CHORDAL CIRCULANT GRAPHS AND INDUCED MATCHING NUMBER

FRANCESCO ROMEO

Abstract

Let $G=C_{n}(S)$ be a circulant graph on n vertices. In this paper we characterize chordal circulant graphs and then we compute $\nu(G)$, the induced matching number of G. These latter are useful in bounding the Castelnuovo-Mumford regularity of the edge ring of G.

Introduction

Let G be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. Let \mathcal{C} be a cycle of G. An edge $\{v, w\}$ in $E(G) \backslash E(\mathcal{C})$ with v, w in $V(\mathcal{C})$ is a chord of \mathcal{C}. A graph G is said to be chordal if every cycle has a chord. We recall that a circulant graph is defined as follows. Let $S \subseteq T:=$ $\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$. The circulant graph $G:=C_{n}(S)$ is a simple graph with $V(G)=\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ and $E(G):=\left\{\{i, j\}| | j-\left.i\right|_{n} \in S\right\}$ where $|k|_{n}=\min \{|k|, n-|k|\}$. Given $i, j \in V(G)$ we call labelling distance the number $|i-j|_{n}$. By abuse of notation we write $C_{n}\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ instead of $C_{n}\left(\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}\right)$.
Circulant graphs have been studied under combinatorial ([2, 3]) and algebraic (7) points of view. In the former, the authors studied some families of circulants, i.e. the d-th powers of a cycle, namely the circulants $C_{n}(1,2, \ldots, d)$ (that we will analyse in Section 3) and their complements . In the latter, the author studied some properties of the edge ideal of circulants. Let $R=K\left[x_{0}, \ldots, x_{n-1}\right]$ be the polynomial ring on n variables over a field K. The edge ideal of G, denoted by $I(G)$, is the ideal of R generated by all square-free monomials $x_{i} x_{j}$ such that $\{i, j\} \in E(G)$. The quotient ring $R / I(G)$ is called edge ring of G. Some algebraic properties and invariants of $R / I(G)$ can be derived from combinatorial properties of G. Chordality and the induced matching number have been used to give bounds on the Castelnuovo-Mumford regularity of $R / I(G)$ (see Section (1).

In Section 2 we prove that a circulant graph is chordal if and only if it is either complete or a disjoint union of complete graphs.
In Section 3 we give an explicit formula for the induced matching number of a circulant graph $C_{n}(S)$ depending on the cardinality and the structure of the set S. Moreover, by using Macaulay2, we compare the CastelnuovoMumford regularity of $R / I(G)$ with $\nu(G)$, the lower bound of Theorem 1.3 ,
when G is the d-th power of a cycle and n is less than or equal to 15 . We report the result in Table 1.

1. Preliminaries

In this section we recall some concepts and notation that we will use later on in this article.

We recall that the circulant graph $C_{n}\left(1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right)$ is the complete graph K_{n}. Moreover, we compute the number of components of a circulant graph with the following
Lemma 1.1. Let $S=\left\{a_{1}, \ldots, a_{r}\right\}$ be a subset of T and let $G=C_{n}(S)$ be a circulant graph. Then G has $\operatorname{gcd}\left(n, a_{1}, \ldots, a_{r}\right)$ disjoint components. In particular, G is connected if and only if $\operatorname{gcd}\left(n, a_{1}, \ldots, a_{r}\right)=1$.

For a proof see [1]. From Lemma 1.1 it follows that if $n=d k$, then the disjoint components of $C_{n}\left(a_{1} d, a_{2} d, \ldots, a_{s} d\right)$ are d copies of the circulant graph $C_{k}\left(a_{1}, a_{2}, \ldots, a_{s}\right)$.

Let G be a graph. A collection C of edges in G is called an induced matching of G if the edges of C are pairwise disjoint and the graph having C has edge set is an induced subgraph of G. The maximum size of an induced matching of G is called induced matching number of G and we denote it by $\nu(G)$.

