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Abstract

Buch and Rimányi proved a formula for a specialization of double Grothendieck poly-
nomials based on the Yang-Baxter equation related to the degenerate Hecke algebra. A
geometric proof was found by Yong and Woo by constructing a Gröbner basis for the
Kazhdan-Lusztig ideals. In this note, we give an elementary proof for this formula by using
only divided difference operators.

1 Introduction

Let Sn denote the symmetric group of permutations of {1, 2, . . . , n}. For a permutation w ∈ Sn,
the double Grothendieck polynomial Gw(x; y) introduced by Lascoux and Schützenberger [12]
is the polynomial representative of the class of the Schubert variety for w in the equivariant
K-theory of the flag manifold. Write a permutation v ∈ Sn in one-line notation, that is, write
v = v(1)v(2) · · · v(n). The specialization

Gw(yv; y) := Gw(yv(1), . . . , yv(n); y) (1.1)

of Gw(x; y) obtained by replacing xi with yv(i) gives the restriction of this class to the fixed
point corresponding to v. Buch and Rimányi [4] proved a formula for Gw(yv; y) based on the
Yang-Baxter equation related to the degenerate Hecke algebra. Buch and Rimányi [4] also
pointed out various important applications of this formula. By constructing a Gröbner basis
for the Kazhdan-Lusztig ideals, Yong and Woo [15] found a geometric explanation for the
Buch-Rimányi formula.

In this note, we give an elementary proof of the Buch-Rimányi formula by using only divided
difference operators. As observed by Buch and Rimányi [4, Corollary 2.3], the classical pipe
dream (or, RC-graph) formula of Gw(x; y) (see for example [10, Corollary 5.4], [13, Theorem
6.3]) can be directly obtained from the specialization Gw(yv; y). Hence our approach implies
that the pipe dream formula for double Grothendieck polynomials can be derived directly from
divided difference operators.
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2 The Buch-Rimányi formula

Fix a nonnegative integer n. For 1 ≤ i < j ≤ n, let tij denote the transposition (i, j) in Sn.
So, if w ∈ Sn, then wtij is the permutation obtained from w by interchanging w(i) and w(j),
while tijw is obtained from w by interchanging the values i and j. For example, for w = 2143,
we have wt13 = 4123 and t13w = 2341. Write si for the adjacent transposition (i, i + 1). Each
permutation can be written as a product of adjacent transpositions. The length ℓ(w) of a
permutation w is the minimum k such that w = si1si2 · · · sik , and in this case, (si1 , si2 , . . . , sik)
is called a reduced word of w. It is well known that the length ℓ(w) is equal to the number of
pairs (i, j) such that i < j and w(i) > w(j):

ℓ(w) = #{(i, j) : 1 ≤ i < j ≤ n, w(i) > w(j)}.

Hence, it is clear that ℓ(wsi) = ℓ(w) + 1 if and only if w(i) < w(i+1), while ℓ(wsi) = ℓ(w)− 1
if and only if w(i) > w(i+ 1).

Let Z[x±, y±] denote the ring of Laurent polynomials in the 2n commuting indeterminates
x1, . . . , xn, y1, . . . , yn. For a Laurent polynomial f(x, y) ∈ Z[x±, y±], the divided difference
operator ∂i acting on f(x, y) is defined by

∂if = (f − sif)/(xi − xi+1),

where sif is obtained from f by interchanging xi and xi+1. It is easy to check that ∂if is still
a Laurent polynomial. Let w0 = n · · · 21 be the longest permutation in Sn. Set

Gw0(x; y) =
∏

i+j≤n

(

1−
yj
xi

)

. (2.1)

For w 6= w0, choose an adjacent transposition si such that ℓ(wsi) = ℓ(w) + 1. Let πi = ∂ixi
and define

Gw(x; y) = πiGwsi(x; y) =
xiGwsi(x; y)− xi+1Gwsi(. . . , xi+1, xi, . . . ; y)

xi − xi+1
. (2.2)

The above definition is independent of the choice of si since the operators πi satisfy the Coxeter
relations: πiπj = πjπi for |i− j| > 1, and πiπi+1πi = πi+1πiπi+1, see for example [14, (2.14)].

