An odd $[1, b]$-factor in regular graphs from eigenvalues

Sungeun Kim* Suil O^{\dagger} Jihwan Park ${ }^{\ddagger}$ and Hyo Ree ${ }^{\S}$

March 31, 2020

Abstract

An odd $[1, b]$-factor of a graph G is a spanning subgraph H such that for each vertex $v \in V(G), d_{H}(v)$ is odd and $1 \leq d_{H}(v) \leq b$. Let $\lambda_{3}(G)$ be the third largest eigenvalue of the adjacency matrix of G. For positive integers $r \geq 3$ and even $n, \mathrm{Lu}, \mathrm{Wu}$, and Yang [10] proved a lower bound for $\lambda_{3}(G)$ in an n-vertex r-regular graph G to gurantee the existence of an odd $[1, b]$-factor in G. In this paper, we improve the bound; it is sharp for every r.

Keywords: Odd [1, b]-factor, eigenvalues
AMS subject classification 2010: 05C50, 05C70

1 Introduction

In this paper we deal only with finite and undirected graphs without loops or multiple edges. The adjacency matrix $A(G)$ of G is the n-by- n matrix in which entry $a_{i, j}$ is 1 or 0 according to whether v_{i} and v_{j} are adjacent or not, where $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The eigenvalues of G are the eigenvalues of its adjacency matrix $A(G)$. Let $\lambda_{1}(G), \ldots, \lambda_{n}(G)$ be its eigenvalues in nonincreasing order. Note that the spectral radius of G, written $\rho(G)$ equals $\lambda_{1}(G)$.

The degree of a vertex v in $V(G)$, written $d_{G}(v)$, is the number of vertices adjacent to v. An odd (or even) $[a, b]$-factor of a graph G is a spanning subgraph H of G such that for each vertex $v \in V(G), d_{H}(v)$ is odd (or even) and $a \leq d_{H}(v) \leq b$; an $[a, a]$-factor is called the a-factor. For a positive integer r, a graph is r-regular if every vertex has the same degree r. Note that $\lambda_{1}(G)=r$ if G is r-regular. Many researchers proved the conditions for a graph

[^0]to have an a-factor, or (even or odd) [a,b]-factor. (See [2, 9, 11, 12]) Brouwer and Haemers started to investiage the relations between eigenvalues and the existence of 1-factor.

In fact, they [5] proved that if G is an r-regular graph without an 1-factor, then

$$
\lambda_{3}(G)> \begin{cases}r-1+\frac{3}{r+1} & \text { if } r \text { is even } \\ r-1+\frac{3}{r+2} & \text { if } r \text { is odd }\end{cases}
$$

by using Tuttes 1-Factor Theorem [13], which is a special case of Berge-Tutte Formula [3]. Cioabǎ, Gregory, and Haemers [6] improved their bound and in fact proved that if G is an r-regular graph without an 1-factor, then

$$
\lambda_{3}(G) \geq \begin{cases}\theta=2.85577 \ldots & \text { if } r=3 \\ \frac{1}{2}\left(r-2+\sqrt{r^{2}+12}\right) & \text { if } r \geq 4 \text { is even }, \\ \frac{1}{2}\left(r-3+\sqrt{(r+1)^{2}+16}\right) & \text { if } r \geq 5 \text { is odd }\end{cases}
$$

where θ is the largest root of $x^{3}-x^{2}-6 x+2=0$. More generally, O and Cioabǎ [7] determined connections between the eigenvalues of a t-edge connected r-regular graph and its matching number when $1 \leq t \leq r-2$. In 2010, Lu, Wu, and Yang [10] proved that if an r-regular graph G with even number of vertices has no odd $[1, b]$-factor, then

