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Abstract

A weighted graph G“ consists of a simple graph G with a weight w, which is a mapping,
w: E(G) — Z\{0}. A signed graph is a graph whose edges are labeled with —1 or 1. In this
paper, we characterize graphs which have a sign such that their signed adjacency matrix has
full rank, and graphs which have a weight such that their weighted adjacency matrix does not
have full rank. We show that for any arbitrary simple graph G, there is a sign o so that G°
has full rank if and only if G has a {1, 2}-factor. We also show that for a graph G, there is a
weight w so that G* does not have full rank if and only if G has at least two {1, 2}-factors.
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1 Introduction

Throughout this paper, by a graph we mean a simple, undirected and finite graph. Let G be a
graph. We denote the edge set and the vertex set of G by E(G) and V(G), respectively. By order
and size of G, we mean the number of vertices and the number of edges of GG, respectively. The
adjacency matrix of a simple graph G is denoted by A(G) = [a;;], where a;; = 1 if v; and v; are
adjacent, and a;; = 0 otherwise. We denote the complete graph of order n by K. A {1,2}-factor
of a graph @ is a spanning subgraph of G which is a disjoint union of copies of K3 and cycles. For
a {1, 2}-factor H of G, the number of cycles of H is denoted by ¢(H). The number of {1, 2}-factors
of a graph G is denoted by ¢(G). The perrank of a graph G of order n is defined to be the order
of its largest subgraph which is a disjoint union of copies of K5 and cycles, and we say G has full
perrank if perrank(G) = n. For a graph G, a zero-sum flow is an assignment of non-zero real
numbers to the edges of GG such that the total sum of the assignments of all edges incident with
any vertex is zero. For a positive integer k, a zero-sum k-flow of G is a zero-sum flow of G using
the numbers {£1,...,+(k —1)}.

We call a matrix integral if all of its entries are integers. A set X of n entries of an n X n matrix
A is called a transversal, if X contains exactly one entry of each row and each column of A. A
transversal is called a non-zero transversal if all its entries are non-zero. The identity matrix is
denoted by I. Also, j, is an n x 1 matrix with all entries 1.

A weighted graph G“ consists of a simple graph G with a weight w, which is a mapping,
w: BE(G) — Z\{0}. A signed graph G is a weighted graph where o: E(G) — {—1,1}. The weighted
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adjacency matriz of the weighted graph G* is denoted by A(G*) = [afj], where af; = w(v;v;) if
v; and v; are adjacent vertices, and a7; = 0, otherwise. The rank of a weighted graph is defined
to be the rank of its weighted adjacency matrix. A bidirected graph G is a graph such that each
edge is composed of two directed half edges. Function f : E(G) — Z\{0} is a nowhere-zero Z-
flow of G if for every vertex v of G we have 3_ g+ (,) f(€) = X ocp-(y) f(€), where ET(v) (resp.
E~(v)) is the set of all edges with tails (resp. heads) at v. For a positive integer k, a nowhere-zero
k-flow of G is a nowhere-zero Z-flow of G using the numbers {+1,...,+(k — 1)}. For a graph G,
where E(G) = {e1,...,em} and V(G) = {v1,...,v,}, we define Mg(z1,...,%m) = [mi;] to be an

xp If e = viv;

nxn matrix, where m;; = . Now, define fg(z1,...,2m) = det(Ma(x1,...,Tm))-

0  otherwise
In order to establish our results, first we need the following well-known theorem, which has many
applications in algebraic combinatorics.

Theorem A. [3] Let F be an arbitrary field and let f = f(x1,...,2,) be a polynomial in
n

Flz1,...,x,]. Suppose the degree deg(f) of fis > ti, where each t; is a nonnegative integer,
i=1

and suppose the coefficient of [T}, xfl in f is non-zero. Then, if S1,...,Syn are subsets of F' with

|Si| > t;, there are s1 € S1,82 € Sa,..., 8, €S, so that f(s1,...,8,) #0.

The following remark is a necessary tool in proving our results.

Remark 1.1. For a graph G, each non-zero transversal in A(G) corresponds to a {1,2}-factor of
G, and each {1,2}-factor H of G corresponds to 2°™) non-zero transversals in M.

In this paper, we prove the following theorems:

Theorem. Let G be a graph. Then there exists a sign o for G so that G° has full rank if and only
if G has full perrank.

Theorem. Let G be a graph. Then there exists a weight w for G so that G¥ does not have
full rank if and only if t(G) > 2.

