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An odd [1, b]-factor in regular graphs from eigenvalues
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Abstract

An odd [1, b]-factor of a graph G is a spanning subgraphH such that for each vertex
v ∈ V (G), dH(v) is odd and 1 ≤ dH(v) ≤ b. Let λ3(G) be the third largest eigenvalue
of the adjacency matrix of G. For positive integers r ≥ 3 and even n, Lu, Wu, and
Yang [10] proved a lower bound for λ3(G) in an n-vertex r-regular graph G to gurantee
the existence of an odd [1, b]-factor in G. In this paper, we improve the bound; it is
sharp for every r.
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1 Introduction

In this paper we deal only with finite and undirected graphs without loops or multiple edges.
The adjacency matrix A(G) of G is the n-by-n matrix in which entry ai,j is 1 or 0 according
to whether vi and vj are adjacent or not, where V (G) = {v1, . . . , vn}. The eigenvalues of G
are the eigenvalues of its adjacency matrix A(G). Let λ1(G), . . . , λn(G) be its eigenvalues in
nonincreasing order. Note that the spectral radius of G, written ρ(G) equals λ1(G).

The degree of a vertex v in V (G), written dG(v), is the number of vertices adjacent to v.
An odd (or even) [a, b]-factor of a graph G is a spanning subgraph H of G such that for each
vertex v ∈ V (G), dH(v) is odd (or even) and a ≤ dH(v) ≤ b; an [a, a]-factor is called the
a-factor. For a positive integer r, a graph is r-regular if every vertex has the same degree r.
Note that λ1(G) = r if G is r-regular. Many researchers proved the conditions for a graph
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to have an a-factor, or (even or odd) [a, b]-factor. (See [2, 9, 11, 12]) Brouwer and Haemers
started to investiage the relations between eigenvalues and the existence of 1-factor.

In fact, they [5] proved that if G is an r-regular graph without an 1-factor, then

λ3(G) >

{

r − 1 + 3
r+1

if r is even,

r − 1 + 3
r+2

if r is odd

by using Tuttes 1-Factor Theorem [13], which is a special case of Berge-Tutte Formula [3].
Cioabǎ, Gregory, and Haemers [6] improved their bound and in fact proved that if G is an
r-regular graph without an 1-factor, then

λ3(G) ≥











θ = 2.85577... if r = 3,
1
2
(r − 2 +

√
r2 + 12) if r ≥ 4 is even,

1
2
(r − 3 +

√

(r + 1)2 + 16) if r ≥ 5 is odd,

where θ is the largest root of x3 − x2 − 6x + 2 = 0. More generally, O and Cioabǎ [7]
determined connections between the eigenvalues of a t-edge connected r-regular graph and
its matching number when 1 ≤ t ≤ r− 2. In 2010, Lu, Wu, and Yang [10] proved that if an
r-regular graph G with even number of vertices has no odd [1, b]-factor, then

λ3(G) >























r − ⌈ r

b
⌉−2

r+1
+ 1

(r+1)(r+2)
if r is even and ⌈ r

b
⌉ is even,

r − ⌈ r

b
⌉−1

r+1
+ 1

(r+1)(r+2)
if r is even and ⌈ r

b
⌉ is odd,

r − ⌈ r

b
⌉−1

r+1
+ 1

(r+2)2
if r is odd and ⌈ r

b
⌉ is even,

r − ⌈ r

b
⌉−2

r+1
+ 1

(r+2)2
if r is odd and ⌈ r

b
⌉ is odd.

To prove the above bounds in the paper [10], they used Amahashi’s result.

Theorem 1.1. [1] Let G be a graph and let b be a positive odd integer. Then G contains an
odd [1, b]-factor if and only if for every subset S ⊆ V (G), o(G − S) ≤ b|S|, where o(H) is
the number of odd components in a graph H.

Thoerem 1.1 guarantees that if there is no odd [1, b]-factor in an r-regular graph, then
there exists a subset S ∈ V (G) such that o(G−S) > b|S|. By counting the number of edges
between S and G−S, we can show that G−S has at least three odd components Q1, Q2, Q3

such that |[V (Qi), S]| ≤ r − 1 (see the proof of Theorem [10] or Theorem 3.2). Then they
found lower bounds for the largest eigenvalue in a graph in the family Fr,b, where Fr,b is a
family of such a possible component depending on r and b, and those bounds are appeared
above.