$$
\lambda_{3}(G)> \begin{cases}r-\frac{\left\lceil\frac{r}{b}\right\rceil-2}{r+1}+\frac{1}{(r+1)(r+2)} & \text { if } r \text { is even and }\left\lceil\frac{r}{b}\right\rceil \text { is even, } \\ r-\frac{\left\lceil\frac{r}{b}\right\rceil-1}{r+1}+\frac{1}{(r+1)(r+2)} & \text { if } r \text { is even and }\left\lceil\frac{r}{b}\right\rceil \text { is odd, } \\ r-\frac{\left\lceil\frac{r}{b}\right\rceil-1}{r+1}+\frac{1}{(r+2)^{2}} & \text { if } r \text { is odd and }\left\lceil\frac{r}{b}\right\rceil \text { is even, } \\ r-\frac{\left\lceil\frac{r}{b}\right\rceil-2}{r+1}+\frac{1}{(r+2)^{2}} & \text { if } r \text { is odd and }\left\lceil\frac{r}{b}\right\rceil \text { is odd. }\end{cases}
$$

To prove the above bounds in the paper [10], they used Amahashi's result.
Theorem 1.1. [1] Let G be a graph and let b be a positive odd integer. Then G contains an odd $[1, b]$-factor if and only if for every subset $S \subseteq V(G), o(G-S) \leq b|S|$, where $o(H)$ is the number of odd components in a graph H.

Thoerem 1.1 guarantees that if there is no odd $[1, b]$-factor in an r-regular graph, then there exists a subset $S \in V(G)$ such that $o(G-S)>b|S|$. By counting the number of edges between S and $G-S$, we can show that $G-S$ has at least three odd components Q_{1}, Q_{2}, Q_{3} such that $\left|\left[V\left(Q_{i}\right), S\right]\right| \leq r-1$ (see the proof of Theorem [10] or Theorem [3.2). Then they found lower bounds for the largest eigenvalue in a graph in the family $\mathcal{F}_{r, b}$, where $\mathcal{F}_{r, b}$ is a family of such a possible component depending on r and b, and those bounds are appeared above.

In this paper, we improve their bound and in fact prove that if G is an n-vertex r-regular graph without an odd $[1, b]$-factor, then

$$
\lambda_{3}(G) \geq \rho(r, b)
$$

where

$$
\rho(r, b)= \begin{cases}\frac{r-2+\sqrt{(r+2)^{2}-4\left(\left\lceil\frac{r}{b}\right\rceil-2\right)}}{2} & \text { if both } r \text { and }\left\lceil\frac{r}{b}\right\rceil \text { are even, } \\ \frac{r-2+\sqrt{(r+2)^{2}-4\left(\left\lceil\frac{r}{b}\right\rceil-1\right)}}{2} & \text { if } r \text { is even and }\left\lceil\frac{r}{b}\right\rceil \text { is odd, } \\ \frac{r-3+\sqrt{(r+3)^{2}-4\left(\left\lceil\frac{r}{b}\right\rceil-2\right)}}{2} & \text { if both } r \text { and }\left\lceil\frac{r}{b}\right\rceil \text { are odd, } \\ \frac{r-3+\sqrt{(r+3)^{2}-4\left(\left\lceil\left\lceil\frac{r}{b}\right\rceil-1\right)\right.}}{2} & \text { if } r \text { is odd and }\left\lceil\frac{r}{b}\right\rceil \text { is even. }\end{cases}
$$

The bounds that we found are sharp in a sense that there exists a graph H in $\mathcal{F}_{r, b}$ such that $\lambda_{1}(H)=\rho(r, b)$.

For undefined terms, see West [14] or Godsil and Royle [8].

2 Construction

Suppose that $\varepsilon=\left\{\begin{array}{ll}2 & \text { if } r \text { and }\left\lceil\frac{r}{b}\right\rceil \text { has same parity } \\ 1 & \text { otherwise }\end{array}\right.$ and $\eta=\left\lceil\frac{r}{b}\right\rceil-\varepsilon$. In this section, we provide graphs $H_{r, \eta}$ such that $\lambda_{1}\left(H_{r, \eta}\right)=\rho(r, b)$. These graphs show that the bounds in Theorem 3.2 are sharp.