Let \mathbb{F} be the minimal free resolution of $R / I(G)$. Then

$$
\mathbb{F}: 0 \rightarrow F_{p} \rightarrow F_{p-1} \rightarrow \ldots \rightarrow F_{0} \rightarrow R / I(G) \rightarrow 0
$$

where $F_{i}=\underset{j}{\bigoplus} R(-j)^{\beta_{i, j}}$. The $\beta_{i, j}$ are called the Betti numbers of \mathbb{F}. The Castelnuovo-Mumford regularity of $R / I(G)$, denoted by reg $R / I(G)$ is defined as

$$
\operatorname{reg} R / I(G)=\max \left\{j-i: \beta_{i, j}\right\}
$$

Let G be a graph. The complement graph \bar{G} of G is the graph whose vertex set is $V(G)$ and whose edges are the non-edges of G. We conclude the section by stating some known results relating chordality and induced matching number to the Castelnuovo-Mumford regularity. The first one is due to Fröberg ([6, Theorem 1])

Theorem 1.2. Let G be a graph. Then $\operatorname{reg} R / I(G) \leq 1$ if and only if \bar{G} is chordal.

The second one is due to Katzman ([5, Lemma 2.2]).
Theorem 1.3. For any graph G, we have reg $R / I(G) \geq \nu(G)$.
When G is the circulant graph $C_{n}(1)$, namely the cycle on n vertices, we have the following result due to Jacques (4]).

Theorem 1.4. Let C_{n} be the n-cycle and let $I=I\left(C_{n}\right)$ be its edge ideal. Let $\nu=\left\lfloor\frac{n}{3}\right\rfloor$ denote the induced matching of C_{n}. Then

$$
\operatorname{reg} R / I=\left\{\begin{array}{lll}
\nu & \text { if } n \equiv 0,1 & (\bmod 3) \\
\nu+1 & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

2. Chordality of circulants

The aim of this section is to prove the following
Theorem 2.1. Let G be a circulant graph. Then G is chordal if and only there exists $d \geq 1$ such that $n=d m$ and $G=C_{n}\left(d, 2 d, \ldots,\left\lfloor\frac{m}{2}\right\rfloor d\right)$.

The $\Leftarrow)$ implication is trivial. If $d=1, G$ is the complete graph K_{n}, while if $d>1$, then G is the disjoint union of d complete graphs K_{m}.

To prove \Rightarrow) implication we need some preliminary results.
Lemma 2.2. Let $G=C_{n}(S)$ be a circulant graph. Let us assume that there exists $a \in S$ with $k=\operatorname{ord}(a) \geq 4$ such that

$$
\left\{a, 2 a, \ldots,\left\lfloor\frac{k}{2}\right\rfloor a\right\} \nsubseteq S
$$

Then G is not chordal.
Proof. Since $k \geq 4$, then $\{a\} \subset\left\{a, 2 a, \ldots,\left\lfloor\frac{k}{2}\right\rfloor a\right\}$. If $\left\{a, 2 a, \ldots,\left\lfloor\frac{k}{2}\right\rfloor a\right\} \nsubseteq S$ then we have two cases:
$(1 S)\{a, 2 a, \ldots, r a,(r+t) a\} \subseteq S$ and $(r+1) a, \ldots,(r+t-1) a \notin S$, with $r \geq 1$ and $t \geq 2$
$(2 S)\{a, 2 a, \ldots, r a\} \subseteq S$ and $(r+1) a, \ldots,\left\lfloor\frac{k}{2}\right\rfloor a \notin S$, with $1 \leq r<\left\lfloor\frac{k}{2}\right\rfloor$.
(1S) We want to find a non-chordal cycle of G. We consider the edges $\{0,(r+t) a\},\{0, a\},\{a,(r+1) a\}$ (see Figure 1). If $(r+1) a$ is adjacent to $(r+t) a$, then we found a non-chordal cycle of G. Otherwise, we

Figure 1. Some edges of a non-chordal cycle of G.
apply the division algorithm to $r+t$ and $r+1$, that is

$$
r+t=(r+1) q+s \quad 0 \leq s \leq r .
$$

From the vertex $(r+1) a$ we alternately add a and $r a$ to get the multiples of $(r+1) a$, until $q(r+1) a$. If $s=0$, then we get $(r+t) a$, otherwise $0<s \leq r$ and $s a \in S$ so we join $q(r+1) a$ and $(r+t) a$. The above cycle has length greater than or equal to 4 because the vertices $0, a,(r+1) a,(r+t) a$ are different. Furthermore, it is nonchordal because by construction any pair of non-adjacent vertices in the cycle has labelling distance in $\{(r+1) a, \ldots,(r+t-1) a\}$.
$(2 S)$ As in (S1), we want to construct a non-chordal cycle of G. We write $k=\left\lfloor\frac{k}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil$ and $\left\lfloor\frac{k}{2}\right\rfloor=q r+t$ with $0 \leq t \leq r-1$. Now we write $\left\lceil\frac{k}{2}\right\rceil=q r+s$, where

$$
s= \begin{cases}t & \text { if } k \text { even } \\ t+1 & \text { if } k \text { odd }\end{cases}
$$