In this paper, we improve their bound and in fact prove that if G is an n-vertex r-regular
graph without an odd [1, b]-factor, then

λ3(G) ≥ ρ(r, b),
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where

ρ(r, b) =































r−2+
√

(r+2)2−4(⌈ r

b
⌉−2)

2
if both r and ⌈ r

b
⌉ are even,

r−2+
√

(r+2)2−4(⌈ r

b
⌉−1)

2
if r is even and ⌈ r

b
⌉ is odd,

r−3+
√

(r+3)2−4(⌈ r

b
⌉−2)

2
if both r and ⌈ r

b
⌉ are odd,

r−3+
√

(r+3)2−4(⌈ r

b
⌉−1)

2
if r is odd and ⌈ r

b
⌉ is even.

The bounds that we found are sharp in a sense that there exists a graph H in Fr,b such
that λ1(H) = ρ(r, b).

For undefined terms, see West [14] or Godsil and Royle [8].

2 Construction

Suppose that ε =

{

2 if r and ⌈ r
b
⌉ has same parity

1 otherwise
and η = ⌈ r

b
⌉ − ε. In this section, we

provide graphs Hr,η such that λ1(Hr,η) = ρ(r, b). These graphs show that the bounds in
Theorem 3.2 are sharp.

Now, we define the graph Hr,η as follows:

Hr,η =

{

Kr+1−η ∨ η

2
K2 if r is even,

Cη ∨ r+2−η

2
K2 if r is odd.

To compute the spectral radius of Hr,η, the notion of equitable partition of a vertex set
in a graph is used. Consider a partition V (G) = V1 ∪ · · · ∪ Vs of the vertex set of a graph G

into s non-empty subsets. For 1 ≤ i, j ≤ s, let qi,j denote the average number of neighbours
in Vj of the vertices in Vi. The quotient matrix of this partition is the s × s matrix whose
(i, j)-th entry equals qi,j. The eigenvalues of the quotient matrix interlace the eigenvalues
of G. This partition is equitable if for each 1 ≤ i, j ≤ s, any vertex v ∈ Vi has exactly qi,j
neighbours in Vj . In this case, the eigenvalues of the quotient matrix are eigenvalues of G
and the spectral radius of the quotient matrix equals the spectral radius of G (see [4],[8] for
more details).

Theorem 2.1. For r ≥ 3 and b ≥ 1, we have λ1(Hr,η) = ρ(r, b).

Proof. We prove this theorem only in the case when r is odd because the proof of the other
case is similar.

Consider the vertex partition {V (Cη), V ( r+2−η

2
K2)} of Hr,η. The quotient matrix of the

vertex partitions equals

Q =

(

η − 3 r + 2− η

η r − η

)

The characteristic polynomail of Q is

p(x) = (x− η + 3)(x− r + η)− (r + 2− η)η.
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Since the vertex partition is equitable, the largest root of the graph Hr,η equals the largest

root of the polynomial, which is λ1(Q) =
r−3+

√
(r+3)2−4η

2
.

3 Main results

In this section, we prove an upper bound for λ3(G) in an r-regular graph G with even
number of vertices to guarantee the existence of an odd [1, b]-factor by using Theorem 1.1
and Theorem 3.1.

Theorem 3.1. [4, 8] If H is an induced subgraph of a graph G, then λi(H) ≤ λi(G) for all
i ∈ {1, . . . , |V (H)|}.

Theorem 3.2. Let r ≥ 3, and b be a positive odd integer less than r. If λ3(G) of an r-regular
graph G with even number of vertices is smaller than ρ(r, b), then G has an odd [1, b]-factor.

Proof. We prove the contrapositive. Assume that an r-regular graph G with even number
of vertices has no odd [1, b]-factor. By Theorem 1.1, there exists a vertex subset S ⊆ V (G)
such that o(G − S) > b|S|. Note that since |V (G)| is even, b is odd, and o(G − S) ≡ |S| (
mod 2), we have o(G − S) ≥ b|S| + 2. Let G1, . . . , Gq be the odd components of G − S,
where q = o(G− S).

