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Abstract

An ordered graph is a graph equipped with a linear ordering of its vertex set. A pair of
ordered graphs is Ramsey finite if it has only finitely many minimal ordered Ramsey graphs
and Ramsey infinite otherwise. Here an ordered graph F is an ordered Ramsey graph of a pair
(H,H ′) of ordered graphs if for any coloring of the edges of F in colors red and blue there is
either a copy of H with all edges colored red or a copy of H ′ with all edges colored blue. Such
an ordered Ramsey graph is minimal if neither of its proper subgraphs is an ordered Ramsey
graph of (H,H ′). If H = H ′ then H itself is called Ramsey finite.

We show that a connected ordered graph is Ramsey finite if and only if it is a star with
center being the first or the last vertex in the linear order. In general we prove that each
Ramsey finite (not necessarily connected) ordered graph H has a pseudoforest as a Ramsey
graph and therefore is a star forest with strong restrictions on the positions of the centers of
the stars. In the asymmetric case we show that (H,H ′) is Ramsey finite whenever H is a
so-called monotone matching. Among several further results we show that there are Ramsey
finite pairs of ordered stars and ordered caterpillars of arbitrary size and diameter. This is in
contrast to the unordered setting where for any Ramsey finite pair (H,H ′) of forests either
one of H or H ′ is a matching or both are star forests (with additional constraints).

Several of our results give a relation between Ramsey finiteness and the existence of sparse
ordered Ramsey graphs. Motivated by these relations we characterize all pairs of ordered
graphs that have a forest as an ordered Ramsey graph and all pairs of connected ordered
graphs that have a pseudoforest as a Ramsey graph.

Our results show similarities between the ordered and the unordered setting for graphs
containing cycles and significant differences for forests.

1 Introduction

Graph Ramsey theory is concerned with the phenomenon that for any given graph H there are
graphs F , called the Ramsey graphs of H, such that for any 2-coloring of the edges of F there
is a copy of H in F with all its edges of the same color. For most graphs H it is a challenging
problem to determine all its Ramsey graphs exactly which is solved only for few classes of graphs
like small matchings or stars [8, 11]. Therefore, particular properties of the set R(H) of all Ramsey
graphs of H and its members are studied. This line of research was initiated by fundamental work
of Nešetřil and Rödl [32] and Burr, Erdős, and Lovász [11]. One of the most famous questions
asks for the smallest number of vertices of graphs in R(H) called the Ramsey number and denoted
r(H). Determining the Ramsey number of complete graphs is a challenging problem on its own
and no exact formula is known yet.

In this paper we study some structural questions from the Ramsey theory for ordered graphs.
Here an ordered graph is a graph equipped with a linear ordering of its vertex set. An (ordered)
subgraph of an ordered graph G is a subgraph of the underlying graph of G that inherits the ordering
of vertices from G. Analogously to the unordered setting we have the following definitions. An
ordered graph F is an ordered Ramsey graph of some pair (H,H ′) of ordered graphs if for any
coloring of the edges of F in colors red and blue there is either a copy of H with all its edges
colored red or a copy of H ′ with all its edges colored blue. In this case we write F → (H,H ′) to
indicate this fact and let R<(H,H ′) = {F | F → (H,H ′)}. If H = H ′, then we write F → H and
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Figure 1: An ordered matching H and an ordered Ramsey graph F of H (left). An (unordered)

5-cycle F ′ is a Ramsey graph of the underlying graph H̃ of H, but no ordering of the vertices of
F ′ yields an ordered Ramsey graph of H (right). Here we show just a few possible orderings of F ′.
In [36] we show that any ordered Ramsey graph of H contains a copy of F (which is not possible
for orderings of F ′).

R<(H) = R<(H,H). A fundamental relation between ordered and unordered Ramsey graphs is
given in the following observation.

Observation 1. Let F and H be an ordered graphs with underlying (unordered) graphs F̃ and H̃.

If F is an ordered Ramsey graph of H, then F̃ is a Ramsey graph of H̃.

If H is a complete graph, then also the reverse statement holds, otherwise it may fail. Figure 1
shows an example of an ordered graph H and a Ramsey graph F ′ of H̃ which does not form an
ordered Ramsey graph of H in any ordering.

We study the fundamental question whether the set R<(H,H ′) has a finite number of minimal
elements, where F ∈ R<(H,H ′) is minimal if F ′ 6∈ R<(H,H ′) for each proper subgraph F ′ of F .
In this case we call the pair (H,H ′) Ramsey finite. The corresponding question in the unordered
setting is studied intensively (see Theorems 6, 7, 8 below) but a full answer is not known. Our
results indicate that any Ramsey finite pair of ordered graphs necessarily has sparse ordered Ramsey
graphs. Motivated by this relations we first give several results on sparse ordered Ramsey graphs,
which might be of independent interest.

Outline. Next we present some basic definitions which are used throughout the paper. In partic-
ular some frequently used notions for ordered graphs are introduced. Then we present our results
on sparse ordered Ramsey graphs, followed by our results on minimal ordered Ramsey graphs.
A brief summary of previous work on Ramsey theory for ordered graphs is given at the end of
Section 1. In Section 2 we prove our results and Section 3 contains concluding remarks and open
questions.

Preliminary Remarks and Definitions. Before stating our results we need to introduce some
notions. For a positive integer n we shall write [n] = {1, . . . , n}. For a given (ordered) graph G
we refer to its vertex set by V (G) and to its edge set by E(G). We consider the vertices of an
ordered graph laid out along a horizontal line from left to right such that a vertex u is to the left
of a vertex v if u < v, and to the right if v < u. For two sets U , U ′ ⊆ V (G) we write U � U ′

(U ≺ U ′) if u 6 u′ (u < u′) for all u ∈ U and u′ ∈ U ′. For two subgraphs of G′, G′′ of G we write
G′ � G′′ (G′ ≺ G′′) if V (G′) � V (G′′) (V (G′) ≺ V (G′′)). An interval of an ordered graph G is a
set I of consecutive vertices of G, i.e., for any u, v ∈ I, z ∈ V (G), with u 6 z 6 v, we have z ∈ I.

A complete graph on n vertices is denoted Kn. A path on n vertices is denoted Pn and an
ordered path P = u1 · · ·un is a monotone path if u1 < · · · < un. A partial matching is a graph
without any copy of P3. A right star is an ordered star with all its leaves to the right of its center
and a left star is defined accordingly. A right star with k leaves is denoted ~Sk. Right and left
stars with exactly two edges are also called bend. An ordered graph G is a right caterpillar if it is
connected and for some i > 1 there are vertices ui > · · · > u0 in G such that each edge in G is of
the form ujv with j ∈ [i] and uj > v > uj−1. For j ∈ [n] the jth segment of a right caterpillar G
is the subgraph Sj of G induced by {v ∈ V (G) | uj > v > uj−1}. The defining sequence of G is
|E(S1)|, . . . , |E(Si)|. Left caterpillars are defined accordingly. See Figure 2 for examples.
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Figure 2: A monotone path (left), a right star (middle), and a right caterpillar with four segments
(right).

