
ar
X

iv
:1

70
8.

07
11

8v
1 

 [
m

at
h.

C
O

] 
 2

3 
A

ug
 2

01
7

Some Criteria for a Signed Graph to Have Full

Rank

S. Akbari∗, A. Ghafari, K. Kazemian, M. Nahvi

Department of Mathematical Sciences

Sharif University of Technology, Tehran, Iran

Abstract

A weighted graph Gω consists of a simple graph G with a weight ω, which is a mapping,
ω: E(G) → Z\{0}. A signed graph is a graph whose edges are labeled with −1 or 1. In this
paper, we characterize graphs which have a sign such that their signed adjacency matrix has
full rank, and graphs which have a weight such that their weighted adjacency matrix does not
have full rank. We show that for any arbitrary simple graph G, there is a sign σ so that Gσ

has full rank if and only if G has a {1, 2}-factor. We also show that for a graph G, there is a
weight ω so that Gω does not have full rank if and only if G has at least two {1, 2}-factors.
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Keywords: Weighted graph, Signed graph, Weighted adjacency matrix, Signed adjacency matrix,
Rank.

1 Introduction

Throughout this paper, by a graph we mean a simple, undirected and finite graph. Let G be a
graph. We denote the edge set and the vertex set of G by E(G) and V (G), respectively. By order

and size of G, we mean the number of vertices and the number of edges of G, respectively. The
adjacency matrix of a simple graph G is denoted by A(G) = [aij ], where aij = 1 if vi and vj are
adjacent, and aij = 0 otherwise. We denote the complete graph of order n by Kn. A {1, 2}-factor
of a graph G is a spanning subgraph of G which is a disjoint union of copies of K2 and cycles. For
a {1, 2}-factorH of G, the number of cycles of H is denoted by c(H). The number of {1, 2}-factors
of a graph G is denoted by t(G). The perrank of a graph G of order n is defined to be the order
of its largest subgraph which is a disjoint union of copies of K2 and cycles, and we say G has full
perrank if perrank(G) = n. For a graph G, a zero-sum flow is an assignment of non-zero real
numbers to the edges of G such that the total sum of the assignments of all edges incident with
any vertex is zero. For a positive integer k, a zero-sum k-flow of G is a zero-sum flow of G using
the numbers {±1, . . . ,±(k − 1)}.
We call a matrix integral if all of its entries are integers. A set X of n entries of an n× n matrix
A is called a transversal, if X contains exactly one entry of each row and each column of A. A
transversal is called a non-zero transversal if all its entries are non-zero. The identity matrix is
denoted by I. Also, jn is an n× 1 matrix with all entries 1.
A weighted graph Gω consists of a simple graph G with a weight ω, which is a mapping,
ω: E(G) → Z\{0}. A signed graph Gσ is a weighted graph where σ: E(G) → {−1, 1}. The weighted
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adjacency matrix of the weighted graph Gω is denoted by A(Gω) = [aωij ], where aωij = ω(vivj) if
vi and vj are adjacent vertices, and aωij = 0, otherwise. The rank of a weighted graph is defined
to be the rank of its weighted adjacency matrix. A bidirected graph G is a graph such that each
edge is composed of two directed half edges. Function f : E(G) → Z\{0} is a nowhere-zero Z-

flow of G if for every vertex v of G we have
∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e), where E+(v) (resp.

E−(v)) is the set of all edges with tails (resp. heads) at v. For a positive integer k, a nowhere-zero

k-flow of G is a nowhere-zero Z-flow of G using the numbers {±1, . . . ,±(k − 1)}. For a graph G,
where E(G) = {e1, . . . , em} and V (G) = {v1, . . . , vn}, we define MG(x1, . . . , xm) = [mij ] to be an

n×nmatrix, wheremij =

{

xk If ek = vivj

0 otherwise
. Now, define fG(x1, . . . , xm) = det(MG(x1, . . . , xm)).

In order to establish our results, first we need the following well-known theorem, which has many
applications in algebraic combinatorics.

Theorem A. [3] Let F be an arbitrary field and let f = f(x1, . . . , xn) be a polynomial in

F [x1, . . . , xn]. Suppose the degree deg(f) of f is
n
∑

i=1

ti, where each ti is a nonnegative integer,

and suppose the coefficient of
∏n

i=1 x
ti
i in f is non-zero. Then, if S1, . . . , Sn are subsets of F with

|Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that f(s1, . . . , sn) 6= 0.

The following remark is a necessary tool in proving our results.

Remark 1.1. For a graph G, each non-zero transversal in A(G) corresponds to a {1, 2}-factor of

G, and each {1, 2}-factor H of G corresponds to 2c(H) non-zero transversals in M .

In this paper, we prove the following theorems:

Theorem. Let G be a graph. Then there exists a sign σ for G so that Gσ has full rank if and only

if G has full perrank.

