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Abstract

Fractional revival occurs between two vertices in a graph if a continuous-time quan-
tum walk unitarily maps the characteristic vector of one vertex to a superposition of
the characteristic vectors of the two vertices. This phenomenon is relevant in quantum
information in particular for entanglement generation in spin networks. We study frac-
tional revival in graphs whose adjacency matrices belong to the Bose-Mesner algebra of
association schemes. A specific focus is a characterization of balanced fractional revival
(which corresponds to maximal entanglement) in graphs that belong to the Hamming
scheme. Our proofs exploit the intimate connections between algebraic combinatorics
and orthogonal polynomials.
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1 Introduction

Quantum walk on graphs is a fundamental area in quantum information and computation. In
quantum computation, it provides a natural generalization of Grover’s celebrated algorithm
to arbitrary graphs (see [19]). In quantum information, it is important for studying transport
problems in quantum spin networks. This was initiated by Bose [2] in the context of perfect
state transfer in quantum spin chains.

A quantum transport problem that is relevant for entanglement generation is fractional
revival. It is known that entanglement is a useful resource in quantum information theory
with many applications (for example, the teleportation protocol). Fractional revival is also
interesting since it captures both aspects of perfect state transfer and periodicity which are
two well-known quantum transport phenomena (see Godsil [15]).

Prior to our work, Genest et al. [14] and Christandl et al. [11] had analytically studied
the fractional revival phenomenon in quantum spin chains. The graphs they studied may be
viewed as weighted paths with (possibly) additional edges connecting vertices at distance two
from each other. Based on techniques from orthogonal polynomials, they observed spectral
conditions for fractional revival to occur in these weighted graphs.

In this work, we study quantum fractional revival mainly on unweighted graphs. Our
motivation is to understand the role of the underlying graph structure on fractional revival
without the benefit of arbitrary real-valued weights. To this end, we study fractional revival
from a graph-theoretic perspective and develop some algebraic machinery useful for analyzing
this phenomenon. Other works with a similar focus include Bernard et al. [1] and our prior
work [7].

The main combinatorial object we focus on is an association scheme. An association
scheme is a set of matrices that satisfy strong regularity relations, which allow for a fairly
combinatorial treatment of their spectral properties. More details will be presented in Section
3. We present a full characterization of when fractional revival occurs in a graph that belongs
to an association scheme — a result that provides a way of easily and efficiently checking
whether or when it occurs. Additionally, fractional revival in association schemes always
features a partition of the vertex set of the graph into pairs of vertices, all of which exhibit
fractional revival at the same time.

Following our general description of fractional revival in association schemes, we make
a connection to distance-regular graphs and orthogonal polynomials, which in turn leads to
our treatment of fractional revival in graphs whose adjacency matrices belong to a special
association scheme — the binary Hamming scheme H(n, 2). Our main result is a necessary
and sufficient condition for balanced fractional revival to occur in this scheme. We then use
this to provide constructions of explicit families of graphs with balanced fractional revival.
Balanced fractional revival is a natural choice since it corresponds to the generation of max-
imally entangled states (which are crucial for many quantum information theory protocols).
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2 Preliminaries

We review some background from algebraic graph theory (see Godsil and Royle [16]). A
graph X is given by a set of its vertices V (X) and a set of it edges E(X). The adjacency
matrix of X , which we denote by A(X), is a 01 matrix whose ab entry is 1 if ab ∈ E(X)
and is 0 otherwise. For a vertex a ∈ V (X) where |V (X)| = n, we use ea to denote the unit
(characteristic) vector of dimension n that is 1 at position indexed by a and is 0 elsewhere.

For a graph X , the continuous-time quantum walk (or transition) matrix of X is given
by

U(t) = e−itA(X) (1)

where t ranges over the reals. This was originally studied by Farhi and Gutmann [13] in the
context of decision trees.

Let a and b be two distinct vertices of X . We say that X admits fractional revival from
a to b at time τ > 0 if for some α, β ∈ C, with β 6= 0 and |α|2 + |β|2 = 1, we have

U(τ)ea = αea + βeb. (2)

In this case, we also say (α, β)-revival occurs from a to b at time τ . By factoring a common
unimodular phase factor, we may assume α is real. So, we say eiζ(α, β)-revival occurs
where α and ζ are real scalars and β is complex. The fractional revival is called balanced if
|α| = |β| = 1/

√
2. In this case, we may simply say balanced fractional revival occurs with

phase ζ .
We say X has (α, β)-revival if it has (α, β)-revival from every vertex at the same time.

This holds if there is a permutation matrix T (with no fixed points) where for some time τ
we have

U(τ) = αI + βT. (3)

We define several other quantum transport properties. The graph X is called periodic at

vertex a at time τ if β = 0 in (2). We say X has perfect state transfer from a to b at time τ
if α = 0 in (2). See Godsil [15] for a survey of these notions.

3 Association Schemes

A symmetric association scheme is a set of n×n symmetric 01-matrices {A0, ..., Ad} satisfying
the following properties:

(i)
∑d

i=0Ai = J , the all 1s matrix.

(ii) The identity matrix is one of them, and we always assume A0 = I.

(iii) AiAj is a linear combination of the matrices in the scheme, for all i and j.

Each matrix in the association scheme is called a class of the scheme. As the classes are
symmetric, property (iii) implies that they all commute. By taking products and linear
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combinations, it follows that the matrices {A0, ..., Ad} generate a commutative algebra of
matrices, called the Bose-Mesner algebra of the scheme, which we denote by A. The as-
sociation scheme always forms a basis for its Bose-Mesner algebra. This is an algebra of
symmetric commuting matrices, thus it can be simultaneously diagonalized. The projec-
tors onto the eigenspaces are also a basis for the algebra, therefore there are d+ 1 of those,
which we typically denote by {E0, ..., Ed}. The Bose-Mesner algebra is closed under ordinary
matrix product, and {E0, ..., Ed} are the minimal idempotents. It is also closed under the
entrywise product of matrices, and the association scheme {A0, ..., Ad} is a basis of minimal
idempotents for this product. Two square (d+ 1)× (d+ 1) matrices P and Q are typically
defined in order to record the relationship between these two bases, as follows:

• for all i, Ai =
∑d

j=0 PjiEj; and

• for all j, Ej =
1
n

∑d
i=0QijAi.

