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Abstract

Let m,n be positive integers such that m > 1 divides n. In this paper, we introduce a special class of
piecewise-affine permutations of the finite set [1,n] := {1,...,n} with the property that the reduction
(mod m) of m consecutive elements in any of its cycles is, up to a cyclic shift, a fixed permutation of
[1,m]. Our main result provides the cycle decomposition of such permutations. We further show that
such permutations give rise to permutations of finite fields. In particular, we explicitly obtain classes of
permutation polynomials of finite fields whose cycle decomposition and its inverse are explicitly given.
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1. Introduction

Let m,n be positive integers such that m > 1 divides n. For integers 1 < ky < ko, set [k1, ko] = {t €
N | k; <t < ko}. In this paper, we introduce a special class of piecewise-affine permutations of the set
[1,n]. These permutations are piecewisely defined by affine-like rules, according to classes modulo m, in
a way that the reduction modulo m of m consecutive elements in any of its cycles is, up to a cyclic shift, a
fixed permutation of [1,m]. In particular, every cycle of this kind of permutation has length divisible by
m. One of our main results, Theorem [B.8, provides the explicit cycle decomposition of such permutations.
We also provide complete results on the characterization and number of such permutations. In particular,
we show that the inverses of such permutations are of the same type and can be easily computed.

We further use our piecewise-affine permutations in the construction of permutation polynomials over
finite fields. Namely, let ¢ be a prime power and F, be the finite field with ¢ elements. A polynomial
f € Fylz] is called a permutation polynomial if the evaluation map ¢ — f(c) is a permutation of F,. It is
well known that Fy is a multiplicative cyclic group of order ¢ — 1. Let 6, be a generator of F;. It turns
out that if f :F, — F, is the function given by

f0)=0 and f(0))=07" foralll<i<gq-1,

where 7 is a piecewise-affine permutation of [1, ¢ — 1], the polynomial representation of the permutation
f as well as its cycle decomposition and inverse can be derived. The permutations like the previous
one are piecewise defined by monomials, according to cyclotomic cosets. This kind of permutations
was previously explored in full generality by Wang ﬂﬁ] However, there is no study on their cycle
decomposition. It is worth mentioning that, for only few families of permutation polynomials, we know
the cycle decomposition without needing to describe the whole permutation; namely, monomials ﬂ],
Mbius maps 6], Dickson polynomials [10] and certain linearized polynomials [11, [13].
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The idea of bringing piecewise permutations to obtain permutation polynomials was earlier used by
Fernando & Hou [7] and by Cao, Hu & Zha [5], who obtained families of permutation polynomials via
certain powers of linearized polynomials and using a matrix approach, respectively. Some other algebraic-
combinatorial methods to produce large classes of permutation polynomials include linear translators E],
algebraic curves B], and, most notably, the AGW criterion E] See ﬂﬂ, §8] for more details on permutation
polynomials over finite fields and ﬂE] for a survey on recent advances.

The structure of the paper is given as follows. In Section [2, we introduce our class of piecewise-
affine permutations of [1,n] and present some fundamental results, including the inverses (which are also
piecewise-affine); in particular, we explore a special subclass of these permutations that are defined by
two rules. In Section [B] we obtain an explicit description on their cycle decomposition. In Section [l
we show how these permutations can be used in the construction of permutation polynomials over finite
fields and their inverses, and discuss further issues on these permutation polynomials.

2. On piecewise-affine permutations of the set [1,n]

We start fixing some notation. The letters n, m always denote positive integers such that m > 1
divides n. In general, @ denotes an m-tuple of integers in a fixed range (usually [1,m] or [1,n]). Also, a;
denotes the i-th coordinate of @. In addition, for a positive integer N > 1, let rad(/N) denote the product
of the distinct prime divisors of N, and let rad(1) = 1. We also denote by ¢ the Euler’s totient function,
and by ordgr the order of » modulo k.

Definition 2.1. Let C(m) denote the subset of [1,m]™ of the vectors ¢ whose entries comprise a permu-
tation of the set [1,m].

Definition 2.2. For an integer k > 1, let ¥y, : N — [1, k] such that Ui(a) = a (mod k).

Definition 2.3. An (n,m)-piecewise affine permutation (or (n,m)-p.a.p.) is a permutation m of the set
[1,n] such that there exist a,b € [1,n]™ and ¢ € C(m) with the property that

m(x) = Up(a;z+b;) and Y (7w(x)) = cig1, (1)

for any x € [1,n] with ¥,,(x) = ¢;, where the indexes are taken modulo m. In this case, we say that the
triple (@,b,7) is (n,m)-admissible and 7 is the (n,m)-p.a.p. with parameters (@,b, ). Furthermore, we
say that two (n,m)-admissible triples (a@,b,) and (A, B, C) are (n,m)-equivalent if they induce the same
permutation on [1,n].

Example 2.4. Let n = 12, m = 3 and let 7 be the (12,3)-p.a.p. with parameters (a, I;,E'), where
a=(1,3,5), b= (4,6,1) and &= (1,2,3). In other words, for each x € [1,12],

Uip(x+4) if z=1 (mod 3),
m(z) =9 U123z +6) if =2 (mod 3),
Uiz +1) if 2=0 (mod 3).

The cycle decomposition of m is given by (159102 12) (3486 7 11).

In the following theorem we characterize, up to (n, m)-equivalence, all the (n, m)-admissible triples.