Then we take the cycle on vertices

$$
\begin{equation*}
\left\{0, r a, 2 r a, \ldots, q r a,\left\lfloor\frac{k}{2}\right\rfloor a,\left\lfloor\frac{k}{2} a\right\rfloor+r a,\left\lfloor\frac{k}{2} a\right\rfloor, \ldots\left\lfloor\frac{k}{2}\right\rfloor+q r a\right\} . \tag{2.1}
\end{equation*}
$$

Since $r<\left\lfloor\frac{k}{2}\right\rfloor$, then $q \geq 1$ and in the case $q=1, s>0$. That is, the cycle on vertices (2.1) has length at least 4 and it is not chordal because by construction any pair of non-adjacent vertices in the cycle has labelling distance in $\left\{(r+1) a, \ldots,\left\lfloor\frac{k}{2}\right\rfloor a\right\}$. In any case G is not chordal and the assertion follows.

An immediate consequence of the previous Lemma is
Corollary 2.3. Let $G=C_{n}(S)$ be a circulant graph. If there exists $a \in S$ with $k=\operatorname{ord}(a) \geq 4$ such that $\operatorname{gcd}(a, n) \notin S$, then G is not chordal.

Lemma 2.4. Let $G=C_{n}(S)$ be a circulant graph. If $a_{1}, \ldots, a_{r} \in S$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{r}\right) \notin S$ then G is not chordal.

Proof. We proceed by induction on r.
Let $r=2$ and let $a_{1}, a_{2} \in S$ be such that $c=\operatorname{gcd}\left(a_{1}, a_{2}\right) \notin S$. We consider

$$
a=\operatorname{gcd}\left(a_{1}, n\right), b=\operatorname{gcd}\left(a_{2}, n\right), d=\operatorname{gcd}(a, b) .
$$

From Corollary 2.3, we have that if one between a, b does not belong to S, then G is not chordal. Hence $a, b \in S$. We have that d divides c and we distinguish two cases. If $d \in S$, since $c=t d \notin S$ for some t, then by Lemma 2.2 G is not chordal. Therefore, from now on we suppose $d \notin S$. Since a and b divide n, then $\operatorname{lcm}(a, b)=\frac{a b}{d}$ divides n. We want to find a non-chordal cycle of G having length 4 . Let $r a+s b=d(\bmod n)$ be a

Bézout identity of a and b. From Lemma 2.2, if one between $r a$ and $s b$ is not in S, then G is not chordal. Hence, let us assume $r a, s b \in S$. Now we consider the cycle

$$
\{0, r a, r a+s b=d, s b\}
$$

Since $d \notin S$, then the edge $\{0, d\} \notin E(G)$. We distinguish two cases about $r a-s b$. If $r a-s b \notin S$, then the assertion follows.
If $r a-s b \in S$ we set

$$
k d=\operatorname{gcd}(r a-s b, n) \Rightarrow k=\operatorname{gcd}\left(r\left(\frac{a}{d}\right)+s\left(\frac{b}{d}\right), \frac{n}{d}\right)
$$

If $k d$ is not in S, then from Corollary $2.3 G$ is not chordal. Hence, we consider $k d \in S$. Since $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$, then $\operatorname{gcd}\left(k, \frac{a}{d}\right)=\operatorname{gcd}\left(k, \frac{b}{d}\right)=1$, and

$$
\begin{equation*}
\operatorname{gcd}\left(k, \frac{a b}{d^{2}}\right)=1 \Rightarrow \operatorname{gcd}\left(k d, \frac{a b}{d}\right)=d \tag{2.2}
\end{equation*}
$$