Note that PQ = nI. We refer the reader to [3] for a complete introduction to association
schemes, and to [9] for an application of the concept related to quantum walks.

For the result that follows, let X be a graph that belongs to an association scheme,
which is to say, A = A(X) is a sum of some of the matrices in an association scheme. Thus
A belongs to the Bose-Mesner algebra, and so does U(t), for any t. Hence it is a linear
combination of matrices in the scheme, and this shall be sufficient for a fairly restricted
description of when and how fractional revival can occur.

3.1 Theorem. Let X be a graph with A = A(X) in the Bose-Mesner algebra of an asso-
ciation scheme {A0, A1, . . . , Ad} with minimal idempotents {E0, E1, . . . , Ed}. Suppose the
eigenvalues of A are given by θ0 ≥ θ1 ≥ . . . ≥ θd.

There are real scalars α, ζ and a complex scalar β so that the graph X has eiζ(α, β)
fractional revival from a to b at time τ if and only if both the following conditions hold.

(a) the unique class Aq of the scheme which is non-zero in the (a, b) entry is a permutation
matrix of order 2 (and so its eigenvalues are ±1); and

(b) for all r ∈ {1, ..., d}, if AqEr = Er, then (θr − θ0)τ ≡ 0 (mod 2π), and if AqEr = −Er,
then

(θr − θ0)τ ≡ 2 cos−1(α) (mod 2π) (4)

Note that if the conditions hold, then fractional revival occurs between all pairs of vertices
determined by Aq, as in fact,

U(τ) = eiζ(αI + βAq). (5)

Proof. We first show Condition (a) is necessary. Assume X has eiζ(α, β) fractional revival
from a to b at time τ , where α ∈ R. Thus, U(τ)ea = eiζ(αea + βeb). Since U(τ) belongs to
the Bose-Mesner algebra of the scheme, we have U(τ) =

∑d
r=0 ηrAr for some constants ηr
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(which depend on τ). Suppose Aq is the unique matrix in the scheme for which (Aq)b,a = 1.
Thus, η0 = eiζα, ηq = eiζβ, and ηℓ = 0 for ℓ 6= 0, q. This shows that

U(τ) = eiζ(αA0 + βAq). (6)

As Aq commutes with J , it is a symmetric matrix with row and column sums equal 1. Hence
Aq is a permutation matrix of order 2.

Now we assume Condition (a) holds. Fractional revival between a and b is equivalent to
Equation (5), which we now show to be equivalent to Condition (b).

Let Aq =
∑d

r=0 σrEr. Again, observe that σr = ±1. We have

U(τ) = eiζ(αA0 + βAq). (7)

if and only if, for all r ∈ {0, ..., d},

e−iθrτ = eiζ(α + βσr).

This is true because the idempotents {E0, ..., Er} form a basis. Now, as |eiζ(α±β)| = 1 and
α ∈ R, we have β ∈ iR, and since |α|2+ |β|2 = 1, we may assume α = cosϑ and β = i sinϑ.
Hence Equation (7) is equivalent to, for all r,

e−iθrτ = eiζeσriϑ.

Fixing −θ0τ = ζ + ϑ (as σ0 = 1), the equation above, for each r 6= 0, is equivalent to

(i) if σr = 1, then (θr − θ0)τ ≡ 0 (mod 2π); and

(ii) if σr = −1, then (θr − θ0)τ ≡ 2ϑ (mod 2π),

which is precisely Condition (b) of the statement.

We can say a bit more. If there is fractional revival between two vertices in a graph in an
association scheme, the result above says that there is a permutation matrix in the scheme
that swaps these two vertices. Thus they are strongly cospectral (see [17, Theorem 11.2]).
As a consequence, we can apply [7, Corollary 5.6], and because θ0 is always an integer if X
is regular, we have the corollary below.

3.2 Corollary. If fractional revival occurs in a graph X belonging to an association scheme
at time τ , then all eigenvalues of X are integers, and τ is a rational multiple of π.

This takes us immediately to the following characterization.

3.3 Theorem. Let {A0, ..., Ad} be an association scheme whose set of minimal idempotents
is given by {E0, ..., Ed}. Assume one of its classes is a permutation matrix of order two,
say Aq for some q, with spectral decomposition Aq =

∑d
r=0 σsEs. Let X be a graph in this

scheme, with integer eigenvalues θ0 ≥ ... ≥ θd. Define

g = gcd
{

(θ0 − θs)
}d

s=1
.

Then for all integers m ≥ 1 satisfying the properties
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(i) {(θ0 − θs)/g}σs=−1 are all congruent to the same integer µ modulo m, and

(ii) {(θ0 − θs)/g}σs=1 are all congruent to 0 modulo m,

it follows that X admits eiζ(α, β) fractional revival at time τ = 2tπ/mg, for any integer t,
where

ζ = tπ

(−2θ0 − µg

mg

)

, α = cos

(

tµπ

m

)

and β = i sin

(

tµπ

m

)

Moreover, if fractional revival occurs at time τ , then there are integers m and µ such that
(i) and (ii) above hold.

Note that if µ 6= 0, then g · gcd(µ,m) divides θ0 − θs for s = 1, . . . , d, so we either have
gcd(µ,m) = 1 or µ = 0. In particular, if µ = 0 in the theorem, it describes periodicity
(and it always happens choosing the degenerate case m = 1 as, after all, the eigenvalues are
integers). If µ = 1 and m = 2, the theorem describes perfect state transfer. For any other
m, as long as µ 6= 0, we have fractional revival with both α and β different than 0. If m = 4
and µ = ±1, we have balanced fractional revival.

Proof. If m and µ exist satisfying properties (i) and (ii), then clearly Condition (b) of
Theorem 3.1 is satisfied at τ , and parameters ζ (modulo 2π), α and β are determined. Now
assume fractional revival occurs at a time τ , which, by Corollary 3.2, we may assume satisfies
τ = (a/b)π for some (positive) integers a and b. We may further assume a < 2b, because a
graph with integer eigenvalues is periodic at time 2π. Let m be the smallest integer so that
for some integer t, the equality below holds

a

b
π =

2t

mg
π.