Now, we define the graph $H_{r, \eta}$ as follows:

$$
H_{r, \eta}= \begin{cases}\mathrm{K}_{r+1} \frac{-\eta}{} \vee \overline{\frac{\eta}{2} \mathrm{~K}_{2}} & \text { if } r \text { is even }, \\ \overline{\mathrm{C}_{\eta}} \vee \frac{r+2-\eta}{2} \mathrm{~K}_{2} & \text { if } r \text { is odd. }\end{cases}
$$

To compute the spectral radius of $H_{r, \eta}$, the notion of equitable partition of a vertex set in a graph is used. Consider a partition $V(G)=V_{1} \cup \cdots \cup V_{s}$ of the vertex set of a graph G into s non-empty subsets. For $1 \leq i, j \leq s$, let $q_{i, j}$ denote the average number of neighbours in V_{j} of the vertices in V_{i}. The quotient matrix of this partition is the $s \times s$ matrix whose (i, j)-th entry equals $q_{i, j}$. The eigenvalues of the quotient matrix interlace the eigenvalues of G. This partition is equitable if for each $1 \leq i, j \leq s$, any vertex $v \in V_{i}$ has exactly $q_{i, j}$ neighbours in V_{j}. In this case, the eigenvalues of the quotient matrix are eigenvalues of G and the spectral radius of the quotient matrix equals the spectral radius of G (see [4], 8] for more details).

Theorem 2.1. For $r \geq 3$ and $b \geq 1$, we have $\lambda_{1}\left(H_{r, \eta}\right)=\rho(r, b)$.
Proof. We prove this theorem only in the case when r is odd because the proof of the other case is similar.

Consider the vertex partition $\left\{V\left(\overline{\mathrm{C}_{\eta}}\right), V\left(\frac{\overline{r+2-\eta}}{2} \mathrm{~K}_{2}\right)\right\}$ of $H_{r, \eta}$. The quotient matrix of the vertex partitions equals

$$
Q=\left(\begin{array}{cc}
\eta-3 & r+2-\eta \\
\eta & r-\eta
\end{array}\right)
$$

The characteristic polynomail of Q is

$$
p(x)=(x-\eta+3)(x-r+\eta)-(r+2-\eta) \eta .
$$

Since the vertex partition is equitable, the largest root of the graph $H_{r, \eta}$ equals the largest root of the polynomial, which is $\lambda_{1}(Q)=\frac{r-3+\sqrt{(r+3)^{2}-4 \eta}}{2}$.

3 Main results

In this section, we prove an upper bound for $\lambda_{3}(G)$ in an r-regular graph G with even number of vertices to guarantee the existence of an odd [$1, b]$-factor by using Theorem 1.1 and Theorem 3.1.

Theorem 3.1. 4, 8, If H is an induced subgraph of a graph G, then $\lambda_{i}(H) \leq \lambda_{i}(G)$ for all $i \in\{1, \ldots,|V(H)|\}$.

Theorem 3.2. Let $r \geq 3$, and b be a positive odd integer less than r. If $\lambda_{3}(G)$ of an r-regular graph G with even number of vertices is smaller than $\rho(r, b)$, then G has an odd $[1, b]$-factor.

Proof. We prove the contrapositive. Assume that an r-regular graph G with even number of vertices has no odd $[1, b]$-factor. By Theorem 1.1, there exists a vertex subset $S \subseteq V(G)$ such that $o(G-S)>b|S|$. Note that since $|V(G)|$ is even, b is odd, and $o(G-S) \equiv|S|$ ($\bmod 2$), we have $o(G-S) \geq b|S|+2$. Let G_{1}, \ldots, G_{q} be the odd components of $G-S$, where $q=o(G-S)$.

Claim 1. There are at least three odd components, say G_{1}, G_{2}, G_{3}, such that $\left|\left[V\left(G_{i}\right), S\right]\right|<\left\lceil\frac{r}{b}\right\rceil$ for all $i \in\{1,2,3\}$.

