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AN EQUIVALENT FORMULATION OF CHROMATIC

QUASI-POLYNOMIALS

TAN NHAT TRAN

ABSTRACT. Given a central integral arrangement, the reduction of the

arrangement modulo positive integers q gives rise to a subgroup arrange-

ment in (Z/qZ)ℓ. Kamiya-Takemura-Terao (2008) introduced the no-

tion of characteristic quasi-polynomials, which uses to evaluate the car-

dinality of the complement of the subgroup arrangement. Chen-Wang

(2012) found a similar but more general setting that replacing the inte-

gral arrangement by its restriction to a subspace of Rℓ, and evaluating

the cardinality of the q-reduction complement will also lead to a quasi-

polynomial in q. On an independent study, Brändén-Moci (2014) de-

fined the so-called chromatic quasi-polynomial, and initiated the study

of q-colorings on a finite list of elements in a finitely generated abelian

group. The main purpose of this paper is to verify that the Chen-Wang’s

quasi-polynomial and the Brändén-Moci’s chromatic quasi-polynomial

are equivalent in the sense that the quasi-polynomials enumerate the car-

dinalities of isomorphic sets.

1. INTRODUCTION

Background. In the simplest setting, when a finite list A of integer

vectors in Zℓ is given, we may naturally associate to it a central hyper-

plane arrangement A(R) in Rℓ, which we call integral arrangement. The

study of a hyperplane arrangement typically goes along with the study of

its characteristic polynomial as the polynomial carries combinatorial and

topological information of the arrangement (e.g., [OS80]). In this paper,

we are mainly interested in an arithmetical method, generally known as

“finite field method”, for studying the integral arrangements. The method

probably was first initiated by [CR70] and developed into a systematic tool

by Athanasiadis [Ath96], after closely related techniques have been used by

Björner-Ekedahl [BE97], and Blass-Sagan [BS98] to solve problems related

to subspace arrangements. Roughly speaking, suppose that the integral ar-

rangement A(R) associated to the list A is given, we can take coefficients
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2 TAN NHAT TRAN

modulo a positive integer q and get an arrangement A(Z/qZ) of subgroups

in (Z/qZ)ℓ. One of the reasons why the method is regarded as the “fi-

nite field method” presumably comes from one of the most well-known and

fundamental results in the theory. It states that when q is a sufficiently large

prime, the arrangement A(Z/qZ) now is defined over the finite field Fq, and

the cardinality of its complement coincides with χA(R)(q), the evaluation of

the characteristic polynomial χA(R)(t) of A(R) at q (e.g., [Ath96, Theorem

2.2]).

The fundamental theorem mentioned above is efficiently applicable to

compute the characteristic polynomials of several arrangements arising from

root systems (e.g., [Ath96]). Kamiya-Takemura-Terao [KTT08] showed

that the cardinality of the complement is actually a quasi-polynomial in q,

and named this the characteristic quasi-polynomial of A as its 1-constituent

is identical with χA(R)(t). Chen-Wang [CW12] considered the restriction of

the integral arrangement to a subspace of Rℓ, and proved a stronger result

that after taking reduction modulo q of the restricted arrangement, the car-

dinality of the complement of is also a quasi-polynomial in q. Later on,

Yoshinaga ([Yos16], [Yos18]) extended the analysis on the deformations of

root system arrangements and enhanced the calculation of the characteristic

quasi-polynomials via the connection with Ehrhart quasi-polynomials.

In yet another consideration, given a finite list A in Zℓ, we can also as-

sociate it a toric arrangement A(G) in the torus Gℓ with G is S1 or C×

(e.g., [DCP05], [Moc12]). Although we are concerned with the subtori

(hypersurfaces) instead of the hyperplanes, the “finite field method” re-

mains alive and is formulated in various ways (e.g., [Law11], [ERS09],

[ACH15]). To compute and even to make a broader understanding the

characteristic polynomial, an arithmetical generalization of the ordinary

Tutte polynomial [Tut54], the arithmetic Tutte polynomial was introduced

[Moc12]. These polynomials are currently receiving increasing attention

(e.g., [DM13], [FM16]). Brändén-Moci [BM14] defined the Tutte quasi-

polynomial associated to a finite list of elements in a finitely generated

abelian group. This quasi-polynomial not only produces the interpolation

between the Tutte polynomial and the arithmetic Tutte polynomial but also

gives rise to chromatic quasi-polynomial and flow quasi-polynomial. These

are group-theoretical counterparts of the graphic chromatic and flow poly-

nomials which proved to have an application to colorings and flows on CW

complexes [DM].

