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a b s t r a c t

A spanning circuit in a graph is defined as a closed trail visiting each vertex of the
graph. A compatible spanning circuit in an edge-colored graph refers to a spanning
circuit in which each pair of edges traversed consecutively along the spanning circuit
has distinct colors. As two extreme cases, sufficient conditions for the existence of
compatible Hamilton cycles and compatible Euler tours have been obtained in previous
literature. In this paper, we first establish sufficient conditions for the existence of
compatible spanning circuits visiting each vertex exactly k times, for every feasible
integer k, in edge-colored complete graphs and complete equipartition r-partite graphs.
We also provide sufficient conditions for the existence of compatible spanning circuits
visiting each vertex v at least ⌊(d(v) − 1)/2⌋ times in edge-colored graphs satisfying
Ore-type degree conditions.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider only finite undirected graphs without loops or multiple edges. For terminology and notations
not defined here, we refer the reader to Bondy and Murty [5].

Let G be a graph. We use V (G) and E(G) to denote the set of vertices and edges of G, respectively. We write v(G) = |V (G)|
and e(G) = |E(G)|. For a vertex v of G, we denote by EG(v) the set of edges of G incident to v. The degree of a vertex v in a
graph G, denoted by dG(v), is defined to be the cardinality of |EG(v)|. In particular, we write δ(G) = min{dG(v) | v ∈ V (G)}.
We use Ni(G) and O(G) to denote the set of vertices of G of degree i and the vertices of G of odd degree, respectively. For
two vertices u, v of G, a uv-path of G refers to a path of G connecting u and v, and the distance between u and v in G,
denoted by distG(u, v), is defined as the length of a shortest uv-path of G (if it exists). If the graph G is understood, we
will denote EG(v), dG(v) and distG(u, v) by E(v), d(v) and dist(u, v), respectively.

A spanning circuit in a graph G is defined as a closed trail that visits (contains) each vertex of G. A Hamilton cycle of G can
be regarded as a spanning circuit that visits each vertex of G exactly once; an Euler tour of G can be regarded as a spanning
circuit that traverses each edge of G. Hence, a spanning circuit can be considered as one common relaxation between a
Hamilton cycle and an Euler tour. A graph is said to be hamiltonian if it contains a Hamilton cycle, and eulerian if it admits
an Euler tour. It is well-known that determining whether a graph is hamiltonian is NP-complete, and a lot of sufficient
conditions for the existence of Hamilton cycles have been found. There is also a well-known characterization of eulerian
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graphs that states a connected graph G is eulerian if and only if the degree of each vertex of G is even (see [5]). Moreover,
Fleury obtained a polynomial-time algorithm for finding an Euler tour in an arbitrary eulerian graph (see [5]). A spanning
eulerian subgraph of a graph G refers to an eulerian spanning subgraph of G. Clearly, each spanning circuit of a graph G
corresponds to a spanning eulerian subgraph of G. A graph is said to be supereulerian if it contains a spanning eulerian
subgraph (spanning circuit). Pulleyblank [17] proved that determining whether a graph is supereulerian is NP-complete.
For more details on supereulerian graphs, see Catlin’s excellent survey [6] and its supplement [13].

An edge-coloring of a graph G is defined as a mapping c : E(G) → N, where N is the set of natural numbers. An
edge-colored graph refers to a graph with a fixed edge-coloring. Two edges of a graph are said to be consecutive with
respect to a trail if they are traversed consecutively along the trail. A compatible spanning circuit in an edge-colored graph
is defined as a spanning circuit in which any two consecutive edges have distinct colors. An edge-colored graph is said
to be properly colored if each pair of adjacent edges of the graph has distinct colors. Thus, a compatible Hamilton cycle
is properly colored, and a properly colored spanning circuit is compatible. Conversely, a compatible spanning circuit is
not necessarily properly colored. Thus, a compatible spanning circuit can be viewed as a generalization of a properly
colored spanning circuit. There are already some quite interesting results on compatible walks that are closely related
to compatible spanning circuits. Compatible walks are of interest as generalizations of walks in undirected and directed
graphs, as well as properly colored paths and cycles in edge-colored graphs. For more details on compatible walks, we
refer the reader to Chapter 16 of [3] and recent papers [10,11,15]. Moreover, compatible spanning circuits are very useful
in graph theory applications, for example, in genetic and molecular biology [16,20,21], in the design of printed circuit and
wiring boards [22], and in channel assignment of wireless networks [1,18].

Let G be an edge-colored graph. For an edge e of G, we use c(e) to denote the color of e. Denote by C(G) the set of colors
appearing on the edges of G, and let diG(v) be the cardinality of the set {e ∈ EG(v) | c(e) = i} for a vertex v ∈ V (G) and a
color i ∈ C(G). Set ∆mon

G (v) = max{diG(v) | i ∈ C(G)} for a vertex v ∈ V (G), and set ∆mon(G) = max{∆mon
G (v) | v ∈ V (G)};

these two parameters are called the maximum monochromatic degree of a vertex v of G and the maximum monochromatic
degree of an edge-colored graph G, respectively. When no confusion occurs, we will use the notation ∆mon(v) instead of
∆mon

G (v).
Let K c

n denote an edge-colored complete graph on n vertices. Daykin [8] asked whether there exists a constant µ such
that every K c

n with ∆mon(K c
n ) ≤ µn contains a compatible Hamilton cycle. This question was answered independently by

Bollobás and Erdős [4] with ∆mon(K c
n ) < n/69, and Chen and Daykin [7] with ∆mon(K c

n ) ≤ n/17. Moreover, Bollobás and
Erdős [4] proposed the following conjecture.

Conjecture 1 (Bollobás and Erdős [4]). Let K c
n be an edge-colored complete graph on n vertices. If ∆mon(K c

n ) < ⌊n/2⌋, then K c
n

contains a compatible Hamilton cycle.

Afterward, Shearer [19] showed that ∆mon(K c
n ) < n/7 is sufficient. Alon and Gutin [2] showed that ∆mon(K c

n ) ≤

(1 − 1/
√
2 − o(1))n is sufficient. Recently, Lo [15] proved that Conjecture 1 is true asymptotically.

On the other hand, Kotzig [12] gave a necessary and sufficient condition for the existence of compatible Euler tours in
edge-colored eulerian graphs, as follows.

Theorem 1 (Kotzig [12]). Let G be an edge-colored eulerian graph. Then a compatible Euler tour exists if and only if ∆mon(v) ≤

d(v)/2 for each vertex v of G.

From Theorem 1, we can obtain the following corollary.

Corollary 1. Let K c
n be an edge-colored complete graph on n vertices, where n ≥ 3. If ∆mon(K c

n ) ≤ (n−1)/2, then K c
n contains

a compatible spanning circuit visiting each vertex exactly ⌊(n − 1)/2⌋ times.

Proof. Let G = K c
n . First we suppose that n is odd. Since dG(v) = n − 1 for every vertex v ∈ V (G), G is an eulerian graph.

If ∆mon(G) ≤ (n − 1)/2 = dG(v)/2, then the conclusion holds by Theorem 1.
Suppose now that n is even. Let H = G − M , where M is an arbitrary prefect matching of G. It follows that

dH (v) = n − 2 for every vertex v ∈ V (G). Thus H is a spanning eulerian subgraph of G. If ∆mon(G) ≤ (n − 1)/2, then
∆mon(H) ≤ ∆mon(G) ≤ ⌊(n − 1)/2⌋ = dH (v)/2. Hence, the conclusion holds by Theorem 1. □

The corollary above implies that an edge-colored complete graph K c
n (n ≥ 4) satisfying ∆mon(K c

n ) < ⌊n/2⌋ (i.e., the
condition stated in Conjecture 1) contains a compatible spanning circuit visiting each vertex exactly ⌊(n − 1)/2⌋ times.
Lo [15] proved that an edge-colored complete graph K c

n with ∆mon(K c
n ) < ⌊n/2⌋ contains a compatible Hamilton cycle

asymptotically. Compared to a compatible Hamilton cycle, we intuitively feel that a weaker condition might imply that
K c
n contains a compatible spanning circuit. However, from the following construction given by Fujita and Magnant [10],

we can show that the condition ∆mon(K c
n ) < ⌊n/2⌋ to guarantee the existence of compatible spanning circuits (even if

with no any restriction on the number of times that it visits each vertex) in K c
n is best possible for n even.

