
Embedding partial Latin squares in Latin squares with many

mutually orthogonal mates

Diane Donovana, Mike Grannellb, Emine Şule Yazıcıc
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Abstract

In this paper it is shown that any partial Latin square of order n can be embedded in a Latin
square of order at most 16n2 which has at least 2n mutually orthogonal mates. Further, for
any t > 2, it is shown that a pair of orthogonal partial Latin squares of order n can be
embedded in a set of t mutually orthogonal Latin squares (MOLS) of order a polynomial
with respect to n. A consequence of the constructions is that, if N(n) denotes the size of
the largest set of MOLS of order n, then N(n2) > N(n) + 2. In particular, it follows that
N(576) > 9, improving the previously known lower bound N(576) > 8.
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1. Introduction

In 1960 Evans [5] showed that it was possible to embed any partial Latin square of order
n in some Latin square of order t, for every t > 2n, where 2n is a tight bound. In the same
paper Evans raised the question of embedding orthogonal partial Latin squares in sets of
mutually orthogonal Latin squares.

The importance and relevance of this question is demonstrated by the prevalence and
application of orthogonal Latin squares to other areas of mathematics (see [3]). For instance,
the existence of a set of n − 1 mutually orthogonal Latin squares of order n is equivalent
to the existence of a projective plane of order n (see [11] for a relevant construction). Thus
results on the embedding of orthogonal partial Latin squares provide information on the
embedding of sets of partial lines in finite geometries. In addition, early embedding results
for partial Steiner triple systems utilised embeddings of partial idempotent Latin squares (see
for example [9]). It has also been suggested that embeddings of block designs with block
size 4 and embeddings of Kirkman triple systems may make use of embeddings of pairs of
orthogonal partial Latin squares (see [7]).

In 1976 Lindner [10] showed that a pair of orthogonal partial Latin squares can always
be finitely embedded in a pair of orthogonal Latin squares. However, there was no known
method for obtaining an embedding of polynomial order (with respect to the order of the
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partial arrays). In [7], Hilton et al. formulated some necessary conditions for a pair of
orthogonal partial Latin squares to be embedded in a pair of orthogonal Latin squares.
Then in [8] Jenkins developed a construction for embedding a single partial Latin square of
order n in a Latin square of order 4n2 for which there exists an orthogonal mate. In 2014,
Donovan and Yazıcı [4] developed a construction that verified that a pair of orthogonal
partial Latin squares, of order n, can be embedded in a pair of orthogonal Latin squares of
order at most 16n4.

In 2017, Barber et al. [2] established a remarkable result concerning completions of
mutually orthogonal partial Latin squares. As a consequence of their Theorem 1.4, it follows
that for any t ∈ N, there exists k0 ∈ N such that for any n ∈ N, any set of t mutually
orthogonal partial Latin squares of order n can be embedded in a set of t MOLS of order
m for every m > k0n. That there is such a k0 is an important existence result because it
gives a linear order embedding. However, the proof given in [2] does not yield an estimate
for the best (i.e., lowest) value of k0. For t = 1, Evan’s result shows that k0 = 2 is the
best possible value. For t > 2, the proof given in [2] requires that k0 > 107(t + 2)3/9 and,
being an existence result, there is little information about the structure of the resulting set
of MOLS. For t = 2 and small n, certainly n 6 113 and possibly much larger, [4] gives a
tighter embedding than that of [2], and it more closely specifies the structure of the resulting
pair of MOLS.

In the current paper, we provide some new constructions that show that a partial Latin
square, of order n, can be embedded in a Latin square, of order at most 16n2 with many
mutually orthogonal mates. (From here onwards, when we say B has t mutually orthogonal
mates we mean B together with these t Latin squares form a set of t+1 mutually orthogonal
Latin squares.) Furthermore, we extend the results of [4] by developing a second construction
that takes any pair of orthogonal partial Latin squares of order n and any integer t, and
embeds the pair in a set of t MOLS(m), where m < pt(n) for some polynomial pt. Also,
as a corollary, the construction can be used to increase the best known lower bound for the
largest set of MOLS(576). In the literature the existence of 8 MOLS(576) is established.
However, we construct 9 MOLS(576).