Our result. A newly introduced notion of G-Tutte polynomials [LTY17]

establishes a common generalization of several “Tutte-like” polynomials

including all of the (quasi-)polynomials mentioned previously. In particular,

the notion of G-Tutte polynomials is useful that enables us to unify the
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objects. We take the advantage to get the result that the Chen-Wang’s quasi-

polynomial and the Brändén-Moci’s chromatic quasi-polynomial are “the

same” in the sense that any Chen-Wang’s quasi-polynomial is a chromatic

quasi-polynomial and vice versa (equalities (3.3) and (3.4)).

Organization of the paper. The remainder of the paper is organized

as follows. In Section 2, we recall definitions of the characteristic, Chen-

Wang’s quasi-polynomials (§2.1), the chromatic quasi-polynomials (§2.2)

and briefly recall the motivations of why they have been defined. In Sec-

tion 3, after recalling the basic facts of G-Tutte polynomials, we show

the equivalence of the chromatic quasi-polynomials and the Chen-Wang’s

quasi-polynomials (equalities (3.3) and (3.4)). In §3.2, we give a Deletion-

Contraction formula (Theorem 3.7) for the chromatic quasi-polynomials.

By using the language of chromatic quasi-polynomials, we also give a dis-

cussion to a problem asked by Chen-Wang (Problem 3.11). In Section 4,

we generalize the fundamental theorem in the primary “finite field method”

applied to any R-plexification. That is, the 1-constituent of the chromatic

quasi-polynomial of a list A either is 0 or agrees with the characteristic

polynomial of the corresponding R-plexification A(R), and the character-

istic polynomial of any R-plexification A(R) can be computed by the 1-

constituent of the chromatic quasi-polynomial of the deletion list of A by

the list of its torsion elements (Theorem 4.4 and Proposition 4.5).

2. PRELIMINARIES

Let us first fix some definitions and notations throughout the paper.

A function f : Z → Z is called a quasi-polynomial if there exist ρ ∈ Z>0

and polynomials gk(t) ∈ Z[t] (1 ≤ k ≤ ρ) such that for any q ∈ Z>0,

f(q) = gk(q),

when q ≡ k mod ρ. The number ρ is called a period and the polynomial

gk(t) is called the k-constituent of f(q).
Let Γ be a finitely generated abelian group, and let A ⊆ Γ be a finite

list (multiset) of elements in Γ. We will use the term pair (A,Γ) to refer to

these objects.

For each sublist S ⊆ Γ, we denote by rS the rank (as an abelian group) of

the subgroup 〈S〉 ≤ Γ generated by S. By the Structure Theorem, we may

write Γ/〈S〉 ≃
⊕nS

i=1 Z/dS,iZ⊕ ZrΓ−rS where nS ≥ 0 and 1 < dS,i|dS,i+1.

The LCM-period ρA of A is defined by

ρA := lcm(dS,nS
| S ⊆ A).

Given a group K, denote by Ktor the torsion subgroup of K. Denote

Stor := S ∩ Γtor.
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We are going to investigate one of typical problems in enumerative com-

binatorics: counting the sizes of sets which depend on positive integers q.