Let K2m be a complete graph on 2m (m ≥ 2) vertices, and let u be one of the vertices of K2m. We label the remaining
vertices with v1, v2, . . . , v2m−1, respectively and color the edge uvi with color i for each vi, where 1 ≤ i ≤ 2m − 1. Let
H = K2m − u, and we decompose H into m − 1 Hamilton cycles (see [14]). Also, we arbitrarily orient these Hamilton
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cycles such that they become directed cycles. We color the edge vivj with color j if the arc −→vivj is an arc of one of these
Hamilton cycles. This provides an edge-coloring of K2m. The complete graph K2m satisfies ∆mon(K2m) = ⌊2m/2⌋ = m, but
it contains no compatible spanning circuit, because the vertex u cannot be visited compatibly.

Recall that a compatible Hamilton cycle can be regarded as a compatible spanning circuit visiting each vertex exactly
once. Some conditions for the existence of compatible Hamilton cycles and compatible spanning circuits visiting each
vertex exactly ⌊(n− 1)/2⌋ times in edge-colored complete graphs on n vertices have been considered. It is natural to ask
the following problem.

Problem 1. Under what conditions does an edge-colored graph on n vertices contain a compatible spanning circuit
visiting each vertex exactly k times for a given integer k with 1 ≤ k ≤ ⌊(n − 1)/2⌋?

In this paper, we first prove the following two theorems, which give some partial answers to the question of Problem 1.
We consider Problem 1 in edge-colored complete graphs, as follows.

Theorem 2. Let K c
n be an edge-colored complete graph on n vertices, where n ≥ 3, and let k be an integer such that

1 ≤ k ≤ ⌊(n − 1)/2⌋. If ∆mon(K c
n ) ≤ k, then K c

n contains a compatible spanning circuit visiting each vertex exactly k times.

We postpone the proofs of all our results in order not to interrupt the flow of the narrative. We also consider Problem 1
in edge-colored complete equipartition r-partite graphs, as follows.

Theorem 3. Let (K r
n )

c be an edge-colored complete equipartition r-partite graph on rn vertices, and let k be an integer such
that 1 ≤ k ≤ ⌊n(r − 1)/2⌋. If ∆mon((K r

n )
c) ≤ k, then (K r

n )
c contains a compatible spanning circuit visiting each vertex exactly

k times.

Motivated by Conjecture 1 and Corollary 1, we intuitively feel that it is possible that an edge-colored complete graph
on n vertices satisfying the condition stated in Conjecture 1 contains a compatible spanning circuit visiting each vertex
exactly k times for any given integer k with 1 < k < ⌊(n − 1)/2⌋. Thus, we pose the following problem.

Problem 2. Let K c
n be an edge-colored complete graph on n vertices with ∆mon(K c

n ) < ⌊n/2⌋. Is it true that K c
n contains

a compatible spanning circuit visiting each vertex exactly k times for every integer k with 1 < k < ⌊(n − 1)/2⌋?

In this paper, we also provide some sufficient conditions for the existence of compatible spanning circuits visiting
each vertex v at least ⌊(d(v)− 1)/2⌋ times in edge-colored graphs satisfying Ore-type degree conditions, as shown in the
following results.

Theorem 4. Let G be an edge-colored connected graph on n (n ≥ 3) vertices such that d(u) + d(v) ≥ n for every pair of
vertices u, v of G with dist(u, v) = 2. If ∆mon(v) ≤ (d(v) − 1)/2 for each vertex v with d(v) ≥ 3, and ∆mon(v) = 1 otherwise,
then G contains a compatible spanning circuit visiting each vertex v at least ⌊(d(v) − 1)/2⌋ times.

From Theorem 4, we can obtain the following corollaries.

Corollary 2. Let G be an edge-colored graph on n (n ≥ 3) vertices such that d(u) + d(v) ≥ n for every pair of nonadjacent
vertices u, v of G. If ∆mon(v) ≤ (d(v) − 1)/2 for each vertex v with d(v) ≥ 3, and ∆mon(v) = 1 otherwise, then G contains a
compatible spanning circuit visiting each vertex v at least ⌊(d(v) − 1)/2⌋ times.

Corollary 3. Let G be an edge-colored graph on n (n ≥ 3) vertices such that d(v) ≥ n/2 for every vertex v of G. If
∆mon(v) ≤ (d(v) − 1)/2 for each vertex v with d(v) ≥ 3, and ∆mon(v) = 1 otherwise, then G contains a compatible spanning
circuit visiting each vertex at least ⌊(n − 2)/4⌋ times.

We further prove the following theorem.

Theorem 5. Let G be an edge-colored 2-connected graph on n vertices such that max{d(u), d(v)} ≥ n/2 for every pair of
nonadjacent vertices u, v of G. If ∆mon(v) ≤ (d(v)− 1)/2 for each vertex v with d(v) ≥ 3, and ∆mon(v) = 1 otherwise, then G
contains a compatible spanning circuit visiting each vertex v at least ⌊(d(v) − 1)/2⌋ times.

Remark 1. The following example shows that the bounds on ∆mon(v) in Theorems 4 and 5 are tight for a vertex v of
odd degree.

Example 1. Let m be an odd integer such that m ≥ 3, and let G be a balanced complete bipartite graph on 2m vertices
with partite sets X and Y . Let X ′

⊂ X and Y ′
⊂ Y with |X ′

| = |Y ′
| = (m + 1)/2, and let x be a vertex in X \ X ′. We color

all the edges between X ′ and Y ′ with color i, and we color all the edges between x and Y ′ with color j (j ̸= i). Finally, we
color the remaining edges of G with pairwise distinct new colors.

One can check that the graph G in Example 1 satisfies the property requested in Theorems 4 and 5, respectively, and
it satisfies ∆mon(x) = (m + 1)/2 = (d(x) − 1)/2 + 1 for the above mentioned vertex x. However, the graph G contains no
compatible spanning circuit visiting every vertex v at least ⌊(d(v) − 1)/2⌋ times.

In the next section, we present the key ingredients for our proofs of the above results that are postponed to Section 3.
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2. Preliminaries

In this section, we give some basic results which will be used in the later proofs of the main theorems that are
postponed to Section 3.

Theorem 6 (Laskar and Auerback [14]). Let G be a complete graph on n vertices, where n ≥ 3. Then G can be decomposed into
(n− 1)/2 edge-disjoint Hamilton cycles for n odd, and G can be decomposed into (n− 2)/2 edge-disjoint Hamilton cycles and
one perfect matching for n even.

Theorem 7 (Laskar and Auerback [14]). Let G be a complete equipartition r-partite graph on rn vertices. Then G can be
decomposed into n(r − 1)/2 edge-disjoint Hamilton cycles for even n(r − 1), and G can be decomposed into (n(r − 1) − 1)/2
edge-disjoint Hamilton cycles and one perfect matching for odd n(r − 1).

We list the following two key lemmas on supereulerian graphs that are essential for our proofs of Theorems 4 and 5,
whose proofs will be given in Section 4.

Lemma 1. Let G be a connected graph on n (n ≥ 3) vertices such that d(u) + d(v) ≥ n for every pair of vertices u, v of G
with dist(u, v) = 2. Then G contains a spanning eulerian subgraph H such that dH (v) ≥ dG(v) − 2 for each vertex v of H.

Lemma 2. Let G be a 2-connected graph on n vertices such that max{d(u), d(v)} ≥ n/2 for every pair of nonadjacent vertices
u, v of G. Then G contains a spanning eulerian subgraph H such that dH (v) ≥ dG(v) − 2 for each vertex v of H.

