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THE PROPORTION OF TREES THAT ARE LINEAR

TANAY WAKHARE∗, ERIC WITYK†, AND CHARLES R. JOHNSON§

Abstract. We study several enumeration problems connected to linear trees, a broad class which includes stars,
paths, generalized stars, and caterpillars. We provide generating functions for counting the number of linear trees
on n vertices, characterize the asymptotic growth rate of the number of nonisomorphic linear trees, and show that
the distribution of k-linear trees on n vertices follows a central limit theorem.

1. Introduction

A high degree vertex (HDV) in a simple undirected graph is one of degree at least 3. A tree is called linear if all
of its HDV’s lie on a single induced path, and k-linear if there are k HDV’s. The linear trees include the familiar
classes of paths, stars, generalized stars (g-stars, with exactly one HDV), double g-stars [4], and caterpillars [3], etc.
They have become important, as all multiplicity lists of eigenvalues occurring among Hermitian matrices, whose
graph is a given linear tree, may be constructed via a linear superposition principal (LSP) that respects the precise
structure of the linear tree [4, 5]. For other, nonlinear trees, multiplicity lists require different methodology. For a
tree to be nonlinear, there must be at least 4 HDV’s (and at least 10 vertices altogether). An example of a nonlinear
tree and a linear tree, both on 13 vertices, is given in Figure 1.1.

Figure 1.1. Nonlinear and 3-linear trees on 13 vertices (HDVs in red)

Linear trees are a substantial generalization of caterpillars, and the problem of counting the number of non-
isomorphic linear trees is significantly harder than for caterpillars. We define a bivariate generating function for
the number of k-linear trees on n vertices, which enables the fast computation of these numbers. Additionally,
we are able to obtain asymptotic growth rates which show that the probability that a randomly chosen tree on n

vertices will be linear approaches 0 as n → ∞. This shows that while the LSP is a useful characterization, it has
limited applicability to studying the spectra of general trees. As n increases, the LSP characterizes the spectra
of an asymptotically vanishing proportion of all trees. However, the proportion of linear trees vanishes slowly, so
that the LSP is very important, especially for small numbers of vertices. We conclude with an investigation of the
distribution of k-linear trees on n vertices, and show that this satisfies a central limit theorem.
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Table 1. [7, Appendix A] The number of k-linear trees on n vertices

n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 Total

10 25 56 22 1 0 0 0 0 0 0 0 105
11 36 114 74 6 0 0 0 0 0 0 0 231
12 50 224 219 37 1 0 0 0 0 0 0 532
13 70 441 576 158 8 0 0 0 0 0 0 1,254
14 94 733 1,394 591 58 1 0 0 0 0 0 2,872
15 127 1,252 3,150 1,896 304 9 0 0 0 0 0 6,739
16 168 2,091 6,733 5,537 1,342 82 1 0 0 0 0 15,955
17 222 3,393 13,744 14,812 5,085 508 11 0 0 0 0 37,776
18 288 5,408 26,969 37,133 17,232 2,635 112 1 0 0 0 89,779
19 375 8,440 51,185 87,841 53,200 11,523 804 12 0 0 0 213,381
20 480 12,982 94,323 198,267 152,316 44,704 4,730 145 1 0 0 507,949
21 616 19,650 169,453 429,199 409,105 156,513 23,451 1,182 14 0 0 1,209,184
22 781 29,388 297,533 896,731 1,040,846 504,869 102,186 7,862 184 1 0 2,880,382
23 990 43,394 512,006 1,814,978 2,526,691 1,517,918 400,074 43,602 1,682 15 0 6,861,351
24 1,243 63,430 865,050 3,572,810 5,887,488 4,300,385 1,434,484 211,388 12,381 226 1 16,348,887
25 1,562 91,754 1,437,739 6,858,774 13,231,478 11,567,238 4,773,006 915,546 75,951 2,288 17 38,955,354

2. Generating Functions

There are strong links between nonisomorphic linear trees and partitions, which are famously difficult to enu-
merate. In constructing a generating function for k-linear trees on n vertices, we will rely the generating function
for integer partitions. Let

P (x) :=

∞
∏

i=1

1

1− xi
=

∞
∑

n=0

p(n)xn

denote the generating function for p(n), the number of unrestricted partitions of n. Let rn,k be the number of
reflections of linear trees on n vertices with k HDV’s (which counts linearly symmetric trees once and linearly
asymmetric trees twice), and let sn,k denote the number of linearly symmetric trees on n vertices with k HDV’s.
Letting an,k denote the number of non-isomorphic k-linear trees on n vertices, we deduce

an,k =
1

2
(rn,k + sn,k) .