Assume to the contrary that there are at most two such odd components in $G-S$. Since G is r-regular, we have

$$
r|S| \geq \sum_{i=1}^{q}\left|\left[V\left(G_{i}\right), S\right]\right| \geq\left\lceil\frac{r}{b}\right\rceil(q-2)+2 \geq\left\lceil\frac{r}{b}\right\rceil b|S|+2 \geq r|S|+2
$$

which is a contradiction.
By Theorem 3.1, we have

$$
\begin{equation*}
\lambda_{3}(G) \geq \lambda_{3}\left(G_{1} \cup G_{2} \cup G_{3}\right) \geq \min _{i \in\{1,2,3\}} \lambda_{1}\left(G_{i}\right) \tag{1}
\end{equation*}
$$

Now, we prove that if H is an odd component of $G-S$ such that $|[V(H), S]|<\left\lceil\frac{r}{b}\right\rceil$, then $\lambda_{1}(H) \geq \rho(r, b)$.

Claim 2. If H is an odd components of $G-S$ such that $|[V(H), S]|<\left\lceil\frac{r}{b}\right\rceil$ and if $\lambda_{1}(H) \leq$ $\lambda_{1}\left(H^{\prime}\right)$ for all odd components H^{\prime} in $G-S$ such that $\left|\left[V\left(H^{\prime}\right), S\right]\right|<\left\lceil\frac{r}{b}\right\rceil$, then we have $|V(H)|=\left\{\begin{array}{l}r+2 \text { if } r \text { is odd, } \\ r+1 \text { if } r \text { is even }\end{array}\right.$, and $2|E(H)|=\left\{\begin{array}{l}r(r+2)-\eta \text { if } r \text { is odd, } \\ r(r+1)-\eta \text { if } r \text { is even. }\end{array}\right.$

Let $x=\left\{\begin{array}{l}1 \text { if } r \text { is odd, } \\ 0 \text { if } r \text { is even. }\end{array} \quad\right.$ Since $|[V(H), S]|<\left\lceil\frac{r}{b}\right\rceil<r$ and G is r-regular, we have $|V(H)| \geq r+1+x$ since H has an odd number of vertices. If $|V(H)|>r+1+x$, then we have $|V(H)| \geq r+3+x$ since H has an odd number of vertices. Thus it suffices to show $\rho(r, b)<\lambda_{1}(H)$ if $|V(H)| \geq r+3+x$. By using the fact that $\lambda_{1}(G) \geq \frac{2|E(G)|}{|V(G)|}$ for any graph G, we have

$$
\lambda_{1}(H)>\frac{r|V(H)|-\eta}{|V(H)|} \geq \frac{r(r+3+x)-\eta}{r+3+x}>\frac{r-2-x+\sqrt{(r+2+x)^{2}-4 \eta}}{2} .
$$

Now, we prove this theorem by considering two cases depending on the parity of r.
Case 1. r is even. By Claim 2, assume that H is an odd component of $G-S$ such that $|[V(H), S]|<\left\lceil\frac{r}{b}\right\rceil,|V(H)|=r+1$, and $2|E(H)|=r(r+1)-\eta$. Then there are at least $r+1-\eta$ vertices of degree r. Let V_{1} be a set of vertices with degree r such that $\left|V_{1}\right|=r+1-\eta$, and let V_{2} be the remaining vertices in $V(H)$. Then the quotient matrix of the vertex partition $\left\{V_{1}, V_{2}\right\}$ of H equals

$$
\left(\begin{array}{cc}
r-\eta & \eta \\
r+1-\eta & \eta-2
\end{array}\right)
$$

whose characteristic polynomial is $p(x)=(x-r+\eta)(x-\eta+2)-\eta(r+1-\eta)$. Since the largest root of $p(x)$ equals $\rho(r, b)$, we have $\lambda_{1}(H) \geq \rho(r, b)$.

Case 2. r is odd. By Claim 2, assume that H is an odd component of $G-S$ such that $|[V(H), S]|<\left\lceil\frac{r}{b}\right\rceil,|V(H)|=r+2$, and $2|E(H)|=r(r+2)-\eta$. Then there are at least $r+2-\eta$ vertices of degree r. Let V_{1} be a set of vertices with degree r such that $\left|V_{1}\right|=r+2-\eta$, and let V_{2} be the remaining vertices in $V(H)$. Suppose that there are m_{12} edges between V_{1} and V_{2}. Note that $(r+2-\eta)(\eta-1) \leq m_{12} \leq(r+2-\eta) \eta$. Then the quotient matrix of the vertex partion $\left\{V_{1}, V_{2}\right\}$ of H equals