3. Proofs of the main theorems

Proof of Theorem 2. Let K c
n be an edge-colored complete graph on n vertices, where n ≥ 3. For any given integer k with

1 ≤ k ≤ ⌊(n − 1)/2⌋, there exist k edge-disjoint Hamilton cycles in K c
n by Theorem 6. Let H be a 2k-regular spanning

subgraph of K c
n consisting of k edge-disjoint Hamilton cycles of K c

n .
If ∆mon(K c

n ) ≤ k, then ∆mon(H) ≤ ∆mon(K c
n ) ≤ k. Since dH (v) = 2k for every vertex v of H , there exists a compatible

Euler tour in H by Theorem 1. Therefore, the edge-colored complete graph K c
n contains a compatible spanning circuit

visiting each vertex exactly k times. This completes the proof. □

Proof of Theorem 3. Let (K r
n )

c be an edge-colored complete equipartition r-partite graph on rn vertices. For any given
integer k with 1 ≤ k ≤ ⌊n(r−1)/2⌋, there exist k edge-disjoint Hamilton cycles in (K r

n )
c by Theorem 7. Let H be a spanning

subgraph of (K r
n )

c consisting of k edge-disjoint Hamilton cycles of (K r
n )

c .
If ∆mon((K r

n )
c) ≤ k, then ∆mon(H) ≤ ∆mon((K r

n )
c) ≤ k. Since dH (v) = 2k for every vertex v of H , there exists

a compatible Euler tour in H by Theorem 1. Therefore, the edge-colored complete equipartition r-partite graph (K r
n )

c

contains a compatible spanning circuit visiting each vertex exactly k times. This completes the proof. □

Proof of Theorem 4. The proof is based on Lemma 1, which will be proved in Section 4. Let G be an edge-colored
connected graph on n (n ≥ 3) vertices such that d(u)+ d(v) ≥ n for every pair of vertices u, v of G with dist(u, v) = 2. By
Lemma 1, G contains a spanning eulerian subgraph H such that dH (v) = dG(v)−1 for each vertex v of G of odd degree, and
dH (v) ≥ dG(v)− 2 for each vertex v of G of even degree. If ∆mon

G (v) ≤ (dG(v)− 1)/2 for each vertex v of G with dG(v) ≥ 3,
then ∆mon

H (v) ≤ ∆mon
G (v) ≤ ⌊(dG(v)− 1)/2⌋ ≤ dH (v)/2 for each choice of the vertex v of H . Since H is a spanning eulerian

subgraph of G, we have dH (v) = dG(v) = 2 for each vertex v of G with dG(v) = 2. Thus ∆mon
H (v) = 1 = dH (v)/2 for each

of vertex v of G with dG(v) = 2. Based on the argument above, there exists a compatible Euler tour in H by Theorem 1.
Therefore, G contains a compatible spanning circuit visiting each vertex v at least ⌊(dG(v) − 1)/2⌋ times. This completes
the proof. □

Proof of Theorem 5. The proof is based on Lemma 2, which will be proved in Section 4. Let G be an edge-colored
2-connected graph on n vertices such that max{d(u), d(v)} ≥ n/2 for every pair of nonadjacent vertices u, v of G. By
Lemma 2, G contains a spanning eulerian subgraph H such that dH (v) = dG(v) − 1 for each vertex v of G of odd degree,
and dH (v) ≥ dG(v)−2 for each vertex v of G of even degree. If ∆mon

G (v) ≤ (dG(v)−1)/2 for each vertex v of Gwith dG(v) ≥ 3,
then ∆mon

H (v) ≤ ∆mon
G (v) ≤ ⌊(dG(v)− 1)/2⌋ ≤ dH (v)/2 for each choice of the vertex v of H . Since H is a spanning eulerian

subgraph of G, we have dH (v) = dG(v) = 2 for each vertex v of G with dG(v) = 2. Thus ∆mon
H (v) = 1 = dH (v)/2 for each

of vertex v of G with dG(v) = 2. Based on the argument above, there exists a compatible Euler tour in H by Theorem 1.
Therefore, G contains a compatible spanning circuit visiting each vertex v at least ⌊(dG(v) − 1)/2⌋ times. This completes
the proof. □

It remains to provide the proofs of Lemmas 1 and 2. This is done in the next section.
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Fig. 1. The graph illustrating Case 1.1.

4. Proofs of Lemmas 1 and 2

Before proceeding with our proofs, we first introduce some additional terminology and notations, and give some
auxiliary results which will be used in the later proofs of Lemmas 1 and 2.

A linear forest of a graph G is defined as a forest of G in which every component is a path. For a vertex v and a subgraph
A of a graph G, denote by NG(v, A) the set of neighbors of v in G contained in A. For two disjoint subgraphs A and B of a
graph G, let NG(B, A) =

⋃
v∈V (B) NG(v, A) and EG(B, A) = {uv ∈ E(G) | u ∈ V (B), v ∈ V (A)}. We write dG(v, A) = |NG(v, A)|

and eG(B, A) = |EG(B, A)|. For two disjoint subsets S1 and S2 of V (G), we can similarly define NG(S1, S2) and EG(S1, S2). In
particular, we use NG(v, S2) and EG(v, S2) instead of NG({v}, S2) and EG({v}, S2), respectively. For a subset S of V (G), we use
G[S] to denote the subgraph of G induced by S.

Lemma 3. Let G be a hamiltonian graph on n vertices. Then there exists a linear forest F of G such that N1(F ) = O(G) and
e(F ) ≤ n/2.

Proof. If O(G) = ∅, then an empty linear forest (without edges) of G is a desired linear forest. Now we assume that
O(G) ̸= ∅. Let C be a Hamilton cycle of the graph G with a given orientation C⃗ . Set O(G) = {v1, v2, . . . , vk}. For convenience,
we assume that these vertices v1, v2, . . . , vk appear in this order along C⃗ . We use C⃗[u, v] to denote the (directed) uv-path
along C⃗ . Let F1 =

⋃k/2
i=1 C⃗[v2i−1, v2i] and F2 =

⋃k/2
i=1 C⃗[v2i, v2i+1], where vk+1 = v1. Clearly, Fi is a linear forest of G with

N1(Fi) = O(G) for i = 1, 2. Since e(F1) + e(F2) = n, either e(F1) ≤ n/2 or e(F2) ≤ n/2. □

The following theorem due to Fan [9] is well known.

Theorem 8 (Fan [9]). Let G be a 2-connected graph on n (n ≥ 3) vertices. If max{d(u), d(v)} ≥ n/2 for every pair of vertices
u, v of G with dist(u, v) = 2, then G is hamiltonian.

We now have all the ingredients for our proofs of Lemmas 1 and 2.

4.1. Proof of Lemma 1

Let G be a connected graph on n (n ≥ 3) vertices such that d(u) + d(v) ≥ n for every pair of vertices u, v with
dist(u, v) = 2. It is not difficult to see that G is 2-connected. It follows that G is a hamiltonian graph by Theorem 8. By
Lemma 3, there exists a linear forest F of G with N1(F ) = O(G) and e(F ) ≤ n/2. Let G′

= G− E(F ). Thus dG′ (v) ≥ dG(v)− 2
and is even for each vertex v ∈ V (G). If G′ is connected, then it is a desired spanning eulerian subgraph of G. Next, we
assume that G′ is disconnected. We divide the remaining part of the proof into two cases that might occur.

We first consider the case that G[V (A)] is not a complete graph for some component A of G′ with v(A) ≤ n/2.

Case 1. There exists a component A of G′ with v(A) ≤ n/2 such that G[V (A)] is not a complete graph.
Let B = G′

− A. Recall that O(A) = ∅ and A is not a complete graph. We can see that v(A) ≥ 4. Thus, there exist two
vertices u1, u2 ∈ V (A) with distG(u1, u2) = 2. It follows that n ≤ dG(u1) + dG(u2) ≤ v(A) − 2 + 2 + v(A) − 2 + 2 = 2v(A).
Recall that v(A) ≤ n/2. We have v(A) = v(B) = n/2, dG(u1, A) = dG(u2, A) = v(A) − 2 and dG(u1, B) = dG(u2, B) = 2.
Hence, NG(u1, A) = NG(u2, A) = V (A) \ {u1, u2}.

Depending on whether or not NG(u1, B) ∩ NG(u2, B) = ∅, we divide Case 1 into two subcases (i.e., Cases 1.1 and 1.2).

Case 1.1. NG(u1, B) ∩ NG(u2, B) ̸= ∅ (see Fig. 1).
Let v0 ∈ NG(u1, B)∩NG(u2, B). It is easy to see that NG(u1, B)∩NG(u2, B) = {v0}, otherwise there would be a cycle in F .