We preface the discussion of our main result with some necessary definitions.

2. Definitions

Let I = {α1, α2, . . . , αn} represent a set of n distinct elements. A non-empty sub-
set P of I × I × I is said to be a partial Latin square (PLS(n)), of order n, if for all
(x1, x2, x3), (y1, y2, y3) ∈ P and for all distinct i, j, k ∈ {1, 2, 3},

xi = yi and xj = yj implies xk = yk.

We say that P is indexed by I. We may think of P as an n × n array where symbol e ∈ I
occurs in cell (r, c), whenever (r, c, e) ∈ P , and we will write e = P (r, c). We say that cell
(r, c) is empty in P if, for all e ∈ I, (r, c, e) /∈ P . The volume of P is |P |. If |P | = n2, then
we say that P is a Latin square (LS(n)), of order n. If for all 1 6 i 6 n, (αi, αi, αi) ∈ P ,
then P is said to be idempotent. The set of elements {(x1, x2, x3) ∈ P | x1 = x2} forms the
main diagonal of P .
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Two partial Latin squares P and Q, of the same order n are said to be orthogonal, denoted
OPLS(n), if they have the same non-empty cells and for all r1, c1, r2, c2, x, y ∈ I

{(r1, c1, x), (r2, c2, x)} ⊆ P implies {(r1, c1, y), (r2, c2, y)} 6⊆ Q.

Example 2.1.

0 1 2
2 0 1 3
3 0

2 1

0 2 1
3 1 0 2
1 2

0 3

Figure 1: A pair of orthogonal partial Latin squares of order 4

This definition extends in the obvious way to a pair of orthogonal Latin squares of order
n. A set of t Latin squares of order n, which are pairwise orthogonal, is said to be a set of
t mutually orthogonal Latin squares, denoted MOLS(n). N(n) is the maximum number of
Latin squares in a set of mutually orthogonal Latin squares of order n.

A set T ⊆ A, where A is a Latin square of order n, is said to be a transversal, if

• |T | = n, and

• for all distinct (r1, c1, x1), (r2, c2, x2) ∈ T , r1 6= r2, c1 6= c2 and x1 6= x2.

Note that a Latin square has an orthogonal mate if and only if it can be partitioned into
disjoint transversals.

We say that a partial Latin square P on the set I can be embedded in a Latin square L on
the set J if there exist one-to-one mappings fP1 , f

P
2 , f

P
3 : I → J such that if (x1, x2, x3) ∈ P

then (fP1 (x1), f
P
2 (x2), f

P
3 (x3)) ∈ L. A pair of orthogonal partial Latin squares (P1, P2) is said

to be embedded in a pair of orthogonal Latin squares (L1, L2) if P1 is embedded in L1 and P2

is embedded in L2 such that fP1
1 = fP2

1 and fP1
2 = fP2

2 . A set of mutually orthogonal partial
Latin squares (P1, P2, . . . , Pa) is embedded in a set of mutually orthogonal Latin squares

{L1, L2, . . . , Lb} where b > a if Pi is embedded in Li for all 1 6 i 6 a where fPi
1 = f

Pj

1 and

fPi
2 = f

Pj

2 for all 1 6 i, j 6 a.
This paper will make extensive use of Evans’ embedding result, which is stated as:

Theorem 2.2 ([5]). A partial Latin square of order n can be embedded in a Latin square of
order t, for any t > 2n.

The following is a similar embedding result for partial idempotent Latin squares.

Theorem 2.3 ([1]). A partial idempotent Latin square of order n can be embedded in a
idempotent Latin square of order t, for any t > 2n+ 1.

It is also worth noting the following well known result which is the culmination of results
from a series of papers by many authors, for example [6].

Theorem 2.4. A pair of orthogonal Latin squares of order n can be embedded in a pair of
orthogonal Latin squares of order t if t > 3n, with the bound of 3n being best possible.
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3. Embedding a PLS in a set of MOLS

We begin by assuming that there exists a set of t MOLS(n) and show that any Latin
square L, of order n, can be embedded in a Latin square B, of order n2, with the additional
property that B has t mutually orthogonal mates. This result will then allow us to show that
any PLS(s) where s 6 n/2 can be embedded in a Latin square B of order n2 such that B has
t orthogonal mates that are also mutually orthogonal. Thus this result, and the associated
construction, allows us to generalize Jenkins’ result which is stated as:

Theorem 3.1 ([8]). Let L be a Latin square of order n with n > 3 and n 6= 6. Then L can
be embedded in a Latin square of order n2 which has an orthogonal mate.