Theorem 2.5. Let m > 1 be a diwisor of n and write n = ning, where rad(ny) divides -

ged (n2, ) = 1. Let @ € [1,n]™ and & € C(m). Then there exists an element b € [L,n]™ such that
the triple (d, 5,5) is (n,m)-admissible if and only if the entries of d are relatively prime with ny. In
this case, there are (7)™ choices for b. Moreover, two (n,m)-admissible triples (@,b,é) and (A, B,C)
are (n,m)-equivalent if and only if there exists t € [1,m] such that, for every 1 < i < m, the following
properties hold:

(i) ¢ = Ciye;

and



(ii) a; = A4+ (mod n/m);
(ili) Bitt = Up(aic; +b; — Aip1Cige).

Proof. We observe that 7 is an (n,m)-p.a.p. with parameters (d, g,é’) if and only if 7 is of the form
given by Eq. (I) and 7 is one to one. Suppose that x,y € [1,n] are such that n(z) = n(y). Then
m(x) = m(y) = ¢it1 (mod m) for some i € [1,m] and, by definition, + = y = ¢; (mod m), where i is
taken modulo m. Therefore, the condition 7(z) = U, (a;x + b;) = ¥,(a;y + b;) = 7(y) is equivalent
to ai(x —y) = 0 (mod n). Since ny divides n and ged (n2, 22) = 1, we have that ny divides m. Since
ged(ng,n2) =1, x =y (mod m) and ny divides m, the equation a;(x —y) = 0 (mod n) is equivalent to

ai(r—y)=0 (mod ny),

which has the unique solution = y (mod ny) if and only if ged (a;,n1) = 1. In particular, 7 is one to
one if and only if ged (a;,n1) = 1 for any i € [1,m]. In this case, each b; is uniquely determined modulo
m by

bi = Ci+1 — QG4 (InOd m)
Since the entries of b lie in [1,7n], there exist (&)™ possibilities for b.

Moreover, if the (n, m)-admissible triples (d, 5,5) and (/Y,BZ C_") are (n,m)-equivalent, then, up to a
cyclic shift, ¢ and C are the same, so () holds. From this, we obtain U, (a;¢;+b;) = ¥, (Ai1+Citt+ Bitt),
which implies (744). Furthermore, for every i € [1,m] and every j € [1, ], we have that a;(c; +jm)+b; =
Aiyt(Cire +jm)+ Biyy (mod n), which implies that (a; — A;y+)j =0 (mod +), proving (ii). Conversely,
if (i), (#) and (éi7) hold, then for every ¢ € [1,m] and j € [1, =], the identities a;(c; + jm) + b; =
Aith(Oith —|—jm) + Bith (InOd n) and \Ifm (ai (Ci —|—jm) + bl) = C; = Cith = \Ifm (Aith (Cith —|—jm) + Bith)
hold. Therefore, (d, l;, ¢) and (/_f, B, 6) are (n, m)-equivalent.

O

From the previous theorem, we obtain the exact number of permutations arising from (n, m)-p.a.p.’s.

Corollary 2.6. Let m > 1 be a divisor of n and write n = ning, where rad(ny) divides % and
ged (ng, %) = 1. Then the number of distinct (n,m)-p.a.p.’s equals

(m—1)!- (”'”2'90<”1))m

m2

Proof. First, we compute the number of (n,m)-admissible triples. There are m! choices for ¢, and
na - ¢ (n1) choices for each a;, hence [nz - ¢ (n1)]™ choices for @. In addition, for fixed @ and ¢, there are

(%)m choices for b. Therefore, the number of (n, m)-admissible triples equals m! - (anM) . For a

fixed (n,m)-admissible triple (d, 5, €), Theorem [Z.5] entails that such triple is (n, m)-equivalent to exactly
m-0p, (n, m)-admissible triples, where d,, is the number of ways of choosing vectors (u1, ..., u;,) € [1,n]™
with ged(u;,n1) = 1 and u; = a; (mod n/m). From contruction, rad(ny) = rad(n/m) and so u; = a;
(mod n/m) already implies that ged(u;,n1) = 1. Hence, &, = m™ and the result follows.

O

2.1. On the inverse of (n,m)-p.a.p.’s

We show that the inverse of an (n,m)-p.a.p. is another (n,m)-p.a.p. whose parameters can be
explicitly computed (though not unique).

Theorem 2.7. Let m > 1 be a diwisor of n and write n = ning, where rad(ny) divides % and
ged (ng, 2) = 1. Let (@, b,) be an (n,m)-admissible triple and 7 be the (n,m)-p.a.p. with parame-

ters (d, 5,8) For each 1 < i <m, let A; € [1,n1] be such that A; - a;—1 =1 (mod ny). Then, for each
1 <i < m, the system of congruences

(2)

r=c¢—1—Aic; (mod m)
r=—Abi1 (mod ny),



admits a solution B; € [1,n]. Also, zf/_f = (Am, Apm—1,..., A1), B = (Bm, Bm—1,-..,B1) and C =
(Cms Cm—1,--.,¢1), then the triple (/T,B», C_") is (n,m)-admissible and the permutation 7=' induced by
such triple is the inverse of , i.e.,

m(r Ny) =7 (x(y) =y, yelln

Proof. From Theorem 28] we have that ged(a;,n1) =1 for every 1 < i < m, and so A; is well defined. In
order to prove that the system above has a solution B; € [1,n], the Chinese Remainder Theorem entails
that it suffices to show that

—Aibi—1 = c¢i—1 — Aje; (mod ged(m, ny)),

for every 1 < ¢ < m. This is true since the congruence a;_1¢;—1 + b;—1 = ¢; (mod m) implies that
ci—1+ Aibi—1 = Ajc; (mod ged(m,ny)). From definition, ged(A;, n1) =1 and