Recall that NG(u1, A) = V (A) \ {u1, u2}. Let u be an arbitrary vertex in V (A) \ {u1, u2}. Since u1u ∈ E(G) and v0u /∈ E(G), we
have distG(u, v0) = 2. It follows that n ≤ dG(u)+ dG(v0) ≤ v(A)− 1+ 2+ dG(v0, B)+ 2, implying that dG(v0, B) ≥ v(B)− 3.

If dG(v0, B) = v(B) − 3, then dG(u, B) = 2 for every u ∈ V (A). We have e(F ) ≥ 2(n/2) > n/2, a contradiction.
If dG(v0, B) = v(B) − 2, then dG(u, B) ≥ 1 for every u ∈ V (A). Recall that dG(u1, B) = dG(u2, B) = 2. We have
e(F ) ≥ 4 + (n/2 − 2) > n/2, a contradiction. Now we assume that dG(v0, B) = v(B) − 1. Thus v0 is adjacent to all
vertices in V (B) \ {v0}. Let v be an arbitrary vertex in V (B) \ {v0}. Thus, there exists a vertex ui ∈ {u1, u2} such that
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Fig. 2. The graphs illustrating Case 1.2.

distG(ui, v) = 2. It follows that n ≤ dG(ui) + dG(v) ≤ v(A) − 2 + 2 + v(B) − 1 + dG(v, A), implying that dG(v, A) ≥ 1. Recall
that dG(v0, A) = 2. We have e(F ) ≥ 2 + (n/2 − 1) > n/2, a contradiction.

Case 1.2. NG(u1, B) ∩ NG(u2, B) = ∅.
Let NG(u1, B) = {v1, v2}. First we suppose that NG(v1, A) = {u1} (see Fig. 2(a)). Recall that NG(u1, A) = V (A) \ {u1, u2}.

Let u be an arbitrary vertex in V (A) \ {u1, u2}. We have distG(u, v1) = 2. It follows that n ≤ dG(u) + dG(v1) ≤

v(A) − 1 + dG(u, B) + v(B) − 1 + 1, implying that dG(u, B) ≥ 1. Recall that dG(u1, B) = dG(u2, B) = 2. We have
e(F ) ≥ 4 + (n/2 − 2) > n/2, a contradiction.

Suppose now that NG(v1, A) = {u1, u3}, where u3 ∈ V (A) \ {u1, u2} (see Fig. 2(b)). Let u be an arbitrary vertex in
V (A) \ {u1, u2, u3}. We have distG(u, v1) = 2. It follows that n ≤ dG(u) + dG(v1) ≤ v(A) − 1 + 2 + dG(v1, B) + 2, implying
that dG(v1, B) ≥ v(B) − 3.

If dG(v1, B) = v(B) − 3, then dG(u, B) = 2 for every u ∈ V (A) \ {u3}. Recall that dG(u3, B) ≥ 1. We have
e(F ) ≥ 1 + 2(n/2 − 1) > n/2, a contradiction. If dG(v1, B) = v(B) − 2, then dG(u, B) ≥ 1 for every u ∈ V (A).
Recall that dG(u1, B) = dG(u2, B) = 2. We have e(F ) ≥ 4 + (n/2 − 2) > n/2, a contradiction. Now we assume that
dG(v1, B) = v(B) − 1. Let v be an arbitrary vertex in V (B) \ {v1, v2}. Thus, we have distG(u1, v) = 2. It follows that
n ≤ dG(u1) + dG(v) ≤ v(A) − 2 + 2 + v(B) − 1 + dG(v, A), implying that dG(v, A) ≥ 1. Recall that dG(v1, A) = 2 and
dG(v2, A) ≥ 1. We have e(F ) ≥ 2 + (n/2 − 1) > n/2, a contradiction.

Now, we consider another case that G[V (A)] is complete for every component A of G′ with v(A) ≤ n/2.

Case 2. For every component A of G′ with v(A) ≤ n/2, G[V (A)] is a complete graph.
Depending on whether or not G′ has an isolated vertex, we divide Case 2 into two subcases (i.e., Cases 2.1 and 2.2).

Case 2.1. G′ has at least one isolated vertex.
We prove some claims in order to deal with Case 2.1.

Claim 1. G′ has exactly one isolated vertex.

Proof. Let S be the set of isolated vertices of G′. Set B = G′
− S and S ′

= NG(S, B). If V (B)\S ′
= ∅ (i.e., V (G) = S ∪ S ′), then

|S ′
| ≤ eG(S, S ′) and e(G[S]) < |S| (otherwise there would be a cycle in F ). If |S| ≥ |S ′

|, then e(F ) ≥ 2|S|−e(G[S]) > |S| ≥ n/2,
a contradiction; if |S ′

| > |S|, then e(F ) ≥ eG(S, S ′) > n/2, also a contradiction. Therefore, we conclude that V (B)\S ′
̸= ∅.

Thus there exist two vertices u1 ∈ S, v1 ∈ V (B) \ S ′ such that distG(u1, v1) = 2. It follows that n ≤ dG(u1) + dG(v1) ≤

2 + v(B) − 1, implying that v(B) ≥ n − 1 and |S| ≤ 1. Recall that G′ has at least one isolated vertex. Hence, |S| = 1. □

Let u1 be the isolated vertex of G′.

Claim 2. B = G′
− u1 is connected.

Proof. Suppose, to the contrary, that B is disconnected. Let B1 be a component of B such that NG(u1, B1) ̸= ∅. Note that G′

has no component with 2 vertices. Thus, every component of B has at least 3 vertices. We can see that 3 ≤ v(B1) ≤ n−4,
and there is a vertex v ∈ V (B1) with distG(u1, v) = 2. Thus, we have n ≤ dG(u1) + dG(v) ≤ 2 + v(B1) − 1 + 2 ≤ n − 1, a
contradiction. □

Clearly, we have dG(u1) = 2. Let NG(u1, B) = {v1, v2}. If v1v2 ∈ E(G), then v1v2 ∈ E(G′), otherwise v1u1v2v1 would be
a cycle in F . Thus H = G′

+ {u1v1, u1v2} − {v1v2} is a desired spanning eulerian subgraph of G. Next, we assume that
v1v2 /∈ E(G).

We claim that NG(v1, B) = NG(v2, B). Suppose, to the contrary, that there exists a vertex v0 ∈ NG(v1, B) \ NG(v2, B).
Since distG(u1, v0) = 2, we have n ≤ dG(u1) + dG(v0) ≤ 2 + n − 1 − 2 < n, a contradiction. Thus as we claimed,
NG(v1, B) = NG(v2, B).

Let R = NG(v1, B) = NG(v2, B) and S = NG′ (v1, B) ∩ NG′ (v2, B). Since distG(v1, v2) = 2, we have |R| ≥ (n − 2)/2. If
there exists a vertex v ∈ S such that EG(v) ∩ E(F ) = ∅, then let H = G′

+ {u1v1, u1v2} − {v1v, v2v}. Since distG(u1, v) = 2
and dG(u1) = 2, we have dG(v) ≥ n − 2. It follows that NG′ (v1, B) ∩ NG′ (v, B) ̸= ∅. Thus H is a desired spanning eulerian
subgraph of G. Next, we assume that EG(v) ∩ E(F ) ̸= ∅ for every v ∈ S.

Claim 3. There exist two vertices v3, v4 ∈ S such that v3v4 ∈ E(F ).
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Fig. 3. The graph illustrating Case 2.1.

Fig. 4. The graph illustrating Case 2.2.1.

Proof. First we suppose that S = R. Let F ′
= F − {u1v1, u1v2}. We have e(F ′) ≤ n/2 − 2. Recall that |S| = |R| ≥ n/2 − 1.