Hence lcm $\left(k d, \frac{a b}{d}\right)=k \frac{a b}{d}$ divides n. We distinguish two cases. If $k=1$, we obtain the contradiction $d \in S$, arising from the assumption $r a-s b \in S$. If $k \neq 1, k$ is a new proper divisor of n. We set $a^{\prime}=k d$ and $b^{\prime}=\frac{a b}{d}$, we apply the steps above and we find a k^{\prime} so that $k^{\prime} \frac{a^{\prime} b^{\prime}}{d}$ divides n, and so on. By applying the steps above to a^{\prime} and b^{\prime} a finite number of times, we could either find a k^{\prime} equal to 1 or we could get new proper divisors of n, that are finite in number. We want to study the case $n=\frac{a^{\prime} b^{\prime}}{d}$. Let

$$
v a^{\prime}+z b^{\prime}=d
$$

be a Bézout identity, we assume $v a^{\prime}-z b^{\prime} \in S$, and we set

$$
h d=\operatorname{gcd}\left(v a^{\prime}+z b^{\prime}, n\right)
$$

We have that $h \frac{a^{\prime} b^{\prime}}{d}=h n$ divides n, that is $h n=n$ and $h=1$. It implies $d \in S$, that is a contradiction arising from the assumption $v a^{\prime}-z b^{\prime} \in S$. Hence $v a^{\prime}-z b^{\prime} \notin S$ and $\left\{0, v a^{\prime}, d, z b^{\prime}\right\}$ is a non-chordal cycle of G. It ends the induction basis. For the inductive step, we suppose the statement true for $r-1$ and we prove it for r. We have to prove that if $\operatorname{gcd}\left(a_{1}, \ldots, a_{r}\right) \notin S$ then G is not chordal. By inductive hypothesis if $\operatorname{gcd}\left(a_{1}, \ldots, a_{r-1}\right) \notin S$ then G will be not chordal. Hence we assume $b=\operatorname{gcd}\left(a_{1}, \ldots, a_{r-1}\right) \in S$. By applying the inductive basis to a_{r} and b, we obtain that G is not chordal.

Now we are able to complete the proof of Theorem 2.1.
Proof of Theorem 2.1. \Rightarrow). Under the hypothesis that G is chordal, we also assume that G is connected and we prove that $d=1$, that is $G=K_{n}$. By contradiction assume that the graph is not complete, namely $G=$ $C_{n}\left(a_{1}, \ldots, a_{s}\right)$ with $s<\left\lfloor\frac{n}{2}\right\rfloor$. From Lemma 1.1, G is connected if and
only if $\operatorname{gcd}\left(a_{1}, \ldots, a_{s}, n\right)=1$. Let $b=\operatorname{gcd}\left(a_{1}, \ldots, a_{s}\right)$.
If $b \notin S$, then from Lemma $2.4 G$ is not chordal. If $b \in S$, we have $1=\operatorname{gcd}\left(n, a_{1}, \ldots, a_{s}\right)=\operatorname{gcd}\left(n, \operatorname{gcd}\left(a_{1}, \ldots, a_{s}\right)\right)=\operatorname{gcd}(n, b)$. If $1 \notin S$, then from Lemma 2.4, G is not chordal. Then $1 \in S$ and from Lemma 2.2 the graph G is not chordal, that is a contradiction. If G is not connected, then it has $a=\operatorname{gcd}(n, S)$ distinct components, each of $m=\operatorname{ord}(a)$ vertices. By Lemma $2.2, S=\left\{a, 2 a, \ldots,\left\lfloor\frac{m}{2}\right\rfloor a\right\}$ and each component is the complete graph K_{m}.

Example 2.5. Here we present three examples of non-chordal circulant graphs $C_{n}(S)$.
(1) Take $n=15$ and $S=\{2,3,4,7\}$. If we take $a=2$, then $\operatorname{ord}(a)=15$ and $2 a=4,3 a=6, n-4 a=7$, and $n-6 a=3$. Hence, we are in case (1S) of Lemma 2.2 with $S=\{a, 2 a, 4 a, 6 a\}$. We observe that the cycle on vertices

$$
\{0, a, 3 a, 4 a\}=\{0,2,6,8\}
$$

is not chordal because $6 \notin S$.