Sparse Ordered Ramsey Graphs. First, we state some known results on densities of (un-
ordered) Ramsey graphs. Given a graph G let m(G) = max{|E(G′)|/|V (G′)| | G′ ⊆ G} denote
its density and let m2(G) = max{(|E(G′)| − 1)/(|V (G′)| − 2) | G′ ⊆ G, |V (G′)| > 3, |E(G′)| > 1}
denote its 2-density, provided that G has at least two edges. For a pair (H,H ′) of graphs let
rm(H,H ′) = inf{m(F ) | F ∈ R(H,H ′)} denote its Ramsey density. The Ramsey density is stud-
ied by Rödl and Ruciński [34], Kurek and Ruciński [25], and Mütze and Peter [29]. The exact
value is known only for few classes of graphs, including stars and complete graphs. The following
result is due to Rödl and Ruciński [34] (see also Nenadov and Steger [31]).

Theorem 1 ([34]). Let H be a graph with m2(H) > 1. Then m(F ) > m2(H) for each F ∈ R(H).

This leaves to consider graphs with m2(H) 6 1. Observe that m2(H) 6 1 if and only if H is a
forest. Recall that a partial matching is a graph without any copy of P3. More precisely we have
m2(H) = 1/2 if and only if H is a partial matching and m2(H) = 1 if and only if H is a forest
which is not a partial matching. Further observe that m(F ) < 1 if and only if F is a forest and
m(F ) = 1 if and only if each component of F contains at most one cycle and F is not a forest.
Graphs of density at most 1 are called pseudoforests. A proper pseudoforest is a graph of density
exactly 1, that is, a pseudoforest that contains at least one cycle. It seems well-known which pairs
of graphs have Ramsey density at most 1. We give a proof of the following result in Section 2.1
for completeness.

Lemma 1.1. For each pair (H,H ′) of graphs with at least one edge each we have

(a) rm(H,H ′) < 1 if and only if (H,H ′) is a pair of a forest and a star forest,

(b) rm(H,H ′) = 1 and there is a pseudoforest in R(H,H ′) if and only if (H,H ′) is a pair of a
partial matching and a proper pseudoforest or both H and H ′ are forests of stars and copies
of P4, both with at least one copy of P4.

With Theorem 1 we obtain the following corollary, implicitly in [21, 34]. Note that for any
matching H there is a matching F ∈ R(H), that is, m(F ) = m2(H) = 1/2.

Corollary 2 ([21, 34]). Let H be a graph. Then there is a graph F ∈ R(H) with m(F ) 6 m2(H)
if and only if each component of H is either a star or a copy of P4.

Here we are interested in the corresponding parameter rm< (H,H ′) = inf{m(F ) | F ∈ R<(H,H ′)}
for a pair (H,H ′) of ordered graphs. We completely determine the pairs of ordered graphs that
have forests as ordered Ramsey graphs in the following theorem.

Theorem 3. Let H and H ′ be ordered graphs with at least one edge each. Then rm< (H,H ′) < 1 if
and only if H and H ′ are forests and one of the following statements holds.

(a) H or H ′ is a partial matching.

(b) For one of H or H ′ each component is a right star and for the other each vertex has at most
one neighbor to the left.

(c) For one of H or H ′ each component is a left star and for the other each vertex has at most
one neighbor to the right.

(d) For one of H or H ′ each component is a left or a right star and for the other each component
is a monotone path.
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Moreover R<(H,H ′) contains a partial matching if and only if both H and H ′ are partial matchings.

Further we characterize all pairs of connected ordered graphs that have pseudoforests as Ramsey
graphs.

Theorem 4. Let H and H ′ be connected ordered graphs with at least one edge each. Then
rm< (H,H ′) = 1 and there is an ordered pseudoforest in R<(H,H ′) if and only if (H,H ′) is a
pair of K2 and a connected ordered proper pseudoforest or both H and H ′ form a monotone P3.

Corollary 5. Let H be a connected ordered graph. Then there is an ordered graph F ∈ R<(H)
with m(F ) 6 m2(H) if and only if H is a left star, a right star, or a monotone P3.

Ramsey (In)Finiteness. Recall that a graph F ∈ R(H,H ′) is minimal if F ′ 6∈ R(H,H ′)
for each proper subgraph F ′ of F . A pair (H,H ′) of graphs is Ramsey finite if there are only
finitely many minimal graphs in R(H,H ′), and Ramsey infinite otherwise. The following theorems
summarize some of the known main results in the unordered setting.

Theorem 6 ([34, 35], see [26]). If a graph H contains a cycle, then H is Ramsey infinite.

Theorem 7 ([10],[26]). Let H be a forest without isolated vertices and let H ′ be graph with at least
one cycle.

(a) If H is a matching, then (H,H ′) is Ramsey finite.

(b) If H is not a matching, then (H,H ′) is Ramsey infinite.

Theorem 8 ([19]). Let H and H ′ be forests without isolated vertices. Then there is a constant n0
such that (H,H ′) is Ramsey finite if and only if one of the following statements holds.

(a) At least one of H or H ′ is a matching.

(b) Both H and H ′ are vertex disjoint unions of a star with an odd number of edges and a
matching.

(c) One of H or H ′ is a vertex disjoint union of a matching and at least two stars with m1

respectively m2 edges, while the other is a vertex disjoint union of a matching on n edges and
a star with n1 edges. Moreover m1, n1 are odd, m1 > n1 +m2 − 1, and n > n0.

The asymmetric case for a pair (H,H ′) of graphs containing a cycle is not completely resolved.
Nešetřil and Rödl [33] prove that (H,H ′) is Ramsey infinite if both H and H ′ are 3-connected or
both are of chromatic number at least 3 while results in [12] show that it is sufficient to consider
pairs of 2-connected graphs. Bollobás et al. [7] prove that (H,Ck) is Ramsey infinite for each cycle
Ck if H is 2-connected and contains no induced cycles of length at least `, provided k > ` > 4. We
think that all Ramsey finite pairs of graphs are characterized in Theorem 8, see the discussion of
the asymmetric case in Section 3.

As for unordered graphs, we call a pair (H,H ′) of ordered graphs Ramsey finite if there are
only finitely many minimal graphs in R<(H,H ′), and Ramsey infinite otherwise. Here an ordered
graph F ∈ R<(H,H ′) is minimal if F ′ 6∈ R<(H,H ′) for each proper ordered subgraph F ′ of F .
In case H = H ′ we call H itself Ramsey finite or infinite, respectively. We shall establish results
similar to Theorems 6 and 7(a) while our results for ordered forests show that the ordering plays
a significant role.