From here forward when we say B has t mutually orthogonal mates we mean B together
with t more Latin squares of the same order forms a set of t+ 1 mutually orthogonal Latin
squares.

Theorem 3.2. Let F1 = [F1(r, c)], . . . , Ft = [Ft(r, c)] be t mutually orthogonal Latin squares
of order n indexed by [n] = {0, 1, . . . , n− 1}. Let L = [L(r, c)] be a Latin square of order n,
also indexed by [n]. Then the arrays B and Xk, for 1 6 k 6 t, form a set of t + 1 mutually
orthogonal Latin squares of order n2 where

Xk = {((p, r), (q, c), (Fk(F1(p, r), q), Fk(F1(p, q), c))) | 0 6 p, q, r, c 6 n− 1},
B = {((p, r), (q, c), (F1(p, q), L(F1(p, r), c))) | 0 6 p, q, r, c 6 n− 1}.

Proof. For completeness we begin by showing these arrays are Latin squares, then that Xk,
1 6 k 6 t, are mutually orthogonal and finally that for each k, Xk and B are orthogonal.

Assume that one of Xk, 1 6 k 6 t or B is not a Latin square. Then

• for some (p, r), there exists (q, c) and (q′, c′), with (q, c) 6= (q′, c′), such that
(Fk(F1(p, r), q), Fk(F1(p, q), c)) = (Fk(F1(p, r), q

′), Fk(F1(p, q
′), c′)), or

(F1(p, q), L(F1(p, r), c)) = (F1(p, q
′), L(F1(p, r), c

′));

or

• for some (q, c), there exists (p, r) and (p′, r′), with (p, r) 6= (p′, r′), such that
(Fk(F1(p, r), q), Fk(F1(p, q), c)) = (Fk(F1(p

′, r′), q), Fk(F1(p
′, q), c)), or

(F1(p, q), L(F1(p, r), c)) = (F1(p
′, q), L(F1(p

′, r′), c)).

The first case implies

Fk(F1(p, r), q) = Fk(F1(p, r), q
′) and Fk(F1(p, q), c) = Fk(F1(p, q

′), c′).

Thus we may deduce that q = q′ and consequently c = c′, a contradiction. All the other
cases follow in a similar manner and hence Xk, 1 6 k 6 t, and B are Latin squares of order
n2.

Next assume that Xk and X`, for k 6= ` are not orthogonal, and so there exist distinct
cells ((p, r), (q, c)) and ((p′, r′), (q′, c′)) such that

(Fk(F1(p, r), q), Fk(F1(p, q), c)) = (Fk(F1(p
′, r′), q′), Fk(F1(p

′, q′), c′)) and

(F`(F1(p, r), q), F`(F1(p, q), c)) = (F`(F1(p
′, r′), q′), F`(F1(p

′, q′), c′)).
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Then

Fk(F1(p, r), q) = Fk(F1(p
′, r′), q′), (1)

Fk(F1(p, q), c) = Fk(F1(p
′, q′), c′), (2)

F`(F1(p, r), q) = F`(F1(p
′, r′), q′), (3)

F`(F1(p, q), c) = F`(F1(p
′, q′), c′). (4)

But Fk and F` are orthogonal Latin squares, hence Equations (1) and (3) imply F1(p, r) =
F1(p

′, r′) and q = q′, while Equations (2) and (4) imply F1(p, q) = F1(p
′, q′) and c = c′.

Thus we may deduce that p = p′ and hence r = r′. So ((p, r), (q, c)) = ((p′, r′), (q′, c′)), a
contradiction. Hence {Xk | 1 6 k 6 t}, is a set of t MOLS(n2).

