Some Criteria for a Signed Graph to Have Full Rank

S. Akbari, A. Ghafari, K. Kazemian, M. Nahvi
Department of Mathematical Sciences
Sharif University of Technology, Tehran, Iran

Abstract

A weighted graph G^{ω} consists of a simple graph G with a weight ω, which is a mapping, $\omega: E(G) \rightarrow \mathbb{Z} \backslash\{0\}$. A signed graph is a graph whose edges are labeled with -1 or 1 . In this paper, we characterize graphs which have a sign such that their signed adjacency matrix has full rank, and graphs which have a weight such that their weighted adjacency matrix does not have full rank. We show that for any arbitrary simple graph G, there is a sign σ so that G^{σ} has full rank if and only if G has a $\{1,2\}$-factor. We also show that for a graph G, there is a weight ω so that G^{ω} does not have full rank if and only if G has at least two $\{1,2\}$-factors.

2010 Mathematics Subject Classification: 05C22, 05C70, 05C78, 15 A03.
Keywords: Weighted graph, Signed graph, Weighted adjacency matrix, Signed adjacency matrix, Rank.

1 Introduction

Throughout this paper, by a graph we mean a simple, undirected and finite graph. Let G be a graph. We denote the edge set and the vertex set of G by $E(G)$ and $V(G)$, respectively. By order and size of G, we mean the number of vertices and the number of edges of G, respectively. The adjacency matrix of a simple graph G is denoted by $A(G)=\left[a_{i j}\right]$, where $a_{i j}=1$ if v_{i} and v_{j} are adjacent, and $a_{i j}=0$ otherwise. We denote the complete graph of order n by K_{n}. A $\{1,2\}$-factor of a graph G is a spanning subgraph of G which is a disjoint union of copies of K_{2} and cycles. For a $\{1,2\}$-factor H of G, the number of cycles of H is denoted by $c(H)$. The number of $\{1,2\}$-factors of a graph G is denoted by $t(G)$. The perrank of a graph G of order n is defined to be the order of its largest subgraph which is a disjoint union of copies of K_{2} and cycles, and we say G has full perrank if $\operatorname{perrank}(G)=n$. For a graph G, a zero-sum flow is an assignment of non-zero real numbers to the edges of G such that the total sum of the assignments of all edges incident with any vertex is zero. For a positive integer k, a zero-sum k-flow of G is a zero-sum flow of G using the numbers $\{ \pm 1, \ldots, \pm(k-1)\}$.
We call a matrix integral if all of its entries are integers. A set X of n entries of an $n \times n$ matrix A is called a transversal, if X contains exactly one entry of each row and each column of A. A transversal is called a non-zero transversal if all its entries are non-zero. The identity matrix is denoted by I. Also, j_{n} is an $n \times 1$ matrix with all entries 1 .
A weighted graph G^{ω} consists of a simple graph G with a weight ω, which is a mapping, $\omega: E(G) \rightarrow \mathbb{Z} \backslash\{0\}$. A signed graph G^{σ} is a weighted graph where $\sigma: E(G) \rightarrow\{-1,1\}$. The weighted

[^0]adjacency matrix of the weighted graph G^{ω} is denoted by $A\left(G^{\omega}\right)=\left[a_{i j}^{\omega}\right]$, where $a_{i j}^{\omega}=\omega\left(v_{i} v_{j}\right)$ if v_{i} and v_{j} are adjacent vertices, and $a_{i j}^{\omega}=0$, otherwise. The rank of a weighted graph is defined to be the rank of its weighted adjacency matrix. A bidirected graph G is a graph such that each edge is composed of two directed half edges. Function $f: E(G) \rightarrow \mathbb{Z} \backslash\{0\}$ is a nowhere-zero \mathbb{Z} flow of G if for every vertex v of G we have $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$, where $E^{+}(v)$ (resp. $\left.E^{-}(v)\right)$ is the set of all edges with tails (resp. heads) at v. For a positive integer k, a nowhere-zero k-flow of G is a nowhere-zero \mathbb{Z}-flow of G using the numbers $\{ \pm 1, \ldots, \pm(k-1)\}$. For a graph G, where $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$ and $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, we define $M_{G}\left(x_{1}, \ldots, x_{m}\right)=\left[m_{i j}\right]$ to be an $n \times n$ matrix, where $m_{i j}=\left\{\begin{array}{ll}x_{k} & \text { If } e_{k}=v_{i} v_{j} \\ 0 & \text { otherwise }\end{array}\right.$. Now, define $f_{G}\left(x_{1}, \ldots, x_{m}\right)=\operatorname{det}\left(M_{G}\left(x_{1}, \ldots, x_{m}\right)\right)$. In order to establish our results, first we need the following well-known theorem, which has many applications in algebraic combinatorics.