For wide families of ordered graphs we shall show that for a carefully chosen probability large
random ordered graphs contain large minimal ordered Ramsey graphs. Note that random graphs
G(n, p) are usually defined with vertex set [n] and can be considered as ordered graphs without
modifications. Rödl and Ruciński [35] (see also [23]) determine for a given (unordered) graph H
the threshold probability that G(n, p) is a Ramsey graph of H, provided that H is not a forest
whose components are stars or copies of P4 only. They prove that for such a graph there are
constants c and c′ such that if p > cn−1/m2(H) then the probability that G(n, p) is a Ramsey
graph of H tends to 1 as n→∞ (the 1-statement), while if p < c′n−1/m2(H) then the probability
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Figure 3: Each ordered graph on the left side is loosely connected while each ordered graph on
the right is not loosely connected. We see that a disconnected ordered graph might be loosely
connected, and each ordered graph which is not loosely connected contains two vertices next two
each other which are not “spanned” by any edge (the dark gray parts).

that G(n, p) is a Ramsey graph of H tends to 0 as n → ∞ (the 0-statement). Note that the 0-
statement immediately carries over to ordered graphs by Observation 1. We prove a corresponding
1-statement for ordered graphs. Our proof closely follows a recent new proof of the 1-statement
for (unordered) graphs due to Nenadov and Steger [31] using the hypergraph container method. It
would be interesting whether one can deduce the 1-statement for ordered graphs from the unordered
1-statement directly, without reformulating the proof.

Theorem 9. Let H be an ordered graph that is not a partial matching. There is a constant c such
that if p > cn−1/m2(H) then the probability that G(n, p) is an ordered Ramsey graph of H tends to
1 as n→∞.

Based on this theorem we use random graphs to prove the following result.

Theorem 10. Let H be an ordered graph. If m(F ) > m2(H) for each ordered graph F ∈ R<(H),
then H is Ramsey infinite.

Essentially this theorem yields that every Ramsey finite ordered graph H has a pseudoforest
as a Ramsey graph. Indeed by Theorems 1 and 10 we have that H is a forest and there is some
F ∈ R<(H) with m(F ) 6 m2(H) 6 1, that is, F is a pseudoforest. Using our results on sparse
ordered Ramsey graphs from the first part of this article we obtain the following.

Theorem 11. If H is a Ramsey finite ordered graph, then each component of H which is not a
monotone P3 is a right star or each such component is a left star.

A full characterization of Ramsey finite ordered graphs which are connected is given in Corol-
lary 17 below. As in the unordered setting, we believe that Theorems 9 and 10 generalize to the
asymmetric case, see the discussion in Section 3. Now we turn to pairs of ordered graphs where
one is a forest and the other contains a cycle. In the unordered setting such a pair is Ramsey finite
if and only if the forest is a matching [10, 26] (see Theorem 7 above). The following theorem gives
a partial result for ordered graphs, similar to Theorem 7(a). Recall that I ⊆ V (G) is an interval
of an ordered graph G if for any u, v ∈ I and z ∈ V (G) with u 6 z 6 v we have z ∈ I. An ordered
graph G with at least two vertices is loosely connected if for any any partition V1∪̇V2 = V (G) of
the vertices of G into two disjoint intervals V1 and V2 there is an edge with one endpoint in V1
and the other endpoint in V2. See Figure 3. Further G tG′ denotes the intervally disjoint union
of ordered graphs G and G′, that is, a vertex disjoint union of G and G′ where all vertices of G
are to the left of all vertices of G′. Note that each ordered graph G without isolated vertices has a
unique representation G = G1 t · · · tGt where Gi is a loosely connected ordered graph, 1 6 i 6 t.

Theorem 12. Let s and t be positive integers and let H1, . . . ,Hs, H
′
1, . . . ,H

′
t be loosely connected

ordered graphs. If (Hi, H
′
j) is Ramsey finite for all i ∈ [s], j ∈ [t], then (H1t· · ·tHs, H

′
1t· · ·tH ′t)

is Ramsey finite.

A monotone matching is an ordered matching of the form K2 t · · · t K2. Clearly (H,K2) is
Ramsey finite for any ordered graph H.

Corollary 13. If H ′ is a monotone matching, then (H,H ′) is Ramsey finite for each ordered
graph H without isolated vertices.

5



}

d4

}

d1

}

d2

}

d3

Figure 4: Two almost increasing right caterpillars (left, middle) and two not almost increasing
right caterpillars (right).

Finally we consider pairs of ordered forests. A large part of the full characterization in the
unordered setting (see Theorem 8) is due to Nešetřil and Rödl [33] who prove that each pair of
(unordered) forests which are not star forests is Ramsey infinite. Their proof is based on the fact
that each pair of (unordered) forests has Ramsey graphs of arbitrarily large girth. This in turn
relies on the fact that for each (unordered) forest H there is an integer k such that each graph
of chromatic number at least k contains a copy of H. This second fact is not true for ordered
forests [1]. We think though that the first fact holds for ordered graphs as well.

Conjecture 1. For each integer t and any pair (H,H ′) of ordered forests there is F ∈ R<(H,H ′)
with girth(F ) > t.

If Conjecture 1 is true, then each pair of ordered forests where R<(H,H ′) does not contain a
forest has minimal Ramsey graphs of arbitrarily large (but finite) girth, and hence of arbitrarily
large order.

Observation 2. Let (H,H ′) be a pair of ordered forests such that rm< (H,H ′) > 1 and for each
integer t there is F ∈ R<(H,H ′) with girth(F ) > t. Then (H,H ′) is Ramsey infinite.

Here we focus on pairs of ordered forests H which satisfy the second fact mentioned above,
that is, there is an integer k such that each graph of chromatic number at least k contains a copy
of H. We call such an ordered forest χ-unavoidable. Ordered forest which are not χ-unavoidable
are discovered in [1] and for some small such forests we show that they are Ramsey infinite in [36].
The proof from [33] can be easily adopted for χ-unavoidable ordered forests. So Conjecture 1 holds
for χ-unavoidable ordered forests and we have the following theorem.

Theorem 14. If H and H ′ are χ-unavoidable ordered graphs and rm< (H,H ′) > 1, then (H,H ′) is
Ramsey infinite.

This theorem leaves to consider pairs of χ-unavoidable ordered graphs with rm< (H,H ′) < 1.
We address such pairs of connected ordered graphs next and defer the study of such disconnected
forests to future work. Recall that a right caterpillar is an ordered tree with segments being right
stars with at least one edge each. Further if Si � · · · � S1 are the segments of a right caterpillar
H, then the defining sequence of H is |E(S1)|, . . . , |E(Si)|. A left or right caterpillar with defining
sequence d1, . . . , di is called almost increasing if i 6 2 or (i > 3, d1 6 d3, and d2 6 · · · 6 di). See
Figure 4.

Theorem 15. Let (H,H ′) be a Ramsey finite pair of χ-unavoidable connected ordered graphs with
at least two edges. Then (H,H ′) is a pair of a right star and an almost increasing right caterpillar
or a pair of a left star and an almost increasing left caterpillar.