Our motivated example is the graphic chromatic polynomials. Let G =
(V,E) be a graph. Enumerating the set cG(q) of all proper q-colorings, i.e.,

labelings x ∈ {1, . . . , q}#V such that adjacent vertices get different labels:

if (ij) ∈ E then xi 6= xj , gives rise to a polynomial in q. The polynomial

cG(q) is broadly known as the chromatic polynomial of G, going back to

Birkhoff and Whitney. More generally, it happens quite often that enumer-

ating the cardinalities of sets will lead to quasi-polynomials. One of the

most famous examples is that given a rational polytope P ⊆ Rd, the func-

tion #(qP ∩ Zd) for q ∈ Z>0 agrees with a quasi-polynomial, called the

Ehrhart quasi-polynomial.

2.1. Characteristic and Chen-Wang’s quasi-polynomials. Our next and

important example that a quasi-polynomial appears in the counting prob-

lem list is that of characteristic quasi-polynomials. We will define the

characteristic quasi-polynomials in a slightly different language to what

has been stated in the Introduction part. For instance, the arrangement

A(Z/qZ) called q-reduction arrangement in [KTT08] and its complement

will not appear here but later in Section 3.1 after invoking the notion of

G-plexifications. We specify Γ = Zℓ. Let q ∈ Z>0, and set (Z/qZ)× :=
(Z/qZ)r {0}. For simplicity of notation, we use the same symbols A and

z for the realizations of the list A ⊆ Zℓ and the element z ∈ (Z/qZ)ℓ as

matrices of size ℓ×#A and 1× ℓ, respectively. Denote

KTT(A,Zℓ; q) := {z ∈ (Z/qZ)ℓ | z · A ∈ ((Z/qZ)×)#A}.

We agree that KTT(∅,Zℓ; q) = (Z/qZ)ℓ, thought of as no constraints on

z. Kamiya-Takemura-Terao [KTT08] produced two different methods with

one of them relies on the theory of Ehrhart quasi-polynomials to show

that #KTT(A,Zℓ; q) is a monic quasi-polynomial in q with a period ρA.

The quasi-polynomial is called the characteristic quasi-polynomial of A.

The name really explains the main reason of why the quasi-polynomial

was introduced as its generality influences the study of real hyperplane

arrangements. That is, its 1-constituent coincides with the characteristic

polynomial (e.g., [OT92, Definition 2.52]) of the hyperplane arrangement

{Hα | α ∈ A} in Rℓ with Hα is the hyperplane orthogonal to α (e.g.,

[Ath96], [KTT08]).

Let B be another finite list in Zℓ. Chen-Wang [CW12] considered a more

general setting

CW(A,B,Zℓ; q) :=

{

z ∈ (Z/qZ)ℓ
∣

∣

∣

∣

z · A ∈ ((Z/qZ)×)#A

z · B = (0)#B

}

,
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and applied the elementary divisor method of [KTT08] to show that the

cardinality #CW(A,B,Zℓ; q) is also a quasi-polynomial in q. The notion

of Chen-Wang’s quasi-polynomials strictly generalizes that of characteristic

quasi-polynomials because KTT(A,Zℓ; q) = CW(A,B,Zℓ; q) when B is

the zero matrix, and #KTT(∅,Zℓ; q) = qℓ while #CW(∅,B,Zℓ; q) still

depends on B.

2.2. Chromatic quasi-polynomials. Let (A,Γ) be any pair. Brändén-Moci

[BM14] defined the following set

BM(A,Γ; q) := {ϕ ∈ Hom(Γ,Z/qZ) | ϕ(α) 6= 0 for all α ∈ A},

and proved that its cardinality #BM(A,Γ; q) is a quasi-polynomial in q
for which ρA is a period.1 Thus any characteristic quasi-polynomial is in-

deed a Brändén-Moci’s quasi-polynomial by the following way. Fix a stan-

dard basis (of unit vectors) {ǫ1, . . . , ǫℓ} for Zℓ, and apply the isomorphism

Hom(Zℓ,Z/qZ) ≃ (Z/qZ)ℓ to obtain KTT(A,Zℓ; q) = BM(A,Zℓ; q).
The authors named the quasi-polynomial the chromatic quasi-polynomial

as it generalizes the concept of chromatic polynomials defined on graphs.