2 Signed Graphs Which Have Full Rank

Our first result is the following theorem.

Theorem 2.1. Let G be a graph. Then there exists a sign o for G so that G° has full rank if and
only if G has full perrank.

Proof. First, assume that G has full perrank. Let m = |E(G)|, n = |V(G)|. Suppose that
f(x1,...,2,) is the polynomial obtained by replacing #? by 1 in fg(z1,...,om), foralli, 1 <i <
m. Clearly, degmj <lforalli, 1<i<m.

Let U be the set of all {1,2}-factors of G. We have U # @. For each H € U, we define a(H) as

the number of Ko components of H. We choose F; in U so that a(Fy) = r}?gé((a(H)) Note that

Fy does not contain any even cycles. So F} is a disjoint union of a(F}) copies of Ks, and ¢(F})
odd cycles. Assume that all edges in the cycles of Fy are eq,...,e;. There are 2°1) non-zero
transversals in M corresponding to Fy, and all terms in f(z1,...,2,,) created by these non-zero
transversals are (—1)*F )z . .



Let X be a non-zero transversal in M which makes the term axy ...z in 7(901, ..., Tm) for some
a € R and does not correspond to F;. Let Fy be the {1,2}-factor of G associated with X. The
edges in the cycles of Fy are ey, ...,eg. Therefore a(Fs) = a(Fy), which is maximum. So F has
no even cycles and a = (—1)*1). So x; ...z}, has a non-zero coeﬁicient in f(zy,...,2m). Thus

f # 0 and it has a term c¢[[/*, # with the maximum degree E t;, where ¢; € {0,1} for each 1,

=

1 <i<m. LetS; —{ 1,1} for each i, 1 < i < m, so || >2 By Theorem A there exists
(815..,8m) € Sy X --+x Sy, so that f(s1,...,5m) # 0. By defining o as a sign assigning the same
sign as s; to e; for each i, 1 <14 < m, one can see that det(A(G?)) # 0.

Now, assume that there exists such a sign for G. It is clear that A(G?) has a non-zero transver-

sal, and the associated edges with this transversal, regardless of their signs, form a {1, 2}-factor of
G. O

Corollary 2.2. Let G be a graph. Then max(rank(G?)) = perrank(Q).

In the sequel we propose two following problems.

Problem 1. Let G be a graph. Determine min(rank(G?)).

Problem 2. Find an efficient algorithm that can lead us to the desirable sign in Theorem 2.1.

3 Weighted Graphs Which Do Not Have Full Rank

In order to establish our next result, first we need the following lemma and theorems.
Lemma A. [2] Let G be a 2-edge connected bipartite graph. Then G has a zero-sum 6-flow.

Theorem B. [2] Suppose G is not a bipartite graph. Then G has a zero-sum flow if and only if
for any edge e of G, G\{e} has no bipartite component.

Theorem C. [4] Every bidirected graph with a nowhere-zero Z-flow has a nowhere-zero 12-flow.

According to [1], if we orient all edges of a simple graph in a way that all edges adjacent to
each vertex v belong to E*(v), then a nowhere-zero bidirected flow corresponds to a zero-sum flow.
Therefore, the following corollary is a result of Theorem C.

Corollary A. Every graph with a zero-sum flow has a zero-sum 12-flow.

Now, we can prove the following theorem.

Theorem 3.1. Let G be a graph. Then there exists a weight w for G so that G* does not have
full rank if and only if t(G) > 2.

Proof. Define X = {H|t(H) > 2 and for any w, rank(A(H“)) = |V(H)|}. By contradiction assume

that X # @. Let n = min |V(H)| and m = min |[E(H)| and G € X be a graph of order
HeEX HeX,|V(H)|=n

n and size m. Let E(G) = {e1,...,em}. Obviously, G is connected. For all aq,...,a, € Z\{0},



we have fg(ai,...,a,) # 0. For each i, 1 <i < m, we can write fg = 22gq, + ziha, + la,, where
ga,, ha, and lg, are polynomials in variables z1,...,2;-1,%i4+1,...,Zm. One can see that gg, is
the zero polynomial if and only if e; belongs to no K» component of any {1,2}-factor of G, hg, is
the zero polynomial if and only if e; belongs to no cycle of any {1,2}-factor of G, and lg, is the
zero polynomial if and only if e; belongs to all {1, 2}-factors of G.