We must show now that conditions (i) and (ii) hold for some µ. From Condition (b) of
Theorem 3.1, for all s with σs = 1, we have

(θ0 − θs)
2t

mg
π ≡ 0 (mod 2π),

and as t and m are coprime, this is equivalent to (θ0 − θr)/g ≡ 0 (mod m). Likewise, for all
s with σs = −1, we have, for some ϑ,

(θ0 − θs)
2t

mg
π ≡ 2ϑ (mod 2π),

and as t and m are coprime, this is equivalent to the existence of an integer µ with (θ0 −
θs)/g ≡ µ (mod m).

The conditions in Theorem 3.3 are quite descriptive, but we can do better in terms of
providing an efficient way of checking whether fractional revival (or its variants) occur.
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3.4 Lemma. Let {A0, ..., Ad} be an association scheme whose set of minimal idempotents
is given by {E0, ..., Ed}. Assume one of its classes is a permutation matrix of order 2, say Aq

for some q, with spectral decomposition Aq =
∑d

r=0 σsEs. Let X be a graph in this scheme,
with integer eigenvalues θ0 ≥ ... ≥ θd. Define

g = gcd
{

(θ0 − θs)
}d

s=1
.

Let h be the integer satisfying

hg = gcd
{

(θr − θs)
}

σr=σs

.

Then a positive integer m satisfies Theorem 3.3 if and only if it divides h.

Proof. The integer m satisfies the properties of Theorem 3.3 if and only if, for σs = σr,

θr − θs
g

=
θ0 − θs

g
− θ0 − θr

g
≡ 0 (mod m),

the last equivalence being true because either 0 − 0 ≡ 0 (mod m) or µ − µ ≡ 0 (mod m).
This equation holds exactly when m divides h.

3.5 Theorem. Let X be a graph in an association scheme containing a permutation matrix
of order two. Let g and h be defined as in Lemma 3.4. Then

(a) h = 1 if and only if the graph X does not admit fractional revival nor perfect state
transfer.

(b) h > 2 if and only if the graph X admits fractional revival that is different from perfect
state transfer. In particular, 2π

hg
is the minimum time when fractional revival occurs in

X

(c) h is even if and only if the graph X admits perfect state transfer. In particular, when
h = 2, X admits perfect state transfer but no other form of fractional revival.

(d) h is doubly even if and only if the graph X admits balanced fractional revival.

3.1 Distance-Regular Graphs

Association schemes can be constructed in several distinct ways. One of them comes from
certain graphs and their distance matrices. IfX is a graph, let Ak be the 01 symmetric matrix
indexed by vertices with (i, j) entry equal to 1 if and only if vertex i is at distance k from
vertex j. Note that A0 = I and A1 is simply the adjacency matrix. To a graph of diameter d
we can associate the set {A0, ..., Ad} of its distance matrices. Now in very few special cases,
the set of distance matrices of a graph form an association scheme. When this happens, the
graph is called distance-regular. See [3] for more background on distance-regular graphs.

A distance-regular graph X is called primitive if each of the graphs Xk whose adjacency
matrix coincide with the k-th distance matrix of X , Ak, are connected. If any of them is
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disconnected, X is called imprimitive. If X is imprimitive and k-regular with k ≥ 3, then X
is bipartite or Xd is a disjoint union of ℓ-cliques, for some ℓ. In the latter case, X is called
antipodal, the cliques in Xd are called the fibres of X , and the fibre size is ℓ. (See Theorem
4.2.1 in [3].)

3.6 Proposition. Let X be a distance-regular graph of diameter d > 1. If X has (α, β)
fractional revival from a to b at time τ , then

UX(τ) = αA0 + βAd, (8)

where Ad is the adjacency matrix of d
2
K2.

Proof. By Theorem 3.1, we know that UX(τ) = αA0 + βAq for some 1 ≤ q ≤ d, and that
Aq is a permutation matrix of order two with no fixed points. By reasoning exactly as in [9,
Theorem 4.1], it must be that q = d.

If X is a distance-regular graph with corresponding distance matrices {A0, ..., Ad}, it
is not hard to see that there are polynomials p0, ..., pd, with pk having degree k, so that
pk(A1) = Ak. These polynomials are all orthogonal according to a standard choice of inner
product, because the Schur product between Ai and Aj vanishes, that is, Ai ◦ Aj = 0,
for i 6= j, and thus trAiAj = 0. If X is antipodal with eigenvalues θ0 > ... > θd and
corresponding projectors {E0, ..., Ed}, and Ad is a permutation matrix of order 2, then [4,
Proposition 11.6.2] tells us that

Ad =

d
∑

r=0

(−1)rEr.

Along with the characterization in Theorem 3.5, this provides a very efficient and easy
method to check whether a distance-regular graph (DRG) admits fractional revival (FR).
We use PST to abbreviate perfect state transfer in the table below. We summarize the
results for the families of distance-regular graphs studied in [9].
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DRG spectrum g h µ FR

nK2 {2n − 2, 0,−2} 2 n n− 1 FR at kπ
n , k = 1, . . . , n− 1

PST at π
2 iff n is even

2-fold cover of Kn {n − 1, δ+
√
∆

2 ,−1, δ−
√
∆

2 }
δ = 0 2 1 - no FR, no PST

δ = −2
√
n 2 1 no FR, PST at π√

n

δ = 2, n ≡ 4 (mod 8) 4
√
n
2

√
n−2
4 FR at π√

n
, no PST

δ = 2, n ≡ 0 (mod 8) 2
√
n

√
n−2
2 FR at π√

n
, PST at π

2

Hadamard graph {n2, n, 0,−n,−n2}
of order n2 n 2 1 no FR, PST at π

n

n-cube {n − 2j}nj=0 2 2 1 no FR, PST at π
2

halved 2d-cube {
(2d
2

)

− 2j(2d − j)}dj=0 2 4 2d− 1 balanced FR at π
4

PST at π
2

Johnson graph J(2n, n) {(n − j)2 − j}nj=0 2 1 - no FR, no PST

Doubled odd graph (−1)j(n+ 1− j), 1 1 - no FR, no PST

on (2n + 1) points (j 6= n+ 1)

4 Hamming Scheme

In this section, we focus on the Hamming scheme and provide characterization when balanced
fractional revival occurs.

