise strongly separated hyperplanes,
i.e., four pairwise strongly separated hyperplanes such that no one separates two of the
other three.

As G acts on X with a strongly contracting isometry, it follows from Lemma 2.8 that
RX contains a strongly contracting point. In fact, because G cannot have a finite orbit
in RX, we know that RX has to contain infinitely many strongly contracting points.
Let α, β, γ, δ ∈ RX be four of them. Fix a decreasing sequence of halfspaces (Ai) (resp.
(Bi), (Ci), (Di)) bounded by pairwise strongly separated hyperplanes and such that α
(resp. β, γ, δ) belongs to Ai (resp. Bi, Ci, Di) for every i.
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Notice that, if Ai and Bj intersect for some i, j, then there must exist p, q such that
Ap ⊂ Bj and Bq ⊂ Ai. As α and β are distinct, we deduce from Lemma 2.8 that there
exists some r such that Ai and Bj are disjoint for every i, j ≥ r. A similar conclusion
holds for any pair of sequences among (Ai), (Bi), (Ci), (Di). As a consequence, there
exists some s such that Ai, Bj , Ck and D` are pairwise disjoint for every i, j, k, ` ≥ s.

Therefore, the hyperplanes bounding the four halfspaces Ar, Br, Cr and Dr define a
facing quadruple. It follows that the hyperplanes bounding Ar+1, Br+1, Cr+1 and Dr+1
define a facing quadruple of pairwise strongly separated hyperplanes, concluding the
proof of our claim.

Let A,B,C,D be a facing quadruple of pairwise strongly separated hyperplanes, and
let A+, B+, C+, D+ denote the halfspace delimited respectively by A,B,C,D which are
disjoint from the three other hyperplanes. Of course, the point ξ of RX which is fixed by
N may belong to at most one of these four halfspace. Up to relabelling our hyperplane,
let us say that ξ does not belong A+, B+ and C+. By applying Lemma 3.7 three times,
we find three elements a, b, c ∈ G such that aξ ∈ A+, bξ ∈ B+ and cξ ∈ C+. The median
point µ of these three points of X, which is a vertex of X according to Lemma 3.6, is
stabilised by

aNa−1 ∩ bNb−1 ∩ cNc−1,

concluding the proof of the theorem.

3.4 Conclusion

By combining Propositions 3.2, 3.4 and 3.5, we are now ready to prove the main criterion
provided by Theorem 3.1.

Proof of Theorem 3.1. Assume for contradiction that there exists a group of C which acts
properly on a finite-dimensional CAT(0) cube complex, and let d denote the smallest
dimension of a CAT(0) cube complex on which a group of C may act properly. Now fix
a group G ∈ C acting properly on a CAT(0) cube complex of dimension d. According
to Proposition 3.4, no finite-index subgroup G stabilises a cubical component of RX. It
follows from Proposition 3.2, that G contains a finite-index subgroup G′ and X contains
a convex subcomplex Y which decomposes as a Cartesian product X1×· · ·×Xn of n ≥ 1
irreducible and unbounded cube complexes so that:

• Y is G-invariant and G preserves the product structure of Y ;

• for every 1 ≤ i ≤ n, at least one element of G′ defines a strongly contracting
isometry of Xi.

Notice that, if N is an δ-normal subgroup of G which is (locally finite)-by-(free abelian),
then N ′ := N ∩G′ defines a similar subgroup for G′.

Next, we deduce from Proposition 3.5 that N ′ contains a finite-index subgroup N ′′ such
that, for every 1 ≤ i ≤ n, there exist elements ai, bi, ci ∈ G′ so that the intersection

aiN
′′a−1
i ∩ biN

′′b−1
i ∩ ciN

′′c−1
i

is Xi-elliptic. Consequently, the intersection

E :=
n⋂
i=1

(
aiN

′′a−1
i ∩ biN

′′b−1
i ∩ ciN

′′c−1
i

)
must be Xi-elliptic for every 1 ≤ i ≤ n. In other words, E must be Y -elliptic. Since
N (and a fortiori N ′′ as a finite-index subgroup of N) is δ-normal, we know that E is
infinite, and we conclude that G does not act properly on X.
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4 Applications

4.1 Wreath products

By applying Theorem 3.1 to the specific case where our collection C is reduced to a
single finitely generated group, one obtains immediately the following statement:

Corollary 4.1. Let G be a finitely generated group. Assume that:

• the commutator subgroup [G,G] and every finite-index subgroup of G contains a
copy of G;

• G contains a non-abelian free subgroup and a δ-normal subgroup which is (locally
finite)-by-(free abelian).

Then G does not act properly on a finite-dimensional CAT(0) cube complex.

A straightforward application of this corollary is the following proposition:

Proposition 4.2. For every non-trivial finite group F , the wreath product F o F2 does
not act properly on a finite-dimensional CAT(0) cube complex.

By combining this proposition with Tits alternative for finite-dimensional CAT(0) cube
complexes, one obtains:

Corollary 4.3. Let A and B be two non-trivial groups. If the wreath product A oB acts
properly on a finite-dimensional CAT(0) cube complex, then A must be a torsion group
and B must be virtually (locally finite)-by-(free abelian of finite rank).