Hence, there must exist two vertices v3, v4 ∈ S such that v3v4 ∈ E(F ′).
Suppose now that |R \ S| = 1. Let v5 ∈ R \ S. Note that it is impossible that {v1v5, v2v5} ⊂ E(F ), otherwise u1v1v5v2u1

would be a cycle in F . Without loss of generality, we suppose that v1v5 ∈ E(F ). Let F ′
= F − {u1v1, u1v2, v1v5}. We have

e(F ′) ≤ n/2−3. Recall that |S| = |R|−1 ≥ n/2−2. Hence, there must exist two vertices v3, v4 ∈ S such that v3v4 ∈ E(F ′).
Finally, we suppose that |R \ S| = 2. Set {v1v5, v2v6} ⊂ E(F ). Let F ′

= F − {u1v1, u1v2, v1v5, v2v6}. We have
e(F ′) ≤ n/2 − 4. Recall that |S| = |R| − 2 ≥ n/2 − 3. Hence, there must exist two vertices v3, v4 ∈ S such that
v3v4 ∈ E(F ′). □

By Claim 3, H = G′
+ {u1v1, u1v2, v3v4} − {v1v3, v2v4} is a desired spanning eulerian subgraph of G (see Fig. 3).

Now, we consider another subcase of Case 2 that G′ has no isolated vertex.

Case 2.2. G′ has no isolated vertex.

Claim 4. G′ has exactly two components.

Proof. Let A be a component of G′ with v(A) ≤ n/2 and B be another component of G′ such that NG(A, B) ̸= ∅. Recall
that every component of G′ has at least 3 vertices. We can see that there exist two vertices u ∈ V (A), v ∈ V (B) such that
distG(u, v) = 2. It follows that n ≤ dG(u) + dG(v) ≤ v(A) − 1 + 2 + v(B) − 1 + 2, implying that v(A) + v(B) ≥ n − 2. If G′

has the third component C , then v(C) ≤ 2, a contradiction. □

Let A, B be two components of G′. We assume that v(A) ≤ v(B), and if v(A) = v(B) then e(A) ≤ e(B). Depending on
whether or not A is complete, we divide Case 2.2 into two subcases (i.e., Cases 2.2.1 and 2.2.2).

Case 2.2.1. A is not a complete graph (see Fig. 4).

Claim 5. A = G[V (A)] − M for some perfect matching M of G[V (A)].

Proof. Recall that G′
= G − E(F ) and G[V (A)] is a complete graph. Note that A is not a complete graph. If dG(u, A) −

dG′ (u, A) ≡ 0 (mod 2) for each u ∈ V (A), then E(F )∩E(G[V (A)]) contains a cycle, a contradiction. Thus, there exists a vertex
u of A such that dG′ (u, A) = dG(u, A)− 1. Since every vertex of G′ has an even degree, we have dG′ (u, A) = dG(u, A)− 1 for
each u ∈ V (A). □

Clearly there exists an edge u1v1 ∈ E(F ) with u1 ∈ V (A) and v1 ∈ V (B) (see Fig. 4). Let u1u2 ∈ M (by Claim 5). Thus
distG(u2, v1) = 2, otherwise u1u2v1u1 would be a cycle in F . It follows that n ≤ dG(u2)+dG(v1) ≤ v(A)−1+1+dG(v1, B)+2,
implying that dG(v1, B) ≥ v(B)− 2. Let v be an arbitrary vertex in NG(v1, B). Thus, we have distG(u1, v) = 2. It follows that
n ≤ dG(u1) + dG(v) ≤ v(A) − 1 + 1 + v(B) − 1 + dG(v, A), implying that dG(v, A) ≥ 1. By Claim 5, we have v(A) ≥ 4 and
e(M) ≥ 2. Thus e(F ) ≥ v(B) − 2 + 1 + 2 > n/2, a contradiction.

Now, we consider another subcase of Case 2.2 that A is a complete graph.

Case 2.2.2. A is a complete graph.
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Fig. 5. The graph illustrating the case of NG(v1, A) ∩ NG(v2, A) ̸= ∅.

Fig. 6. The graphs illustrating the case of NG(v1, A) ∩ NG(v2, A) = ∅.

Let NG(A, B) = S. Since G is 2-connected, we have |S| ≥ 2. First we suppose that there exist two vertices v1, v2 of S
such that v1v2 ∈ E(G). If NG(v1, A)∩NG(v2, A) ̸= ∅, saying u1 ∈ NG(v1, A)∩NG(v2, A), then v1v2 ∈ E(G′), otherwise v1u1v2v1
would be a cycle in F . Thus H = G′

+ {u1v1, u1v2} − {v1v2} is a desired spanning eulerian subgraph of G (see Fig. 5).
Now let us consider the case that NG(v1, A) ∩ NG(v2, A) = ∅. Let u1 ∈ NG(v1, A) and u2 ∈ NG(v2, A). We define a graph

H such that

H =

{
G′

+ {u1v1, u2v2} − {u1u2, v1v2}, if v1v2 /∈ E(F );
G′

+ {u1v1, u2v2, v1v2} − {u1u2}, otherwise .

Thus H is a desired spanning eulerian subgraph of G (see Fig. 6(a) and (b)).
Suppose now that S is an independent set in G. If dG(v, A) = 2 for some v ∈ S, letting NG(v, A) = {u1, u2}, then

H = G′
+ {u1v, u2v} − {u1u2} is a desired spanning eulerian subgraph of G. Next, we assume that dG(v, A) = 1

for every v ∈ S. Clearly there exist two vertices u ∈ V (A) and v ∈ S such that distG(u, v) = 2. It follows that
n ≤ dG(u) + dG(v) ≤ v(A) − 1 + 2 + v(B) − |S| + 1, implying that |S| ≤ 2. Recall that |S| ≥ 2. We have |S| = 2. Let
u be an arbitrary vertex in A. Clearly there is a vertex v ∈ V (B) with distG(u, v) = 2. It follows that n ≤ dG(u) + dG(v) ≤

v(A) − 1 + dG(u, B) + v(B) − 1 = n + dG(u, B) − 2, implying that dG(u, B) ≥ 2. Thus NG(u, B) = S for every u ∈ A, and F
contains a cycle, a contradiction. This completes the proof. □

4.2. Proof of Lemma 2

Let G be a 2-connected graph on n vertices such that max{d(u), d(v)} ≥ n/2 for every pair of nonadjacent vertices
u, v of G. The assertion is trivial if n ≤ 4. Therefore, we assume that n ≥ 5. It follows that G is a hamiltonian graph by
Theorem 8. By Lemma 3, there exists a linear forest F of G with N1(F ) = O(G) and e(F ) ≤ n/2. Let G′

= G − E(F ). Thus
dG′ (v) ≥ dG(v)−2 and is even for each vertex v ∈ V (G). If G′ is connected, then it is a desired spanning eulerian subgraph
of G. Next, we assume that G′ is disconnected. We divide the remaining part of the proof into two cases that might occur.

We first consider the case that G[V (A)] is complete for some component A of G′ with v(A) ≤ n/2.

Case 1. There exists a component A of G′ with v(A) ≤ n/2 such that G[V (A)] is not a complete graph.
Let B = G′

− A. Recall that O(A) = ∅ and A is not a complete graph. We can see that v(A) ≥ 4. Thus, there exist
two nonadjacent vertices u1, u2 ∈ V (A). Without loss of generality, we suppose that dG(u1) ≥ n/2. It follows that
n/2 ≤ dG(u1) ≤ v(A) − 2 + 2 = v(A). Recall that v(A) ≤ n/2. Therefore, we have v(A) = v(B) = n/2, dG(u1, A) = v(A) − 2
and dG(u1, B) = 2. Hence, NG(u1, A) = V (A) \ {u1, u2}.

We claim that B is connected. Suppose, to the contrary, that B is disconnected. Note that n ≥ 8 by the fact that
v(A) ≥ 4. Since v(B) = n/2, there exists a component B1 of B with v(B1) ≤ n/4. We have dG(v) ≤ n/4 − 1 + 2 < n/2
for every v ∈ V (B1). Let u be an arbitrary vertex in A. If u ∈ NG(B1, A), then dG(u, B) ≥ 1. If u /∈ NG(B1, A), then
n/2 ≤ dG(u) ≤ v(A)−1+dG(u, B), implying that dG(u, B) ≥ 1. Recall that dG(u1, B) = 2. We have e(F ) ≥ 2+(n/2−1) > n/2,
a contradiction. Thus as we claimed, B is connected.
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Fig. 7. The graphs illustrating the case of v1v2 ∈ E(G′).