AiCi + Bl =Ci—1 (HlOd m)

From Theorem 28} the triple (4, B, ) is (n,m)-admissible. So it remains to prove that m(7~1(y)) =
7 1(n(y)) = y for y € [1,n]. We only prove 7~ 1(n(y)) = y since the equality m(7~*(y)) = y follows in
a similar way. From definition, n; and ny are relatively prime and no divides m. So it suffices to prove
that 71 (7(y)) =y (mod t) for t € {n1, m}. Suppose that y = ¢; (mod m), hence 7(y) = ¢;+1 (mod m)
and so 7 1(7(y)) = ¢; =y (mod m). Moreover, 71 (7(y)) = V,,(Air1(a;y + b;) + Bir1). Recall that ng
is a divisor of n. From A;11a; =1 (mod n1) and B;11 = —A;11b; (mod ny), we conclude that

U, (Ait1(a;y+b;) + Biy1) =y (mod ny).
O

Example 2.8. Let 7 the (12,3)-p.a.p. defined in Ezample[2)} Then the inverse n=' of 7 is the (12, 3)-
p.a.p. with parameters (g,g,é), where A = (3,1,1), B = (2,8,11) and = (3,2,1) so that, for each
€ [1,12],
Upp(z+11) if =1 (mod 3),
N 2) = Uz +8) if =2 (mod 3),
Uio(3z+2) if =0 (mod 3).

2.2. The class of p.a.p.’s defined by two rules

Here we introduce the special class of (n,m)-p.a.p.’s that can be defined by two affine-like rules, one
for the multiples of m and one for the remaining integers in [1, n]. More specifically, we have the following
definition.

Definition 2.9. An (n,m)-p.a.p. 7 is said to be 2-reducible if there exist integers ag, a,bo,b € [1,n] such
that, for any x € [1,n], we have that

r(z) = U, (ap-x+by) ifx=0 (mod m),
Y, (a-x+0b) iftZ0 (mod m).

In this case, the quadruple (ag,a,bo,b) is called the 2-reduced parameters of 7.

From definition, any (n,m)-p.a.p. is 2-reducible if m = 2. Our aim is to provide a complete charac-
terization of the 2-reducible (n,m)-p.a.p.’s, where m > 2. We start with the following auxiliary lemmas.

Lemma 2.10 (Lifting the Exponent Lemma). Let p be a prime and v, be the p-valuation. The following
hold:

(1) if p is an odd prime divisor of a — 1, vp(ak — 1) = vy(a — 1) + v, (k);



(2) ifp=2 and a>1 is odd,

k va(a —1) if k is odd,
va(a® —1) = S
vo(a® — 1) +wa(k) — 1 if k is even.

Lemma 2.11. Let a,b,m be positive integers and set rads(m) = rad(m)-ged(m, 2). Then the reductions
modulo m of the numbers
b, bla+1), ..., b(@a™ - +a+1)

are all distinct if and only if gcd(b,m) =1 and a =1 (mod radz(m)).

Proof. Set fo=0band, for 1 <i<m—1,set f; =b(a’ +---+a+1). It is clear that b (resp. a) must be
relatively prime with m, since otherwise the reduction modulo m of the elements f; would not contain
the class 1 (resp. the class 0). In particular, for 0 < i < j <m —1, f; = f; (mod m) if and only if
fj—i =0 (mod m). Therefore, it suffices to prove that ¢ = m — 1 is the smallest index such that f; =0
(mod m) if and only if a =1 (mod radz(m)). Of course, this holds for @ = 1. Suppose that ¢ > 1 and
write m = momi, where rad(mg) divides a — 1 and m; is relatively prime with a — 1. In other words,
we want to prove that ord,,q—1ya = m if and only if mo =m and a =1 (mod 4) if m is even. Since m;
and a — 1 are relatively prime, we have that

ord, (q—1ya = lem(ord,, (a—1)a, 0rdy,, a) < ord,, (q—1)a - ordpy,, a, (3)

with equality if and only if ord,,,,—1)a and ord,,,a are relatively prime. However, from Lemma 210
ord g (a—1)@ < mo with equality if and only if mg is odd or mg is even and a = 1 (mod 4). In addition,
ordm,a < ¢(m1) < my whenever m; > 1. Therefore, from Eq. (@]), we have that ord,,,—1ya = m if and
only if m; =1 (i.e.,, mg =m) and a =1 (mod 4) if m is even.

O

In the following proposition we describe the 2-reducible (n, m)-p.a.p’s.

Proposition 2.12. Let m > 2 be a positive divisor of n and write n = ning, where rad(ny) divides -
and ged (ng, %) = 1. For integers ap,a,bo,b € [1,n], the quadruple (ag,a,by,b) provides the 2-reduced
parameters of a 2-reducible (n, m)-p.a.p. 7 if and only if the following properties hold:

(i) b and by are relatively prime with m, and b = by (mod m);
(ii) a =1 (mod radz(m));
(iii) a and ag are relatively prime with n;.

In this case, 7 is the (n,m)-p.a.p. with parameters (a, b, @), where @ = (ag, a,...a), b= (bo,b,...,b) and
¢ is a cyclic permutation of the vector (ci,. .., Cy) with

m if =1,
¢ = : : ‘ . (4)
U,(b- (@ 2+a3+...+a+1)) if 2<i<m.

Moreover, the inverse 7= of the 2-reducible (n,m)-p.a.p. 7 is defined by the following affine rules:

“1(z) U, (Ag-x+ By) ifx=b (modm)
7 (z) =
U, (A-z+ B) ifx#Zb (modm)
where Ag = ag' (mod ny), A = a~! (mod lem(m,n1)), By is a solution of the system ) with i = 2
and B = U,,(—Ab).