We remark that there are other equivalent definitions for double Grothendieck polynomi-
als. The definition adopted here implies that Gw(x; y) are Laurent polynomials. The double

Grothendieck polynomials L
(−1)
w (y;x) defined in [5] are legitimate polynomials, which can be

obtained from Gw(x; y) by replacing xi and yi respectively with 1
1−xi

and 1 − yi. It should

also be noticed that Gw(x
−1; y−1) are the double Grothendieck polynomials used in [9], and

Gw(x
−1; y) are the double Grothendieck polynomials appearing in [10]. It is worth mentioning

that the double Schubert polynomial Sw(x; y) is the lowest degree homogeneous component of

L
(−1)
w (y;x), see [1, 2, 6, 7, 11] for combinatorial constructions of Schubert polynomials.

To describe the Buch-Rimányi formula, consider the left-justified array ∆n with n−i squares
in row i. Let w = w(1)w(2) · · · w(n) ∈ Sn. For 1 ≤ i ≤ n, let

I(w, i) = {w(j) : j > i, w(j) < w(i)}
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be the set of entries in w that are smaller than w(i) but appear to the right of w(i). Set
c(w, i) = |I(w, i)|. It is clear that 0 ≤ c(w, i) ≤ n− i. Let D(w) be the subset of ∆n consisting
of the first c(w, i) squares in the i-th row of ∆n, where 1 ≤ i ≤ n. Note that D(w) corresponds
to the bottom RC-graph of w, as defined by Bergeron and Billey [1]. Assume that the values
in I(w, i) are

w(j1) < w(j2) < · · · < w(jc(w,i)).

For a square B ∈ D(w) in row i and column k, equip B with the weight

wt(B) = 1−
yw(jk)

yw(i)
,

see Figure 2.1 for an illustration.

1−
y1
y2

1−
y3
y5

1−
y3
y7

1−
y3
y6

1−
y4
y5

1−
y4
y7

1−
y4
y6

1−
y6
y7

Figure 2.1: Weights of squares of D(w) for w = 2157634.

Given a subset D of D(w), one can generate a word, denoted word(D), as follows. Label
the square of D(w) in row i and column k by the simple transposition si+k−1, see Figure 2.2
for an illustration. Then word(D) is obtained by reading off the labels of the squares in D

s1

s3

s4

s5

s4

s5

s6

s6

Figure 2.2: Labels of the squares of D(w) for w = 2157634.

along the rows from top to bottom and right to left. For example, for the diagram D = D(w)
in Figure 2.2, we have

word(D) = (s1, s4, s3, s6, s5, s4, s6, s5).
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A word (si1 , si2 , . . . , sim) is called a Hecke word of a permutation u of length m if

(((si1 ∗ si2) ∗ si3) ∗ · · · ) ∗ sim = u,

where, for a permutation w, we define w ∗ si to be w if ℓ(wsi) < ℓ(w) and wsi otherwise. For
example, (s1, s2, s1, s2) is a Hecke word of u = 321 of length 4 since

((s1 ∗ s2) ∗ s1) ∗ s2 = ((s1s2) ∗ s1) ∗ s2 = (s1s2s1) ∗ s2 = s1s2s1 = 321.

We note in passing that the operation ∗ can be extended to an associative operation on the
whole Sn; this latter operation is the multiplication in the Hecke algebra associated to Sn at
q = 0, see [8, Chapter 7.4]. Hence ∗ satisfies the associative property. This means that the set
of permutations in Sn forms a monoid structure (0-Hecke monoid) under the operation ∗.

Write Hecke(D) = u if word(D) is a Hecke word of a permutation u. Notice that a Hecke
word of u of length ℓ(u) is a reduced word of u. Note that for any w ∈ Sn, the word word(D(w))
is a reduced word of w, and therefore, if we multiply the letters of word(D(w)) using either the
∗ product or the usual product of Sn, then we get w. That is, Hecke(D(w)) = w.

For any u, v ∈ Sn, let

H(u, v) = {D ⊆ D(v) |Hecke(D) = u}.

For a subset D of D(v), let

wt(D) =
∏

B∈D

wt(B). (2.3)

Theorem 2.1 (Buch-Rimányi [4, Theorem 2.1]). For permutations u, v ∈ Sn, we have

Gu(yv; y) =
∑

D∈H(u,v)

(−1)|D|−ℓ(u)wt(D), (2.4)

where empty sums are interpreted as 0.

We remark that in [4], formula (2.4) is described in terms of the notation C(Dv) and FK-
graphs for u with respect to Dv. With the notation in this note, D(v) can be obtained from
C(Dv) by first reflecting along the main diagonal and then left-justifying the crossing positions.
This operation also establishes a weight preserving bijection between the set H(u, v) and the
set of FK-graphs for u with respect to Dv.