Proof. If A contains an infinite-order element, then A o B has to contain a free abelian
group of infinite rank. Therefore, A o B cannot act properly on a finite-dimensional
CAT(0) cube complex in this case. Next, it follows from Proposition 4.2 that, if A o B
acts properly on a finite-dimensional CAT(0) cube complex, then B cannot contain a
non-abelian free subgroup. We conclude from Theorem 2.10 that B must be virtually
(locally finite)-by-(free abelian).

We do not know whether or not the converse of Corollary 4.3 holds. Consequently,
the classification of wreath products acting properly on finite-dimensional CAT(0) cube
complexes remains unknown.

4.2 Normalisers of infinite torsion subgroups

In this section, our goal is to deduce from Theorem 3.1 some knowledge about normalis-
ers of infinite torsion subgroups in groups acting properly on finite-dimensional CAT(0)
cube complexes. Roughly speaking, we show that, if a group G contains an infinite tor-
sion subgroup L and if G acts properly on a finite-dimensional CAT(0) cube complex,
then either the normaliser NG(L) is close to be free abelian or, for every k ≥ 1, NG(L)
contains a non-abelian free subgroup commuting with a subgroup of L of size ≥ k. More
precisely, the main result of this section is:

Theorem 4.4. Let G be a group acting properly on a finite-dimensional CAT(0) cube
complex X. Assume that G contains an infinite torsion subgroup L. Either the nor-
maliser NG(L) contains a finite-index subgroup which is (locally finite)-by-Zn for some
n ≤ dim(X); or, for every k ≥ 1, NG(L) a contains a non-abelian free subgroup central-
ising a subgroup of L of cardinality ≥ k.

By begin by proving the following preliminary statement:
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Proposition 4.5. Let G be a finitely generated group which contains a non-abelian free
subgroup F and a normal subgroup L which is infinite torsion. If G acts properly on
a finite-dimensional CAT(0) cube complex, then, for every k ≥ 1, F must contain a
non-abelian subgroup which centralises a subgroup of L of cardinality ≥ k.

Proof. Let C denote the collection of finitely generated groups G such that:

• G contains a non-abelian free subgroup F and a normal subgroup L which is
infinite torsion;

• there exists some k ≥ 1 such that no subgroup of L of cardinality ≥ k is centralised
by a non-abelian subgroup of F .

In order to prove our proposition, it is sufficient to show that C satisfies the conditions
of Theorem 3.1.

So fix a group G ∈ G. If H is a finite-index subgroup of G, it is clear that F ∩H and
L ∩H are subgroups of H allowing us to deduce that H has to belong to C.

Now, assume that H is the commutator subgroup of G. As G is finitely generated, the
quotient G/H must be a finitely generated abelian group. Since the torsion of such an
abelian group is bounded, it follows that L∩H must have finite index in L; a fortiori, it
is infinite. We also know that F ∩H must be non-abelian as it contains [F, F ]. However,
H may not be finitely generated so we cannot deduce that H belongs to C. Fix a subset
S ⊂ L ∩H of cardinality more than k (the constant associated to G by the definition
of C) and a finitely generated non-abelian subgroup F ′ ≤ F ∩H. We claim that 〈S, F ′〉
belongs to C. Of course, 〈S, F ′〉 is finitely generated by construction, and it contains
F ′ as a non-abelian free subgroup. Let L′ denote the normal closure of S in 〈S, F ′〉. If
L′ is finite, the kernel of the action of F ′ on L′ by conjugations defines a non-abelian
subgroup of F centralising the subgroup 〈S〉 of L, which has cardinality more than k.
By definition of k, this is impossible, so L′ must be infinite. Moreover, by definition of k,
no subgroup of L′ ≤ L of cardinality ≥ k can be centralised by a non-abelian subgroup
of F ′ ≤ F . We conclude that indeed 〈S, F ′〉 ≤ H belongs to C.

Proof of Theorem 4.4. If the normaliser NG(L) does not contain a non-abelian free sub-
group, it follows from Theorem 2.10 that it has be virtually (locally finite)-by-(free
abelian of rank ≤ dim(X)), and there is nothing else to prove. From now on, assume
that NG(L) contains a non-abelian finitely generated free subgroup F . For every k ≥ 1,
fix a finite subgroup Sk ≤ L of cardinality ≥ k. Notice that 〈Sk, F 〉 is finitely generated
for every k. We distinguish two cases.

If, for every k ≥ 1, the normal closure Lk of Sk in 〈Lk, F 〉 is finite, then the kernel of the
action of F on Lk by conjugations defines a non-abelian free subgroup of F ≤ NG(L)
centralising Lk, which is a subgroup of L of cardinality ≥ k. The desired conclusion
follows.

Otherwise, if there exists some k ≥ 1 such that Lk is infinite, then 〈Sk, F 〉 defines a
finitely generated group which contains F as a non-abelian free subgroup, which contains
Lk as a normal infinite torsion subgroup, and which acts properly on a finite-dimensional
CAT(0) cube complex. The desired conclusion follows from Proposition 4.5.
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