The following generating function allows us to compute recurrences for the coefficients which allow for fast compu-
tation of an,k.

Theorem 1. The generating function for k-linear trees on n vertices is

2

∞
∑

n=1

∞
∑

k=0

an,kx
nyk =

(

P (x)− 1

1− x

)2
x2y2

(1− x+ xy − xyP (x))

+
1

1− x

(

P (x2)− 1

1− x2

)

x2y2
(

1− (P (x2)−1)x2y2

1−x2

)

+

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3y3
(

1− (P (x2)−1)x2y2

1−x2

) .

Proof. First, we enumerate the nonisomorphic generalized stars on n vertices. Since two g-stars are non-isomorphic if
and only if the lengths of their arms differ, we notice a one-to-one correspondence between nonisomorphic generalized
stars and partitions. In particular, the number of nonisomorphic g-stars on n vertices is p(n−1) (the −1 accounting
for the designated central vertex), with each partition corresponding to a distinct set of possible arm lengths. Linear
trees are formed from generalized stars on ≥ 2 vertices, with intermediate paths of arbitrary length. Therefore, we
will use the generating function for the number of non-isomorphic generalized stars on ≥ 2 vertices, which is

x (P (x) − 1) = x

(

∞
∑

n=0

p(n)xn − 1

)

=

∞
∑

n=2

p(n− 1)xn.

Let an exterior star be a generalized star at the end of the linear tree. Such stars must have a central vertex of
degree ≥ 2, not counting the concatenating path. Therefore, there is a bijection between partitions of n − 1 with
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Figure 2.1. The p(3) = 3 non-isomorphic generalized stars on 4 vertices (star centers in red)

≥ 2 parts and non-isomorphic exterior stars on n vertices. Since there is only a single partition of n with one part,
n itself, the generating function for exterior stars is

x

(

P (x)− 1

1− x

)

= x

(

∞
∑

n=0

p(n)xn −
∞
∑

n=0

xn

)

=

∞
∑

n=2

(p(n− 1)− 1)xn.

Additionally, up to isomorphism, there is a unique path of length i, so that the generating function for the number
of paths on n vertices has the form 1

1−x
.

Therefore, the number of linear trees generated by concatenating an exterior star, k − 2 interior stars, and a
trailing exterior star, by k − 1 paths of arbitrary length, is

∞
∑

n=1

∞
∑

k=0

rn,kx
nyk =

∞
∑

k=2

(

xP (x)− x

1− x

)2

(xP (x) − x)
k−2 1

(1 − x)k−1
yk

=

(

P (x)− 1

1− x

)2 ∞
∑

k=2

(P (x)− 1)k−2 1

(1 − x)k−1
xkyk

=

(

P (x)− 1

1− x

)2
x2y2

(1− x+ xy − xyP (x))
.

We now enumerate sn,k, the number of reflectionally symmetric k-linear trees on n vertices. These have a freely
chosen central component, after which one half of the tree completely determines the other half. The component is
a path when k is even, and a generalized star when k is odd.