Consider families of graphs whose vertices are the binary sequences of length n, where n ≥ 1.
The graph Xr, for r = 0, . . . , n, has edges connecting all pairs of vertices with Hamming distance
r. The graph X1 is also known as the n-cube. Let Ar = A(Xr) be the adjacency matrix of Xr.
This describes the well-known Hamming scheme H(n, 2). So, the Bose-Mesner algebra of H(n, 2)
is spanned by the set of matrices A = {A0, A1, . . . , An}. Let {E0, . . . , En} be the set of minimal
idempotents of this scheme, where

A1Es = (n− 2s)Es and AnEs = (−1)sEs, for s = 0, . . . , n.

Then, we have (see Stanton [21], Section 2)

Ar =

n
∑

s=0

pr(s)Es, r = 0, . . . , n. (9)

where pr(x) is the Krawtchouk polynomial of degree r. A more customary notation for the
Krawtchouk polynomial is pr(x, q, n) which specifies the arity q and the dimension n. We sup-
press q since we focus exclusively on q = 2 and we will include n only if necessary.
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It is known that (see Stanton [21], Equation (2.3a))

pr(s) =

(

n

r

)

2F1

(

−r,−s
−n

2

)

, where 2F1

(

a, b
c

x

)

=
∞
∑

m=0

ambm

cm
xm

m!
. (10)

Here, 2F1 is the Gaussian hypergeometric function and zm = z(z + 1) . . . (z +m − 1) is the m-th
rising factorial power of z.

We state some useful properties of the Krawtchouk polynomials.

4.1 Proposition. For n ≥ 2, the Krawtchouk polynomials pr(s) satisfy:

(i) (MacWilliams and Sloane [18], Chapter 5, Section 7, Theorem 15)
For 0 ≤ r ≤ n,

pr(s) =

r
∑

h=0

(−2)h
(

n− h

r − h

)(

s

h

)

s = 0, . . . , n. (11)

Therefore,

pr(1)− pr(0) = −2

(

n− 1

r − 1

)

(12)

.

(ii) (Chihara and Stanton [10], Proposition 2.1)
For 1 ≤ r ≤ n,

pr(s, n)− pr(s+ 1, n) = 2pr−1(s, n− 1), s = 0, . . . , n− 1. (13)

(iii) (Chihara and Stanton [10], Proposition 2.3)
For 1 ≤ r ≤ n,

pr(s, n)− pr(s+ 2, n) = 4pr−1(s, n− 2), s = 0, . . . , n− 2. (14)

Therefore,

pr(s)− pr(s+ 2) = 4

r−1
∑

h=0

(−2)h
(

n− 2− h

r − 1− h

)(

s

h

)

, s = 0, . . . , n− 2. (15)

From Theorem 3.5, we see that for a graph X with eigenvalue θ0, . . . , θr, the parameters

gcd
{

(θ0 − θs)
}n

s=1

and
gcd

{

(θr − θs)
}

σr=σs
.

play a role in characterizing fractional revival. If, in addition, X is a class of the binary Hamming
scheme H(n, 2), then we can express these two parameters using the eigenvalues of the scheme.

To simplify the computation in the following proof, we define pr(s, n) = 0 if r < 0 or r > n.
We can then extend Equations (13) and (14) to any integer r.
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4.2 Lemma. Let A = Ar1 + · · · + Arℓ , where 0 < r1 < · · · < rℓ ≤ n, in H(n, 2). Suppose A 6= An

and A =
∑n

s=0 θsEs, where E0, . . . , En are the minimal idempotents of H(n, 2). Define

g = gcd
{

(θ0 − θs)
}n

s=1
,

and h to be the integer satisfying

hg = gcd
{

(θs − θs+2)
}n−2

s=0
.

Then

g = gcd
{

2j
ℓ

∑

i=1

pri−j(0, n − j)
}rℓ

j=1
,

and

hg = gcd
{

2j+1
ℓ′
∑

i=1

pri−j(0, n − j − 1)
}r

ℓ′

j=1
, where ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

In particular, g is even and divides 2rℓ , and hg is doubly even and divides 2rℓ′+1.

Proof. First we have

g = gcd
{

θs − θs+1

}n−1

s=0
= gcd

{

ℓ
∑

i=1

(

pri(s, n)− pri(s+ 1, n)
)

}n−1

s=0
.

Applying Equation (13) gives

g = gcd

{

2

ℓ
∑

i=1

pri−1(0, n − 1), 2

ℓ
∑

i=1

pri−1(1, n − 1), . . . , 2

ℓ
∑

i=1

pri−1(n− 1, n− 1)

}

= gcd

{

2

ℓ
∑

i=1

pri−1(0, n − 1), gcd
{

2

ℓ
∑

i=1

(

pri−1(s, n− 1)− pri−1(s+ 1, n− 1)
)

}n−2

s=0

}

.

Applying Equation (13) repeatedly gives

g = gcd

{

2

ℓ
∑

i=1

pri−1(0, n − 1), gcd
{

22
ℓ

∑

i=1

pri−2(s, n − 2)
}n−2

s=0

}

= gcd

{

2
ℓ

∑

i=1

pri−1(0, n − 1), 22
ℓ

∑

i=1

pri−2(0, n − 2), gcd
{

22
ℓ

∑

i=1

(

pri−2(s, n− 2)− pri−2(s+ 1, n − 2)
)

}n−3

s=0

}

= · · ·

= gcd

{

2
ℓ

∑

i=1

pri−1(0, n − 1), 22
ℓ

∑

i=1

pri−2(0, n − 2), · · · , 2rℓ−1
ℓ

∑

i=1

pri−rℓ+1(0, n − rℓ + 1),

2rℓ gcd
{

ℓ
∑

i=1

pri−rℓ(s, n− rℓ)
}n−rℓ

s=0

}

.
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Since pri−rℓ(s, n − rℓ) = 0 for i = 1, . . . , ℓ − 1, and prℓ−rℓ(s, n − rℓ) = p0(s, n − rℓ) = 1 for
s = 0, 1, · · · , n− rℓ, the last equation reduces to

g = gcd

{

2
ℓ

∑

i=1

pri−1(0, n − 1), 22
ℓ

∑

i=1

pri−2(0, n − 2), · · · , 2rℓ−1
ℓ

∑

i=1

pri−rℓ+1(0, n − rℓ + 1), 2rℓ

}

.