Finally assume that for some k ∈ {1, . . . , t}, Xk and B are not orthogonal. Thus there
exist distinct cells ((p, r), (q, c)) and ((p′, r′), (q′, c′)) such that

(Fk(F1(p, r), q), Fk(F1(p, q), c)) = (Fk(F1(p
′, r′), q′), Fk(F1(p

′, q′), c′)) and

(F1(p, q), L(F1(p, r), c)) = (F1(p
′, q′), L(F1(p

′, r′), c′)).

Then

Fk(F1(p, r), q) = Fk(F1(p
′, r′), q′), (5)

Fk(F1(p, q), c) = Fk(F1(p
′, q′), c′), (6)

F1(p, q) = F1(p
′, q′), (7)

L(F1(p, r), c) = L(F1(p
′, r′), c′). (8)

Since Fk is a Latin square, Equation (7) substituted into Equation (6) gives c = c′. Then
Equation (8) gives F1(p, r) = F1(p

′, r′) and when substituted into Equation (5) gives q = q′.
Returning to Equation (7) we get p = p′ and consequently r = r′. So ((p, r), (q, c)) =
((p′, r′), (q′, c′)), a contradiction. Hence for all 1 6 k 6 t, Xk is orthogonal to B, and the
result follows.

Corollary 3.3. Let P be a partial Latin square of order n, n > 3. Then P can be embedded
in a Latin square B that has order at most 16n2, where B has at least 2n mutually orthogonal
mates. Furthermore if P is idempotent then B can be constructed to be idempotent.

Proof. We will first embed P in a Latin square L of order m where 2k = m > 2n > 2k−1

which is always possible given Evans’ result, Theorem 2.2. We can also assume that L is
indexed by [m] = {0, 1, . . . ,m − 1}. As is well known, since m is a prime power, there
exists a set of m− 1 mutually orthogonal Latin squares {F1, F2, . . . , Fm−1} of order m, also
indexed by [m] and in standard form (that is, Fi(0, j) = j for each 1 6 i 6 m − 1 and
0 6 j 6 m− 1). Then the set {X1,X2, . . . ,Xm−1,B} of Theorem 3.2 defined using these Fi
is a set of m mutually orthogonal Latin squares of order m2.

Observe that since F1(0, r) = r, the construction places a copy of P in the sub-array
defined by p = 0 and q = 0 and so P has been embedded in B which has been shown to have
m− 1 mutually orthogonal mates.

As 2k = m > 2n > 2k−1 we have 2k+1 > 4n > 2k = m, so 16n2 > m2. Hence every
partial Latin square of order n embeds in a Latin square of order at most 16n2 for which
there exists at least 2n mutually orthogonal mates.
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Now, one can make sure B is idempotent if P is idempotent. When embedding P , ensure
that L is idempotent, which can be guaranteed by Theorem 2.3 because m > 2n + 1. Note
that F1 is in standard form and is decomposable into transversals as it has an orthogonal
mate. So there exists a transversal of F1 involving the element (0, 0, 0). Without loss of
generality one can assume that this transversal is on the main diagonal of F1. So F1(p, p) 6=
F1(p

′, p′) for p 6= p′. Hence, if p 6= p′, the cells ((p, r), (p, r)) and ((p′, r), (p′, r)) of B contain
elements with different first coordinates. The second coordinate in cell ((p, r), (p, r)) of B is
L(F1(p, r), r). So for each fixed p, these second coordinates form a row-permuted copy of L.

Now consider the subsquare Sp of B formed by the cells ((p, r), (p, r′)) for 0 6 r, r′ 6 m−1.
The entries in Sp all have the same first coordinate F1(p, p), and the second coordinates form
a row-permuted copy of L. Since L is idempotent, L has a transversal and by permuting
the rows {(p, 0), (p, 1), . . . , (p,m− 1)} of B we can arrange for this transversal of Sp to lie on
the main diagonal of B. This can be done independently for each p = 0, 1, . . . ,m − 1, and
the result is a transversal of B on its main diagonal. By suitable renaming of the elements
of B we can then arrange for B to be idempotent. In the case p = 0, the original entry
in the cell (0, r), (0, r′) of B is (0, L(r, r′)), so no permuting of the rows of S0 or renaming
of elements (0, x) is required (strictly speaking we apply the identity permutation and the
identity renaming here). Hence B retains a copy of L in the subsquare S0. Finally, to
complete the proof, we apply the same permutation of the rows and renaming of elements
to each Xk as were applied to B.