We briefly recall how it can be seen. Let G = (V,E) be a graph. Define a

list of vectors L = {αe | e ∈ E} in Z#V as follows. If e = (ij) ∈ E, let

αe be the vector with entry j is 1, entry i is −1, and the other entries are

0. Then the chromatic polynomial cG(q) of G can be expressed as cG(q) =
#BM(L,Z#V ; q) with the unique constituent coincides with the character-

istic polynomial of the real graphical arrangement {{xi = xj} | (ij) ∈ E}
in variable q (e.g., [OT92, Theorem 2.88]).

3. UNIFY THE QUASI-POLYNOMIALS

3.1. G-Tutte polynomials. The Chen-Wang’s quasi-polynomial and the

Brändén-Moci’s chromatic quasi-polynomial arise independently in differ-

ent contexts and may seem unrelated at first glance. We will show that the

notion of G-Tutte polynomials is useful to unify them.

Let G be an arbitrary abelian group. We recall the notions of G-plexifications

andG-Tutte polynomials of A following [LTY17, §3]. We regardHom(Γ, G)
as our total group. For each α ∈ A, we define the G-hyperplane associated

to α as follows:

Hα,G := {ϕ ∈ Hom(Γ, G) | ϕ(α) = 0}.

Then the G-plexification A(G) of A is the collection of the subgroups Hα,G

A(G) := {Hα,G | α ∈ A}.

1Brändén-Moci actually defined a somewhat different period. However, the fact that ρA
is also a period becomes clear after proving Theorem 3.5.
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The G-complement M(A; Γ, G) of A(G) is defined by

M(A; Γ, G) := Hom(Γ, G)r
⋃

α∈A

Hα,G.

For any sublist S ⊆ A, the deletion ArS is defined as a list of elements

in the same group Γ. We also define the contraction A/S as the list of

cosets {α | α ∈ ArS} in the group Γ/〈S〉. The method of identifying sets

discussed in [LTY17, §3.2] enables us to write

(3.1)

M(A/S; Γ/〈S〉, G) =

{

ϕ ∈ Hom(Γ, G)

∣

∣

∣

∣

ϕ(α) = 0, for all α ∈ S
ϕ(α) 6= 0, for all α ∈ Ar S

}

An abelian group G is said to be torsion-wise finite if G[d] := {x ∈ G |
d · x = 0} is finite for all d ∈ Z>0. In what follows, we assume that G is

torsion-wise finite.

Definition 3.1. The G-multiplicity m(S;G) for each S ⊆ A is defined by

m(S;G) := #Hom ((Γ/〈S〉)tor, G) .

Definition 3.2.

(1) The G-Tutte polynomial TG
A (x, y) of A is defined by

TG
A (x, y) :=

∑

S⊆A

m(S;G)(x − 1)rA−rS (y − 1)#S−rS .

(2) The G-characteristic polynomial χG
A(t) of A is defined by

χG
A(t) := (−1)rA · trΓ−rA · TG

A (1− t, 0).

The notion of q-reduction arrangements we mentioned in §2.1 is special-

ization of that of Z/qZ-plexifications. For general Γ, it turns out that

(3.2) BM(A,Γ; q) = M(A; Γ,Z/qZ).

Using formula (3.1) and the equality (3.2) above, we can write

(3.3) CW(A,B,Zℓ; q) = BM((A⊔ B)/B,Zℓ/〈B〉; q).

Thus any Chen-Wang’s quasi-polynomial is a chromatic quasi-polynomial

defined on a certain contraction list. The converse is also true as we will see

in the lemma below.

Lemma 3.3. Given a pair (A,Γ) with Γ ≃ Zr ⊕Z/d1Z⊕ · · ·⊕Z/dsZ, we

can find two lists Q ⊆ L ⊆ Zr+s with rQ = s such that A = L/Q.