Theorem 16. Let (H,H ′) be a pair of a right star and a right caterpillar or a pair of a left star
and a left caterpillar, and let d1, . . . , di be the defining sequence of the caterpillar. If either i 6 2
or d1 6 · · · 6 di, then (H,H ′) is Ramsey finite.

Unfortunately we do not resolve this case completely, see Conjecture 5 and the preceding
discussion in Section 3. Nevertheless Theorems 3, 11, 14 and 16 yield the following result.

Corollary 17. A connected ordered graph is Ramsey finite if and only if it is a left or a right star.

A summary of our results is given in Table 1.
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H, H ′

cyclic

H cyclic
H ′ forest

otherwise partial results

H, H ′

forests

otherwise partial results

H, H ′ χ-unavoidable
& no forest in R<(H,H ′)
⇒ Ramsey infinite

H, H ′ χ-unavoidable & connected
⇒ Ramsey finite iff

special pair of star & caterpillar

H = H ′ & no pseudoforest in R<(H,H ′)
⇒ Ramsey infinite

H ′ monotone
matching

⇒ Ramsey finite

H = H ′

⇒ Ramsey infinite
H 6= H ′

open

Table 1: Summary of results on Ramsey finiteness of (H,H ′) for ordered graphs H and H ′.

Ordered Ramsey Numbers. Recently, Ramsey numbers were studied for ordered (hyper)graphs.
The ordered Ramsey number of some ordered r-uniform hypergraph H is the smallest integer n
such that for any 2-coloring of the (hyper)edges of an ordered complete r-uniform hypergraph on n
vertices there is a copy of H with all edges of the same color. Due to several applications, mostly ge-
ometric Erdős-Szekeres type results, Ramsey numbers of so-called monotone (hyper)paths received
particular attention [28]. For given positive integers ` and r a monotone r-uniform `-hyperpath
is an ordered r-uniform hypergraph with edges E1, . . . , Et, where each edge forms an interval in
the vertex ordering and Ei ∩ Ei+1 consists of the ` rightmost vertices in Ei and the ` leftmost
vertices in Ei+1, i ∈ [t− 1]. Building on previous results of Moshkovitz and Shapira [27], Cox and
Stolee [17] prove that the ordered Ramsey number of such paths P grows, as a function in the
number of edges of P , like a tower of height proportional to the maximum degree of P (note that
the maximum degrees of all sufficiently large monotone r-uniform `-hyperpaths coincide for fixed
` and r). In contrast to this, the Ramsey numbers of unordered hyperpaths, and more general of
any hypergraph of bounded maximum degree, are linear in the size. Indeed for any uniformity
r and any positive integer d there is a constant c(r, d) such that for each (unordered) r-uniform
hypergraph H on n vertices and of maximum degree at most d its Ramsey number is at most
c(r, d)n [14, 16]. In a similarly striking contrast to this result, Conlon et al. [15] and independently
Balko et al. [3] prove the existence of ordered matchings with superpolynomial Ramsey numbers.
On the other hand Conlon et al. [15] present results showing that for dense graphs the ordered
Ramsey numbers behave similar to the unordered Ramsey numbers.

2 Proofs

2.1 Proof of Theorems 3 and 4

First we introduce several types of edge-colorings which we shall use to proof that some ordered
forest or pseudoforest is not a Ramsey graph for certain pairs of ordered graphs. The distance of
an edge e and a vertex u in some graph F is the smallest number of edges in a path that contains
u and e. Three vertices x < y < z of an ordered graph form a bend if either z is adjacent to x and
y or x is adjacent to y and z. An edge-coloring of an ordered graph F is a

star-coloring with respect to u ∈ V (F ) if an edge is colored red if its distance to u is odd and
blue otherwise,

bipartite-coloring with respect to a partition A∪̇B = V (F ) if an edge is colored red if its left
endpoint is in A and blue otherwise,

bend-coloring with respect to u ∈ V (F ) if F is a tree and an edge e is colored red if its right

7
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x y

v

Figure 5: A bend-coloring of the edges of an ordered tree with respect to a vertex u (left) in colors
red (solid) and blue (dashed). There is no red monotone path on at least two edges (right, top)
and in the blue component containing v each vertex has at most one neighbor to the left (right,
bottom).

endpoint is u or the edge next to e on the (unique) path to u exists and forms a bend with e, and
e is colored blue otherwise. See Figure 5 (left) for examples of such a coloring.

Lemma 2.1. Let F be an ordered graph and let c be an edge-coloring of F .

(a) If c is a star-coloring with respect to u ∈ V (F ), then each monochromatic component is a
star and all edges incident to u are red.

(b) If c is a bipartite-coloring, then there is no monochromatic copy of a monotone P3.

(c) If c is a bend coloring, then there is no red copy of a monotone P3 and for each blue component
B either each vertex in B has at most one neighbor to the left in B or each vertex in B has
at most one neighbor to the right in B.

Proof. The first two statements follow immediately from the definitions, so we only prove (c).
Suppose that c is a bend-coloring of some ordered tree F with respect to u ∈ V (F ). First consider
a copy P of a monotone P3 in F that contains some red edge xy, x < y. Then either y = u or xy
forms a bend with the edge next to xy on the path to u in F . In both cases the other edge in P
neither has u as its right endpoint nor forms a bend with the edge next to it on the path to u in
F . See Figure 5 (right, top). Hence there is no red monotone path on two edges.

Next consider a blue component B and the vertex v in B that has shortest distance to u in F
(it might happen that u = v). Suppose that v has some neighbor w in B with v < w. If u = v,
then each edge w′v in F with w′ < v is red (and w′ is not in B). If u 6= v and v′v is the edge next
to vw on the path to u in F , then v′ < v (as vw is blue). Hence v does not have any neighbor w′

to the left in B, since any such edge w′v is colored red as w′v and v′v form a bend. Moreover each
other vertex in B has exactly one neighbor to the left in B, since otherwise there is a path from v
(and hence from u) to some vertex in B that contains a bend and hence a red edge. Hence each
vertex in B has at most one neighbor to the left in B. See Figure 5 (right, bottom).

Similar arguments show that if v has some neighbor to the left in B, then each vertex in B has
at most one neighbor to the right in B.

First we prove Lemma 1.1 on unordered graphs with Ramsey density at most 1. In that proof
we shall freely use the star-coloring adopted for unordered graphs. Clearly an analogous statement
to Lemma 2.1(a) holds in this case.

Proof of Lemma 1.1. (a) Let H be a forest of maximum degree d and let H ′ be a star forest of
maximum degree t. One can see that for any 2-coloring of the edges of a sufficiently large (d+t)-ary
tree F without blue copies of H ′ there is a copy of H in some component of the red subgraph by
a greedy embedding. Therefore F ∈ R(H,H ′) and rm(H,H ′) < 1.