Claim 1. There are at least three odd components, say G1, G2, G3, such that |[V (Gi), S]| < ⌈ r
b
⌉

for all i ∈ {1, 2, 3}.
Assume to the contrary that there are at most two such odd components in G−S. Since

G is r-regular, we have

r|S| ≥
q

∑

i=1

|[V (Gi), S]| ≥ ⌈r
b
⌉(q − 2) + 2 ≥ ⌈r

b
⌉b|S|+ 2 ≥ r|S|+ 2,

which is a contradiction.
By Theorem 3.1, we have

λ3(G) ≥ λ3(G1 ∪G2 ∪G3) ≥ min
i∈{1,2,3}

λ1(Gi). (1)

Now, we prove that if H is an odd component of G−S such that |[V (H), S]| < ⌈ r
b
⌉, then

λ1(H) ≥ ρ(r, b).

Claim 2. If H is an odd components of G − S such that |[V (H), S]| < ⌈ r
b
⌉ and if λ1(H) ≤

λ1(H
′) for all odd components H ′ in G − S such that |[V (H ′), S]| < ⌈ r

b
⌉, then we have

|V (H)| =
{

r + 2 if r is odd,

r + 1 if r is even
, and 2|E(H)| =

{

r(r + 2)− η if r is odd,

r(r + 1)− η if r is even.
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Let x =

{

1 if r is odd,

0 if r is even.
Since |[V (H), S]| < ⌈ r

b
⌉ < r and G is r-regular, we have

|V (H)| ≥ r + 1 + x since H has an odd number of vertices. If |V (H)| > r + 1 + x, then we
have |V (H)| ≥ r + 3 + x since H has an odd number of vertices. Thus it suffices to show

ρ(r, b) < λ1(H) if |V (H)| ≥ r + 3 + x. By using the fact that λ1(G) ≥ 2|E(G)|
|V (G)|

for any graph
G, we have

λ1(H) >
r|V (H)| − η

|V (H)| ≥ r(r + 3 + x)− η

r + 3 + x
>

r − 2− x+
√

(r + 2 + x)2 − 4η

2
.

Now, we prove this theorem by considering two cases depending on the parity of r.
Case 1. r is even. By Claim 2, assume that H is an odd component of G − S such

that |[V (H), S]| < ⌈ r
b
⌉, |V (H)| = r + 1, and 2|E(H)| = r(r + 1) − η. Then there are at

least r + 1 − η vertices of degree r. Let V1 be a set of vertices with degree r such that
|V1| = r+ 1− η, and let V2 be the remaining vertices in V (H). Then the quotient matrix of
the vertex partition {V1, V2} of H equals

(

r − η η

r + 1− η η − 2

)

whose characteristic polynomial is p(x) = (x − r + η)(x − η + 2) − η(r + 1 − η). Since the
largest root of p(x) equals ρ(r, b), we have λ1(H) ≥ ρ(r, b).

Case 2. r is odd. By Claim 2, assume that H is an odd component of G− S such that
|[V (H), S]| < ⌈ r

b
⌉, |V (H)| = r + 2, and 2|E(H)| = r(r + 2) − η. Then there are at least

r+2−η vertices of degree r. Let V1 be a set of vertices with degree r such that |V1| = r+2−η,
and let V2 be the remaining vertices in V (H). Suppose that there are m12 edges between V1

and V2. Note that (r+2− η)(η− 1) ≤ m12 ≤ (r+ 2− η)η. Then the quotient matrix of the
vertex partion {V1, V2} of H equals

(

r − m12

r+2−η
m12

r+2−η
m12

η
r − 1− m12

η

)

whose characteristic polynomial is q(x) = (x− r + m12

r+2−η
)(x− r + 1 + m12

η
)− m2

12

(r+2−η)η
.

Note that since (r + 2 − η)(η − 1) ≤ m12 ≤ (r + 2 − η)η, m12 can be expressed m12 =
(r + 2− η)η − t, where 0 ≤ t ≤ r + 2− η. Thus we have

q(x) = x2 − (r − 3 +
t(r + 2)

(r + 2− η)η
)x− 3r + η − t

r + 2− η
+

tr(r + 2)

(r + 2− η)η

= x2 − (r − 3)x− 3r + η − t(r + 2)

(r + 2− η)η
x− t

r + 2− η
+

tr(r + 2)

(r + 2− η)η
.
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Note that q(ρ(r, b)) = − t(r+2)
(r+2−η)η

(ρ(r, b) + η

r+2
− r) ≤ 0, since η ≥ 1 and 0 ≤ t ≤ r + 2− η.
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