If the central component is a path, it is free to have an arbitrary number of vertices, while every other component
on n vertices determines 2n vertices due to reflectional symmetry. Therefore, we count the number of 2k-linear
trees which can be generated by concatenating an exterior star, k − 1 interior stars, a freely chosen central path,
and their reflections:

∞
∑

k=2

(

x2P (x2)− x2

1− x2

)

(

x2P (x2)− x2
)k−2 1

(1− x2)k−2

1

1− x
y2k−2

=
1

1− x

(

P (x2)− 1

1− x2

) ∞
∑

k=2

(

P (x2)− 1
)k−2 1

(1− x2)k−2
x2k−2y2k−2

=
1

1− x

(

P (x2)− 1

1− x2

)

x2y2
(

1− (P (x2)−1)x2y2

1−x2

) .
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Table 2. [7, Appendix A] The percentage of nonlinear trees on n vertices

n Nonlinear trees Linear Trees % Nonlinear Total
10 1 105 0.9 106
11 4 231 1.7 235
12 19 532 3.4 551
13 47 1,254 3.6 1,301
14 287 2,872 9.1 3,159
15 1,002 6,739 12.9 7,741
16 3,365 15,955 17.4 19,320
17 10,853 37,776 22.3 48,629
18 34,088 89,779 27.5 123,867
19 104,574 213,381 32.9 317,955
20 315,116 507,949 38.3 823,065
21 935,321 1,209,184 43.6 2,144,505
22 2,743,364 2,880,382 48.8 5,623,756
23 7,966,723 6,681,351 53.7 14,828,074
24 22,951,010 16,348,887 58.4 39,299,897
25 65,681,536 38,955,354 62.8 104,636,890

We can conduct a similar analysis for a (2k + 1)-linear tree, where the central component is instead a generalized
star. We obtain the generating function

∞
∑

k=2

(

x2P (x2)− x2

1− x2

)

(

x2P (x2)− x2
)k−2 1

(1− x2)k−1
(xP (x) − x)y2k−1

=

(

P (x2)− 1

1− x2

)

(P (x) − 1)

∞
∑

k=2

(

P (x2)− 1
)k−2 1

(1− x2)k−1
x2k−1y2k−1

=

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3y3
(

1− (P (x2)−1)x2y2

1−x2

) .

Noting that 2an,k = rn,k + sn,k and summing all three of these generating functions completes the proof. �

From this generating function, we can extract the number of k-linear trees on n vertices for small values of n.
Table 1 displays this information for 10 ≤ n ≤ 25. Note that for fixed n, the distribution of k-linear trees appears
to have a dominant contribution at around k ≃ 0.2n. As a corollary of the central limit theorem of Theorem 4, we
will characterize this peak exactly, as lying at ≃ 0.2192n.

3. Asymptotics

We wish to show that linear trees form an asymptotically small subset of all trees. Wityk [7] showed that the
fraction of k-linear trees on n-vertices to the number of trees with k high degrees vertices approaches 0 as the
number of vertices tends to infinity. However, this was only for a fixed k, and only partial results were shown
for the natural extension to account for all linear trees. Heuristically, we expect the proportion of trees that are
linear to decrease as the number of vertices increases. Given a large tree, we can color all the high degree vertices.
The probability that these HDV’s all lie on a single induced path intuitively decreases as the number of vertices
increases. The next theorem asymptotically proves this result, and Table 2 shows this phenomenon for small values
of n.

We can use standard techniques from analytic combinatorics to extract information about the number of non-
isomorphic linear trees on n vertices. In particular, we describe the asymptotic growth rate of the number of
nonisomorphic linear trees, and show that the path length satisfies a central limit theorem. The methods in this
section are all pulled from Flajolet and Sedgewick’s monumental treatise [2].

Theorem 2. The number of nonisomorphic linear trees on n vertices, an, is asymptotically given by

an ∼ 1

2

(

P (x0)−
1

1− x0

)2
x0

P (x0) + x0P ′(x0)

(

1

x0

)n

≃ 0.7560(2.3822)n,
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where x0 = 0.4196 . . . is the unique real solution, 0 < x < 1, of

xP (x) = x

∞
∏

i=1

1

1− xi
= 1.

Proof. The proof is based on meromorphic singularity analysis. We first set y = 1 in the bivariate generating
function of Theorem 1, giving

2

∞
∑

n=1

anx
n =

(

P (x) − 1

1− x

)2
x2

(1− xP (x))
+

1

1− x

(

P (x2)− 1

1− x2

)

x2

(

1− (P (x2)−1)x2

1−x2

)

+

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3

(

1− (P (x2)−1)x2

1−x2

)

=

(

P (x) − 1

1− x

)2
x2

1− xP (x)
+

(

P (x2)− 1

1− x2

)

x2(1 + x)

1− x2P (x2)

+

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3(1 − x2)

1− x2P (x2)
.