On the other hand consider a forest F and a pair of graphs (H,H ′). If H is not a forest, then
F 6∈ R(H,H ′) since coloring all its edges red yields neither red copies of H nor blue copies of
H ′ (since H ′ contains at least one edge). If neither H nor H ′ is a star forest then choose a root
in each component of F and color the edges of the components according to a star coloring with
respect to their respective roots. Then there are neither red copies of H nor blue copies of H ′ by
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Lemma 2.1(a) and F 6∈ R(H,H ′). So in both cases there is no forest in R(H,H ′) and we have that
rm(H,H ′) > 1.

(b) Consider a pair (H,H ′) of graphs. If one of H or H ′ is not a pseudoforest, or one of H or H ′

contains a cycle while the other is not a partial matching (that is, contains a copy of P3), then
clearly there is no pseudoforest in R(H,H ′).

If H is a partial matching and H ′ is a proper pseudoforest, then let F be a vertex disjoint
union of |V (H)| many copies of H ′. For any coloring of the edges of F either all edges in one of
the copies of H ′ are blue or there is red copy of H. Hence F is a Ramsey graph of (H,H ′) and
rm(H,H ′) 6 1. Moreover rm(H,H ′) > 1 by part (a) and thus rm(H,H ′) = 1.

This leaves to consider pairs (H,H ′) of ordered forests. If one of H or H ′ is a star forest, then
rm(H,H ′) < 1 by part (a). So suppose that both H and H ′ contain a copy of P4.

First assume that H ′ has a component which is not a star and not a P4. Then H contains
either a copy of P5 or a copy of a graph P obtained from P4 by adding a pendant edge, that is, by
adding a new vertex u and an edge connecting u to one the vertices of degree 2 in P4. Consider
some proper pseudoforest F . We shall prove that F 6∈ R(H,H ′).

If H ′ contains a copy of P5, then let F ′ denote the forest obtained from F by removing a
smallest set E of edges which contains one edge from each cycle in F . Color each component of
F ′ according to some star coloring and color all edges in E blue. Then by Lemma 2.1(a) the red
edges in F form a star forest and there is no blue copy of P5 in F . Hence there is no red copy of
H and no blue copy of H ′ and F is not a Ramsey graph of (H,H ′). So there is no pseudoforest in
R(H,H ′) in this case, as F was arbitrary.

If H ′ contains a copy of P4 with a pendant edge, then let C denote the subgraph of F formed
by all the cycles in F and let F ′ denote the subgraph of F formed by all edges not in cycles. Each
component of F ′ contains at most one vertex from C. Color all edges in C blue and color each
component of F ′ according to a star coloring with respect to the unique vertex shared with C, if
it exists, and with respect to an arbitrary vertex otherwise. Then by Lemma 2.1(a) the red edges
form a star forest while the blue edges form a vertex disjoint union of a star forest and cycles.
Hence there is no red copy of H and no blue copy of H ′ and F 6∈ R(H,H ′). Again there is no
pseudoforest in R(H,H ′) in this case, as F was arbitrary.

It remains to consider pairs (H,H ′) of forests of stars and copies of P4, both with at least one
copy of P4. Let F be a graph obtained from a 5-cycle with vertices u1, . . . , u5 by adding vertices
v1, . . . , v5 and an edge uivi for each i, 1 6 i 6 5. Moreover let d denote the largest degree among
all vertices in H and H ′, let F ′ be a forest that is a Ramsey graph for a pair of stars on d edges,
and let F ′′ be a forest that is a Ramsey graph for a pair of a star on d edges and P4. Such forests
exist by part (a). One can see that F → (P4, P4) [29] and that a suitable vertex-disjoint union
of several copies of the graphs F , F ′, and F ′′ forms a Ramsey graph of (H,H ′). Since such a
union is a pseudoforest we have rm(H,H ′) 6 1. Moreover rm(H,H ′) > 1 by part (a) and thus
rm(H,H ′) = 1.

Lemma 2.2. Let H and H ′ be ordered graphs. Then R<(H,H ′) does not contain a pseudoforest
in each of the following cases.

(a) One of H and H ′ contains a cycle and the other is not a partial matching.

(b) One of H or H ′ contains a vertex with two neighbors to the right and the other contains a
vertex with two neighbors to the left.

(c) One of H and H ′ contains a copy of a monotone P3 and the other contains a copy of an
ordered P4.

(d) One of H and H ′ contains a copy of a monotone P3 and the other contains a copy of a star
on three edges that is neither a right star nor a left star .

Proof. Let F be a pseudoforest. For each of the cases we shall give a coloring of the edges of F
without red copies of H or blue copies of H ′.
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(a) Without loss of generality assume that H contains a cycle and H ′ is not a partial matching.
Choose a smallest set E of edges which contains one edge from each of the cycles of F . Then color
all edges in E blue and all the other edges of F red. Since the edges in E(F ) \ E form a forest
there is no red copy of H ′ and since the edges in E form a matching there is no blue copy of H ′.
Hence F 6∈ R<(H,H ′) and R<(H,H ′) contains no pseudoforest.

(b) Without loss of generality assume that H contains a vertex with two neighbors to the right
and H ′ contains a vertex with two neighbors to the left. We give a 2-coloring of the edges of F
without red copies of H or blue copies of H ′ by induction on the number of edges of F . Indeed
such a coloring clearly exists if |E(F )| = 1. If |E(F )| > 1 we distinguish two cases. First suppose
that F has some vertex v of degree 1. Remove v from F and color the resulting pseudoforest
inductively. If v is to the left of its neighbor u in F then color uv red, otherwise color it blue. This
coloring of F contains neither red copies of H nor blue copies of H ′. Next assume that F contains
no vertex of degree 1, that is, F is a vertex disjoint union of cycles. For each even cycle in F color
its edges alternatingly red and blue and for each odd cycle color both edges incident to its leftmost
vertex blue and the remaining edges alternatingly red and blue. This coloring contains neither red
copies of H nor blue copies of H ′. In both cases F 6∈ R<(H,H ′) and hence R<(H,H ′) contains
no pseudoforest.

(c) Without loss of generality assume that H contains a copy of a monotone P3 and H ′ contains a
copy P of an ordered P4. We shall give a coloring of F with no red copies of P3 and no blue copies
of P . Since P3 and P are connected we assume without loss of generality that F is connected. We
distinguish cases based on the ordering of P .

First assume that P forms a monotone P4. If F is bipartite, then color its edges using a
bipartite-coloring with respect to an arbitrary bipartition of F . Then there is no red copy of H
and no blue copy of H ′ by Lemma 2.1(b). If F is not bipartite, then we obtain a bipartite graph F ′

from F by removing some edge e from the (unique) odd cycle in F . Note that for any bipartition
of F ′ the endpoints of e belong to the same part. Choose such a partition A∪B = V (F ′) such that
the endpoints of e belong to A. Color the edges in F ′ using the bipartite-coloring with respect to
the partition formed by A and B. Further color e blue. By Lemma 2.1(b) there is no red copy of
H and each blue copy of a monotone P3 contains e. Since the left endpoint of e is in A we have
that all edges incident to this vertex to the left are colored red. Therefore there is no blue copy of
a monotone P4 and thus no blue copy of H ′. In both cases F 6∈ R<(H,H ′) and hence R<(H,H ′)
contains no pseudoforest.