In particular, 2 divides g and g divides 2rℓ .
To compute hg, first observe that pn(s, n) = pn(s+ 2, n), for s = 0, . . . , n − 2. Hence

θs − θs+2 =

ℓ′
∑

i=1

(

pri(s, n)− pri(s+ 2, n)
)

, where ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

By Equation (14), we have

hg = gcd

{

4

ℓ′
∑

i=1

pri−1(0, n − 2), 4

ℓ′
∑

i=1

pri−1(1, n − 2), · · · , 4
ℓ′
∑

i=1

pri−1(n− 2, n− 2)

}

= gcd

{

22
ℓ′
∑

i=1

pri−1(0, n − 2), gcd
{

22
ℓ′
∑

i=1

(

pri−1(s, n− 2)− pri−1(s + 1, n − 2)
)

}n−3

s=0

}

.

Similar to the computation of g, we apply Equation (13) repeatedly to get

hg = gcd
{

22
ℓ′
∑

i=1

pri−1(0, n − 2), 23
ℓ′
∑

i=1

pri−2(0, n − 3), · · · , 2rℓ′
ℓ′
∑

i=1

pri−r
ℓ′
+1(0, n − rℓ′), 2

r
ℓ′
+1

}

.

In particular, 4 divides hg and hg divides 2rℓ′+1.

For a positive integer m, let α2(m) denote the largest k such that 2k divides m. We now give
formulas for g and hg in terms of binomial coefficients.

4.3 Proposition. Let A = Ar1 + · · · + Arℓ , where 0 < r1 < · · · < rℓ ≤ n, in H(n, 2). If A 6= An

then

log2(g) = min

{

j + α2(

ℓ
∑

i=1

(

n− j

ri − j

)

) : j = 1, 2, · · · , rℓ

}

,

and

log2(hg) = min

{

j + 1 + α2(
ℓ′
∑

i=1

(

n− j − 1

ri − j

)

) : j = 1, 2, · · · , rℓ′
}

,

where

ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

Proof. The result follows since g and hg are powers of 2 and pr(0, n) =
(n
r

)

, for r = 0, 1, . . . , n.

Using Theorem 3.5, we get the following characterization of simple graphs in H(n, 2) that have
fractional revival and the minimum time fractional revival can occur.

12



4.4 Theorem. Let X = Xr1 ∪ · · · ∪Xrℓ , where 0 < r1 < · · · < rℓ ≤ n, in H(n, 2), and

ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

Suppose X 6= Xn. Then X has fractional revival if and only if

min

{

j + α2(
ℓ′
∑

i=1

(

n− j − 1

ri − j

)

) : j = 1, 2, · · · , rℓ′
}

≥ min

{

j + α2(
ℓ

∑

i=1

(

n− j

ri − j

)

) : j = 1, 2, · · · , rℓ
}

.

Moreover, if equality holds, then X has perfect state transfer but no other form of fractional revival,
and if strict inequality holds, then X has perfect state transfer, as well as balanced fractional
revival.

4.5 Theorem. Let X = Xr1 ∪ · · · ∪Xrℓ , where 0 < r1 < · · · < rℓ ≤ n, in H(n, 2), and

ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

Suppose X 6= Xn. If X has fractional revival at minimum time τ , then τ = π/2k for some positive
integer k ≤ rℓ′ .

Proof. From Theorem 3.5, 2π/hg is the minimum time when fractional revival occurs in X, and
by Lemma 4.2, hg divides 2rℓ′+1.

4.1 The Importance of Being Balanced

Balanced fractional revival is the most natural and relevant variant of fractional revival useful for
generating maximally entangled states in quantum networks. In this section, we derive necessary
and sufficient conditions for balanced fractional revival to occur in a union of graphs in H(n, 2).

4.6 Proposition. Let X = Xr1 ∪ · · · ∪ Xrℓ , where 0 < r1 < · · · < rℓ ≤ n, in H(n, 2) Suppose
X 6= Xn. Then X has eiζ(cos π/4,±i sin π/4)-revival at time π/2k if and only if the following
conditions hold.

(i)
ℓ

∑

i=1

(

n− 1

ri − 1

)

≡ ±2k−2 (mod 2k). (16)

(ii) For all j = 1, . . . , k − 1,
ℓ

∑

i=1

(

n− 1− j

ri − j

)

≡ 0 (mod 2k−j). (17)

(iii) The phase eiζ satisfies

ζ +

∑ℓ
i=1

(n
ri

)

π

2k
≡ ∓π

4
(mod 2π). (18)

13



Proof. Let g and h be as defined in Lemma 4.2. Then both g and hg are powers of 2.
Suppose X has eiζ(cos π/4,±i sin π/4)-revival at time π/2k. Then by Theorem 4.5

k ≤ rℓ′ where ℓ′ =

{

ℓ if rℓ < n,

ℓ− 1 if rℓ = n.

By Theorem 3.3, there exist integers m, t and µ such that

tµπ

m
≡ ±π

4
(mod 2π),

2tπ

mg
=

π

2k
and gcd(µ,m) = 1.

Hence m/t = 4, g = 2k−1 and, by Theorem 3.5, hg ≡ 0 (mod 2k+1).
Since

θ0 − θs =

{

(θ0 − θ1) + (θ1 − θ3) + · · · + (θs−2 − θs) if s is odd,

(θ0 − θ2) + · · · + (θs−2 − θs) if s is even,

we have
g = gcd(θ0 − θ1, gh) = 2k−1.

Consequently,

θ0 − θ1 = 2
ℓ

∑

i=1

(

n− 1

ri − 1

)

≡ ±2k−1 (mod 2k+1)

and Condition (i) holds.
Condition (ii) follows directly from the expression of hg given in Lemma 4.2 and k ≤ rℓ′ .

Condition (iii) comes from the expression of ζ given in Theorem 3.3.
Conversely, if Conditions (i) to (iii) hold then g = 2k−1, hg ≡ 0 (mod 2k+1) and

θ0 − θ1
g

≡ µ (mod 4) for some odd integer µ.

Hence m = 4, t = 1 and µ satisfy Theorem 3.3.