Theorem. Let G be a graph. Then there exists a weight ω for G so that Gω does not have

full rank if and only if t(G) ≥ 2.

2 Signed Graphs Which Have Full Rank

Our first result is the following theorem.

Theorem 2.1. Let G be a graph. Then there exists a sign σ for G so that Gσ has full rank if and

only if G has full perrank.

Proof. First, assume that G has full perrank. Let m = |E(G)|, n = |V (G)|. Suppose that
f(x1, . . . , xm) is the polynomial obtained by replacing x2

i by 1 in fG(x1, . . . , xm), for all i, 1 ≤ i ≤
m. Clearly, degxi

f ≤ 1 for all i, 1 ≤ i ≤ m.
Let U be the set of all {1, 2}-factors of G. We have U 6= ∅. For each H ∈ U , we define a(H) as
the number of K2 components of H . We choose F1 in U so that a(F1) = max

H∈U
(a(H)). Note that

F1 does not contain any even cycles. So F1 is a disjoint union of a(F1) copies of K2, and c(F1)
odd cycles. Assume that all edges in the cycles of F1 are e1, . . . , ek. There are 2c(F1) non-zero
transversals in M corresponding to F1, and all terms in f(x1, . . . , xm) created by these non-zero
transversals are (−1)a(F1)x1 . . . xk.
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Let X be a non-zero transversal in M which makes the term ax1 . . . xk in f(x1, . . . , xm) for some
a ∈ R and does not correspond to F1. Let F2 be the {1, 2}-factor of G associated with X . The
edges in the cycles of F2 are e1, . . . , ek. Therefore a(F2) = a(F1), which is maximum. So F2 has
no even cycles and a = (−1)a(F1). So x1 . . . xk has a non-zero coefficient in f(x1, . . . , xm). Thus

f 6≡ 0 and it has a term c
∏m

i=1 x
ti
i with the maximum degree

m
∑

i=1

ti, where ti ∈ {0, 1} for each i,

1 ≤ i ≤ m. Let Si = {−1, 1} for each i, 1 ≤ i ≤ m, so |Si| ≥ 2. By Theorem A there exists
(s1, . . . , sm) ∈ S1 × · · · × Sm so that f(s1, . . . , sm) 6= 0. By defining σ as a sign assigning the same
sign as si to ei for each i, 1 ≤ i ≤ m, one can see that det(A(Gσ)) 6= 0.

Now, assume that there exists such a sign for G. It is clear that A(Gσ) has a non-zero transver-
sal, and the associated edges with this transversal, regardless of their signs, form a {1, 2}-factor of
G.

Corollary 2.2. Let G be a graph. Then max
σ

(rank(Gσ)) = perrank(G).

In the sequel we propose two following problems.

Problem 1. Let G be a graph. Determine min
σ

(rank(Gσ)).

Problem 2. Find an efficient algorithm that can lead us to the desirable sign in Theorem 2.1.

3 Weighted Graphs Which Do Not Have Full Rank

In order to establish our next result, first we need the following lemma and theorems.

Lemma A. [2] Let G be a 2-edge connected bipartite graph. Then G has a zero-sum 6-flow.

Theorem B. [2] Suppose G is not a bipartite graph. Then G has a zero-sum flow if and only if

for any edge e of G, G\{e} has no bipartite component.

Theorem C. [4] Every bidirected graph with a nowhere-zero Z-flow has a nowhere-zero 12-flow.

According to [1], if we orient all edges of a simple graph in a way that all edges adjacent to
each vertex v belong to E+(v), then a nowhere-zero bidirected flow corresponds to a zero-sum flow.
Therefore, the following corollary is a result of Theorem C.

Corollary A. Every graph with a zero-sum flow has a zero-sum 12-flow.

Now, we can prove the following theorem.

Theorem 3.1. Let G be a graph. Then there exists a weight ω for G so that Gω does not have

full rank if and only if t(G) ≥ 2.

Proof. DefineX = {H | t(H) ≥ 2 and for any ω, rank(A(Hω)) = |V (H)|}. By contradiction assume
that X 6= ∅. Let n = min

H∈X
|V (H)| and m = min

H∈X,|V (H)|=n
|E(H)| and G ∈ X be a graph of order

n and size m. Let E(G) = {e1, . . . , em}. Obviously, G is connected. For all a1, . . . , am ∈ Z\{0},
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we have fG(a1, . . . , am) 6= 0. For each i, 1 ≤ i ≤ m, we can write fG = x2
i gGi

+ xihGi
+ lGi

, where
gGi

, hGi
and lGi

are polynomials in variables x1, . . . , xi−1, xi+1, . . . , xm. One can see that gGi
is

the zero polynomial if and only if ei belongs to no K2 component of any {1, 2}-factor of G, hGi
is

the zero polynomial if and only if ei belongs to no cycle of any {1, 2}-factor of G, and lGi
is the

zero polynomial if and only if ei belongs to all {1, 2}-factors of G.
If there exists an edge ei of G belonging to no {1, 2}-factor of G, then t(G\{ei}) ≥ 2 and for each
weight ω we have det(A((G\{ei})