Next assume that P contain a copy of a monotone P3 whose rightmost vertex has two neighbors
to the left in P . If F is bipartite, then color its edges using a bipartite-coloring with respect to an
arbitrary bipartition of F . Then there is no red copy of H and no blue copy of H ′ by Lemma 2.1(b).
Otherwise consider the odd cycle C in F and edges uv, u′v in C such that v is the rightmost vertex
of C and u′ < u < v. Let T denote the subgraph of F formed by the union of all monotone paths
in F whose leftmost vertex is u. Then T is a tree, since it does not contain u′v (and C is the only
cycle in F ). Color all edges of T blue. Then there is no blue copy of P in T . The remaining edges
form a forest F ′ since F ′ does not contain uv. Consider a bipartition A ∪ B = V (F ′) where each
vertex shared with T is in B. Such a partition exists since either u and v are connected by a path
in F ′ with an odd number of vertices or are in distinct components. Color the edges in F ′ using
a bipartite-coloring with respect to the partition formed by A and B, see Figure 6 (left). Then
in F ′ there are no monochromatic copies of a monotone P3 by Lemma 2.1(b). In particular there
is no red copy of H in F , since all edges in T are blue. Moreover each blue edge in F ′ does not
contain any vertex of T since edges in F ′ may share only their right endpoint with T . Hence each
blue component of F is either in F ′ or in T and hence there is no blue copy of H ′ in F . Altogether
F 6∈ R<(H,H ′) and hence R<(H,H ′) contains no pseudoforest.

Next assume that P contain a copy of a monotone P3 whose leftmost vertex has two neighbors to
the right. In this case R<(H,H ′) contains no pseudoforest with arguments similar to the previous
case.

Finally assume that P does not contain any copy of a monotone P3. Then P has some vertex
with two neighbors to the left and another vertex with two neighbors to the right. If F is a tree,
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Figure 6: Colorings of proper pseudoforests. In the left all edges of a certain tree T are colored
blue and the remaining edges are coloring using a bipartite coloring. In the middle an edge uv
is removed from a cycle and the remaining forest is colored with a bend coloring with respect to
v. In the right all edges of a cycle are colored blue and the remaining edges are colored using a
bipartite coloring.

then color its edges according to some bend-coloring with respect to an arbitrary vertex. Then
there is no red copy of a monotone P3 and no blue copy of P by Lemma 2.1(c). Otherwise let u
denote the leftmost vertex of the cycle in F and let v and w be its neighbors in that cycle. Let F ′

be a tree obtained y removing the edge uv from F . Color F ′ with a bend-coloring with respect to
v, see Figure 6 (middle). Then in F ′ there is no red copy of a monotone P3 and no blue copy of
P by Lemma 2.1(c). Note that any edge xu in F ′ with x < u is colored blue, since the next edge
on the path to u′v is uw which does not form a bend with xu. Moreover any edge vy in F ′ with
v < y is colored blue. The coloring of F ′ gives a coloring of F by coloring uv red. Then there is no
blue copy of P since there is no such copy in F ′ and no red copy of a monotone P3 since edges xu,
x < u, and edges vy, v < y, are blue. Altogether F 6∈ R<(H,H ′) and hence R<(H,H ′) contains
no pseudoforest.

(d) Without loss of generality assume that H contains a copy of a monotone P3 and H ′ contains
a star on three edges whose center has one neighbor to the left and two neighbors to the right.
Note that H ′ contains a copy of a monotone P3. If F is bipartite, then color its edges using a
bipartite-coloring with respect to an arbitrary bipartition of F . Then there is no red copy of H
and no blue copy of H ′ by Lemma 2.1(b). Otherwise color all edges of F that are contained in a
cycle blue. The remaining edges form a forest F ′. Choose a bipartition A ∪B = V (F ′) such that
all vertices in the cycle in F that have two neighbors to the right in that cycle are in B and the
other vertices of the cycle are in A. Such a partition exists since the vertices of the cycle in F are
in different components of F ′. Color the edges in F ′ using a bipartite-coloring with respect to the
partition formed by A and B, see Figure 6 (right). Then in F ′ there are no monochromatic copies
of a monotone P3 by Lemma 2.1(b). In particular there is no red copy of H in F , since all edges
not in F ′ are blue. Moreover each vertex which is left endpoint of at least two blue edges in F is
in B. Such a vertex is not a right endpoint of any blue edge. This shows that there is no blue copy
of H ′ in F . Altogether F 6∈ R<(H,H ′) and hence R<(H,H ′) contains no pseudoforest.

Lemma 2.3. Let H and H ′ be ordered forests. Then R<(H,H ′) does not contain a forest in each
of the following cases.

(a) Both H and H ′ contain a component that is not a star.

(b) One of H or H ′ contains a vertex with two neighbors to the right and the other contains a
vertex with two neighbors to the left.

(c) Both H and H ′ contain a monotone path on two edges.

(d) One of H and H ′ contains a copy of a monotone P3 and the other contains a copy of an
ordered P4.

Proof. Let F be a forest. For each of the cases we shall give a coloring of the edges of F without
red copies of H or blue copies of H ′.

(a) For each component of F color its edges according to a star-coloring with respect to some
arbitrary vertex in that component. Then each color class forms a star forest by Lemma 2.1(a),
that is, there is neither a monochromatic copy of H nor of H ′. Hence R<(H,H ′) contains no
forest.
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Figure 7: Disjoint copies of H ′ forming an ordered graph in R<(H,H ′) for some matching H.

(b) This follows immediately from Lemma 2.2(b).

(c) Color the edges of F according to a bipartite-coloring with respect to an arbitrary bipartition.
This coloring contains neither red copies of H nor blue copies of H ′ by Lemma 2.1(b). Hence
R<(H,H ′) contains no forest.

(d) This follows immediately from Lemma 2.2(c).

Proof of Theorem 3. We shall prove that all pairs of ordered forests that do not have a forest as an
ordered Ramsey graph are covered by Lemma 2.3. To this end we provide explicit constructions
of ordered forests that are ordered Ramsey graphs for the remaining pairs.

First we shall show that each pair (H,H ′) where R<(H,H ′) contains a forest satisfies at least
one of the cases of this theorem. Let (H,H ′) be such a pair. Clearly H and H ′ are forests, since
any monochromatic subgraph of an edge-colored forest is a forest itself. If either H or H ′ is a
partial matching then Case (a) of this theorem holds. So assume that neither H nor H ′ is a partial
matching. Due to Lemma 2.3 (a) one of H or H ′ is a star forest. Without loss of generality assume
that H is a star forest. Due to Lemma 2.3 (c) one of H or H ′ does not contain a monotone P3.