3 Elementary proof of Theorem 2.1

We need several lemmas which follow directly from the definition of Gw(x; y).

Lemma 3.1. Let v = v′si and ℓ(v) > ℓ(v′). If ℓ(usi) < ℓ(u), then

Gu(yv; y) =
yv′(i)

yv′(i+1)
Gu(yv′ ; y) +

(

1−
yv′(i)

yv′(i+1)

)

Gusi(yv′ ; y). (3.1)
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Proof. Applying (2.2) to w = usi and substituting xj with yv′(j), we have

Gusi(yv′ ; y) =
yv′(i)Gu(yv′ ; y)− yv′(i+1)Gu(yv; y)

yv′(i) − yv′(i+1)
,

which is equivalent to (3.1).

Lemma 3.2. Let v = v′si. If ℓ(usi) > ℓ(u), then

Gu(yv; y) = Gu(yv′ ; y). (3.2)

Proof. Applying (2.2) to w = u and substituting xj with yv(j) and yv′(j) respectively, we see
that

Gu(yv; y) =
yv(i)Gusi(yv; y)− yv(i+1)Gusi(yv′ ; y)

yv(i) − yv(i+1)
,

Gu(yv′ ; y) =
yv′(i)Gusi(yv′ ; y)− yv′(i+1)Gusi(yv; y)

yv′(i) − yv′(i+1)
,

which, together with the fact that v(i) = v′(i+ 1) and v(i+ 1) = v′(i), implies (3.2).

Let ≤ denote the (strong) Bruhat order on permutations of Sn. Recall that the Bruhat
order is the closure of the following covering relation: For u, v ∈ Sn, we say that v covers u if
there exists a transposition tij such that v = utij and ℓ(v) = ℓ(u) + 1. The following lemma is
known, see [4, Corollary 2.4] and the references therein.

Lemma 3.3. We have Gu(yv; y) = 0 whenever u 6≤ v in the Bruhat order.

Proof. The idea in the proof of [11, (2.22)] for double Schubert polynomials applies to double
Grothendieck polynomials, and we include a proof here for the reader’s convenience. Use
descending induction on ℓ(u). The initial case is u = w0. Since u 6≤ v, we have v 6= w0. It is
easily checked from (2.1) that Gw0(yv; y) = 0.

We now consider the case u 6= w0. Choose a position i such that u(i) < u(i+1). Note that
u < usi. Since u 6≤ v, we must have usi 6≤ v. We further claim that usi 6≤ vsi. This can be
seen as follows. We have either vsi < v or v < vsi (depending on which of ℓ(vsi) and ℓ(v) is
larger). If vsi < v, then it is clear that usi 6≤ vsi since otherwise there would hold u ≤ v. It
remains to verify the case v < vsi. Suppose to the contrary that usi ≤ vsi. Then u < vsi.
Since vsi > v and usi > u, applying the Lifting Property (see [3, Proposition 2.2.7]) to u−1

and (vsi)
−1, we obtain that u ≤ v, leading to a contradiction. Now, by the definition in (2.2)

and by the induction hypothesis,

Gu(yv; y) =
yv(i)Gusi(yv; y)− yv(i+1)Gusi(yvsi ; y)

yv(i) − yv(i+1)
= 0,

as desired.

Lemma 3.4. Let u ∈ Sn and u′ = usi for some i such that ℓ(usi) < ℓ(u). Then,

Gu(yu; y) =

(

1−
yu(i+1)

yu(i)

)

Gu′(yu′ ; y).
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Proof. Apply Lemma 3.1 to v = u and v′ = u′. The first addend on the right side vanishes due
to Lemma 3.3.

Lemma 3.5 (Buch-Rimányi [4, Corollary 2.6]). For each u ∈ Sn, we have

Gu(yu; y) =
∏

i<j

u(i)>u(j)

(

1−
yu(j)

yu(i)

)

.

Proof. Make descending induction on ℓ(u). The induction base for u = w0 is a restatement of
(2.1). Assume that u 6= w0. Then there exists some 1 ≤ k < n such that ℓ(usk) > ℓ(u). Let
u′ = usk. It is easy to see that the set

{(u′(i), u′(j)) | i < j, u′(i) > u′(j)}

is the union of the two disjoint sets

{(u(i), u(j)) | i < j, u(i) > u(j)} ∪ {(u(k), u(k + 1))}.

The proof follows by induction together with Lemma 3.4.