Recall that dG(u1, B) = 2. Let NG(u1, B) = {v1, v2}. If v1v2 ∈ E(G), then v1v2 ∈ E(G′), otherwise v1u1v2v1 would be
a cycle in F . Thus H = G′

+ {u1v1, u1v2} − {v1v2} is a desired spanning eulerian subgraph of G. Next, we assume that
v1v2 /∈ E(G).

We claim that dG(v) ≥ n/2 for every vertex v ∈ V (B). Suppose, to the contrary, that dG(v) < n/2 for some vertex
v ∈ V (B). Let u be an arbitrary vertex in A. If u ∈ NG(v, A), then dG(u, B) ≥ 1. If u /∈ NG(v, A), then n/2 ≤ dG(u) ≤

v(A) − 1 + dG(u, B), implying that dG(u, B) ≥ 1. Recall that dG(u1, B) = 2. We have e(F ) ≥ 2 + (n/2 − 1) > n/2, a
contradiction. Thus as we claimed, dG(v) ≥ n/2 for every vertex v ∈ V (B).

Since v(B) = n/2, dG(v, A) ≥ 1 for every v ∈ V (B). Moreover, since v1v2 /∈ E(G), we have dG(v1, A) = dG(v2, A) = 2.
Hence, e(F ) ≥ 4 + (n/2 − 2) > n/2, a contradiction.

Now, we consider another case that G[V (A)] is complete for every component A of G′ with v(A) ≤ n/2.

Case 2. For every component A of G′ with v(A) ≤ n/2, G[V (A)] is a complete graph.
Depending on whether or not every component A of G′ with v(A) ≤ n/2 is complete, we divide Case 2 into two subcases

(i.e., Cases 2.1 and 2.2).

Case 2.1. There exists a component A of G′ with v(A) ≤ n/2 that is not a complete graph.

Claim 1. A = G[V (A)] − M for some perfect matching M of G[V (A)].

Proof. Recall that G′
= G−E(F ) and G[V (A)] is a complete graph. Hence, G[V (A)] is regular. Note that A is not a complete

graph. If dG(u, A)− dG′ (u, A) ≡ 0 (mod 2) for each u ∈ V (A), then E(F )∩ E(G[V (A)]) contains a cycle, a contradiction. Thus,
there exists a vertex u of A such that dG′ (u, A) = dG(u, A) − 1. Since G[V (A)] is regular and every vertex of G′ has an even
degree, we have dG′ (u, A) = dG(u, A) − 1 for each u ∈ V (A). □

Let B = G′
− A. If v(A) = n/2, then there exists a vertex u ∈ V (A) with dG(u, B) = 0 (otherwise we would have

e(F ) ≥ n/4+n/2 > n/2 by Claim 1). Let v be an arbitrary vertex in V (B). Since uv /∈ E(G) and dG(u) ≤ v(A)−1 < n/2, we
have n/2 ≤ dG(v) ≤ v(B)−1+dG(v, A), implying that dG(v, A) ≥ 1. Thus, we have e(F ) ≥ n/4+n/2 > n/2, a contradiction.
Therefore, we conclude that v(A) < n/2.

By Claim 1, we have v(A) ≥ 4 and dG(u) ≤ v(A) − 1 + 1 = v(A) < n/2 for every vertex u ∈ V (A). For each vertex
v ∈ V (B), there exists a vertex u ∈ V (A) such that uv /∈ E(G). This implies that dG(v) ≥ n/2 for every vertex v ∈ V (B).

If B is disconnected, then there exists a component B1 of B with v(B1) ≤ v(B)/2. Recall that v(A) ≥ 4. We have
dG(v) ≤ v(B1)−1+2 ≤ v(B)/2+1 = (n− v(A))/2+1 < n/2 for every v ∈ V (B1), a contradiction. Therefore, we conclude
that B is connected.

Let NG(A, B) = S. Since G is 2-connected, we have |S| ≥ 2. For two vertices v1, v2 of S, let u1 ∈ NG(v1, A) and
u2 ∈ NG(v2, A) (note that u1 ̸= u2 by Claim 1). We define a graph H1(v1, v2) such that

H1(v1, v2) =

{
G′

+ {u1v1, u2v2} − {u1u2}, if u1u2 /∈ M;

G′
+ {u1v1, u2v2, u1u2}, otherwise.

If there exist two vertices v1, v2 of S such that v1v2 ∈ E(G′), then H = H1(v1, v2)−{v1v2} is a desired spanning eulerian
subgraph of G (see Fig. 7(a) and (b)). Next, we assume that S is an independent set in G′.

Claim 2. For every two vertices v1, v2 of S, one of the following holds:
(1) there exists a vertex v3 ∈ NG′ (v1, B) ∩ NG′ (v2, B) such that EG(v3) ∩ E(F ) = ∅;
(2) there exist two vertices v3 ∈ NG′ (v1, B) ∩ NG′ (v2, B) and v4 ∈ NG′ (v1, B) ∪ NG′ (v2, B) such that v3v4 ∈ E(F ); or
(3) there exist two vertices v3, v4 ∈ NG′ (v1, B)∩NG′ (v2, B) such that v3v5, v4v5 ∈ E(F ) for some vertex v5 ∈ V (B)\ (NG′ (v1, B)∪
NG′ (v2, B) ∪ {v1, v2}).

Proof. Let v1, v2 be two vertices of S, and S0 = NG′ (v1, B) ∩ NG′ (v2, B). Let S1 = NG′ (v1, B) \ S0, S2 = NG′ (v2, B) \ S0 and
S3 = V (B) \ (NG′ (v1, B) ∪ NG′ (v2, B) ∪ {v1, v2}).

If there exists a vertex v3 ∈ S0 such that EG(v3) ∩ E(F ) = ∅, then (1) holds. Now we assume that EG(v) ∩ E(F ) ̸= ∅

for every v ∈ S0. If there exists a vertex v3 ∈ S0 such that EG(v3, S3) ∩ E(F ) = ∅, then (2) holds. Next, we assume that
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Fig. 8. The graphs illustrating the case that S is an independent set of G′ .

Fig. 9. The graph illustrating the case that B is disconnected.

EG(v, S3) ∩ E(F ) ̸= ∅ for every v ∈ S0. Recall that dG(v) ≥ n/2 for every vertex v ∈ V (B). We have n/2 ≤ dG(v1) ≤

|S1| + |S0| + 2, and n/2 ≤ dG(v2) ≤ |S2| + |S0| + 2. It follows that |S1| + |S0| + |S2| + |S0| ≥ n − 4. However, we have
|S1| + |S0| + |S2| + |S3| ≤ n − 6 by the fact of v(A) ≥ 4. Therefore, we have |S3| < |S0|. Thus (3) holds. □

Let v1, v2 be two vertices of S. First we suppose that (1) of Claim 2 holds. Recall that dG(vi) ≥ n/2 for i = 1, 2, 3. One
can check that NG′ (v1, B) ∩ NG′ (v3, B) ̸= ∅. Thus H = H1(v1, v2) − {v1v3, v2v3} is a desired spanning eulerian subgraph of
G.

Suppose now that (2) of Claim 2 holds. Without loss of generality, we suppose that v4 ∈ NG′ (v1, B). Thus H =

H1(v1, v2) + {v3v4} − {v1v4, v2v3} is a desired spanning eulerian subgraph of G (see Fig. 8(a)).
Finally, we suppose that (3) of Claim 2 holds. Thus H = H1(v1, v2) + {v3v5, v4v5} − {v1v3, v2v4} is a desired spanning

eulerian subgraph of G (see Fig. 8(b)).
Now, we consider another subcase of Case 2 that every component A of G′ with v(A) ≤ n/2 is complete.

Case 2.2. Every component A of G′ with v(A) ≤ n/2 is a complete graph.
Depending on whether or not G′ has an isolated vertex, we divide Case 2.2 into two subcases (i.e., Cases 2.2.1 and

2.2.2).