First suppose that H does not contain a monotone P3. Then each component of H is a left or
a right star. Due to Lemma 2.3 (b) the following holds. If each component of H is a right star,
then each vertex of H ′ has at most one neighbor to the left (as H is not a partial matching). Thus
H and H ′ satisfy Case (b) of this theorem. Similarly, if each component of H is a left star, then
each vertex of H ′ has at most one neighbor to the right. Thus H and H ′ satisfy Case (c) of this
theorem. If H contains a right star on two edges as well as a left star on two edges, then each
component of H ′ is a monotone path. Thus H and H ′ satisfy Case (d) of this theorem.

Now suppose that H contains a monotone P3. Then H ′ neither contains a monotone P3 nor
any ordered P4 due to Lemma 2.3 (c) and (d). Therefore each component of H ′ is a left or a right
star. The same arguments as above show that H and H ′ satisfy one of the Cases (b), (c), or (d)
of this theorem.

Next consider two ordered forests H and H ′ that satisfy Case (a), (b), (c), or (d) of this theorem.
We shall show that there is a forest in R<(H,H ′) and distinguish which case of this theorem holds.
First of all suppose that H and H ′ together contain some t > 0 isolated vertices. Let H̄ and H̄ ′

be obtained from H respectively H ′ by removing these t isolated vertices. Then there is a forest
in R<(H,H ′) if and only if there is a forest in R<(H̄, H̄ ′). Indeed, if F is an ordered forest in
R<(H,H ′), then F ∈ R<(H̄, H̄ ′). Suppose that F̄ is an ordered forest in R<(H̄, H̄ ′). Then we
obtain an ordered forest in R<(H,H ′) by adding t isolated vertices to the left of all vertices in F̄ ,
to the right of all vertices in F̄ , as well as between any pair of consecutive vertices of F̄ . Similarly
R<(H,H ′) contains a partial matching if and only if R<(H̄, H̄ ′) contains a partial matching. For
the remaining proof we assume that neither H nor H ′ contains isolated vertices.

(a) Without loss of generality assume that H is a matching. Consider a complete ordered graph
K of order r = r<(H,H ′) with vertices v1 < · · · < vr. Let k = |V (H ′)|, m′ =

(
r
k

)
, and m =

(
r−1
k−1
)
.

Note that K contains exactly m′ copies of H ′ and each vertex of K is contained in exactly m copies
of H ′ in K. We shall construct an ordered graph F that is a vertex disjoint union of m′ copies of
H ′. For each i ∈ [r] let H1

i , . . . ,H
m
i denote the copies of H ′ in K containing vi. Choose disjoint

ordered vertex sets Vi = (v1i , . . . , v
m
i ) of size m each, i ∈ [r]. Let F denote the ordered graph with

vertex set ∪ri=1Vi, V1 ≺ · · · ≺ Vr, where vji v
t
s is an edge in F if and only if Hj

i = Ht
s and the edge

vivs is in Hj
i = Ht

s, 1 6 i < s 6 r, 1 6 j, t 6 m. See Figure 7.
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F ′F ′
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F ′

Figure 8: A forest F in R<(H,H ′) formed from disjoint copies of a forest F ′ ∈ R<(H,H ′ − w)
with attached leaves. Here H is a forest of right stars, H ′ is a forest where each vertex has at most
one neighbor to the left, and w is the rightmost vertex of H ′.

Observe that F is a vertex disjoint union of copies of H ′ and hence a forest. Moreover, if H ′

is a matching, then F is a matching. We claim that F ∈ R<(H,H ′). Consider a 2-coloring c of
the edges of F . We shall show that there is either a red copy of H or a blue copy of H ′. To this
end consider the edge-coloring c′ of K where an edge vivs, 1 6 i < s 6 r, is colored red if there
is at least one red edge between Vi and Vs in F and blue otherwise. Due to the choice of K there
is either a red copy of H or a blue copy of H ′ under c′. In either case there is a red copy of H
respectively a blue copy of H ′ under c. Thus F ∈ R<(H,H ′).

(b) Without loss of generality assume that each component of H is a right star and each vertex
in H ′ has at most one neighbor to the left. We shall prove that there is a forest in R<(H,H ′) by
induction on the size of H ′. If H ′ has only one edge, then clearly H is in R<(H,H ′) and we are
done. So suppose that H ′ has at least two edges. Let w denote the rightmost vertex of H ′ and
let F ′ denote an ordered forest in R<(H,H ′ − w) which exists by induction (note that w is a leaf
in H ′ and H ′ has no isolated vertices). We shall construct an ordered forest F as follows. Let
v1 < · · · < vn denote the vertices of H and let S denote the set of left endpoints of edges in H,
that is, the centers of the right stars in H.

Choose n disjoint ordered sets of vertices V1 ≺ · · · ≺ Vn of size |V (F ′)| each. For each i ∈ [n],
with vi ∈ S, add edges among the vertices in Vi such that Vi induces a copy of F ′. For each edge
vivj in H, 1 6 i < j 6 n, add an arbitrary perfect matching between Vi and Vj . See Figure 8 for
an illustration.

Then F is a vertex disjoint union of copies of F ′ with some leaves attached. In particular F is
a forest. We claim that F ∈ R<(H,H ′). Consider a coloring of the edges of F . For each u ∈ Vi
there is an edge uv with v ∈ Vj for some j > i, since each vi ∈ S is left endpoint of some edge vivj
in H. If for each vi ∈ S there exists u ∈ Vi such that an edge uv is red whenever v ∈ Vj with j > i,
then there is a red copy of H. So assume that there is some vi ∈ S such that for each u ∈ Vi there
is a blue edge uv for some v ∈ Vj , j > i. Since Vi induces a copy of F ′, there is either a red copy
of H or a blue copy of H ′ − w. In the latter case some edge between Vi and Vj yields a blue copy
of H ′ in F , since w is rightmost and of degree 1 in H ′. Altogether F is a forest in R<(H,H ′).

(c) This follows from Case (b).

(d) Without loss of generality assume that each component of H is a left or a right star and
each component of H ′ is a monotone path. We shall prove that there is a forest in R<(H,H ′) by
induction on the number of components of H and the size of H ′. If H has only one component,
then there is a forest in R<(H,H ′) by Case (b) or (c). If H ′ has only one edge, then H is in
R<(H,H ′) and we are done. Suppose that H has at least two components and H ′ has at least
two edges. Let S denote a component of H. Without loss of generality assume that S is a right
star. Let w denote the rightmost vertex of H ′ (recall that H ′ has no isolated vertices so w is of
degree 1). By induction there are ordered forests A ∈ R<(H − S,H ′) and B ∈ R<(H,H ′ − w).
Let a1 < · · · < an denote the vertices of A. Let F ′ consist of an intervally disjoint union of n+ 1
copies B1, . . . , Bn+1 of B. Consider an ordered forest F ′′ that is a vertex disjoint union of F ′ and
A where for each i, 1 6 i 6 n, the vertex ai ∈ V (A) is between Bi and Bi+1. See Figure 9 (left).
Obtain an ordered forest F from F ′′ as follows. For all i, j with 1 6 i 6 j 6 n+1, and each vertex
u in Bi add a star with center u and |E(S)| leaves to the right of Bj and, if j < n+ 1, to the left
of aj , such that these leaves are distinct for distinct pairs i, j, and vertices u. See Figure 9 (right)
for an illustration.