Note that one can increase the number of mutually orthogonal Latin squares that are
orthogonal to B as much as one likes by increasing the order of the embedding Latin square
L to guarantee the existence of a larger number of mutually orthogonal Latin squares of the
same order as L.

Corollary 3.4. Let L be a Latin square of order n with n > 7 and n 6= 10, 18 or 22. Then L
can be embedded in a Latin square B of order n2 where B has at least four mutually orthogonal
mates.

Proof. We know by [3] (Section III.3.6, Table 3.88) and [12] that if n > 7 and n 6= 10, 18 or
22, there exist four mutually orthogonal Latin squares of order n. Use these Latin squares
to form B, X1, X2, X3 and X4.

A bachelor Latin square is a Latin square which has no orthogonal mate; equivalently,
it is a Latin square with no decomposition into disjoint transversals. A confirmed bachelor
Latin square is a Latin square that contains an entry through which no transversal passes.

Wanless and Webb [13] have established the existence of confirmed bachelor Latin squares
for all possible orders n, n /∈ {1, 3}. So it is interesting to note that the above results
(including Jenkins’ result) established that when one essentially “squares” a bachelor, it is
possible to find an orthogonal mate.

4. Embedding a pair of OPLS in a set of MOLS

In this section we make use of the embedding result of Donovan and Yazıcı, [4], to show
that a pair of orthogonal partial Latin squares can be embedded in a pair of orthogonal
Latin square which have many orthogonal mates.
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Theorem 4.1 ([4]). Let P and Q be a pair of orthogonal partial Latin squares of order n.
Then P and Q can be embedded in orthogonal Latin squares of order k4 and any order greater
than or equal to 3k4 where 2a = k > n > 2a−1 for some integer a.

Theorem 4.2. Let A1 = [A1(i, j)], A2 = [A2(i, j)] and B1 = [B1(i, j)], B2 = [B2(i, j)] be
pairs of orthogonal Latin squares of order n. Let C1 = [C1(i, j)], . . . , Ct = [Ct(i, j)] be t
mutually orthogonal Latin squares of order n. Then the squares

B1 = {((p, r), (q, c), (A1(p, q), B1(r, c)))},
B2 = {((p, r), (q, c), (A2(p, q), B2(r, c)))},

Xi,f(i) = {((p, r), (q, c), (Ci(p,B1(r, c)), Cf(i)(q, B2(r, c)))},

where i ∈ [t] = {1, . . . , t} and f : [t] → [t] is a bijection, form a set of t + 2 mutually
orthogonal Latin squares of order n2.

Proof. The arrays B1 and B2 may be obtained by taking direct products, so it is clear that
they are orthogonal Latin squares.

Assume that the array Xα,β is not a Latin square, for some α, β. Then there exists
(p, r) such that (Cα(p,B1(r, c)), Cβ(q, B2(r, c)) = (Cα(p,B1(r, c

′)), Cβ(q′, B2(r, c
′)), for some

(q, c), (q′, c′) with (q, c) 6= (q′, c′), or there exists (q, c) such that (Cα(p,B1(r, c)), Cβ(q, B2(r, c))
= (Cα(p′, B1(r

′, c)), Cβ(q, B2(r
′, c)), for some (p, r), (p′, r′) with (p, r) 6= (p′, r′). The former

case implies

Cα(p,B1(r, c)) = Cα(p,B1(r, c
′)), (9)

Cβ(q, B2(r, c)) = Cβ(q′, B2(r, c
′)). (10)

By (9) c = c′ and so (10) implies q = q′, a contradiction. The latter case implies

Cα(p,B1(r, c)) = Cα(p′, B1(r
′, c)), (11)

Cβ(q, B2(r, c)) = Cβ(q, B2(r
′, c)). (12)

But then (12) implies r = r′ and by (11) p = p′, a contradiction. Hence Xα,β is a Latin
square.