We know that P (x) is analytic for x ∈ C, |x| < 1. Therefore, the only poles inside the unit disc arise from
the denominator terms of 1 − xP (x) and 1 − x2P (x2). Since xP (x) is strictly increasing on the real line and
limx→1− xP (x) = ∞, there is a unique real root x0 = 0.4196 . . . to the equation xP (x) = 1 satisfying 0 < x0 < 1.

The denominator term of 1− x2P (x2) contributes a singularity at x
1

2

0 = 0.6478 . . . > x0. Also, the pole at x0 is the
only pole on the circle x = |x0|, since |xP (x)| < x0P (x0) if x 6= x0. Therefore, x0 is the dominant singularity, in
that it is the pole with smallest absolute value.

Therefore, appealing to the methods of [2, Chapter IV], we immediately have that

2an ∼
(

P (x0)−
1

1− x0

)2
x0

P (x0) + x0P ′(x0)

(

1

x0

)n

.

Inn particular, note that in the language of [2, Chapter V.2, p. 294], we are dealing with a supercritical sequence

with G(x) = xP (x) and G′(x) = P (x) + xP ′(x). Hence the result follows directly from [2, Theorem V.1]. �

We can then obtain statistics about the number of HDV’s in a random linear tree, by conducting another
singularity analysis of the generating function of Theorem 1. We will apply the moving pole analysis of Flajolet
and Sedgewick. In what follows, for any function f(u) analytic at u = 1 and satisfying f(1) 6= 0, we set

(3.1) m(f) =
f ′(1)

f(1)
, v(f) =

f ′′(1)

f(1)
+

f ′(1)

f(1)
−
(

f ′(1)

f(1)

)2

.

We will appeal to the following theorem to prove our main result.

Theorem 3. [2, Thm IX.12 (Algebraic singularity schema)] Let F (x, y) be a function that is bivariate analytic at

(x, y) = (0, 0) and has non-negative coefficients. Assume also the following conditions:

(1) Analytic perturbation: there exist three functions A,B,C analytic in a domain D = {|x| ≤ r}×{|y−1| < ǫ},
such that, for some r0 with 0 < r0 ≤ r and ǫ > 0, the following representation holds, with α 6∈ Z≤0,

F (x, y) = A(x, y) +B(x, y)C(x, y)−α;

furthermore, assume that in |x| ≤ r, there exists a unique root ρ of the equation C(x, 1) = 0, that this root

is simple, and that B(ρ, 1) 6= 0.
(2) Non-degeneracy: one has ∂xC(ρ, 1) · ∂yC(ρ, 1) 6= 0, ensuring the existence of a non-constant ρ(y) analytic

at y = 1, such that C(ρ(y), y) = 0 and ρ(1) = ρ.

(3) Variability: one has

v

(

ρ(1)

ρ(y)

)

6= 0.

Then the random variable with probability generating function
[xn]F (x,y)
[xn]F (x,1) converges in distribution to a Gaussian

variable with a speed of convergence that is O(n− 1

2 ). The mean and variance [corrected] are asymptotically linear

in n.
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Theorem 4. Define the mean and variance

µ =
P (x0)− 1

P (x0) + x0P ′(x0)
≃ 0.219273 . . .

σ2 =
(x0 − 1)

(

−1− P ′(x0)x0 + P ′(x0)x
2
0 + P ′(x0)

2x3
0 − P ′′(x0)x

2
0 + P ′′(x0)x

3
0

)

x2
0(P (x0) + x0P ′(x0))3

≃ 0.0567065 . . . .

For large n,
an,k

an
converges in distribution to a Gaussian distribution with mean µn and variance σ2n, with speed

of convergence O(n− 1

2 ), i.e. the normalized random variable

1

σ
√
n

(

an,k

an
− µn

)

converges in distribution to a standard normal distribution.