4.2 Distance Graphs

In this section, we focus on balanced fractional revival on a single distance graph in H(n, 2). In
particular, we characterize all distance graphs Xr that admit balanced fractional revival at time
π/4 and π/8, respectively, in terms of n and r.

We first cite a useful result from number theory.

4.7 Theorem. (Kummer; see Dickson [12], page 270)
Let p be a prime. The largest integer k so that pk divides

(

n
m

)

is the number of carries in the
addition of n−m and m in base p representation.

Recall that, for positive integer m, α2(m) denotes the largest k such that 2k dividesm. Let (m)2
denote the binary representation of m. The next result gives a necessary condition for balanced
fractional revival to occurs at Xr.

4.8 Lemma. Let Xr be a connected graph in H(n, 2). If Xr has balanced fractional revival, then
n is odd, and α2(n− 1) = α2(r − 1).

14



Proof. If Xr has balanced fractional revival, then by Proposition 4.6

α2(

(

n− 1

r − 1

)

) = k − 2 and α2(

(

n− 2

n− 1

)

) ≥ k − 1, for some k ≤ r.

First suppose n is even. Since Xr is connected, r is odd. Thus the last digit of (n− 1− (r− 1))2 is
1, while the last digit of (r − 1)2 is 0. Therefore, the number of carries when adding (n− r)2 with
(r − 1)2 is equal to the number of carries when adding (n − r − 1)2 with (r − 1)2. Thus,

α2(

(

n− 1

r − 1

)

) = α2(

(

n− 2

r − 1

)

),

and balanced fractional revival does not occur in Xr.
To see α2(n− 1) = α2(r − 1), it suffices to show that α2(n− 1− (r− 1)) > α2(r− 1). Suppose

otherwise. Then there is an m < α2(r − 1) such that the m-th digit of (n − 2 − (r − 1))2 is 1. It
follows that the number of carries when adding (n − r − 1)2 with (r − 1)2 is less than or equal to
the number of carries when adding (n − r)2 with (r − 1)2, hence α2(

(

n−2
r−1

)

) ≤ α2(
(

n−1
r−1

)

) and Xr

does not have balanced fractional revival.

For balanced fractional revival times of π/4 and π/8, we obtain tight characterizations.

4.9 Proposition. Xr is a connected graph in H(n, 2) with balanced fractional revival at time π/4
if and only if the following hold.

(i) n is odd, and n− 1 is not a power of 2.

(ii) (r − 1)2 is obtained from (n − 1)2 by replacing some 1’s with 0’s, except at the α2(n − 1)-th
position.

Proof. By Proposition 4.6, Xr has balanced fractional revival at time π/4 if and only if the following
hold:

(a)
(n−1
r−1

)

is odd, and

(b)
(n−2
r−1

)

is even.

Suppose Xr is a connected graph in H(n, 2) with fractional revival at time π/4. Then r is odd and
r < n.

To see (i), assume for a contradiction that n− 1 is a power of 2. Then (n− 1)2 has exactly one
digit of 1, that is, the leading digit. By (a), for every ℓ such that the ℓ-th digit of (n− 1)2 is 0, the
ℓ-th digit of (r− 1)2 must also be 0. Thus r = 1, which contradicts the fact that X1 does not have
balanced fractional revival.

Next we prove (ii). Clearly, α2(n− 1) is the rightmost position at which (n− 1)2 is 1. We have

(n− 1)2 = 1 · · · 100 · · · 0
(n− 2)2 = 1 · · · 011 · · · 1

Thus, for both (a) and (b) to hold, (r − 1)2 must be 1 at the α2(n − 1)-th digit, and 0 wherever
(n− 1)2 is 0.

The converse statement follows from reversing the argument.
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Recall that X1 has no fractional revival and X2 is not connected. In contrast, there are infinite
many schemes where X3 has fractional revival, as a corollary to the above result.

4.10 Corollary. For n ≡ 3 (mod 4), X3 ∈ H(n, 2) has balanced fractional revival at π/4.

4.11 Lemma. Xr is a connected graph in H(n, 2) with balanced fractional revival at time π/8 if
and only if the following hold.

(i) n is odd.

(ii) α2(n− 1) = α2(r − 1).

(iii)
(n−1
r−1

)

≡ 2 (mod 4).

Proof. By Proposition 4.6, Xr has balanced fractional revival at time π/8 if and only if

(a) α2(
(n−1
r−1

)

) = 1,

(b) α2(
(n−2
r−1

)

) ≥ 2,

(c) α2(
(n−3
r−2

)

) ≥ 1.

Since
(

n−3
r−2

)

+
(

n−3
r−1

)

=
(

n−2
r−1

)

, (b) and (c) hold if and only if (b) and α2(
(

n−3
r−1

)

) ≥ 1. On the other
hand, since n and r are odd, n− r − 1 is odd, so

α2(

(

n− 2

r − 1

)

) = α2(

(

n− 3

r − 1

)

).

Therefore, (a), (b) and (c) hold if and only if (a) and (b) hold.
Finally, since

(

n− 2

r − 1

)

+

(

n− 2

r − 2

)

=

(

n− 1

r − 1

)

,

(a) and (b) hold if and only if (a) holds and

α2(

(

n− 2

r − 2

)

) = 1.

Given that α2(n− 1) = α2(r − 1), (a) holds if and only if

α2(

(

n− 2

r − 2

)

) = 1.

Therefore (i), (ii) and (iii) are necessary and sufficient conditions for Xr to be connected and have
balanced fractional revival at time π/8.

4.12 Proposition. Xr is a connected graph in H(n, 2) with balanced fractional revival at time
π/8 if and only if the following hold.

(i) n is odd, and n− 1 6= 2a(2b − 1) for any non-negative integers a and b.

(ii) (r − 1)2 is obtained from (n− 1)2 by
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(a) keeping the j-th digit, for j = 0, 1, · · · , α2(n− 1);

(b) replacing exactly one substring “10” with “01”;

(c) replacing some “1”s with “0”s.

Proof. First recall that for positive integers a > b,

(

a

b

)

≡ 2 (mod 4)

if and only if there is exactly one carry, say to the ℓ-th position, when adding (a − b)2 and (b)2.
Note that this happens if and only if

• the (ℓ− 1)-th digit of (a)2 is 0, the (ℓ− 1)-th digit of (b)2 is 1;

• the ℓ-th digit of (a)2 is 1, the ℓ-th digit of (b)2 is 0;

• (a)2 is larger than (b)2 at all other digits.