Figure 2. $C_{15}(2,3,4,7)$
(2) Take $n=10, S=\{3,4\}$ and $a=3$. We have ord $(a)=10$. Moreover $n-2 a=4$, hence this is the case (2S) of Lemma 2.2 with $S=\{a, 2 a\}$. We have $\left\lfloor\frac{n}{2}\right\rfloor=\left\lceil\frac{n}{2}\right\rceil=5$, and

$$
5=q r+t=2 \cdot 2+1 .
$$

Hence, we take the cycle on vertices

$$
\{0,2 a, 4 a, 5 a, 7 a, 9 a\}=\{0,6,2,5,1,7\}
$$

Figure 3. $C_{10}(3,4)$

Figure 4. $C_{30}(2,3,4,5,6,8,9,10,12,14,15)$
it is not chordal because 1,2 and 5 do not belong to S.
(3) We take $n=30$ and $S=\{2,3,4,5,6,8,9,10,12,14,15\}$. We observe that $\operatorname{gcd}(5,2)=1 \notin S$, hence we are in the case of Lemma
2.4 with $a_{1}=a=5$ and $a_{2}=b=2$. We observe that $\operatorname{ord}(a)=$ $6, \operatorname{ord}(b)=15$ and $2 a=10,3 a=15, b, 2 b, \ldots, 7 b \in S$. We take a Bezóut identity of a and b

$$
1=r a+s b=5 \cdot 1-2 \cdot 2 .
$$

We take the cycle on vertices $\{0,5,1,-4\}$. The quantity $r a-s b=$ $5+4=9$ belongs to S and $k=\operatorname{gcd}(9,30)=3$, while $\operatorname{gcd}(k, a b)=$ $\operatorname{gcd}(3,10)=1$ and $n=a b k=30$. Hence we write

$$
1=v a b+s k=10-3 \cdot 3
$$

and we take the cycle on vertices $\{0,10,1,-9\}$. The quantity $10+$ $9=19$ does not belong to S, hence the cycle above is not chordal.
In Figures 2[3] 4 we plot the graphs of the examples, highlighting the nonchordal cycles.

3. Induced Matching Number of Circulant Graphs

In this section we compute the induced matching number for any circulant graph $C_{n}(S)$. Then we plot a table representing the behaviour of reg $R / I(G)$ with respect to the lower bound described in Theorem 1.3 , when G is the d-th power of the cycle, namely $G=C_{n}(1,2, \ldots, d)$. For the computation we used Macaulay2.
Definition 3.1. Let G be a graph with edge set $E(G)$. We say that two edges e, e^{\prime} are adjacent if $e \cap e^{\prime}=v$ and $v \in V(G)$. We say that e, e^{\prime} are 2-adjacent if there exist $v \in e$ and $u \in e^{\prime}$ such that $\{u, v\} \in E(G)$.

From Definition 3.1, an induced matching of G is a subset of $E(G)$ where the edges are not pairwise adjacent or 2 -adjacent. Then we have the following

Theorem 3.2. Let $G=C_{n}(S)$ be a connected circulant graph, let $s=|S|$ and let $r=\min S$. Then $\nu(G)=\left\lfloor\frac{|E(G)|}{t}\right\rfloor$ where

$$
t= \begin{cases}s^{2}+(|A|+1) s & \text { if } \frac{n}{2} \notin S \\ s^{2}+(|A|+1) s-2 & \text { if } \frac{n}{2} \in S,\end{cases}
$$

with

$$
A=\{r+a: a \in S \quad \text { and } r+a \in V(G) \backslash S\} .
$$

If G has $d=\operatorname{gcd}(n, S)$ components, then $\nu(G)=d \cdot \nu\left(C_{n / d}\left(S^{\prime}\right)\right)$, where $S^{\prime}=\{s / d: s \in S\}$.
Proof. To explain the idea of proof, we first study the simple case. It is well known that the cycle C_{n} has ν equals to $\left\lfloor\frac{n}{3}\right\rfloor$. It happens because, by fixing an orientation, to get the induced matching we partition the n edges of the cycle in sets of 3 adjacent edges, one in the matching, one not in the
induced matching because adjacent to the first one and another one not in the induced matching because 2 -adjacent to the first one. We observe that $A=\{2\}$ and the formula $t=1+(1+1) \cdot 1=3$ holds in this case. Hence the cardinality of the maximum induced matching is equal to the number of the sets above,