$$
\left(\begin{array}{cc}
r-\frac{m_{12}}{r+2-\eta} & \frac{m_{12}}{r+2-\eta} \\
\frac{m_{12}}{\eta} & r-1-\frac{m_{12}}{\eta}
\end{array}\right)
$$

whose characteristic polynomial is $q(x)=\left(x-r+\frac{m_{12}}{r+2-\eta}\right)\left(x-r+1+\frac{m_{12}}{\eta}\right)-\frac{m_{12}^{2}}{(r+2-\eta) \eta}$.
Note that since $(r+2-\eta)(\eta-1) \leq m_{12} \leq(r+2-\eta) \eta$, m_{12} can be expressed $m_{12}=$ $(r+2-\eta) \eta-t$, where $0 \leq t \leq r+2-\eta$. Thus we have

$$
\begin{aligned}
& q(x)=x^{2}-\left(r-3+\frac{t(r+2)}{(r+2-\eta) \eta}\right) x-3 r+\eta-\frac{t}{r+2-\eta}+\frac{t r(r+2)}{(r+2-\eta) \eta} \\
& \quad=x^{2}-(r-3) x-3 r+\eta-\frac{t(r+2)}{(r+2-\eta) \eta} x-\frac{t}{r+2-\eta}+\frac{\operatorname{tr}(r+2)}{(r+2-\eta) \eta}
\end{aligned}
$$

Note that $q(\rho(r, b))=-\frac{t(r+2)}{(r+2-\eta) \eta}\left(\rho(r, b)+\frac{\eta}{r+2}-r\right) \leq 0$, since $\eta \geq 1$ and $0 \leq t \leq r+2-\eta$.

References

[1] A. Amahashi, On factors with all degrees odd, Graphs Combin., 1 (1985), 111-114.
[2] K. Ando, A. Kaneko, T. Nishimura, A degree condition for the existence of 1-factors in graphs or their complements. Discrete Math. 203 (1999), no. 1-3, 1-8.
[3] C. Berge, Sur le couplage maximum dun graphe, C. R. Acad. Sci. Paris, 247 (1958), pp. 258-259
[4] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New York, (2011).
[5] A.E. Brouwer and W.H. Haemers, Eigenvalues and perfect matchings. Linear Algebra Appl., 395 (2005), 155-162.
[6] S.M. Cioabǎ, D.A. Gregory, W.H. Haemers, Matchings in Regular Graphs from Eigenvalue. J.Combin. Theory Ser. B 99 (2009), 287-297.
[7] S.M. Cioabǎ, S. O, Edge-connectivity, Matchings, and Eigenvalues in Regular Graphs. SIAM J. Discrete Math. 99 (2010), 1470-1481.
[8] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.
[9] M. Kouider, Sufficient condition for the existence of an even $[a, b]$-factor in graph. Graphs Combin. 29 (2013), no. 4, 1051-1057.
[10] H. Lu, Z. Wu, and X. Yang, Eigenvalues and [1,n]-odd factors. Linear Algebra Appl., 433 (2010), 750-757.
[11] H. Matsuda, Ore-type conditions for the existence of even [2, b]-factors in graphs. Discrete Math. 304 (2005), no. 1-3, 51-61.
[12] L. Nebesky, Some sufficient conditions for the existence of a 1-factor. J. Graph Theory 2 (1978), no. 3, 251-255.
[13] W.T.Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107-111.
[14] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.

[^0]: *Incheon Academy of Science and Arts, Korea, Incheon, 22009, tjddms9282@gmail.com
 ${ }^{\dagger}$ Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985, suil.o@sunykorea.ac.kr. Research supported by NRF-2017R1D1A1B03031758 and by NRF2018K2A9A2A06020345
 ${ }^{\ddagger}$ Incheon Academy of Science and Arts, Korea, Incheon, 22009, bjihwan37@gmail.com
 ${ }^{\S}$ Incheon Academy of Science and Arts, Korea, Incheon, 22009, reehyo2234@naver.com