If in addition, α2(a) = α2(b), then ℓ − 1 > α2(a), so (a)2 cannot be a string of 1’s followed by a
string of 0’s. Applying the above argument to a = n− 1 and b = r − 1 yields (i) and (ii).

4.13 Corollary. For n ≡ 11 (mod 16), X7 ∈ H(n, 2) has balanced fractional revival at π/8.

In what follows, we show that for every integer k ≥ 2, there are families of distance graphs
which exhibit fractional revival at time π/2k in some binary Hamming scheme. This should not be
interpreted to mean that fractional revival could be implemented increasingly faster by growing k;
physically the transport time is also proportional to the inverse of the scaling factor of the adjacency
matrix (the Hamiltonian) that must decrease with n to keep the energy bounded (see the remark
in [11]). However, in order to focus on the combinatorial nature of our constructions, we opt to
work with unnormalized matrices.

4.14 Proposition. For k ≥ 4, let n = (2k−1 + 1)2k+2 + 3 and r = 2k+3 + 3. Then Xr ∈ H(n, 2)
has balanced fractional revival at time π/2k.

Proof. We first show that Condition (i) of Proposition 4.6 holds. By Kummer’s theorem, it suffices
to show there are k − 2 carries generated in the binary addition of n − r and r − 1. We write the
binary representations of the numbers:

(n− 1)2 = 10k−30 · 10k10 (19)

(r − 1)2 = 00k−31 · 00k10 (20)

(n− r)2 = 01k−31 · 10k00 (21)

Note there are exactly k − 2 carries in the binary addition of n− r and r − 1, and

(

n− 1

r − 1

)

≡ ±2k−2 (mod 2k).
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To show that Condition (ii) of Proposition 4.6 holds, it suffices to show that there are at least
k − j carries generated in the binary addition of n − r − 1 and r − j, for j = 1, . . . , k − 1. The
binary representations of n− r − 1 and of r − 1, r − 2, and r − 3 are

(n− r − 1)2 = 01k−31 · 01k11 (22)

(r − 1)2 = 00k−31 · 00k10 (23)

(r − 2)2 = 00k−31 · 00k01 (24)

(r − 3)2 = 00k−31 · 00k00 (25)

Note that at least k − j carries are generated in the binary addition of n− r − 1 and r − j, where
j = 1, 2, 3. Now, we consider the binary representations of n−r−1 and of r−j, for j = 4, . . . , k−1:

(n− r − 1)2 = 01k−31 · 01k11 (26)

(r − 4)2 = 00k−30 · 11k11 (27)

Note there are at least k + 2 carries in the binary addition of n − r − 1 and r − 4. Moreover, the
number of ones in the binary representation of r − j decreases by at most one as j increases from
4 to k − 1. Therefore, there are at least k + 2 − (j − 4) ≥ k − j carries generated in the binary
addition of n− r − 1 and r − j, for j = 1, . . . , k − 1.

So, by Proposition 4.6, Xr has fractional revival at time π/2k.

4.3 Consecutive Unions

Now we proceed to construct consecutive unions of distance graphs that admit balanced fractional
revival at time π/4.

4.15 Proposition. For every r ≥ 2, let ℓ be the positive integer such that 2ℓ−1 < r ≤ 2ℓ. Then
for n ≡ r+1 (mod 2ℓ), the consecutive union X1 ∪X2 ∪ · · · ∪Xr has balanced fractional revival at
time π/4.

Proof. By Proposition 4.6, it suffices to prove the following:

(i)
∑r

j=1

(

n−1
j−1

)

is odd, and

(ii)
∑r

j=1

(

n−2
j−1

)

is even.

Let a and b be two positive integers with a ≥ b. From Theorem 4.7, we see that
(a
b

)

is even if
and only if there is at least one i such that the i-th digit of (a)2 is 0 and the i-th digit of (b)2is 1.
Thus, if c is an integer with 2c ≥ a, then for any positive integer d we have that

(a+2cd
b

)

is even if
and only if

(a
b

)

is even.
Now, since n− 1 ≡ r (mod 2ℓ), it follows that

r
∑

j=1

(

n− 1

j − 1

)

≡
r

∑

j=1

(

r

j − 1

)

≡ 1 (mod 2),

and
r

∑

j=1

(

n− 2

j − 1

)

≡
r

∑

j=1

(

r − 1

j − 1

)

≡ 0 (mod 2).

Hence conditions (i) and (ii) hold.
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5 Weighted Graphs

In this section, we turn our attention to balanced fractional revival in graphs (possibly weighted)
which lie in the span of the Hamming graphs. We first give a characterization of balanced fractional
revival that occurs at time π/Ω.

5.1 Proposition. For an integer n ≥ 2, let X be a graph whose adjacency matrix A is in the
Bose-Mesner algebra of H(n, 2). Suppose the eigenvalues of A are θ0, θ1, . . . , θn. Then X has
eiζ(cos π/4,±i sinπ/4)-revival at time π/Ω if and only if for some integers h, h0, . . . , hn−2, we have

θ0 − θ1 =
(

h+ 1
2

)

Ω (28)

θs − θs+2 = 2hsΩ, for s = 0, . . . , n− 2 (29)

and ζ + θ0π/Ω ≡ ∓π/4 (mod 2π).

Proof. Let A =
∑n

s=0 θsEs where Es are the minimal idempotents of the scheme. Note A0 =
∑

sEs

and An =
∑

s(−1)sEs. Suppose e
−iAπ/Ω = eiζ(cos(π/4)A0±i sin(π/4)An). Then, for s = 0, . . . , n,

we have
e−iθsπ/Ω = eiζ(cos(π/4) ± i sin(π/4)(−1)s). (30)

For s = 0, we get ζ ≡ −θ0π/Ω∓ π/4 (mod 2π). We have

e−i(θ0−θ1)π/Ω = ∓i

and
e−i(θs−θs+2)π/Ω = 1, for s = 0, . . . , n− 2.

So, there exist integers h, h0, . . . , hn−2 satisfying

θ0 − θ1 =
(

h+ 1
2

)

Ω (31)

θs − θs+2 = 2hsΩ, for s = 0, . . . , n − 2. (32)

This yields the claim.