Proof. We can view Γ ≃ Zr+s/〈Q〉, where Q = {q1, . . . , qs} ⊆ Zr+s,

qi has di in the (r + i)-th coordinate and 0 elsewhere. Thus A can be

identified with a list of cosets A = {a1, . . . , ak} with ai ∈ Zr+s. We choose

a representative ai ∈ Zr+s for each coset, which is determined up to a linear
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combination of elements from Q. Define Ã := {a1, . . . , ak} ⊆ Zr+s, and

L := Ã ⊔Q ⊆ Zr+s. Thus A = L/Q. �

Remark 3.4. The construction of the lists Ã and L presented in Lemma 3.3

is probably well-known among experts, for instance [DM13, §3.4], wherein

it plays a crucial role in proving the representability of the duals of arith-

metic matroids.

With the notation as in Lemma 3.3, for any pair (A,Γ) we can write

(3.4) BM(A,Γ; q) = CW(Ã, Q,Zr+s; q).

We have verified that the Chen-Wang’s quasi-polynomial and the Brändén-

Moci’s chromatic quasi-polynomial are “equivalent” in the sense that the

quasi-polynomials enumerate the cardinalities of isomorphic sets.

3.2. More on chromatic quasi-polynomials. Given any pair (A,Γ), let us

denote by χquasi
A (q) the chromatic quasi-polynomial of A i.e., χquasi

A (q) =

#M(A; Γ,Z/qZ). We also write fk
A(t) for the k-constituent of χquasi

A (q)
(1 ≤ k ≤ ρA).

Theorem 3.5 ([BM14], [LTY17]). χquasi
A (q) = χ

Z/qZ
A (q).

Proposition 3.6 ([CW12]).

(1) For any k with 1 ≤ k ≤ ρA, fk
A(t) = χ

Z/kZ
A (t).

(2) χquasi
A (q) satisfies the GCD-property i.e. fa

A(t) = f b
A(t) if gcd(a, ρA) =

gcd(b, ρA).

(3) For any k with 1 ≤ k ≤ ρA, if gcd(q, ρA) = k, then χquasi
A (q) = fk

A(q).

Fix α ∈ A. Denote A′ := Ar {α}, and A′′ := A/{α}.

Theorem 3.7 (Deletion-Contraction formula).

χquasi
A (q) = χquasi

A′ (q)− χquasi
A′′ (q).

Proof. This follows directly from [LTY17, Corollary 4.11] and Theorem

3.5 by letting G = Z/qZ. We can also obtain it from [LTY17, Proposition

3.4]. �

Remark 3.8. Using Theorem 3.7, the Deletion-Restriction formula in [CW12,

Lemma 3.3] can be exhibited by setting A as the contraction list (A⊔B)/B,

where A 6= ∅ and B are finite lists in Zℓ.

Corollary 3.9. If k ≤ min{ρA′ , ρA′′}, then the k-constituents satisfy

fk
A(t) = fk

A′(t)− fk
A′′(t).

Proof. Note that the LCM-period of any deletion/contract list is a divisor of

the LCM-period of the parent list. �
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Remark 3.10. For a pair (A,Γ), the LCM-period of χquasi
A (q) is not nec-

essarily the minimum period. We clarify it by an example. Let Γ =
Z/2Z ⊕ Z/2Z, A = {α, β} ( Γ with α = (0, 0) and β = (1, 0). Then

ρA = 2, while the minimum period is actually 1 and χquasi
A (q) = 0 for ev-

ery q. Note that this fact can also be clarified by another class of examples

originated from [CW12, Example 4.2].

We close this section by giving a discussion on a problem asked in [CW12,

Problem 2].

Problem 3.11. Let A1,A2 be finite lists in Zℓ with rA2
= ℓ. Assume that

#CW(A1,A2,Z
ℓ; q) = 0 for every q ∈ Z>0. Then there exists α ∈ A1

such that α ∈ 〈A2〉.

Discussion. The statement is true if and only if ℓ = 1. Assume that ℓ = 1.