Case 2.2.1. G′ has at least one isolated vertex.
Let u1 be an isolated vertex of G′, and B = G′

− u1. Clearly, we have dG(u1) = 2. Let NG(u1, B) = {u2, u3}. First we
suppose that u2u3 ∈ E(G). It follows that u2u3 ∈ E(G′), otherwise u1u2u3u1 would be a cycle in F . If B is connected, then
H = G′

+ {u1u2, u1u3} − {u2u3} is a desired spanning eulerian subgraph of G. Next, we assume that B is disconnected.
We claim that B has exactly two components. Suppose, to the contrary, that B has at least three components. Note

that neither u2 nor u3 is an isolated vertex of B. We conclude that there is no isolated vertex in B, otherwise there would
be an isolated vertex u of B such that u1u /∈ E(G) and max{d(u1), d(u)} ≤ 2 < n/2 (recall that n ≥ 5), a contradiction.
Since every vertex of G′ has an even degree, there exists a connected component B1 of B with 3 ≤ ν(B1) ≤ n/2 − 2. We
have dG(v) ≤ n/2 − 3 + 2 < n/2 for every v ∈ V (B1). Therefore, there is a vertex v ∈ V (B1) such that u1v /∈ E(G) and
max{dG(u1), dG(v)} < n/2, a contradiction. Thus as we claimed, B has exactly two components.

Let B1, B2 be the two components of B such that 3 ≤ v(B1) ≤ v(B2). Note that there exists a vertex v ∈ V (B1)
with u1v /∈ E(G), and dG(u1) < n/2. It follows that dG(v) ≥ n/2 and hence v(B1) ≥ n/2 − 1. Therefore, we have
v(B2) ≤ n − 1 − (n/2 − 1) = n/2. We conclude that B1 and B2 are both complete graphs. Without loss of generality,
we suppose that u2 and u3 are in B1. Since G is 2-connected, there exist two nonadjacent edges x1y1, x2y2 ∈ E(F ) with
x1, x2 ∈ V (B1) and y1, y2 ∈ V (B2). If {x1, x2} ∩ {u2, u3} = ∅, then H = G′

+ {u1u2, u1u3, x1y1, x2y2} − {u2u3, x1x2, y1y2} is a
desired spanning eulerian subgraph of G (see Fig. 9). Next, we assume that {x1, x2}∩{u2, u3} ̸= ∅. If |{x1, x2} ∩ {u2, u3}| = 1,
without loss of generality suppose that x1 = u2, then H = G′

+ {u1u2, u1u3, x1y1, x2y2} − {u3x2, y1y2} is a desired
spanning eulerian subgraph of G (see also Fig. 9). If {x1, x2} = {u2, u3}, setting x1 = u2 and x2 = u3, then H =

G′
+ {u1u2, u1u3, x1y1, x2y2} − {y1y2} is a desired spanning eulerian subgraph of G (see also Fig. 9).
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Suppose now that u2u3 /∈ E(G). Without loss of generality, we suppose that dG(u3) ≥ n/2. Let G∗
= G− {u1, u2}. Let u4

be a fixed vertex of NG(u2,G∗). Let S be a subset of V (G∗) such that

S =

{
O(G), if dG(u2) ≡ 0 (mod 2);
O(G − {u2u4}), otherwise.

Let v be an arbitrary vertex in V (G∗) \ {u3}. Since u1v /∈ E(G), we have dG(v) ≥ n/2. Thus dG∗ (v) ≥ (n − 2)/2. Recall
that dG(u3) ≥ n/2. Hence, we have dG∗ (v) ≥ (n− 2)/2 = v(G∗)/2 for every vertex v ∈ V (G∗). By Dirac’s theorem, G∗ has a
Hamilton cycle C . We give a orientation C⃗ on C . Let S = {v1, v2, . . . , vk}, where these vertices appear in this order along
C⃗ . Clearly, k is even. Let F∗

1 =
⋃k/2

i=1 C⃗[v2i−1, v2i] and F∗

2 =
⋃k/2

i=1 C⃗[v2i, v2i+1], where vk+1 = v1. Thus F∗

i is a linear forest of
G∗ with N1(F∗

i ) = S for i = 1, 2. Therefore, there exists a linear forest F∗ of G∗ such that N1(F∗) = S, and u4 /∈ N2(F∗).
Now set

G′′
=

{
G − E(F∗), if dG(u2) ≡ 0 (mod 2);
G − (E(F∗) ∪ {u2u4}), otherwise.

We can see that dG′′ (v) ≥ dG(v)− 2 and is even for each vertex v ∈ V (G). If G′′ is connected, then it is a desired spanning
eulerian subgraph of G. Next, we assume that G′′ is disconnected.

If G′′ has an isolated vertex v, then v /∈ {u1, u2} (since u1u2 ∈ E(G′′)). Recall that n ≥ 5. We have dG(v) = 2 < n/2, a
contradiction. Therefore, we conclude that G′′ has no isolated vertex. We prove another claim.

Claim 3. G′′ has exactly two components.

Proof. Suppose, to the contrary, that G′′ has at least three components. Thus, there exists a component B1 of G′′ with
v(B1) ≤ n/3. Since every vertex of G′′ has an even degree, we have v(B1) ≥ 3, implying that n ≥ 9. Let v be an arbitrary
vertex in V (B1) \ {u1, u2}. It follows that n/2 ≤ dG(v) ≤ n/3 − 1 + 2 < n/2, a contradiction. □

Now let B1, B2 be the two components of G′′ such that {u1, u2} ⊆ V (B2), and let B∗

2 = B2 − {u1, u2}. If v(B1) < n/2 − 1,
then for every v ∈ V (B1), dG(v) ≤ v(B1) − 1 + 2 < n/2, a contradiction. If v(B1) > n/2, then v(B∗

2) < n/2 − 2. For every
v ∈ V (B∗

2), we have dG∗ (v) ≤ v(B∗

2)−1+2 < n/2−1, a contradiction. Therefore, we conclude that n/2−1 ≤ v(B1) ≤ n/2,
and n/2 − 2 ≤ v(B∗

2) ≤ n/2 − 1.
We claim that B1 is complete. Suppose, to the contrary, that B1 is not complete. Let v be an arbitrary vertex in V (B1).

Recall that every component A of G′ with v(A) ≤ n/2 is a complete graph, and every vertex of B1 has an even degree in
G′′. It follows that dG(v, B1) ≤ v(B1) − 2. Thus we have n/2 ≤ dG(v) ≤ v(B1) − 2 + dG(v, B2) ≤ n/2. This implies that
v(B1) = n/2 and dG(v, B2) = 2. It follows that e(F∗) ≥ n and F∗ contains a cycle, a contradiction. Thus as we claimed, B1
is complete.

If there is a vertex v ∈ V (B∗

2) such that dG∗ (v, B1) = 2, letting NG∗ (v, B1) = {v′, v′′
}, then H = G′′

+{vv′, vv′′
}−{v′v′′

} is
a desired spanning eulerian subgraph of G. Next, we assume that dG∗ (v, B1) ≤ 1 for every v ∈ V (B∗

2). If B
∗

2 is not complete,
then there is a vertex v ∈ V (B∗

2) with dG∗ (v) ≤ v(B∗

2) − 2 + 1 < n/2 − 1, a contradiction. Therefore, we conclude that B∗

2
is complete.

If v(B∗

2) = 1, then B2 is a triangle and V (B2) = {u1, u2, u3}, contradicting the fact u2u3 /∈ E(G). Therefore, we assume
that v(B∗

2) ≥ 2. For every vertex v ∈ V (B∗

2), n/2− 1 ≤ dG∗ (v) ≤ v(B∗

2)− 1+ dG∗ (v, B1) ≤ n/2− 2+ dG∗ (v, B1). This implies
that dG∗ (v, B1) ≥ 1 for every v ∈ V (B∗

2). Let v1, v2 ∈ V (B∗

2) and v′

i ∈ NG∗ (vi, B1) for i = 1, 2. We define a graph H such that

H =

{
G′′

+ {v′

1v1, v
′

1v2} − {v1v2}, if v′

1 = v′

2;

G′′
+ {v′

1v1, v
′

2v2} − {v1v2, v
′

1v
′

2}, otherwise.

Thus H is a desired spanning eulerian subgraph of G.
Now, we consider another subcase of Case 2.2 that G′ has no isolated vertex.