Theorem A. 3] Let F be an arbitrary field and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in f is non-zero. Then, if S_{1}, \ldots, S_{n} are subsets of F with $\left|S_{i}\right|>t_{i}$, there are $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{n} \in S_{n}$ so that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

The following remark is a necessary tool in proving our results.

Remark 1.1. For a graph G, each non-zero transversal in $A(G)$ corresponds to a $\{1,2\}$-factor of G, and each $\{1,2\}$-factor H of G corresponds to $2^{c(H)}$ non-zero transversals in M.

In this paper, we prove the following theorems:
Theorem. Let G be a graph. Then there exists a sign σ for G so that G^{σ} has full rank if and only if G has full perrank.

Theorem. Let G be a graph. Then there exists a weight ω for G so that G^{ω} does not have full rank if and only if $t(G) \geq 2$.

2 Signed Graphs Which Have Full Rank

Our first result is the following theorem.

Theorem 2.1. Let G be a graph. Then there exists a sign σ for G so that G^{σ} has full rank if and only if G has full perrank.
 $\bar{f}\left(x_{1}, \ldots, x_{m}\right)$ is the polynomial obtained by replacing x_{i}^{2} by 1 in $f_{G}\left(x_{1}, \ldots, x_{m}\right)$, for all $i, 1 \leq i \leq$ m. Clearly, $\operatorname{deg}_{x_{i}} \bar{f} \leq 1$ for all $i, 1 \leq i \leq m$.
Let U be the set of all $\{1,2\}$-factors of G. We have $U \neq \varnothing$. For each $H \in U$, we define $a(H)$ as the number of K_{2} components of H. We choose F_{1} in U so that $a\left(F_{1}\right)=\max _{H \in U}(a(H))$. Note that F_{1} does not contain any even cycles. So F_{1} is a disjoint union of $a\left(F_{1}\right)$ copies of K_{2}, and $c\left(F_{1}\right)$ odd cycles. Assume that all edges in the cycles of F_{1} are e_{1}, \ldots, e_{k}. There are $2^{c\left(F_{1}\right)}$ non-zero transversals in M corresponding to F_{1}, and all terms in $\bar{f}\left(x_{1}, \ldots, x_{m}\right)$ created by these non-zero transversals are $(-1)^{a\left(F_{1}\right)} x_{1} \ldots x_{k}$.

Let X be a non-zero transversal in M which makes the term $a x_{1} \ldots x_{k}$ in $\bar{f}\left(x_{1}, \ldots, x_{m}\right)$ for some $a \in \mathbb{R}$ and does not correspond to F_{1}. Let F_{2} be the $\{1,2\}$-factor of G associated with X. The edges in the cycles of F_{2} are e_{1}, \ldots, e_{k}. Therefore $a\left(F_{2}\right)=a\left(F_{1}\right)$, which is maximum. So F_{2} has no even cycles and $a=(-1)^{a\left(F_{1}\right)}$. So $x_{1} \ldots x_{k}$ has a non-zero coefficient in $\bar{f}\left(x_{1}, \ldots, x_{m}\right)$. Thus $\bar{f} \not \equiv 0$ and it has a term $c \prod_{i=1}^{m} x_{i}^{t_{i}}$ with the maximum degree $\sum_{i=1}^{m} t_{i}$, where $t_{i} \in\{0,1\}$ for each i, $1 \leq i \leq m$. Let $S_{i}=\{-1,1\}$ for each $i, 1 \leq i \leq m$, so $\left|S_{i}\right| \geq 2$. By Theorem A there exists $\left(s_{1}, \ldots, s_{m}\right) \in S_{1} \times \cdots \times S_{m}$ so that $\bar{f}\left(s_{1}, \ldots, s_{m}\right) \neq 0$. By defining σ as a sign assigning the same sign as s_{i} to e_{i} for each $i, 1 \leq i \leq m$, one can see that $\operatorname{det}\left(A\left(G^{\sigma}\right)\right) \neq 0$.

Now, assume that there exists such a sign for G. It is clear that $A\left(G^{\sigma}\right)$ has a non-zero transversal, and the associated edges with this transversal, regardless of their signs, form a $\{1,2\}$-factor of G.

Corollary 2.2. Let G be a graph. Then $\max _{\sigma}\left(\operatorname{rank}\left(G^{\sigma}\right)\right)=\operatorname{perrank}(G)$.
In the sequel we propose two following problems
Problem 1. Let G be a graph. Determine $\min _{\sigma}\left(\operatorname{rank}\left(G^{\sigma}\right)\right)$.
Problem 2. Find an efficient algorithm that can lead us to the desirable sign in Theorem 2.1.

3 Weighted Graphs Which Do Not Have Full Rank

In order to establish our next result, first we need the following lemma and theorems.

Lemma A. 2 Let G be a 2-edge connected bipartite graph. Then G has a zero-sum 6-flow.