Proof of Theorem 2.1. The proof is by induction on ℓ(v). Let us first consider the case ℓ(v) = 0,
that is, v is the identity permutation e. If u = e, then it follows from Lemma 3.5 (applied to
u = e) that Ge(ye; y) = 1. If u 6= e, then Lemma 3.3 forces that Gu(ye; y) = 0. So (2.4) holds
for ℓ(v) = 0.

Assume now that ℓ(v) > 0. Let sr be the last descent of v, that is, r is the largest index
such that v(r) > v(r+1). Write v = v′sr. Clearly, the bottom row of D(v) lies in row r of ∆n.
The leftmost square in the bottom row of D(v), denoted B0, has weight

wt(B0) = 1−
yv(r+1)

yv(r)
= 1−

yv′(r)

yv′(r+1)
.

Let u = u′sr. There are two cases.

Case 1. sr is a descent of u. By Lemma 3.1 and by induction hypothesis, we have

Gu(yv; y) =
yv′(r)

yv′(r+1)
Gu(yv′ ; y) +

(

1−
yv′(r)

yv′(r+1)

)

Gu′(yv′ ; y)

= (1− wt(B0))
∑

D∈H(u,v′)

(−1)|D|−ℓ(u)wt(D) + wt(B0)
∑

D∈H(u′,v′)

(−1)|D|−ℓ(u′)wt(D)

=
∑

D∈H(u,v′)

(−1)|D|−ℓ(u)wt(D)− wt(B0)
∑

D∈H(u,v′)

(−1)|D|−ℓ(u)wt(D)

+ wt(B0)
∑

D∈H(u′,v′)

(−1)|D|−ℓ(u′)wt(D). (3.3)

To proceed, note that there is an obvious bijection φ between D(v′) and D(v) \{B0}. Since
sr is the last descent of v, we have c(v′, r) = 0, c(v′, r + 1) = c(v, r) − 1, and c(v′, i) = c(v, i)
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for i 6= r, r + 1. Let B ∈ D(v′). If B lies above row r, then set φ(B) = B. Assume that B lies
in row r + 1 and column j, then let φ(B) be the square of D(v) \ {B0} in row r and column
j + 1. By construction, B and φ(B) are labeled by the same simple transposition. Moreover,
it is easy to see that φ preserves the weight and words, namely, wt(B) = wt(φ(B)) and
word(φ(D)) = word(D) for all D ⊆ D(v′). Thus Hecke(φ(D)) = Hecke(D) for all D ⊆ D(v′).

We claim that H(u, v) is the disjoint union of the following sets:

S1 = {φ(D) : D ∈ H(u, v′)},

S2 = {φ(D) ∪ {B0} : D ∈ H(u, v′)},

S3 = {φ(D) ∪ {B0} : D ∈ H(u′, v′)}.

This can be easily seen as follows. Keep in mind that B0 is labeled by sr. Let D ∈ H(u, v). If
B0 6∈ D, then D ∈ S1. If B0 ∈ D, then word(D) is obtained from word(D\{B0}) by appending
the letter sr at the end, and thus we have Hecke(D) = Hecke(D\{B0})∗sr, and therefore either
Hecke(D \ {B0}) = u or Hecke(D \ {B0}) = u′. Hence either D ∈ S2 or D ∈ S3. Conversely,
any D ∈ S1 ∪ S2 ∪ S3 belongs to H(u, v), since u ∗ sr = u′ ∗ sr = u. By the above claim and in
view of (3.3), we obtain that

Gu(yv; y) =
∑

D∈S1∪S2∪S3

(−1)|D|−ℓ(u)wt(D) =
∑

D∈H(u,v)

(−1)|D|−ℓ(u)wt(D).

Case 2. sr is not a descent of u. Let D ∈ H(u, v). We claim that B0 6∈ D. Suppose other-
wise that B0 ∈ D. Consider D′ = D \ {B0}. If sr is a descent of Hecke(D′), then Hecke(D) =
Hecke(D′), while if sr is not a descent of Hecke(D′), then Hecke(D) = Hecke(D′) sr. In both
cases, sr is a descent of u = Hecke(D), leading to a contradiction. Therefore, we see that
H(u, v) = {φ(D) |D ∈ H(u, v′)}. By Lemma 3.2 and by induction hypothesis,

Gu(yv; y) = Gu(yv′ ; y) =
∑

D∈H(u,v′)

(−1)|D|−ℓ(u)wt(D) =
∑

D∈H(u,v)

(−1)|D|−ℓ(u)wt(D).

This completes the proof.
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