5.1 Revisiting span{A1, A2}
Fractional revival was first studied on weighted paths [14]. In [11] and [1], the authors constructed
analytically examples with fractional revival in span{A1, A2} of the Hamming scheme. We redis-
cover some of their results in this section.

The spectra of the Hamming graphs X1 and X2 are given by the Krawtchouk polynomials
p1(s) = n − 2s and p2(s) =

(n
2

)

− 2s(n − 1) + 4
(s
2

)

, respectively. Using Proposition 5.1, we may
classify the values ω1, ω2 for which the graph ω2A2 + ω1A1 has fractional revival. Recall that A1

alone has no fractional revival [11]. We shall consider two cases based on whether ω1 is zero or not.
First, we consider the case when ω1 6= 0. Here, we may consider instead Ã = ωA2 +A1, where

ω = ω2/ω1. Let Ã =
∑n

s=0 θsEs with θs = ωp2(s) + p1(s). Note that

θ0 − θ1 = 2(ω(n − 1) + 1) (33)

θs − θs+2 = 4
(

ω(n− 2s− 2) + 1
)

. (34)
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By Proposition 5.1, for fractional revival to occur at time π/Ω, it suffices to require

2(ω(n − 2s− 2) + 1) = ZΩ (35)

2(ω(n − 1) + 1) = (Z+ 1
2)Ω. (36)

Taking the difference of the last two equations, for each s, we have

2(2s + 1)ω/Ω = Z+ 1
2 . (37)

This shows ω/Ω is rational. Moreover, 4ω/Ω must be an odd integer.

5.2 Proposition. In H(n, 2), ωA2 +A1 has balanced fractional revival at time π/Ω if and only if
4ω/Ω is an odd integer and 4/Ω is an integer that has the same parity as n.

Proof. Let 4ω/Ω = 2m+1 for some integer m. If 4/Ω and n have the same parity, then 4(ω(n−1)+
1)/Ω = 2h+1 for some integer h. Then the integers h and hs = h− 2ms− s−m, s = 0, . . . , n− 2,
satisfy the equations in Proposition 5.1.

The converse follows from Equations (36) and (37).

5.3 Corollary. Suppose ωA2 + A1, for some ω 6= 0, has balanced fractional revival at time π/Ω.
Then ω ∈ Q and π/Ω = qπ/4, for some q with the same parity as n.

The following corollaries provide natural examples of signed (multi-)graphs in the Hamming
scheme which exhibit fractional revival.

5.4 Corollary. For any integer m, A2 ± 2A1 in the Bose-Mesner algebra of H(2m, 2) has balanced
fractional revival at time π/4. (Also, 1

2A2 ±A1 has balanced fractional revival at time π/2.)

5.5 Corollary. For any integer m, A2±A1 in the Bose-Mesner algebra of H(2m+1, 2) has balanced
fractional revival at time π/4.

Finally, we consider ω2A2 + ω1A1 when ω1 = 0. The graph A2 ∈ H(n, 2) has two connected
components, one with vertices of even weights while the other consists of vertices of odd weights.
We call the component containing vertices with even weights the halved n-cube [3].

5.6 Proposition. In H(n, 2), X2 has balanced fractional revival if and only if n is even. The time
of balanced fractional revival is π/4.

Proof. From Proposition 4.6, X2 has balanced fractional revival at time π/2k if and only if

n− 1 ≡ ±2k−2 (mod 2k) and n− 2 ≡ 0 (mod 2k−1).

These equations hold exactly when n is even and k = 2.

When n is odd, each vertex a and its antipodal pair ā, (that is, the neighbour of a in Xn) belong
to different components of A2; thus, fractional revival does not occur. When n is even, fractional
revival occurs on each connected component of A2. (See Bernard et al. [1] for a similar treatment.)
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5.2 Larger Spans

We consider balanced fractional revival on the larger spans involving the first four Hamming graphs,
namely, span{A1, A2, A3} and span{A1, A2, A3, A4}.
5.7 Proposition. For n ≡ 3 (mod 4), the sum A1 +

1
2A2 +

1
4A3 in H(n, 2) has fractional revival

at time π.

Proof. By Corollary 4.10, it suffices to show that A1 and A2 are periodic at time π and π/2,
respectively. Since

p1(s) = n− 2s

and

p2(s) =

(

n

2

)

− 2s(n− 1) + 4

(

s

2

)

,

we see that 2 divides
gcd

{

p1(s)− p1(0)
}n

s=0
,

and 4 divides
gcd

{

p2(s)− p2(0)
}n

s=0
.

5.8 Proposition. For n ≡ 3 (mod 8), the sum A1 +
1
2A2 +

1
4A3 +

1
8A4 in H(n, 2) has fractional

revival at time π.

Proof. From the previous result, it suffices to show that X4 is periodic at time π/8. Since

p4(s) =

4
∑

j=0

(−2)j
(

n− j

4− j

)(

s

j

)

,

we have

p4(s)− p4(0) = −2

(

n− 1

3

)

s+ 4

(

n− 2

2

)(

s

2

)

− 8(n − 3)

(

s

3

)

+ 16

(

s

4

)

.

If n = 8m+ 3, then

2

(

n− 1

3

)

=
(8m+ 2)(8m+ 1)(8m)

3
, 4

(

n− 2

2

)

= 2(8m+ 1)(8m), and 8(n − 3)

are all divisible by 16.

6 Conclusion

The main achievement of this work is the characterization of graphs in association schemes ad-
mitting quantum fractional revival in terms of their spectra, and the discovery of several infinite
families of graphs exhibiting quantum fractional revival. From the mathematical point of view, we
are bridging the fields of algebraic graph theory, specifically what concerns association schemes and
orthogonal polynomials, to elementary number theory and the study of certain periodic functions
that arise naturally in quantum information. For quantum information theory, our findings may
turn to be quite useful for entanglement generation procedures or other tasks that require a network
of many interacting qubits to be put in a state with several pairs of maximally entangled qubits.

Following the work in this paper, we raise the following questions:
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(1) Study the more general notion of fractional revival among several vertices in association
schemes. We are preparing an upcoming publication related to this topic.

(2) Extend the results for the Hamming Scheme to other cubelike graphs.
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