Proof. For the first part, we just need to show that, if (ag,a,bg,b) are the 2-reduced parameters of the
2-reducible (n, m)-p.a.p. m, then we necessarily have that b = by (mod m). The remainder ‘if and only if’
part follows from Theorem 2.5 and Lemma[ZTT} the further identities for ¢; follow directly by calculations.



We observe that, since 7 is an (n,m)-p.a.p., for any ¢ € [1,m] such that ¢t # W,,(by), there exists
y = y(t) € [1,m — 1] such that ay + b = t (mod m). In particular, if b #Z by (mod m), there exists
y € [1,m—1] such that ay+b =b (mod m) and so ay = 0 (mod m). This implies that d := ged(a, m) > 1.
However, in this case, the set {U,,(ay +b) | y € [1,m — 1]} has at most % elements. Since m > 2, we
have that % < m — 1 and so we get a contradiction with the property of y(t).

The expression for the parameters Ag, A € [1,n;1] and By € [1,lem(m,n1)] of 7! follows directly
from Theorem 271 Furthermore, we can extend A € [1,lem(m,ny)] to be also the inverse of a modulo m
so that A =a~! (mod lem(m,ny)), since ged(a, m) = 1 by item (ii). Let B = ¥,,(—Ab). We are going to
show that B is a solution of the system (2] for every i € [1,m]\{2}. The second equation of system (2]
is trivial. If i € [3,m] then the first one is equivalent to B =b(a* 3+ --+a+1) — Ab(a* 2 +---+a+1)
(mod m), which is true since A = a~! (mod m). If i = 1 then the first equation of (@) is equivalent to
—Ab=0b(a™ 2+ +a+1) (mod m), which follows from Lemma 2T}

O

From the previous proposition, a lower bound for the number of 2-reducible (n, m)-p.a.p.’s is derived.

Corollary 2.13. The number of non-equivalent 2-reducible (n,m)-p.a.p.’s is at least

ny\ o(m)-n?
() S

m m
Proof. We provide a class of non-equivalent (n, m)-p.a.p.’s with 2-reduced parameters of the form (ag, 1, bo, b)
which proves the claim. Let C' be the set of quadruples (ao, 1, bo, b) such that 1 < ag < 2, ged (ao, %) =1
(hence ged(ag,n1) = 1), 1 < by < n, ged(b,m) = 1 and by = b (mod m). Proposition[ZI2 entails that any
element of C' yields a 2-reducible (n, m)-p.a.p. and it is clear that C has exactly ¢ (%) . “’(Z—)Q'"z elements.
We just need to verify that any two of them yield non-equivalent permutations of [1,n]. Suppose that
two elements (ao, 1,bo,b) and (ag, 1,b,b") of C yield the same permutation of [1,7n]. Since ag,ay < =&,
Theorem entails that ag = aj. Also, taking # = n in Definition [2.9] we have that by = bj, and the
same definition readily implies that b = b'.

O

3. Cycle decomposition

We fix (a, 5, ¢) an (n, m)-admissible triple and 7= = 7(d, l;, ¢) the (n, m)-p.a.p. with parameters (@, l;, ).
The following proposition provides basic properties of the cycle decomposition of 7.

Proposition 3.1. For any y € [1,n], the following properties hold:

(i) the cycle of m containing y has length divisible by m;
(ii) there exists an element z € [1,n] such that z is diwvisible by m and lies in the same cycle of
containing y.

In addition, if a cycle of ™ has length mt, then for each i € [1,m], such a cycle contains exactly t elements
congruent to i modulo m.

Proof. (i) From Definition 23] ¥,,(7(x)) = ¢i41 whenever ¥,,(x) = ¢;. This guarantees that the
sequence
Vin(y), Uin(7(y)), Ui (7 (), ...

can only return to U,,(y) after cyclically running through the entries of ¢ € C(m). In particular,
the sequence

y, m(y), 7@ (y), ...

has minimal period divisible by m.



(ii) In fact, there is an entry of ¢ equals to m, and its correspondent in the above sequence is divisible
by m.

We observe that, in a cycle of length mt of w, € is traversed t times if we consider the reduction
modulo m of its elements. Therefore, each i € [1,m] appears exactly ¢ times.
(I

In particular, in order to compute the cycle decomposition of 7, Proposition B.1] entails that it suffices
to compute the minimal period of the multiples of m in the set [1,n]. In this context, the following
definition is useful.

Definition 3.2. 1. The principal product of 7 = 7(a, 5, ) is Pr =[]~ a;.
2. The principal sum of © = 7(d, 5, ) 1is the unique positive integer S, € [1,n] with the property that
7" (2) = U, (Py -2+ Sy), for any x € [1,n] such that x =0 (mod m).

Example 3.3. The principal product and principal sum of the 2-reducible (n, m)-p.a.p. ™ with parameters
(ao, a, by, b) are Pr = aga™ " and Sp = U, (boa™ ' + b(a™ 2+ ...+ a+ 1)) respectively.

The following lemma provides a way of obtaining the mk-th iterates of 7 at elements x € [1,n] that
are divisible by m.

Lemma 3.4. The principal sum S, of w(a, g,é’) is well defined and, for any positive integers k,x such
that © € [1,n] is divisible by m, we have that

Pk 1
(mk) (o =, [ PF. s .
R = v, (P 105,

whenever Py # 1. For Py =1 (mod n), we have that 7™ (z) = U, (x + k- Sy) and, for Py = 1, we
have that ©("F) (z) = ¥, (x kY icicm bi).