$$
\nu(G)=\left\lfloor\frac{n}{3}\right\rfloor .
$$

The example shows that $\nu(G)$ corresponds to the number of sets consisting in one edge in the matching and the adjacent or 2 -adjacent edges to that one. So we have only to count the edges.
We assume that $s=|S|, r=\min S$ and $S=\left\{a_{0}=r, a_{1}, \ldots, a_{s-1}\right\}$, we assume that the edge $e=\{0, r\}$ is in the induced matching, and let E^{\prime} be the set containing e and the edges adjacent or 2-adjacent to e. The edges adjacent to e are $\left\{0, a_{i}\right\} i=1, \ldots, s-1$ and $\left\{r, b_{i}=r+a_{i}\right\}$ for $i=0, \ldots, s-1$. The above edges are all distinct. The edges 2 -adjacent to e are $\left\{a_{j}, a_{j}+a_{i}\right\}$ for $j \in\{1, \ldots, s-1\}, i \in\{0, \ldots, s-1\}$ and $\left\{b_{j}, b_{j}+a_{i}\right\}$ for $i, j \in\{0, \ldots, s-1\}$. The edges above may not be all distinct. In fact, it can happen that some b_{j} coincides with some a_{k}, in that case $\left\{b_{j}, b_{j}+a_{i}\right\}=$ $\left\{a_{k}, a_{k}+a_{i}\right\}$ for any $i \in\{0, \ldots, s-1\}$. Then, we only consider $\left\{b_{j}, b_{j}+a_{i}\right\}$ for $i \in\{0, \ldots, s-1\}$ when $b_{j} \in A$. To sum up, in the set E^{\prime} we find:
a) The s edges $\left\{0, a_{i}\right\}$ for $i \in\{0, \ldots, s-1\}$;
b) The s^{2} edges $\left\{a_{j}, a_{j}+a_{i}\right\}$ for $i, j \in\{0, \ldots, s-1\}$;
c) The $s \cdot|A|$ edges $\left\{b, b+a_{i}\right\}$ for $i \in\{0, \ldots, s-1\}$ and $b \in A$.

If $a_{s-1}=\frac{n}{2}$, then $b_{s-1}=r+a_{s-1} \in A$ and the edges $\left\{a_{s-1}, a_{s-1}+a_{s-1}=0\right\}$ of point b) and $\left\{b_{s-1}, b_{s-1}+a_{s-1}=r\right\}$ of point c) are already counted. The assertion follows.

For the case disconnected, let $d=\operatorname{gcd}(n, S)$ be the number of disjoint connected components of the graph G. Since the components are disjoint, it turns out that $\nu(G)$ is d times the induced matching number of one component. That component is $C_{n / d}\left(S^{\prime}\right)$ where $S^{\prime}=\{s / d: s \in S\}$, hence the assertion follows.

The formula in Theorem 3.2 can be written in a compact way when G is the d-th power of a cycle. We set $C_{n}^{d}=C_{n}(\{1,2, \ldots, d\})$.

Corollary 3.3. Let C_{n}^{d} be the d-th power of a cycle and $d<\left\lfloor\frac{n}{2}\right\rfloor$. Then

$$
\nu(G)=\left\lfloor\frac{n}{d+2}\right\rfloor .
$$

Proof. We want to apply Proposition 3.2, with $s=d$ and $|E(G)|=n d$. We have $r=1$ and $A=\{d+1\}$. Hence it follows that $t=d^{2}+d+d \cdot 1=$ $d^{2}+2 d=d(d+2)$, that is

$$
\nu(G)=\left\lfloor\frac{n d}{d(d+2)}\right\rfloor=\left\lfloor\frac{n}{d+2}\right\rfloor .
$$

In Table 1, we compare the values of $\operatorname{reg} R / I\left(C_{n}^{d}\right)$ for $n \leq 15$ and $1 \leq$ $d \leq\left\lfloor\frac{n}{2}\right\rfloor$. We highlight that the regularity of $R / I(G)$ is strictly greater than $\nu(G)$ in two different cases:
(1) when $G=C_{n}$ and $n \equiv 2(\bmod 3)$.
(2) when $G=C_{n}^{\left\lfloor\frac{n}{2}\right\rfloor-1}$ and n is odd.