Proof. We again refer to Theorem 1, that

2

∞
∑

n=1

∞
∑

k=0

an,kx
nyk =

(

P (x)− 1

1− x

)2
x2y2

(1− x+ xy − xyP (x))
(3.2)

+
1

1− x

(

P (x2)− 1

1− x2

)

x2y2
(

1− (P (x2)−1)x2y2

1−x2

)

+

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3y3
(

1− (P (x2)−1)x2y2

1−x2

) .

At y = 1, Equation (3.2) reduces to

(

P (x)− 1

1− x

)2
x2

(1− xP (x))
2

+
1

1− x

(

P (x2)− 1

1− x2

)

x2(1 − x2)

(1− x2P (x2))

+

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3(1− x2)

(1− x2P (x2))
.

By the same singularity analysis as that of Theorem 2, we see that the dominant pole occurs at x0 = 0.4196 . . .
again. Thus at y = 1 we take ρ = x0 = 0.4196 . . . as before. By inspecting Equation (3.2), we see that for y

sufficiently close to 1, the dominant singularity will arise from the term with denominator (1 − x+ xy − xyP (x)),
and the other two terms will be analytic in a sufficiently small neighborhood of (x0, 1). We can thus appeal to
Theorem 3, where we take

A(x, y) =
1

2

1

1− x

(

P (x2)− 1

1− x2

)

x2y2
(

1− (P (x2)−1)x2y2

1−x2

)

+
1

2

(

P (x2)− 1

1− x2

)(

P (x)− 1

1− x2

)

x3y3
(

1− (P (x2)−1)x2y2

1−x2

) ,

B(x, y) =
1

2

(

P (x)− 1

1− x

)2

x2y2(2− 2x+ xy − xyP (x)),

C(x, y) = 1− x+ xy − xyP (x).

Setting

ci,j :=
∂i+j

∂xi∂yj
C(x, y)

∣

∣

∣

∣

(ρ,1)

,



THE PROPORTION OF TREES THAT ARE LINEAR 7

we find

c1,0 = −P (x0)− x0P
′(x0) = −6.3082 . . . ,

c0,1 = x0 − x0P (x0) = x0 − 1 = −0.5804 . . . ,

c1,1 = 1− P (x0)− x0P
′(x0) = −5.3082 . . . ,

c2,0 = −2P ′(x0)− x0P
′′(x0) = −49.5223 . . . ,

c0,2 = 0.

The non-degeneracy condition then simplifies to c0,1c1,0 = 3.6612 . . . 6= 0. Furthermore, we can solve for the local
expansion of the functional equation C(ρ(y), y) = 0 around y = 1, by using standard series reversion techniques [2,
Equation (38), p. 672] to find

ρ(y) = ρ− c0,1

c1,0
(y − 1)−

c21,0c0,2 − 2c1,0c1,1c0,1 + c2,0c
2
0,1

2c31,0
(y − 1)2 +O((y − 1)3)

and thus

ρ(y)

ρ
= 1− P (x0)− 1

P (x0) + x0P ′(x0)
(y − 1)

− (x0 − 1)
(

2P (x0)
2 + 2P ′(x0)− P ′′(x0)x0 + P ′′(x0)x

2
0 + 2P ′(x0)

2x2
0 − 2P (x0)

)

2x0(P (x0) + P ′(x0)x0)3
(y − 1)2

+O((y − 1)3)

:= 1− γ(y − 1)− δ(y − 1)2 +O((y − 1)3).

Then, we can expand the inverse to second order, which gives
ρ

ρ(y)
= 1 + γ(y − 1) + (γ2 + δ)(y − 1)2 +O((y − 1)3)

Referring back to definition (3.1), we further deduce

m

(

ρ

ρ(y)

)

= γ, v

(

ρ

ρ(y)

)

= 2(δ + γ2) + γ − γ2 = 2δ + γ + γ2,

which expand to the values of µ and σ2 given in the statement of the theorem. Numerically, we have µ = 0.2192 . . .
as expected from the numerical data, and v = 0.0567 . . . 6= 0, and the variance condition is also verified. Finally,
we appeal to a general remark [2, p. 678] that the asymptotic mean and the variance of our distribution are given
exactly by Equation (3.1). �
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