Proof. The composition of affine functions is also affine. Since 7("™(z) is the reduction modulo n of the
composition of m affine functions given by Definition 23] each of which has slope a;, 7(") (z) is affine as
well, with slope P.. Therefore, the linear coefficient S is well-defined. In fact, by reindexing ¢ under a
cyclic shift if needed, S is given by

Sﬂ— = \I/n <Z Ay Ay —1 - - - ai+2ai+1bi> . (5)
i=1

For the remainder, we proceed by induction on k. The case k = 1 follows from the definition of principal
sum. Suppose that

7T(rnk)(sc) — \Ijn(P:: Szt (P,lf_l +---4+ P+ 1) . SF)
for some k > 1. Then
R0 () — 2 08) (200) () — 2 ) (B, (P -2+ S3))
=W (PE - (Pr a4+ S0) + (PE o+ Pt 1) 85
:\IJn(PT{_CJrl 'I‘F(PJ:—FPT]:il+"'+P7r+1)'8ﬂ')7
from where we obtain directly the cases P # 1 and P, = 1 (mod n). If P, = 1 then a; = 1 for all

1 <4 < m, which implies S, = ¥, (Z1§igm bi).
O

Since (™) (2) = 2 (mod m), it holds S; = 0 (mod m). The previous lemma implies the following
result.



Proposition 3.5. Let w be an (n,m)-p.a.p. with principal product Py, and principal sum Sr. For any
positive integer x € [1,n] divisible by m with x = mxq, the length of the cycle of m containing x is given
as follows:

(i) m- zedtnsy FPr=1 (mod n);

(ii) if Pr # 1, this length is given by m - ord,(,)Pr, where

n-(Pr—1) L. (Pr—1)
) = A (BT (P15 1 .y O
g n T 7'r T e gﬂ_gcd(% ™ 7‘TO' s + 7\')

9= m-gr

gn
gr = ged (%,Pw—l) . (7)

Proof. (i) In this case, the cycle has length mk if and only if k is minimal such that 7(™*)(z) =
U, (x+k-S;) =uz,ie, kS =0 (mod n). It is clear that the minimal k satisfying the latter equals

__n
ged(n,Sx) "

(ii) In this case, 7(™*) () = ¥, (P,’,C T+ % . Sfr) = z, and so we have the following equivalent

conditions:

(PE—1)-2+2=2.5,=0 (modn),
(PF~1)- [z (Pr=1)+S;]=0 (mod n(P, — 1)),

PF—1=0 (mod k(x)).

Therefore, the smallest possible k > 0 is k& = ord,(,)Pr and the cycle of m containing x has length
equals m - ord () Pr-

O

The next lemma displays all the possible values of

(8)

P.—1 P,—-1 Sr
No = No(zo) := ged <£ : ; “xo + > ;
m I I m:- gr

and the number of solutions in each case. By Eqs. (@) and (8), we observe that
% . (P T 1)

9r - NO (9)

k(z) =

Lemma 3.6. Let «, 3,7 be positive integers such that ged(a, B) = 1 and « divides v. Write v = 172,
where rad(y1) divides o and ged(ve, &) = 1. Then the following properties hold:

(i) asy runs over [1,v/a], ged(ay + B,7) runs over all the divisors of ya;
(ii) for each divisor d of 2, the number of solutions y € [1,7/a] of the equation

ged(ay + B,7) = 12/d

is p(d) - 71
Proof. (i) We have that « divides ;. Since ged(y1,72) = ged(a, 8) = 1, we obtain the following
equalities
ged(ay + B,7) = ged(ay + B,7172) = ged(ay + B, 72).
In particular, ged(ay + 3,~) divides 2. Let d be a positive divisor of vo. In the following, we show
that there exists y € [1,v/a] such that

ay+ B =L (mod )
ay+pB=d (mod )



and this implies that ged(ay + 5,72) = d. The first congruence is equivalent to y = ty1/« for some
t € Z, and the second one is equivalent to ty; = d — 8 (mod 72), which has a solution for ¢ € [1, 7],
so that y € [1,v/a].

(ii) Let w € [1,v/a] be the smallest solution of ged(ay + ,7) = 72/d. All the other solutions are of
the form w + j %2 with 0 < j < y1d. Since ged(a,v2) = ged(v1,72) = 1, the number w + j22 is a
solution as well if and only if

ged (OM +dﬁ —i—aj,d) =1 and 0<j<md.
72

Therefore, the number of solutions xg + j - 2 € [1,v/a] of this equation is ¢(d) - 1.
O

Suppose that P, > 1 and let o = qu, f=-2andy = . Prol Lo be as in Lemma[3.6l Write

m-gr 9=

& = N1 Ny, where rad(Ny) divides a and ged (N2, ) = 1. Hence the number Ny defined by Eq. (8) can
be any divisor of Na, that is, Ny can be any divisor of n/m that is relatively prime with % when zq

runs over [1,n/m]. This observation and Eq. (@) easily imply the following result.

Corollary 3.7. Fiz © = mxo € [1,n]. Let k(x) and Ny be defined as in Egs. (@) and @), respectively.
We write % = N1 Ny where rad(Ny) divides % and ged (NQ, P’;;l) =1, as above. For a divisor d of
Ny such that No = Na/d, we have that k(x) = Ny - % -d. In addition, the equation No = Nz/d has

exactly ¢(d) - Ny solutions x with o € [1,n/m)].

