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Abstract

Consider a sum Sn = viε1 + · · ·+ vnεn, where (vi)
n
i=1 are non-zero vectors in R

d

and (εi)
n
i=1 are independent Rademacher random variables (i.e., P(εi = ±1) = 1

2).
The classical Littlewood-Offord problem asks for the best possible upper bound for
supx P(Sn = x). In this paper we consider a non-uniform version of this problem.
Namely, we obtain the optimal bound for P(Sn = x) in terms of the length of the
vector x ∈ R

d.

1 Introduction

Let (εi)
n
i=1 be a collection of independent Rademacher random variables and denote their

sum by Rn. That is, we have P(εi = ±1) = 1
2
. We shall throughout the paper denote by

Sn the weighted sum of Rademacher random variables v1ε1 + · · · + vnεn, where weights
vi 6= 0 are vectors in R

d such that ||vi||2 ≤ 1. On each occasion we shall specify which
dimension we are working in. Define the quantity δn,k to be equal to 0 if n+ k ∈ 2Z and
1 otherwise.

The classical Littlewood-Offord problem asks for the best possible bound for P(Sn = x).
It turns out that for all d we have

Theorem 1.

P(Sn = x) ≤ P(Rn = ±δn,0) =

(

n

⌊n
2
⌋

)

/2n. (1)

The latter bound is clearly optimal and was established by Erdős [1] in the case d = 1.
Answering a question of Erdős, Kleitman [2] extended his result to all d ≥ 1.

Since the introduction of the Littlewood-Offord problem, many variations on the prob-
lem have been considered. Answering a question of Erdős and Moser [3], Sarkozy and

Szemeredi [4] proved that P(Sn = x) = O(n− 3

2 ) in d = 1 under the assumption that all
vi’s are distinct. The latter research culminated in Stanley’s famous proof [5] of the exact
bound conjectured by Erdős and Moser [3], namely that the choice vi = i is optimal. Fairly
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recently, Tao and Vu [6, 7] and Nguyen and Vu [8] investigated inverse Littlewood-Offord
problems that are now an important tool in Random matrix theory. Their results can
informally be described by saying that if P(Sn = x) is ”large” then vi’s can be covered by
a ”small” number of generalized arithmetic progressions. Bandeira, Ferber and Kwan [9]
considered the resilience version of the Littlewood-Offord problem and have formulated
some very interesting open questions. Tiep and Vu [10] were the first ones to consider
this problem in a non-Abelian setting, namely, for certain matrix groups. Their work has
been very recently extended and optimal bounds obtained by Juškevičius and Šemetulskis
in arbitrary groups [11].

In this paper we shall establish a non-uniform bound for P(Sn = x) in terms of the
length of x ∈ R

d and n. The main result of the paper is the following.

Theorem 2. For arbitrary d and all non-zero x ∈ R
d we have

P(Sn = x) ≤ P(Rn = k + δn,k) =

(

n

⌈n+k
2
⌉

)

/2n, (2)

where k is the upper integer part of ||x||2.

It is not difficult to see that the latter bound is optimal. Equality is achieved by the
sum Sn = ( ||x||2

k+δn,k
Rn, 0, . . . , 0). Theorem 2 in d = 1 was proved in [12, Theorem 1.1]. In

his proof of (1) Erdős used a result from extremal set theory - Sperner’s Theorem. The
inequality in Theorem 2 for d = 1 is proved in a similar fashion, but another tool is needed
- Milner’s Theorem on the size of intersecting antichains. We have included the proof of
the case d = 1 for the sake of completeness. It turns out that the one-dimensional result
can be then extended to all dimensions by induction together with Kleitman’s bound (1).

Kleitman’s result tells us that for all x ∈ R
d we have P(Sn = x) = O(n− 1

2 ). The-
orem 2 gives us more detailed information - it tells us that the probability in question
is exponentially small for ||x||2 much larger than

√
n. To give a crude bound one can

use Hoeffding’s inequality that gives us P(Sn = x) ≤ exp(−||x||22/(2n)). Of course, one
can use more detailed analysis using Stirling’s approximation to obtain sharp asymptotic
expressions.
Remark. Theorem 2 easily extends to arbitrary symmetric random variables Xi such
that ||Xi||2 ≤ 1 and P(Xi = 0) = 0 by conditioning on the norm of the variables Xi and
using the statement of the theorem for two-point distributions.

The requirement that vi 6= 0 is indeed essential and we shall illustrate it with the
following result that follows easily from the one-dimensional case and that actually was
our first result in trying to generalize the results from [12] to high dimensions.