By equality (3.3), we rewrite the assumption as #BM(A,Γ; q) = 0 with

A = (A1⊔A2)/A2, and Γ = Z/〈A2〉 ≃ Z/dZ for some d ∈ Z>0. Suppose

to the contrary that for every α ∈ A1, α /∈ 〈A2〉. It is equivalent to saying

that a 6= 0 for all a ∈ A. Set T := {z ∈ C | zd = 1}. For each a ∈ A with

0 ≤ a ≤ d− 1, set Ta := {z ∈ T | za = 1}. Thus

f ρA
A (t) = χ

Z/ρAZ

A (t) = #

(

T r
⋃

a∈A

Ta

)

> 0,

which is a contradiction. For ℓ ≥ 2, we show that the statement is not true

by providing a counterexample. Let us first prove the following fact: if Γ =
Z/d1Z⊕· · ·⊕Z/dℓZ is a finite abelian group containing at least two distinct

nonidentity elements of order 2, say β1, β2, and A = {α ∈ Γ | α 6= 0Γ},

then #BM(A,Γ; q) = 0 for every q ∈ Z>0. Indeed by definition,

BM(A,Γ; q) = {ϕ ∈ Hom(Γ,Z/qZ) | ϕ(α) 6= 0, for all α ∈ A},

= {ϕ ∈ Hom(Γ,Z/qZ) | ϕ is injective}.

If the set above is nonempty, then ϕ(α), ϕ(β) are distinct and both have

order 2 in Z/qZ. This contradiction implies that #BM(A,Γ; q) = 0. With

the notation as in equality (3.4), #CW(Ã, Q,Zℓ; q) = 0. Now choose

Γ = (Z/2Z)ℓ with ℓ ≥ 2, and let A1 = Ã, A2 = Q.

�

4. APPLICATION TO HYPERPLANE ARRANGEMENTS

The aim of this section is to generalize the result in [KTT08] that the

1-constituent of χquasi
A (q) agrees with the characteristic polynomial of some

real arrangement. A natural choice is A(R). However, as long as Γ is any

finitely generated abelian group and the list A may contain torsion elements
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of Γ, we need to know what A(R) is all about. It turns out that we can re-

alize A(R) as a certain (restriction of) integral arrangement. Then we also

would like to compute the characteristic polynomial of any R-plexification

A(R). These facts will be made clear in Theorem 4.4 and Propositions 4.3,

4.5. More generally, we will give other interpretations for every chromatic

quasi-polynomial and their constituents through subspace and toric view-

points in our forthcoming paper [TY18].

In the following setting and until before Proposition 4.3, we restrict our

attention to the case Γ = Zℓ, and view A as a finite list of nonzero vectors

in Zℓ. We regard {ǫ1, . . . , ǫℓ} as the standard basis for Rℓ, and equip to

it the standard inner product (·, ·). Then the R-plexification A(R) is an

arrangement of (possibly repeated) hyperplanes in Rℓ with each hyperplane

Hα,R can be identified with Hα = {x ∈ Rℓ | (α, x) = 0}. Such R-

plexifications are integral arrangements. Let LA(R) be the intersection poset

(e.g., [OT92, §2.1]) of A(R). Note that we require the intersection poset

to be a set, not multiset. Also, the ambient space Rℓ can be added to the

arrangement without affecting the arrangement’s intersection poset. For

each X ∈ LA(R), the localization of A(R) on X is defined by

A(R)X := {H ∈ A(R) | X ⊆ H},

and the restriction A(R)X of A(R) to X is defined by

A(R)X := {H ∩X | H ∈ A(R)rA(R)X}.

Denote by X⊥ the orthogonal complement of X in Rℓ. Set

AX := A ∩X⊥ ⊆ A.

Proposition 4.1. The following formulas are valid at level of multisets:

(1) A(R)X = (AX)(R).
(2) A(R)X = (A/AX)(R).