ω)) 6= 0, which is a contradiction. So each edge of G is contained
in at least one {1, 2}-factor. Moreover, if there exists an edge ei = uv which belongs to no cycle of
any {1, 2}-factor of G but belongs to all {1, 2}-factors of G, then we have t(G\{u, v}) ≥ 2 and for
each weight ω, det(A((G\{u, v})ω)) 6= 0, a contradiction. Furthermore we show that if ei appears
in a cycle of a {1, 2}-factor, then neither of the polynomials gGi

and lGi
is the zero polynomial. By

contradiction assume that gGi
lGi

≡ 0. If gGi
≡ 0 and lGi

6≡ 0, then according to Theorem A there
are a1, . . . , ai−1, ai+1, . . . , am ∈ Z\{0} so that hGi

lGi
(a1, . . . , ai−1, ai+1, . . . , am) 6= 0. It can be

seen that fG(a1, . . . , am) = 0, where ai = −
lGi

hGi

(a1, . . . , ai−1, ai+1, . . . , am). Note that for each j,

1 ≤ j ≤ m, aj is a non-zero rational number. Since fG is a homogeneous polynimial, it has a root in
(Z\{0})m, a contradiction. If lGi

≡ 0 and gGi
6≡ 0, then the same argument leads to a contradiction.

If gGi
= lGi

≡ 0 and ei, ej1 , . . . , ejp are all edges of a cycle C of a {1, 2}-factor of G, then for each
k, 1 ≤ k ≤ p, we have hGi

= xjkpk + qk, where pk and qk are polynomials in variables {xj}j∈I ,
where I = {1, . . . , n}\{i, jk}. Obviously, pk 6≡ 0 . If qk 6≡ 0, then using Theorem A one can see that
hGi

has a root in (Z\{0})m−1, a contradiction. Therefore, one can see that hGi
= xj1 · · ·xjph1,

where h1 is a polynomial in variables {xj}j∈J , where J = {1, . . . ,m}\{i, j1, . . . , jp}. So C is a
subgraph of every {1, 2}-factor of G. Now, by considering the graph G\V (C) and noting that
t(G\V (C)) ≥ 2, we obtain a contradiction. So we have gGi

, lGi
6≡ 0 for all i, 1 ≤ i ≤ m. So,

for each edge ei of G, there exists a {1, 2}-factor of G not containing ei, and also there exists a
{1, 2}-factor of G containing ei in a K2 component.
If G has a zero-sum flow, then MG(a1, . . . , am)jn = 0, and as a result fG(a1, . . . , am) = 0, where
for each i, 1 ≤ i ≤ m, ai is the non-zero integer assigned to the edge ei in the flow, a contradiction.
Thus, assume that G has no zero-sum flow. Now, we have two cases:

1. The graph G is not bipartite. According to Theorem B, G\{ei} has a bipartite component
for some i, 1 ≤ i ≤ m. We have two cases:

(a) The edge ei is not a cut edge. The graph G\{ei} is a bipartite graph, say G\{ei} =
(X,Y ), where the vertices adjacent to ei belong to X . There is a {1, 2}-factor of G
having ei in a K2 component, so |X | − 2 = |Y |. Also, there exists a {1, 2}-factor of G
not having ei, therefore we have |X | = |Y |, a contradiction.

(b) Now, assume that ei is a cut edge. The graph G\{ei} has two components H and F ,
where F = (X,Y ) is bipartite.

2. Now, suppose that G is bipartite. According to Lemma A, G has a cut edge ei. We denote
the bipartite connected components of the graph G\{ei} by H and F = (X,Y ).

In both Cases 1b and 2, there exists a {1, 2}-factor of G having ei in a K2 component. Therefore,
F\u has a {1, 2}-factor, where u ∈ X is the vertex in F adjacent to ei, so we have |X | = |Y |+ 1.
On the other hand, there exists a {1, 2}-factor of G which does not contain ei. Hence, F has a
{1, 2}-factor. So we have |X | = |Y |, a contradiction.

Now, let Gw be a weighted graph which has full rank. Let E(G) = {e1, . . . , em}. By contra-
diction assume that t(G) < 2. Then fG has one monomial and therefore for some i, 1 ≤ i ≤ m,
w(ei) = 0, a contradiction.
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Remark 3.2. Let G be a graph with t(G) ≥ 2. According to Lemma A, if G is bipartite, then

there exists a weight ω: E(G) → {±1, . . . ,±5} such that Gω does not have full rank. If G is not

bipartite, then according to Corollary A, there exists a weight ω: E(G) → {±1, . . . ,±11} such that

Gω does not have full rank.

Acknowledgement. The authors are deeply grateful to Mohammad Javad Moghadamzadeh for
his fruitful comments in the preparation of this paper.
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