Theorem B. [2] Suppose G is not a bipartite graph. Then G has a zero-sum flow if and only if for any edge e of $G, G \backslash\{e\}$ has no bipartite component.

Theorem C. [4] Every bidirected graph with a nowhere-zero \mathbb{Z}-flow has a nowhere-zero 12-flow.

According to [1], if we orient all edges of a simple graph in a way that all edges adjacent to each vertex v belong to $E^{+}(v)$, then a nowhere-zero bidirected flow corresponds to a zero-sum flow. Therefore, the following corollary is a result of Theorem C.

Corollary A. Every graph with a zero-sum flow has a zero-sum 12-flow.

Now, we can prove the following theorem.

Theorem 3.1. Let G be a graph. Then there exists a weight ω for G so that G^{ω} does not have full rank if and only if $t(G) \geq 2$.

Proof. Define $X=\left\{H \mid t(H) \geq 2\right.$ and for any ω, $\left.\operatorname{rank}\left(A\left(H^{\omega}\right)\right)=|V(H)|\right\}$. By contradiction assume that $X \neq \varnothing$. Let $n=\min _{H \in X}|V(H)|$ and $m=\min _{H \in X,|V(H)|=n}|E(H)|$ and $G \in X$ be a graph of order n and size m. Let $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. Obviously, G is connected. For all $a_{1}, \ldots, a_{m} \in \mathbb{Z} \backslash\{0\}$,
we have $f_{G}\left(a_{1}, \ldots, a_{m}\right) \neq 0$. For each $i, 1 \leq i \leq m$, we can write $f_{G}=x_{i}^{2} g_{G_{i}}+x_{i} h_{G_{i}}+l_{G_{i}}$, where $g_{G_{i}}, h_{G_{i}}$ and $l_{G_{i}}$ are polynomials in variables $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}$. One can see that $g_{G_{i}}$ is the zero polynomial if and only if e_{i} belongs to no K_{2} component of any $\{1,2\}$-factor of $G, h_{G_{i}}$ is the zero polynomial if and only if e_{i} belongs to no cycle of any $\{1,2\}$-factor of G, and $l_{G_{i}}$ is the zero polynomial if and only if e_{i} belongs to all $\{1,2\}$-factors of G.
If there exists an edge e_{i} of G belonging to no $\{1,2\}$-factor of G, then $t\left(G \backslash\left\{e_{i}\right\}\right) \geq 2$ and for each weight ω we have $\operatorname{det}\left(A\left(\left(G \backslash\left\{e_{i}\right\}\right)^{\omega}\right)\right) \neq 0$, which is a contradiction. So each edge of G is contained in at least one $\{1,2\}$-factor. Moreover, if there exists an edge $e_{i}=u v$ which belongs to no cycle of any $\{1,2\}$-factor of G but belongs to all $\{1,2\}$-factors of G, then we have $t(G \backslash\{u, v\}) \geq 2$ and for each weight $\omega, \operatorname{det}\left(A\left((G \backslash\{u, v\})^{\omega}\right)\right) \neq 0$, a contradiction. Furthermore we show that if e_{i} appears in a cycle of a $\{1,2\}$-factor, then neither of the polynomials $g_{G_{i}}$ and $l_{G_{i}}$ is the zero polynomial. By contradiction assume that $g_{G_{i}} l_{G_{i}} \equiv 0$. If $g_{G_{i}} \equiv 0$ and $l_{G_{i}} \not \equiv 0$, then according to Theorem A there are $a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{m} \in \mathbb{Z} \backslash\{0\}$ so that $h_{G_{i}} l_{G_{i}}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{m}\right) \neq 0$. It can be seen that $f_{G}\left(a_{1}, \ldots, a_{m}\right)=0$, where $a_{i}=-\frac{l_{G_{i}}}{h_{G_{i}}}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{m}\right)$. Note that for each j, $1 \leq j \leq m, a_{j}$ is a non-zero rational number. Since f_{G} is a homogeneous polynimial, it has a root in $(\mathbb{Z} \backslash\{0\})^{m}$, a contradiction. If $l_{G_{i}} \equiv 0$ and $g_{G_{i}} \not \equiv 0$, then the same argument leads to a contradiction. If $g_{G_{i}}=l_{G_{i}} \equiv 0$ and $e_{i}, e_{j_{1}}, \ldots, e_{j_{p}}$ are all edges of a cycle C of a $\{1,2\}$-factor of G, then for each $k, 1 \leq k \leq p$, we have $h_{G_{i}}=x_{j_{k}} p_{k}+q_{k}$, where p_{k} and q_{k} are polynomials in variables $\left\{x_{j}\right\}_{j \in I}$, where $I=\{1, \ldots, n\} \backslash\left\{i, j_{k}\right\}$. Obviously, $p_{k} \not \equiv 0$. If $q_{k} \not \equiv 0$, then using Theorem A one can see that $h_{G_{i}}$ has a root in $(\mathbb{Z} \backslash\{0\})^{m-1}$, a contradiction. Therefore, one can see that $h_{G_{i}}=x_{j_{1}} \cdots x_{j_{p}} h_{1}$, where h_{1} is a polynomial in variables $\left\{x_{j}\right\}_{j \in J}$, where $J=\{1, \ldots, m\} \backslash\left\{i, j_{1}, \ldots, j_{p}\right\}$. So C is a subgraph of every $\{1,2\}$-factor of G. Now, by considering the graph $G \backslash V(C)$ and noting that $t(G \backslash V(C)) \geq 2$, we obtain a contradiction. So we have $g_{G_{i}}, l_{G_{i}} \not \equiv 0$ for all $i, 1 \leq i \leq m$. So, for each edge e_{i} of G, there exists a $\{1,2\}$-factor of G not containing e_{i}, and also there exists a $\{1,2\}$-factor of G containing e_{i} in a K_{2} component.
If G has a zero-sum flow, then $M_{G}\left(a_{1}, \ldots, a_{m}\right) j_{n}=0$, and as a result $f_{G}\left(a_{1}, \ldots, a_{m}\right)=0$, where for each $i, 1 \leq i \leq m, a_{i}$ is the non-zero integer assigned to the edge e_{i} in the flow, a contradiction. Thus, assume that G has no zero-sum flow. Now, we have two cases:

1. The graph G is not bipartite. According to Theorem $\mathrm{B}, G \backslash\left\{e_{i}\right\}$ has a bipartite component for some $i, 1 \leq i \leq m$. We have two cases:
(a) The edge e_{i} is not a cut edge. The graph $G \backslash\left\{e_{i}\right\}$ is a bipartite graph, say $G \backslash\left\{e_{i}\right\}=$ (X, Y), where the vertices adjacent to e_{i} belong to X. There is a $\{1,2\}$-factor of G having e_{i} in a K_{2} component, so $|X|-2=|Y|$. Also, there exists a $\{1,2\}$-factor of G not having e_{i}, therefore we have $|X|=|Y|$, a contradiction.
(b) Now, assume that e_{i} is a cut edge. The graph $G \backslash\left\{e_{i}\right\}$ has two components H and F, where $F=(X, Y)$ is bipartite.
2. Now, suppose that G is bipartite. According to Lemma A, G has a cut edge e_{i}. We denote the bipartite connected components of the graph $G \backslash\left\{e_{i}\right\}$ by H and $F=(X, Y)$.

In both Cases 1b and 2, there exists a $\{1,2\}$-factor of G having e_{i} in a K_{2} component. Therefore, $F \backslash u$ has a $\{1,2\}$-factor, where $u \in X$ is the vertex in F adjacent to e_{i}, so we have $|X|=|Y|+1$. On the other hand, there exists a $\{1,2\}$-factor of G which does not contain e_{i}. Hence, F has a $\{1,2\}$-factor. So we have $|X|=|Y|$, a contradiction.

Now, let G^{w} be a weighted graph which has full rank. Let $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. By contradiction assume that $t(G)<2$. Then f_{G} has one monomial and therefore for some $i, 1 \leq i \leq m$, $w\left(e_{i}\right)=0$, a contradiction.

Remark 3.2. Let G be a graph with $t(G) \geq 2$. According to Lemma A, if G is bipartite, then there exists a weight $\omega: E(G) \rightarrow\{ \pm 1, \ldots, \pm 5\}$ such that G^{ω} does not have full rank. If G is not bipartite, then according to Corollary A, there exists a weight $\omega: E(G) \rightarrow\{ \pm 1, \ldots, \pm 11\}$ such that G^{ω} does not have full rank.

Acknowledgement. The authors are deeply grateful to Mohammad Javad Moghadamzadeh for his fruitful comments in the preparation of this paper.

References

[1] S. Akbari, A. Daemi, O. Hatami, A. Javanmard, A. Mehrabian, Zero-sum flows in regular graphs, Graphs and Combinatorics 26 (5) (2010) 603-615.
[2] S. Akbari, S. Ghareghani, G.B. Khosrovshahi, A Mahmoody, On zero-sum 6-flows of graphs, Linear Algebra and its Applications 430 (11-12) (2009) 3047-3052.
[3] N. Alon, Combinatorial nullstellensatz, Combinatorics, Probability and Computing 8(1-2) (1999) 7-29.
[4] M. DeVos, Flows on bidirected graphs, preprint, 2013. Available at arXiv:1310.8406 [math.CO]

[^0]: *Email addresses: s_akbari@sharif.edu, ghafaribaghestani_a@mehr.sharif.edu, kazemian_kimia@mehr.sharif.edu, nahvi_mina@mehr.sharif.edu