If there exists an edge e; of G belonging to no {1, 2}-factor of G, then t(G\{e;}) > 2 and for each
weight w we have det(A((G\{e;})*)) # 0, which is a contradiction. So each edge of G is contained
in at least one {1, 2}-factor. Moreover, if there exists an edge e; = uv which belongs to no cycle of
any {1, 2}-factor of G but belongs to all {1,2}-factors of G, then we have ¢(G\{u,v}) > 2 and for
each weight w, det(A((G\{u,v})¥)) # 0, a contradiction. Furthermore we show that if e, appears
in a cycle of a {1, 2}-factor, then neither of the polynomials g, and lg, is the zero polynomial. By
contradiction assume that gg,lg, = 0. If gg, = 0 and lg, # 0, then according to Theorem A there

are A, ..., A—1,Aj41,---,Am € Z\{O} so that hGilGi(al,...,ai,l,aprl,...,am) }é 0. It can be
seen that fg(aq,...,am,) =0, where a; = —hGi (a1,...,4i—1,Qi+1,...,0m). Note that for each j,

1 < j < m, a; is a non-zero rational number. S?ﬁce fc is a homogeneous polynimial, it has a root in
(Z\{0})™, a contradiction. If /¢, = 0 and g¢, # 0, then the same argument leads to a contradiction.
If go, = lg, =0 and e;,¢j,,...,¢;, are all edges of a cycle C of a {1, 2}-factor of G, then for each
k, 1 <k < p, we have hg, = z;, pr + qr, where p; and ¢, are polynomials in variables {z;};er,
where I = {1,...,n}\{i,jx}. Obviously, pr Z 0. If g Z 0, then using Theorem A one can see that
ha, has a root in (Z\{0})™~!, a contradiction. Therefore, one can see that hg, = @, -+~ x;, hi,
where hy is a polynomial in variables {z;};jcs, where J = {1,...,m}\{¢,j1,...,Jp}. So C is a
subgraph of every {1,2}-factor of G. Now, by considering the graph G\V(C) and noting that
t(G\V(C)) > 2, we obtain a contradiction. So we have gg,,lq, Z 0 for all i, 1 < i < m. So,
for each edge e; of G, there exists a {1,2}-factor of G not containing e;, and also there exists a
{1, 2}-factor of G containing e; in a K component.

If G has a zero-sum flow, then Mg(aq,...,amn)jn = 0, and as a result fg(ai,...,an) = 0, where
for each ¢, 1 <14 < m, a; is the non-zero integer assigned to the edge e; in the flow, a contradiction.
Thus, assume that G has no zero-sum flow. Now, we have two cases:

1. The graph G is not bipartite. According to Theorem B, G\{e;} has a bipartite component
for some i, 1 <i < m. We have two cases:

(a) The edge e; is not a cut edge. The graph G\{e;} is a bipartite graph, say G\{e;} =
(X,Y), where the vertices adjacent to e; belong to X. There is a {1,2}-factor of G
having e; in a K5 component, so |X|—2 = |Y|. Also, there exists a {1, 2}-factor of G
not having e;, therefore we have | X| = |Y|, a contradiction.

(b) Now, assume that e; is a cut edge. The graph G\{e;} has two components H and F,
where F' = (X,Y) is bipartite.

2. Now, suppose that G is bipartite. According to Lemma A, G has a cut edge e;. We denote
the bipartite connected components of the graph G\{e;} by H and F = (X,Y).

In both Cases[Th and 2] there exists a {1, 2}-factor of G having e; in a K5 component. Therefore,
F\u has a {1, 2}-factor, where u € X is the vertex in F' adjacent to e;, so we have | X| = |Y| + 1.
On the other hand, there exists a {1,2}-factor of G which does not contain e;. Hence, F has a
{1, 2}-factor. So we have |X| = |Y|, a contradiction.

Now, let G be a weighted graph which has full rank. Let F(G) = {e1,...,emn}. By contra-
diction assume that ¢(G) < 2. Then fe has one monomial and therefore for some i, 1 < i < m,
w(e;) = 0, a contradiction. O



Remark 3.2. Let G be a graph with t(G) > 2. According to Lemma A, if G is bipartite, then
there exists a weight w: E(G) — {£1,...,£5} such that G¥ does not have full rank. If G is not
bipartite, then according to Corollary A, there exists a weight w: E(G) — {%1,...,£11} such that
GY does not have full rank.
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