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An odd [1, b]-factor in regular graphs from eigenvalues

Sungeun Kim*Suil Of Jihwan Park!and Hyo Ree?

March 31, 2020

Abstract

An odd [1, b]-factor of a graph G is a spanning subgraph H such that for each vertex
v e V(G), dg(v) is odd and 1 < dg(v) < b. Let A3(G) be the third largest eigenvalue
of the adjacency matrix of G. For positive integers r > 3 and even n, Lu, Wu, and
Yang [10] proved a lower bound for A3(G) in an n-vertex r-regular graph G to gurantee
the existence of an odd [1,b]-factor in G. In this paper, we improve the bound; it is
sharp for every r.
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1 Introduction

In this paper we deal only with finite and undirected graphs without loops or multiple edges.
The adjacency matriz A(G) of G is the n-by-n matrix in which entry a;; is 1 or 0 according
to whether v; and v; are adjacent or not, where V(G) = {vy,...,v,}. The eigenvalues of G
are the eigenvalues of its adjacency matrix A(G). Let A\ (G), ..., A\, (G) be its eigenvalues in
nonincreasing order. Note that the spectral radius of G, written p(G) equals \(G).

The degree of a vertex v in V(G), written dg(v), is the number of vertices adjacent to v.
An odd (or even) [a, b]-factor of a graph G is a spanning subgraph H of G such that for each
vertex v € V(G), dy(v) is odd (or even) and a < dy(v) < b; an [a, a]-factor is called the
a-factor. For a positive integer r, a graph is r-reqular if every vertex has the same degree r.
Note that A\ (G) = r if G is r-regular. Many researchers proved the conditions for a graph
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to have an a-factor, or (even or odd) [a, b]-factor. (See [2 @] [11, [12]) Brouwer and Haemers
started to investiage the relations between eigenvalues and the existence of 1-factor.
In fact, they [5] proved that if G is an r-regular graph without an 1-factor, then

M(G) > r—1+r+i1 if r is even,
’ r—1+% if r is odd

by using Tuttes 1-Factor Theorem [13], which is a special case of Berge-Tutte Formula [3].
Cioaba, Gregory, and Haemers [6] improved their bound and in fact proved that if G is an
r-regular graph without an 1-factor, then

6 — 2.85577... ifr—3,
A3(G) > 2(r—2+Vr2+12) if r > 41is even,

s(r=3+/(r+1)2+16) ifr>5is odd,

where 0 is the largest root of 2® — 22 — 6z +2 = 0. More generally, O and Cioaba [T]
determined connections between the eigenvalues of a t-edge connected r-regular graph and
its matching number when 1 <t <r — 2. In 2010, Lu, Wu, and Yang [10] proved that if an
r-regular graph G with even number of vertices has no odd [1, b]-factor, then
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(;—]Hl + (r+1)(r+2)
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r— if r is even and [}] is even,

if r is even and [7] is odd,

— (i_ll + (T+12)2 if r is odd and [}] is even,
r— (ﬂf + W if 7 is odd and [}] is odd.

To prove the above bounds in the paper [10], they used Amahashi’s result.

Theorem 1.1. [I] Let G be a graph and let b be a positive odd integer. Then G contains an
odd [1,b]-factor if and only if for every subset S C V(G), o(G — S) < b|S|, where o(H) is
the number of odd components in a graph H.

Thoerem [L1] guarantees that if there is no odd [1, b]-factor in an r-regular graph, then
there exists a subset S € V(G) such that o(G — S) > b|S|. By counting the number of edges
between S and G — S, we can show that G — S has at least three odd components 01, @2, Q3
such that |[V(Q;), S]] < r —1 (see the proof of Theorem [I0] or Theorem B.2). Then they
found lower bounds for the largest eigenvalue in a graph in the family F,;, where F,; is a
family of such a possible component depending on r and b, and those bounds are appeared
above.

In this paper, we improve their bound and in fact prove that if G is an n-vertex r-regular
graph without an odd [1, b]-factor, then

A3(G) > p(r,b),



where

(r—2+/(r+2)2—4([5]-2)
2

r—2+4/(r+2)2—4([71-1)

if both r and |

are even,

if r is even and [7] is odd,

p(r,b) = r— \/?“22——5—

341/ +32) 5122 s poth r and (%] are odd,
r=3+4/(r+3)2-4([§]-1)
\ 2

]
[

if r is odd and [}] is even.

The bounds that we found are sharp in a sense that there exists a graph H in F,; such
that A\ (H) = p(r,b).
For undefined terms, see West [14] or Godsil and Royle [§].

2 Construction

2 if r and [}] has same parity

Suppose that ¢ = and n = [{] — . In this section, we

1 otherwise
provide graphs H,, such that A\{(H,,) = p(r,b). These graphs show that the bounds in
Theorem are sharp.

Now, we define the graph H,, as follows:

KoV 1K, if r is even,
"G, v EEIK, i s odd.

To compute the spectral radius of H, ,, the notion of equitable partition of a vertex set
in a graph is used. Consider a partition V(G) = V3 U---UVj of the vertex set of a graph G
into s non-empty subsets. For 1 <i,j <s, let ¢; ; denote the average number of neighbours
in V; of the vertices in V;. The quotient matrix of this partition is the s X s matrix whose
(i, j)-th entry equals ¢; ;. The eigenvalues of the quotient matrix interlace the eigenvalues
of G. This partition is equitable if for each 1 < 7,5 < s, any vertex v € V; has exactly ¢; ;
neighbours in V;. In this case, the eigenvalues of the quotient matrix are eigenvalues of GG
and the spectral radius of the quotient matrix equals the spectral radius of G (see [4],[8] for
more details).