Theorem 3. Let X1, . . . , Xn be independent symmetric random variables in R such that

||Xi||2 ≤ 1. Then for all non-zero x ∈ R
d we have
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sup
n≥1

P {X1 + · · ·+Xn = x} = P {Rk2 = k} , (3)

where k is the upper integer part of ||x||2.

The latter result shows that even in the case of Xi = viεi the probability P(Sn = x)
can be bounded away from zero as n → ∞ if we allow zero weights. In contrast to this
situation, Theorem 2 tells us that P(Sn = x) = O(n− 1

2 ) if vi 6= 0.

Finally, we address the situation not covered by Theorem 2, namely, the case x = 0.
Note that for n ∈ 2Z Kleitman’s result gives the best possible bound for P(Sn = 0). The
situation for n ∈ 2Z+ 1 is subtly different due to parity issues.

Theorem 4. Under the assumptions of Theorem 2 and n ∈ 2Z+ 1 we have

P(Sn = 0) ≤ P

(

1

2
Rn−1 + εn = 0

)

.

2 Proofs

We shall first provide the proof of Theorem 3 for the reason that it is is very easy to
deduce it from the case d = 1 proved in [12, Theorem 1.2].

Proof of Theorem 3. Due to the symmetry of Xi’s the sums X1 + · · ·+Xn and
X1ε1 + · · · + Xnεn have the same distribution. Condition on the sequence X1, . . . , Xn.
Then X1ε1 + · · · + Xnεn is distributed as v1ε1 + · · · + vnεn, where vi = Xi and εi’s are
independent of the Xi’s. We have that ||Xi||2 = ||vi||2 ≤ 1. First note that we can assume
that x is one-dimensional, that is, we can assume that x = (||x||2, 0, . . . , 0). This can be
achieved by changing the basis of Rd by an orthogonal transformation that also preserved
the lengths of the vectors vi. Write v(1) for the first coordinate of the vector v. We have

P(Sn = x) ≤ P(v
(1)
1 ε1 + · · ·+ v(1)n εn = ||x||2)

and the desired result then follows from Theorem 1.2 from [12].
Proof of Theorem 2 in the case d = 1. Let v1, . . . , vn be non-zero real numbers

satisfying |vi| ≤ 1. The distribution of Sn = v1ε1 + · · ·+ vnεn is unchanged if we replace
vi by −vi. Therefore we can assume that vi > 0 and x > 0. To obtain the desired
inequality we shall use a result in extremal combinatorics due to Milner [13]. We shall
say that a family of subsets F of [n] is an antichain if for all A,B ∈ F we have A 6⊂ B
and k-intersecting if for all A,B ∈ F we have |A ∩ B| ≥ k. Milner [13] proved that if a
family of subsets F of [n] is a k-intersecting antichain, then

|F| ≤
(

n

t

)

, t =

⌈

n+ k

2

⌉

.

3



For a sum Sn = v1ε1 + · · ·+ vnεn define the family of subsets Fx = {A ⊂ [n] :
∑

i∈A vi −
∑

Ac vi = x}. For notational convenience let us denote by σA the sum
∑

i∈A vi and
sA = σA − σAc . It is easy to see that Fx is an antichain. Indeed, for any distinct subsets
A,B of [n] we that A ⊂ B implies that sA < sB as vi > 0 and we are done. Let us now
show that Fx is k-intersecting with k = ⌈x⌉. Assume that A,B ∈ Fx and that |A∩B| < k.
We then have

sA = σA − σAc = (σA∩B − σAc∩Bc) + (σA∩Bc − σAc∩B) (4)

and
sB = σB − σBc = (σA∩B − σAc∩Bc)− (σA∩Bc − σAc∩B). (5)

Since
σA∩B − σAc∩Bc ≤ σA∩B ≤ |A ∩ B| ≤ k − 1 < x,

from (4) and (5) we get
min{sA, sB} < x,

which contradicts the fact sA = sB = x.
To complete the proof we just note that

P(Sn = x) = |Fx|/2n ≤
(

n

⌈n+k
2
⌉

)

/2n = P(Rn = k + δn,k).

Proof of Theorem 2.For a vector v ∈ R
d we denote its j-th coordinate by v(j). Without

loss of generality we can assume that x = (||x||2, 0, . . . , 0) since if that is not the case, we
can change the coordinate system as in the proof of Theorem 3 and achieve this while we
keep the lengths of the vectors vi unchanged . Let m be the number vi’s with non-zero
first coordinate v

(1)
i . Without loss of generality we assume that these are the first m

vectors vi. If m = 0 the problem reduces to (d − 1)-dimensions. We shall from now on
assume that m ≥ 1.