Finally, we exhibit the cycle decomposition of an arbitrary (n,m)-p.a.p. 7 with principal product
P, # 1 (the case P, = 1 (mod n) follows trivially by item (i) of Proposition B3H)). In what follows,
Cyc(r) denotes a cycle of length r. Moreover, G; @& G2 denotes the disjoint union of the graphs G,
and Ga, @, Ge denotes the disjoint union of the graphs Gy for £ € A and, for a positive integer £,

kxG= @1§i§k G.
Theorem 3.8. Let 7 be an (n,m)-p.a.p. with principal product P, > 1 and principal sum Sr. Let g

be defined as in Eq. ) and write n/m = N1 N, where rad(Ny) divides Pg;l and ged (Pg;l,Ng) =1
Pr—1

For each divisor d of Na, set n(d) = Ny - = d. Then the cycle decomposition of w is given by

™

¢(d) - N
—~—— x Cyc (m -ord (d)P,r) ,
No Ordn(d)Pﬂ- K

d|

Proof. For each divisor d of N3, let ng be the number of cycles of 7 containing an element x = maxg € [1,n]
such that the number Ny = No(z0) defined by Eq. (8) satisfies

No = No/d.
Since every element of [1,n] belongs to a unique cycle, Proposition B and Corollary B yield
Z g - Mm - ordn(d)PTr =n.
d‘NQ

We claim that ng-ord, gy Pr > ¢(d)-Ny. In fact, by CorollaryB.7 for 2 = maxq the equality No(zo) = Na/d

implies that
P -1

™

r(x) = Ni- -d = 1(d),

where k(z) is given by Eq. (6). From the same corollary, the latter has exactly ¢(d)N; solutions z =
mxq € [1,n]. Since there exist at most ordyq) Pr of such x = mz( in a same cycle of length m - ordyq) Pr

of 7, it follows that ng > %, proving the claim. Therefore, we obtain the following inequalities
n(d) Pr
n n
- = E . > E . - E — .
m ng Ordn(d)Pﬂ- = (p(d) N1 N1 gﬁ(d) N1N2 m,
d|Na d|Na d| N,



@(d) Ny

forcing that ng = .
orcing that ng ordy o Pr

O

Example 3.9. Let 7 be the (12,3)-p.a.p. given in Example[2.4} We have that P, =15 and S =9, and
in the notation of Theorem[3.8, g =1 and N1 = 4, Ny = 1. From Theorem[38, the cycle decomposition
of w is given by

ordug 15 x Cyc(3 - ordselh) = 2 x Cyc(6),

as confirmed by Example [24)

4. Application: permutation polynomials over finite fields

Throughout this section, we fix ¢ a prime power and let F, denote the finite field with ¢ elements.
We observe that, for a divisor m > 1 of ¢ — 1, we may construct many (¢ — 1, m)-p.a.p.’s. It turns out
that such permutations extend to permutations of the finite field Fy. Let 0, € IFy be a primitive element,
i.e. a generator of the multiplicative group Fy. If m > 1 divides ¢ — 1 and 7 is any (¢ — 1,m)-p.a.p., we
define its 6,-lift as the permutation F g, : F, — F, given by

Fw,éq (0) =0 and
Fro, (92) = 93{(“ forany 1 <i<gq—1.

Of course, F; g, is a permutation of the finite field F,. We observe that, by construction, such permutation

defines a piecewise monomial function on m-cyclotomic cosets of ;. In other words, if D,,, C F; denotes

the subgroup of perfect m-th powers, the restriction of Fi g, (x) to each coset of F; /D, is ruled by a
monomial map az”.

Remark 4.1. We emphasize that functions defined by different monomials on cyclotomic cosets of Fy
were previously studied in full generality: see Theorem 2 of m/ Our aim here is to apply our (¢q—1,m)-
p.a.p.’s in the construction of permutation polynomials where the cycle decomposition and the inverse can
be obtained.

We want to find a polynomial representation for Frg,. Let (d, l;,é) be the parameters of m with
a=(ar,...,am), b= (b1,...,by) and € = (c1,...,¢Cm). In particular, if z = 92 with j = ¢; (mod m),
then

Fro,(z) = 931' cxfi
Therefore, we only need to find a characteristic function for the elements z = 93 with j = ¢; (mod m).
We have the following definition.

m—1 )
Definition 4.2. For each divisor m of ¢ — 1, set E,,(x) = Z e e F,lz].
§=0

We observe that if z € [y, then

Eon(2) m o if 25 = 1,
m\%Z) =
0  otherwise.

In particular, for each j € [1,m] we have that

m if z =0} withi=j (mod m),

0  otherwise.

En (Z : Hq_J) = {
The following theorem provides a polynomial representation for F g, and its inverse.

10



Theorem 4.3. Let q be a prime power, 8, € F, be a primitive element and m > 1 be a divisor of g—1. If
7 is a (q—1,m)-p.a.p. with parameters (d,b,C), then the 0,-lift Fr g, of © admits the following polynomial
representation

m

1 o .
Frp,(2) = — > 05 - a® By (- 6;%) € Fylal.

i=1
In particular, this polynomial representation has at most m? nonzero coefficients. Moreover, if the (q —
1,m)-p.a.p. w1 is the inverse of m with parameters (A, B,C) as in Theorem [2.7, then the inverse of
Fr g, over Fy is the following permutation polynomial