Theorem 2.1. Forr >3 and b > 1, we have \(H,,) = p(r,b).

Proof. We prove this theorem only in the case when r is odd because the proof of the other
case is similar. L
Consider the vertex partition {V(C,), V(Z2=2K,)} of H,,. The quotient matrix of the

vertex partitions equals
-3 r+2-
- (0 1)
Ui r—n

The characteristic polynomail of @) is
p@)=(@—n+3)(x—r+n) —(r+2-nh

3



Since the vertex partition is equitable, the largest root of the graph H, , equals the largest

root of the polynomial, which is A (Q) = r—3+\/(;~+3)72—4n‘ -

3 Main results

In this section, we prove an upper bound for A3(G) in an r-regular graph G with even
number of vertices to guarantee the existence of an odd [1, b]-factor by using Theorem [I.1]
and Theorem 311

Theorem 3.1. [4, 8] If H is an induced subgraph of a graph G, then \;(H) < X\;(G) for all
ie{l,....|V(H)|}.

Theorem 3.2. Letr > 3, and b be a positive odd integer less than r. If A3(G) of an r-reqular
graph G with even number of vertices is smaller than p(r,b), then G has an odd [1,b]-factor.

Proof. We prove the contrapositive. Assume that an r-regular graph G with even number
of vertices has no odd [1, b]-factor. By Theorem [ there exists a vertex subset S C V(G)
such that o(G — S) > b|S|. Note that since |V(G)| is even, b is odd, and o(G — S) = || (
mod 2), we have o(G — S) > b|S| + 2. Let Gy,...,G, be the odd components of G — S,
where ¢ = o(G — 5).

Claim 1. There are at least three odd components, say G, Ga, G, such that |[V (G;), S]| < [§]
for alli € {1,2,3}.

Assume to the contrary that there are at most two such odd components in G —.S. Since
G is r-regular, we have

71812 DO IV(G), Sl = T3]l =) +2 = [710lS]+2 2 715 + 2

which is a contradiction.
By Theorem B.1] we have

)\3(G) Z )\3(G1 U G2 U G3) Z min >\1(Gl) (1)
1€{1,2,3}

Now, we prove that if H is an odd component of G — .S such that |[V/(H), S]| < [}], then
M(H) = p(r,b).

Claim 2. If H is an odd components of G — S such that |[V(H),S]| < [}
M(H') for all odd components H' in G — S such that |[V(H'),S]| < |

24fr 2) —n if r 1s odd
TR S AR I IS SO,
r+1if r is even r(r+1)—mnif r is even.

| and if \(H) <
+1, then we have



1 if r is odd,

0 if r is even.
|\V(H)| > r+ 1+ 2 since H has an odd number of vertices. If |V(H)| > r + 1 + z, then we
have |V(H)| > r + 3 4+ « since H has an odd number of vertices. Thus it suffices to show
p(r,b) < M\ (H)if |V(H)| > r + 3+ z. By using the fact that \(G) > 2||£((GG))|‘ for any graph
G, we have

Let z = Since |[V(H),S]| < [7] < r and G is r-regular, we have

r|V(H)|—n>r(r+3+x)—n>r—2—x+\/(r+2+x)2_4n
\V(H)| — r+3+=x 2 '

M (H) >

Now, we prove this theorem by considering two cases depending on the parity of 7.
Case 1. 7 is even. By Claim 2, assume that H is an odd component of G — S such

that [[V(H),S]| < [3], [V(H)| = r+1, and 2[E(H)| = r(r +1) — 7. Then there are at
least » + 1 — n vertices of degree r. Let Vi be a set of vertices with degree r such that
|[Vi| = r+1—mn, and let V5 be the remaining vertices in V' (H). Then the quotient matrix of

the vertex partition {Vi, Vo} of H equals

r—=mn n
r+1—n n—-2

whose characteristic polynomial is p(z) = (z —r +n)(z —n+2) — n(r + 1 — n). Since the
largest root of p(z) equals p(r,b), we have A\i(H) > p(r,b).

Case 2. r is odd. By Claim 2, assume that H is an odd component of G — S such that
V(H),S]| < [3], [V(H)| = r+2, and 2|E(H)| = r(r +2) — 1. Then there are at least
r+2—n vertices of degree r. Let V} be a set of vertices with degree r such that |Vi| = r+2—n,
and let V5 be the remaining vertices in V(H ). Suppose that there are mj, edges between V;
and V5. Note that (r+2—n)(n—1) < mjs < (r+2—mn)n. Then the quotient matrix of the

vertex partion {V, V2} of H equals

r— a2 mi2
r+2—n r4+2—mn
mi2 r— 1 — mi2

n n

whose characteristic polynomial is ¢(z) = (z — r + T_Tzlin)(x —-r+1+ %) — %
Note that since (r +2 —n)(n — 1) < mis < (r+ 2 — n)n, myz can be expressed mys =

(r+2—mn)np—t, where 0 <t <r+2—mn. Thus we have

t(r+2) t tr(r+2)
r+2—n (r+2-n)n
t(r+2) t N tr(r +2)
— T — :
(r4+2—mn)n r+2—-n (r+2-mnn

qx) =2 —(r -3+




Note that ¢(p(r,b)) = ——=ZE2_(p(r, b) + 5 —r)<0,sincen>land 0 <t <r+2—mn.

(r+2-n)n
U
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