Next take distinct α and γ, and consequently distinct β and δ, where β = f(α) and
δ = f(γ). Then assume that for distinct cells ((p, r), (q, c)) and ((p′, r′), (q′, c′))

(Cα(p,B1(r, c)), Cβ(q, B2(r, c))) = (Cα(p′, B1(r
′, c′)), Cβ(q′, B2(r

′, c′))),

(Cγ(p,B1(r, c)), Cδ(q, B2(r, c))) = (Cγ(p
′, B1(r

′, c′)), Cδ(q
′, B2(r

′, c′))).

Then

Cα(p,B1(r, c)) = Cα(p′, B1(r
′, c′)), (13)

Cβ(q, B2(r, c)) = Cβ(q′, B2(r
′, c′)), (14)

Cγ(p,B1(r, c)) = Cγ(p
′, B1(r

′, c′)), (15)

Cδ(q, B2(r, c)) = Cδ(q
′, B2(r

′, c′)). (16)
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But Cα is orthogonal to Cγ and so Equations (13) and (15) imply p = p′ and B1(r, c) =
B1(r

′, c′). Further Cβ is orthogonal to Cδ and so Equations (14) and (16) imply q = q′

and B2(r, c) = B2(r
′, c′). Finally B1 and B2 are orthogonal and so r = r′ and c = c′. But

this contradicts the assumption that the cells ((p, r), (q, c)) and ((p′, r′), (q′, c′)) are distinct.
Hence Xα,β and Xγ,δ are orthogonal.

Finally we prove that B1 and Xα,β are orthogonal. Assume this is not the case and that
there exist distinct cells ((p, r), (q, c)) and ((p′, r′), (q′, c′)) such that

(A1(p, q), B1(r, c)) = (A1(p
′, q′), B1(r

′, c′)),

(Cα(p,B1(r, c)), Cβ(q, B2(r, c))) = (Cα(p′, B1(r
′, c′)), Cβ(q′, B2(r

′, c′))).

Then

A1(p, q) = A1(p
′, q′), (17)

B1(r, c) = B1(r
′, c′), (18)

Cα(p,B1(r, c)) = Cα(p′, B1(r
′, c′)), (19)

Cβ(q, B2(r, c)) = Cβ(q′, B2(r
′, c′)). (20)

Since Cα is a Latin square, substituting Equation (18) into Equation (19) implies p = p′.
Now since A1 is a Latin square, Equation (17) implies q = q′. Then, since Cβ is a Latin
square, Equation (20) impliesB2(r, c) = B2(r

′, c′). ButB1 andB2 are orthogonal so Equation
(18) then gives r = r′ and c = c′. Consequently B1 and Xα,β are orthogonal. Similarly it can
be shown that B2 and Xα,β are orthogonal.

Note that we can use A1, A2, B1, B2 ∈ {C1, C2, . . . Ct}. So the pairs (A1, A2) and (B1, B2)
do not have to be distinct from the set {C1, C2, . . . Ct}
Corollary 4.3. For any t > 2, a pair of mutually orthogonal partial Latin squares of order
n can be embedded in a set of t mutually orthogonal Latin squares of polynomial order with
respect to n.

Proof. Let A1 and A2 be two orthogonal partial Latin squares of order n. By Theorem
4.1 we can embed them into two orthogonal Latin squares A1 and A2 of order k4 where
2a = k > n > 2a−1. As k is a power of a prime, there are at least k4−1 MOLS(k4). So there
are at least (k4− 1 + 2) MOLS(k8) two of which contain the copies of A1 and A2. Similarly
by choosing the order of A1 and A2 larger, one can obtain as many orthogonal mates as
one wants at the expense of increasing the order of the squares into which the partial Latin
squares are embedded.

Obviously Theorem 4.2 can also be used to construct mutually orthogonal Latin squares
of order n2 for a given integer n. For example, in the literature only 8 mutually orthogonal
Latin squares of order 576 are known to exist, but the following corollaries constructs 9
MOLS(576).

Corollary 4.4. N(n2) > N(n) + 2.

Corollary 4.5. There are 9 mutually orthogonal Latin squares of order 576.

Proof. By [3] Table 3.87 there are at least 7 mutually orthogonal Latin squares of order 24.
When applied in the construction given in Theorem 4.2, we may obtain 7 + 2 = 9 mutually
orthogonal Latin squares of order 242 = 576.
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