Proof. The proof of (1) is straightforward. To prove (2), for every X ∈
LA(R) with X 6= Rℓ, we use X =

⋂

H∈A(R)X
H , the longest expression of

X in terms of intersection of the hyperplanes in A(R). To see A(R)X =
(A/AX)(R) as multisets, note that the number of occurrences of each el-

ement Hβ,R ∩ X in these multisets is equal to #{γ ∈ A r AX | γ ∈
spanR{β,AX}}. �

Denote by χH(t) the characteristic polynomial of the real arrangement H
(e.g., [OT92, Definition 2.52]). The following result is essentially appeared

in [CW12, Corollary 2.4] (see also [Ath96, Corollary 6.1]). The idea of the

proof is to use Whitney’s theorem (e.g., [Sta07, Theorem 2.4]) and Propo-

sition 4.1.
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Lemma 4.2. χA(R)X (t) = f 1
A/AX

(t).

Now we give an arrangement theoretic realization for A(R).

Proposition 4.3. Given a pair (A,Γ), if Ator = ∅ then A(R) is an integral

arrangement, and also can be realized as a restriction of L(R) where L is

a finite list in some Zℓ.

Proof. We use the notation as in Lemma 3.3. Set X :=
⋂

qi∈Q
Hqi,R ∈

LL(R), then Q = L ∩ X⊥ = LX . The condition Ator = ∅ is crucial,

otherwise it may happen that Q ( LX . By Proposition 4.1, A(R) =
(L/LX)(R) = L(R)X . This means that A(R) is the restriction of L(R)
to X , and also can be identified with an integral arrangement in RrΓ . �

Next, we prove an important property of χquasi
A (q), which is the main

theorem of this section.

Theorem 4.4. Let (A,Γ) be any pair. Then

χA(R)(t) = f 1
ArAtor(t).

Proof. If Ator = ∅, we apply Proposition 4.3 and Lemma 4.2. If Ator 6= ∅,

note that A(R) and (ArAtor)(R) have the same intersection poset. �

The 1-constituent f 1
A(t) sometimes can be regarded as the chromatic

polynomial defined on a graph, for example, via connection with graphi-

cal arrangements discussed in §2.2. It is well known (and easy to show)

that the graphic chromatic polynomial is identical to 0 if the graph contains

some (graph theoretic) loop. Recall from [DM13, §4.4] that an element

α ∈ A is called a loop (resp. coloop) if α ∈ Γtor (resp. rA = rA′ + 1). An

element α ∈ A that is neither a loop nor a coloop is said to be proper. We

will prove in the proposition below that a similar result holds for f 1
A(t).

Proposition 4.5. Let (A,Γ) be any pair with Ator 6= ∅. Then

f 1
A(t) = 0.

Proof. Use Corollary 3.9 (viewing as k = 1) to reduce the problem to the

case that A = F ⊔ T with F and T 6= ∅ consist of only coloops and loops,

respectively. Then apply Proposition 3.6(1). �

Remark 4.6. There is a neater proof: fix α ∈ Ator and break f 1
A(t) into two

summations with one of them is taken over B ⊆ A, α ∈ B.
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Example 4.7. Let Γ = Z2 ⊕ Z/4Z, A = {α, β, γ} ( Γ with α = (2, 2, 1),
β = (0, 2, 3) and γ = (0, 0, 3). Then ρA = ρAr{γ} = 8, and

χquasi
A (q) =



















0 if gcd(q, 8) = 1,

q2 if gcd(q, 8) = 2,

3q2 − 4q + 4 if gcd(q, 8) = 4,

3q2 − 12q + 12 if gcd(q, 8) = 8.

χquasi
Ar{γ}(q) =



















q2 − 2q + 1 if gcd(q, 8) = 1,

2q2 − 4q + 4 if gcd(q, 8) = 2,

4q2 − 8q + 8 if gcd(q, 8) = 4,

4q2 − 16q + 16 if gcd(q, 8) = 8.

Note that (A r {γ})(R) = L(R)X , where L(R) = {{2x + 2y + z =
0}, {2y + 3z = 0}, {z = 0}} ⊆ R3 and X = {z = 0}, which can also be

identified with the integral arrangement {{x + y = 0}, {y = 0}} in R2. In

either way,

χ(Ar{γ})(R)(t) = f 1
Ar{γ}(t) = t2 − 2t+ 1.
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