Case 2.2.2. G′ has no isolated vertex.
We prove a number of claims in order to deal with Case 2.2.2.

Claim 4. G′ has exactly two components.

Proof. Suppose, to the contrary, that G′ has at least three components. Let A, B be the smallest two components of G′,
and C = G′

− (A ∪ B). Since every vertex of G′ has an even degree, we have 3 ≤ v(A) ≤ n/3, implying that n ≥ 9. Thus
v(A) ≤ v(B) ≤ (n− v(A))/2. Let v be an arbitrary vertex of B. Then there exists a vertex u ∈ V (A) such that uv /∈ E(G) and
dG(u) ≤ n/3 − 1 + 2 < n/2. It follows that n/2 ≤ dG(v) ≤ v(B) − 1 + 2 ≤ (n − v(A))/2 + 1 ≤ (n − 3)/2 + 1 < n/2, a
contradiction. □

Let A, B be the two components of G′ such that v(A) ≤ v(B). If v(A) = n/2, then v(B) = n/2. Thus A and B are both
complete graphs. Since G is 2-connected, there exist two nonadjacent edges u1v1, u2v2 ∈ E(F ) with u1, u2 ∈ V (A) and
v1, v2 ∈ V (B). Thus H = G′

+ {u1v1, u2v2} − {u1u2, v1v2} is a desired spanning eulerian subgraph of G (see Fig. 10(b)).
Now we assume that 3 ≤ v(A) < n/2, implying that n ≥ 7. Recall that A is a complete graph. If there is a vertex

v ∈ V (B) such that dG(v, A) = 2, letting NG(v, A) = {u1, u2}, then H = G′
+ {u1v, u2v} − {u1u2} is a desired spanning

eulerian subgraph of G. Next, we assume that dG(v, A) ≤ 1 for every v ∈ V (B).



12 Z. Guo, B. Li, X. Li et al. / Discrete Mathematics 343 (2020) 111908

Fig. 10. The graphs illustrating the case of v1v2 ∈ E(G′).

Fig. 11. The graphs illustrating the case that S is an independent set in G′ .

Let NG(A, B) = S. Since G is 2-connected, we have |S| ≥ 2. Let v1, v2 be two vertices of S with u1 ∈ NG(v1, A) and
u2 ∈ NG(v2, A). We define a graph H2(v1, v2) such that

H2(v1, v2) =

{
G′

+ {u1v1, u1v2}, if u1 = u2;

G′
+ {u1v1, u2v2} − {u1u2}, otherwise.

If there exist two vertices v1, v2 of S such that v1v2 ∈ E(G′), then H = H2(v1, v2)−{v1v2} is a desired spanning eulerian
subgraph of G (see Fig. 10(a) and (b)). Next, let us consider the case that S is an independent set in G′.

Claim 5. dG(v) ≥ n/2 for every vertex v ∈ V (B).

Proof. First we suppose that (n − 2)/2 ≤ v(A) ≤ (n − 1)/2. If there exists a vertex u ∈ V (A) with dG(u, B) = 0, then
dG(u) < n/2. This implies that dG(v) ≥ n/2 for every vertex v ∈ V (B). If dG(u, B) ≥ 1 for every u ∈ V (A), then there exists
at most one vertex u1 ∈ V (A) such that dG(u, B) = 1 for every u ∈ V (A) \ {u1} (otherwise e(F ) > n/2). This implies that
dG(u) < n/2 for every u ∈ V (A) \ {u1}. For every vertex v ∈ V (B), there exists a vertex u ∈ V (A) such that uv /∈ E(G) and
dG(u) < n/2 (recall that v(A) ≥ 3 and dG(v, A) ≤ 1). Thus dG(v) ≥ n/2 for every vertex v ∈ V (B).

Suppose now that 3 ≤ v(A) ≤ (n−3)/2. It follows that dG(u) < n/2 for every vertex u ∈ V (A). For every vertex v ∈ V (B),
there exists a vertex u ∈ V (A) such that uv /∈ E(G) and dG(u) < n/2. Thus d(v) ≥ n/2 for every vertex v ∈ V (B). □

Claim 6. For every two vertices v1, v2 of S, one of the following holds:
(1) there exists a vertex v3 ∈ NG′ (v1, B) ∩ NG′ (v2, B) such that EG(v3) ∩ E(F ) = ∅;
(2) there exist two vertices v3 ∈ NG′ (v1, B) ∩ NG′ (v2, B) and v4 ∈ NG′ (v1, B) ∪ NG′ (v2, B) such that v3v4 ∈ E(F ); or
(3) there exist two vertices v3, v4 ∈ NG′ (v1, B)∩NG′ (v2, B) such that v3v5, v4v5 ∈ E(F ) for some vertex v5 ∈ V (B)\(NG′ (v1, B)∪
NG′ (v2, B) ∪ {v1, v2}).

Proof. Let v1, v2 be two vertices of S, and S0 = NG′ (v1, B) ∩ NG′ (v2, B). Let S1 = NG′ (v1, B) \ S0, S2 = NG′ (v2, B) \ S0 and
S3 = V (B) \ (NG′ (v1, B) ∪ NG′ (v2, B) ∪ {v1, v2}).

If there exists a vertex v3 ∈ S0 such that EG(v3) ∩ E(F ) = ∅, then (1) holds. Now we assume that EG(v) ∩ E(F ) ̸= ∅

for every v ∈ S0. If there exists a vertex v3 ∈ S0 such that EG(v3, S3) ∩ E(F ) = ∅, then (2) holds. Next, we assume that
EG(v, S3)∩E(F ) ̸= ∅ for every v ∈ S0. By Claim 5, we have n/2 ≤ dG(v1) ≤ |S1|+|S0|+2, and n/2 ≤ dG(v2) ≤ |S2|+|S0|+2.
It follows that |S1| + |S0| + |S2| + |S0| ≥ n − 4. However, we have |S1| + |S0| + |S2| + |S3| ≤ n − 5 by the fact of v(A) ≥ 4.
Therefore, we have |S3| < |S0|. Thus (3) holds. □

Let v1, v2 be two vertices of S. First we suppose that (1) of Claim 6 holds. Recall that dG(vi) ≥ n/2 for i = 1, 2, 3. One
can check that NG′ (v1, B) ∩ NG′ (v3, B) ̸= ∅. Thus H = H2(v1, v2) − {v1v3, v2v3} is a desired spanning eulerian subgraph of
G.

Suppose now that (2) of Claim 6 holds. Without loss of generality, we suppose that v4 ∈ NG′ (v1, B). Thus H =

H2(v1, v2) + {v3v4} − {v1v4, v2v3} is a desired spanning eulerian subgraph of G (see Fig. 11(a)).
Finally, we suppose that (3) of Claim 6 holds. Thus H = H2(v1, v2) + {v3v5, v4v5} − {v1v3, v2v4} is a desired spanning

eulerian subgraph of G (see Fig. 11(b)). This completes the proof. □
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5. Conclusions and final remarks

In this work, we first considered the existence of compatible spanning circuits visiting each vertex exactly k times,
for every feasible integer k, in some specified edge-colored graphs. We also considered the existence of compatible
spanning circuits visiting each vertex v at least ⌊(d(v) − 1)/2⌋ times in some edge-colored graphs satisfying Ore-type
degree conditions.

The proofs of Theorems 2 and 3 are based on a decomposition of a regular graph into edge-disjoint Hamilton cycles
(and one perfect matching if it is odd regular). Motivated by the proof technique of the two theorems, we can prove
a similar conclusion for any edge-colored regular graph G admitting a decomposition of G into edge-disjoint Hamilton
cycles (and one perfect matching if G is odd regular).

Finally, we give an open problem on compatible spanning circuits in edge-colored graphs.

Problem 3. Let G be an edge-colored 2-connected graph on n vertices satisfying Fan’s condition (see [9]), i.e., max{d(u),
d(v)} ≥ n/2 for every pair of vertices u, v of G with dist(u, v) = 2. Can G contain a compatible spanning circuit visiting
each vertex v at least ⌊(d(v) − 1)/2⌋ times? If so, under what conditions does G contain such a compatible spanning
circuit?
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