Let us write E for the collection of random variables εi with indices i ≤ m. Given a
realization of E write sE =

∑m

i=0 v
∗
i εi, where v

∗
i = (0, v

(2)
i , . . . , v

(d)
i ). Denote by k an upper
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integer part of ||x||2. We have

P(v1ε1 + · · ·+ vnεn = x) = EEP(

m
∑

i=0

viεi +

n
∑

i=m+1

viεi = x|E) (6)

= EEP(
m
∑

i=1

v
(1)
i εi = ||x||2,

n
∑

i=m+1

viεi = −sE |E) (7)

= P(

m
∑

i=1

v
(1)
i εi = ||x||2)EEP(

n
∑

i=m+1

viεi = −sE |E) (8)

≤ P(
m
∑

i=1

εi = k + δm,k)EEP(
n

∑

i=m+1

εi = −δn−m,0) (9)

= P(

m
∑

i=1

εi = k + δm,k)P(

n
∑

i=m+1

εi = −δn−m,0)

= P(
m
∑

i=1

εi = k + δm,k)P(
n

∑

i=m+1

εi = (−1)m+kδn−m,0)

≤ P(

m
∑

i=1

εi +

n
∑

i=m+1

εi = k + δm,k + (−1)m+kδn−m,0) (10)

= P(Rn = k + δn,k). (11)

The equality (6) follows from the law of total probability. Equality from (7) to (8) follows

by independence of the events {
∑m

i=1 v
(1)
i εi = ||x||2} and {

∑n

i=m+1 viεi = −sE} conditioned
on E . The inequality from (8) to (9) follows from the case d = 1 and Theorem 1. Equality
δm,k + (−1)m+kδn−m,0 = δn,k follows from the definition of the function δn,k justifying the
equality from (10) to (11).

Remark. The proof of Theorem 2 is more involved than the trivial argument giving
us Theorem 3 using the results from [12]. The same argument cannot be used here as
after the appropriate rotation in the proof we cannot guarantee that the corresponding
new weights are non-zero, which is essential.

Proof of Theorem 4. We can without loss of generality assume that ||vn||2 = 1.
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Applying Theorem 2 we obtain

P(Sn = 0) =
1

2
P(Sn−1 = vn) +

1

2
P(Sn−1 = −vn)

≤ 1

2
P(Rn−1 = 2) +

1

2
P(Rn−1 = 2)

=
1

2
P(Rn−1 = 2) +

1

2
P(Rn−1 = −2)

= P(Rn−1 + 2εn = 0) = P(
1

2
Rn−1 + εn = 0).

3 Open questions and conjectures

In their landmark paper Tao and Vu [6] proved series of inverse Littlewood-Offord type
results that are nowadays a crucial tool in studying discrete random matrices. These
inverse results in our setting can be vaguely expressed by saying that if supvi,x

P(Sn = x)
is large, then the multiset {vi : i ∈ [n]} has strong additive structure, meaning that most
of the vi’s can be covered by a small number of generalized arithmetic progressions. We
thus naturally ask:

Question 1. Suppose that for some x the probability P(Sn = x) is large, is there a
corresponding inverse principle?

The latter question is vague as stated, but by it we just mean whether analogous
results as in [6] or even stronger results from the subsequent papers [7] and [8] in this case
can be established.

We strongly suspect that something very similar to Rademacher random variables
should also be true for other types of distributions on the integers. Therefore we formulate
the following conjecture.

Conjecture 1. Let U1 . . . , Un be independent uniform random variables on the arith-
metic progression {−m+1,−m+3, . . . , m− 3, m− 1} with m ≥ 3. Then for all non-zero
x ∈ R

d and non-zero vi ∈ R
d with ||vi||2 ≤ 1 we have that for m ∈ 2Z+ 1

P(v1U1 + · · ·+ vnUn = x) ≤ P(U1 + · · ·+ Un = k)

and for m ∈ 2Z

P(v1U1 + · · ·+ vnUn = x) ≤ P(U1 + · · ·+ Un = k + δn,k)

where k is the lower integer part of ||x||2.
Note that Conjecture 1 reduces to Theorem 2 for m = 2.
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The proof of Theorem 2 relies on the fact that rotations preserve the Euclidean norm.
We nevertheless believe that this is just the limitation of our approach and thus conjecture
the following.

Conjecture 2. Theorem 2 remains true if we replace || · ||2 by any other norm on R
n.
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