1 <=5, 4, _e,
Fror g, (1) = — > 05 2 Ep(x-0,9) € Fyla).
=1

Proof. Since 7 is a (¢q—1, m)-p.a.p. with parameters (d, l;, c), we have that the function given by Fy g, (0) =
0 and Fr g, (y) = 0317100 = 6by if y = 67 with j = ¢; (mod m), permutes F,. Since Ep,(z)/m acts as
the characteristic function for the set of perfect m-th powers in 7, Eq. () entails that if y = 9{1' with
j = ¢; (mod m), then

LS pajn, e
Frp,(y) = — S 0T E (g 0,),
i=1
from where the polynomial expression for Fy g, follows. The polynomial expression for the inverse of
F; g, follows directly from the fact that the inverse 7! of 7 is again a (¢ — 1,m)-p.a.p. and that Fro,
fixes 0 € IF,.
O

Remark 4.4. We observe that if m and my are two (¢ — 1, m)-p.a.p.’s coming from (q — 1, m)-equivalent
(q — 1, m)-admissible triples, their 04-lift coincide as permutations of F,. However, the polynomials Fy g,
and Fr, 0, may not coincide and we can only guarantee that

Fro,(x) = Fryg,(x) (mod 29 — x).

When 7 is 2-reduced, the following corollary entails that the polynomial representation of Fi p, and
its inverse are quite simple. Its proof is a direct application of the previous theorem so we omit details.

Corollary 4.5. Let q be a prime power, 04 € Fy be a primitive element and m > 1 be a divisor of ¢ — 1.
If 7 is a 2-reducible (g — 1,m)-p.a.p. with reduced parameters (ag,a,bo,b) and = is its inverse, then
the 04-lift Frr o, of m admits the following polynomial representation

a09b0 _ aeb
M) En(z) € Fyla],

m

Fro,(x) = :C“HZ + (

whose inverse Fr-1 g is given by

;CAoquo _

468
Frop,(7) = xAﬁf + < — 1 ) En(x- Hq_b) € F,[z],

where Ag, A, By, B are defined in Proposition [2.12. In particular, these polynomial representations have
at most 2m nonzero coefficients.

4.1. On the cycle decomposition

We observe that the cycle decomposition of the permutation polynomials given in Theorem can
be explicitly computed. In fact, for a given (¢ — 1, m)-p.a.p. m with parameters (@, b, ¢), we can compute
its principal sum and product. In particular, the cycle decomposition of 7 is explicitly obtained from

11



Theorem Moreover, for a fixed primitive element 6, € F,, the cycle decomposition of the 6,-lift
permutation Fy g, is obtained by the one of 7, adding a loop that corresponds to the fixed point 0 € F,.
Furthermore, F; o, and its inverse F;-1 y  have the same cycle decomposition. We provide two examples
of these facts.

Example 4.6. Let ¢ = 13 and let w be the (12,3)-p.a.p. given in Example [27 Applying Theorem [{.3
with 013 = 2, we obtain the permutation polynomial

Fro(z) = 102 + 827 4+ 1227 4 2° + 42% + 62 € Fy3[z].

The inverse 7=% of 7 is given in Example [Z8, whence we obtain the polynomial representation for the
inverse of Fra:
Fr1o(z) = 102" + 827 + 1027 + 42° + 102° + 2.

The cycle decomposition of Fr o (and of Fr-1 5) is given by Cyc(1)® (2 x Cyc(6)) (see also Example[33).

Example 4.7. Let ¢ = 25 and let 7 be the 2-reducible (24,3)-p.a.p. with reduced parameters (5,7,2,8)
so that

(z) = Pos(bz+2) if =0 (mod 3),
| Wou(7x +8)  otherwise.

Its inverse 7~ is given by

rL(z) = Uos(bx +14) if x=2 (mod 3),
N Uos (72 + 16)  otherwise.

The principal product of m equals Py = 245 and its principal sum equals S, = 18. In the notation of
Theorem [Z.8, we have that g, = 2 and Ny = 8, Ny = 1. From Theorem[3.8, the cycle decomposition of
s given by

———— X Cyc(3 - ordy20.8245) = 2 x Cyc(12).
01‘d122.8245 ~ yC( ordiazs ) * YC( )

Let Fa5 = F5(ar), where a? —a — 3 =0, so that « is a primitive element. In particular, the a-lift of w is

2°a? —27ab
Fro(z) =a"a® + (f) Ea(@)
= (a+3)(2® +2°) + 2o + 1) (2 + 23 — 27 + 25),
over Fao5, whose inverse is

5,14 _ 716
Pt — '
7 16
Froio(z) =2"a +(

3 ) Bs(z-a™®)

= (a+3)2® 4+ 422 + 32 + (2a + 2)(x"® + 27) + (3a + 4)2°.
The cycle decomposition of Fr o (and of Fr-1 ) is Cyc(1) & (2 x Cyc(12)).
4.1.1. Permutations yielding cycles of the same length

Here we characterize the (¢ — 1, m)-p.a.p.’s m with the property that its cycles are of the same length
£, a prime number. This is a nice application of Theorem [B.§ and is stated as follows.

Proposition 4.8. Let { be a prime number, ¢ be a prime power, 8, € F, be a primitive element and m
be a divisor of q— 1. If wis a (¢ — 1,m)-p.a.p. with principal product P, and principal sum Sy, then the
04-lift Fr g, of ™ decomposes into cycles of length £ if and only if the following properties hold:

(i) £ =m;

(i) Pr=1 (mod £1);

12



(iii) Sz =0 (mod ¢ —1).