The two anomalous cases were expected: in case (1), we know from Theo$\operatorname{rem} 1.4$ that reg $R / I(G)=\nu+1$; in case $(2), \nu(G)=1$ while $\bar{G}=C_{n}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$ that is a cycle and hence it is not chordal; hence from Theorem 1.2 we know that $\operatorname{reg} R / I(G)=2$.

In general, it seems that apart from cases (1) and (2), the CastelnuovoMumford regularity of the d-th power of a cycle grips the bound of $\nu(G)$.

G	$\nu(G)$	$\operatorname{reg} R / I(G)$	G	$\nu(G)$	$\operatorname{reg} R / I(G)$
$C_{6}(\{1\})$	2	2	$C_{12}(\{1,2,3\})$	2	2
$C_{6}(\{1,2\})$	1	1	$C_{12}(\{1,2,3,4\})$	2	2
$C_{7}(\{1\})$	2	2	$C_{12}(\{1,2,3,4,5\})$	1	1
$C_{7}(\{1,2\})$	1	2	$C_{13}(\{1\})$	4	4
$C_{8}(\{1\})$	2	3	$C_{13}(\{1,2\})$	3	3
$C_{8}(\{1,2\})$	2	2	$C_{13}(\{1,2,3\})$	2	2
$C_{8}(\{1,2,3\})$	1	1	$C_{13}(\{1,2,3,4\})$	2	2
$C_{9}(\{1\})$	3	3	$C_{13}(\{1,2,3,4,5\})$	1	2
$C_{9}(\{1,2\})$	2	2	$C_{14}(\{1\})$	4	5
$C_{9}(\{1,2,3\})$	1	2	$C_{14}(\{1,2\})$	3	3
$C_{10}(\{1\})$	3	3	$C_{14}(\{1,2,3\})$	2	2
$C_{10}(\{1,2\})$	2	2	$C_{14}(\{1,2,3,4\})$	2	2
$C_{10}(\{1,2,3\})$	2	2	$C_{14}(\{1,2,3,4,5\})$	2	2
$C_{10}(\{1,2,3,4\})$	1	1	$C_{14}(\{1,2,3,4,5,6\})$	1	1
$C_{11}(\{1\})$	3	4	$C_{15}(\{1\})$	5	5
$C_{11}(\{1,2\})$	2	2	$C_{15}(\{1,2\})$	3	3
$C_{11}(\{1,2,3\})$	2	2	$C_{15}(\{1,2,3\})$	3	3
$C_{11}(\{1,2,3,4\})$	1	2	$C_{15}(\{1,2,3,4\})$	2	2
$C_{12}(\{1\})$	4	4	$C_{15}(\{1,2,3,4,5\})$	2	2
$C_{12}(\{1,2\})$	3	3	$C_{15}(\{1,2,3,4,5,6\})$	1	2

TABLE 1. The behavior of $\operatorname{reg} R / I(G)$ with respect to $\nu(G)$ for $G=C_{n}^{d}$.

Acknowledgements: I would like to thank Giancarlo Rinaldo for going through the manuscript and making some useful suggestions.

References

[1] F. Boesch, R. Tindell, Circulants and their Connectivities, Journal of Graph Theory 8, 1984, 487-499.
[2] J. Brown, R. Hoshino, Independence polynomials of circulants with an application to music, Discrete Mathematics, 309, 2009, 2292-2304.
[3] J. Brown, R. Hoshino, Well-covered circulant graphs, Discrete Mathematics, 311, 2011, 244-251.
[4] S. Jacques, Betti numbers of graph ideals, Ph.D. Thesis, University of Sheffield, 2004, arXiv:math.AC/0410107
[5] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, Journal of Combinatorial Theory Series A, 113, 2006, 435-454.
[6] R. Fröberg, On Stanley-Reisner rings, Banach Center Publications 26, 1990, 57-70.
[7] G. Rinaldo , Some algebraic invariants of edge ideal of circulant graphs, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2018, 1-11.

Department of Mathematics, University of Trento, via Sommarive, 14, 38123 Povo (Trento), Italy