In this case, if 7! denotes the inverse T, Fro, and Fr-1 g have polynomial representations given by
Theorem [£.3, and the cycle decomposition of Fy g, (and of Fr-1 g, ) over Fy equals

-1
Cyc(l) ® (q X Cyc(m)) .
Proof. From construction, any (¢ — 1, m)-p.a.p. decomposes into cycles of length divisible by m, forcing
that m = £. Since ordpa divides ord.a whenever ged(be,a) = 1 and b divides ¢, Theorem [3.8 entails that
7 has only cycles of length m if and only if P, — 1 is divisible by

(—1)(Fr—1)

’
mgr

where g, = gcd( P, —1). The latter is equivalent to g, = 0 (mod %), ie, Sy =0 (mod ¢g—1) and
Py =1 (mod & 1)
O

In particular, it is possible to obtain involutions from (¢ — 1,2)-p.a.p.’s. Involutions over finite fields
are frequently used in cryptographic applications. More specifically, they are used as S-boxes, a basic
component in key-algorithms used to cover the relation between the key and the encrypted message. We
observe that if P is an involution over F,, then any element a € F, either belongs to a cycle of length
two or is a fixed point, i.e., P(a) = a. There are some cryptographic attacks that explore the number of
fixed points of a permutation and according to @] for secure implementations, involutions should have
few fixed points. In the particular case m = 2 of Proposition .8, the 0,-lift Fy, . recover a family of
involutions that were previously obtained in m This is presented in the followmg corollary, which is
just a straightforward application of the previous proposition. We omit details.

Corollary 4.9. Let ¢ = 3 (mod 4) be a prime power and let 8, € F, be a primitive element. If 7 is a
(g—1,2)-p.a.p. with parameters @ = (ap, a), b= (bo,b) and ¢ = (2,1), then its O4-lift Fp, » is an involution
if and only if apa =1 (mod q%l) and bpa +b =1 (mod g — 1). In this case, the cycle decomposition of
Fr, over Fy is given by Cyc(1) @ (q—1 x Cyc(2 )) , and so it has only one fized point. Moreover, in this
case, I g, has the following polynomial representation

a q;l—i-a
r —x 2
F?T70q(x):9(l;0. 2 q. 2

Example 4.10. Let g = 27 and let 7 be the 2-reducible (26,2)-p.a.p. with reduced parameters (5,8,3,2)
so that

( Uos (b +3) if x is even,
m(z) =
Uos(8z +2) if x is odd.

Let Fy7 = F3(a) where o® — a —2 =0, so « is a primitive element. In particular, the a-lift of © yields

the involution
218 4 45 28 _ 221
Fﬂ'a =a? 2
o) =a ( 5 ) + « ( 5 )
_ 042(.%'21 _ .%'8) _ (a+ 2)($18 _i_$5)7

over Far, whose cycle decomposition is Cyc(1) @ (13 x Cyc(2)).
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4.2. More explicit results

We observe that Theorem provides classes of permutation polynomials over F,, that depend on
a primitive element 6, € F,. If ¢ is large, it can be hard to find such a 6,. Here we consider special
cases where such permutation polynomials can be obtained without going through a primitive element
of IF,. Instead, we only need certain primitive roots of unity in the base field I, of FF,. This is done in
the following proposition.

Proposition 4.11. Let p be a prime and m,k be positive integers such that m divides p — 1. Write

p* — 1 = ning, where rad(ny) divides pi; and ged (nQ, _1) = 1. Let 0 € F, be any primitive m-

th root of unity, write ¢ = p* and let a,aq be positive integers such that gcd(aap,ny) = 1 and a = 1
(mod rady(m)). Then, for any positive integer b < m such that ged(b,m) = 1,

Fopan(z) =0° (%Em(:c) Lz 4 (1 — %Em(:c)) -x“)

is a permutation polynomial over F,. Set g = ged (q;ml,aoam_l — 1) and write q;—l = N;Ns, where
rad(Ny) divides % and ged (%, N2) = 1. Then the cycle decomposition of the permutation

polynomial Fy, o1 over Fy is given by

(p(d) . Nl 1
Cyc(l) & —————— x Cyc (m-ord, g (aga™ ™)) | , (11)
am, Otdn(a) (aoa™ 1) ( " )
_ . a a™ o1 .
where n(d) = Ny - 94— -d.

Proof. From construction and Proposition 212 (ag, a, B, B) are the reduced parameters ofa (¢g—1,m)-

p.a.p., where B = (qm L. Therefore, as 6, runs over the primitive elements of F,, 9 runs over the
primitive m-th roots of unity in F,. In partlcular the fact that Fy, .p(z) permutes F, follows from
Theorem [£3] Let 7 be the (¢ — 1, m)—p.a.p. with reduced parameters (ag, a, B, B) where B is as before.
Therefore, 7 has principal product P, = apa™ ! and principal sum S, = ¢ — 1. In particular, Eq. ()
follows from Theorem

O

Some cases of the previous proposition readily yield explicit results.

Corollary 4.12. Let q be a prime power such that ¢ =3 (mod 4) and let a,ag be positive integers such
that ged (aao, L5+ ) =1and a=1 (mod 4). Then

-1
n
Pagale) = =254 g0 p T2 20 o
is a permutation polynomial over F, with cycle decomposition given by Eq. (II)).

Corollary 4.13. Let ¢ = 7% with gcd(k,3) = 1 and let a, ag be positive integers such that ged (aao, Q;gl) =
1 and a =1 (mod 3). Then for j =1,2,

1—‘,—:1:‘ 3 +x2(q:;1) 1+x 'g —‘,—:1:‘2((1';1)
Paoyayj(x):2 ( 3 '$a0+<1— : 3 : >~xa>,

is a permutation polynomial over F, with cycle decomposition given by Eq. (II)).
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