Clearly F is a forest since F ′′ is a forest and all the leaves added in the last step are distinct.
We claim that F ∈ R<(H,H ′). Consider a 2-coloring of the edges of F without blue copies of H ′.
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Figure 9: Forests A ∈ R<(H − S,H ′) and B ∈ R<(H,H ′ − w) forming a forest F in R<(H,H ′).
Here S is a component of H and w is the rightmost vertex in H ′, where each component of H is
a left or a right star and each component of H ′ is a monotone path.

Then there is a red copy K of H −S in A. Consider some i ∈ [n+ 1] such that the position of any
vertex u in Bi in K +u corresponds to the position of the center of S in H. If for some u ∈ V (Bi)
all the edges uv in F where v is to the right of Bi are red, then this red right star together with
K contains a red copy of H. So suppose that for each vertex u ∈ V (Bi) there is a blue edge uv
where v is to the right of Bi. Then there is no blue copy of H ′ − w in Bi, as otherwise there is a
blue copy of H ′ since w is rightmost and of degree 1 in H ′. Hence there is a red copy of H in Bi.
Altogether F ∈ R<(H,H ′).

Finally we prove the last statement of the theorem (that is, R<(H,H ′) contains a partial
matching if and only if both H and H ′ are partial matchings). In the proof of Case (a) we give
a partial matching in R<(H,H ′) provided that both H and H ′ are partial matchings. The other
way round there is clearly no partial matching in R<(H,H ′) provided that one of H or H ′ is not
a partial matching.

Proof of Theorem 4. Similar to the proof of Theorem 3 we shall prove that all pairs of connected
ordered graphs that do not have a pseudoforest as an ordered Ramsey graph are covered by
Lemma 2.2. For those remaining pairs which do not have a forest as a Ramsey graph by Theorem 3
we provide explicit constructions of ordered pseudoforests that are ordered Ramsey graphs. First
we shall show that any pair (H,H ′) of connected ordered graphs with rm< (H,H ′) = 1 where
R<(H,H ′) contains a pseudoforest is a pair of K2 and a connected ordered proper pseudoforest or
both H and H ′ form a monotone P3.

First suppose that H ′ = K2. Clearly H ∈ R<(H,K2) is the unique minimal ordered Ramsey
graph of (H,K2). Hence rm< (H,K2) = 1 and R<(H,K2) contains a pseudoforest if and only if H
is a proper pseudoforest.

Next let H and H ′ be connected ordered graphs with rm< (H,H ′) = 1 where R<(H,H ′) contains
a pseudoforest and suppose that both H and H ′ contain at least two edges. We shall show that
both H and H ′ form a monotone P3. Since H and H ′ are connected they are not matchings.
Therefore both H and H ′ are forests due to Lemma 2.2(a). If neither H nor H ′ contains a
copy of a monotone P3, then either there is no pseudoforest in R<(H,H ′) by Lemma 2.2(b) or
rm< (H,H ′) < 1 by Theorem 3(b) or (c). So assume, without loss of generality, that H contains a
copy of a monotone P3. Then H ′ does not contain any copy of an ordered P4 by Lemma 2.2(c),
that is, H ′ is a star (since it is connected). If H ′ is a left or a right star then either H contains a left
or right star in the reverse direction and there is no pseudoforest in R<(H,H ′) by Lemma 2.2(b)
or rm< (H,H ′) < 1 by Theorem 3(b) or (c). Hence H ′ is neither a left or a right star and therefore
H ′ forms a monotone P3, since otherwise there is no pseudoforest in R<(H,H ′) by Lemma 2.2(d).
Now the same arguments applied with roles of H and H ′ switched show that both H and H ′ form
a copy of a monotone P3.

It remains to prove that rm< (H,H ′) = 1 in this case. By Theorem 3 (see also Lemma 2.3(c))
we have that rm< (H,H ′) > 1. It remains to give a pseudoforest in R<(H,H ′). Let F denote the
ordered graph obtained from a monotone path u1u2u3u4u5 by adding an edge u2u4. Clearly F is
a proper pseudoforest and we claim that F ∈ R<(H,H ′). Consider a 2-coloring of the edges of F .
If there are two incident edges on the path u1u2u3u4u5 of the same color then these form either
a red copy of H or a blue copy of H ′. Otherwise the edges u1u2 and u4u5 are of different colors.
Then no matter which color is assigned to the edge u2u4, there is either a red copy of H or a blue
copy of H ′. Altogether F ∈ R<(H,H ′) and thus rm< (H,H ′) = 1.
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2.2 Proof of Theorems 9, 10 and 11

We shall use the hypergraph container method due to Saxton and Thomason [37] and independently
Balogh et al. [4] to prove Theorem 9. We will follow the arguments from [31] (see also [22])
using the following result of Saxton and Thomason [38]. Considering ordered graphs instead of
(unordered) graphs only affects the involved constants. Recall that the density of a graph is
m(G) = max{|E(G′)|/|V (G′)| | G′ ⊆ G} and that the 2-density is m2(G) = max{(|E(G′)| −
1)/(|V (G′)| − 2) | G′ ⊆ G, |V (G′)| > 3, |E(G′)| > 1}. For a hypergraph H and some integer ` let
∆`(H) = max{|E| | E ⊆ E(H), |∩E∈EE| > `}.

Theorem 18 (Cor. 1.3 [38]). For all r ∈ N and for any ε > 0 there is C > 0 such that for all
r-uniform hypergraphs H with average degree d > 0 and each τ , 0 < τ 6 1, with ∆`(H) 6 Cdτ `−1,
2 6 ` 6 r, the following holds. There is a function f : 2V (H) → 2V (H) such that for each
independent set I in H there is S ⊆ V (H) with

(a) S ⊆ I ⊆ f(S),

(b) |S| 6 τ |V (H)|,

(c) |E(H[f(S)])| 6 ε|E(H)|.

We shall also use a corollary to the so-called Small-Subgraph-Theorem of Erdős and Rényi [18]
and Bollobás [6].

Theorem 19 ([6],[18]). Let H be a graph with at least one edge. The probability that a random
graph G(n, p) contains a copy of H tends to 0 (as n→∞) if pn1/m(H) → 0 (as n→∞).

The following lemma is an analog of Corollary 2.2. from [31]. We include a proof for ordered
graphs for completeness.

Lemma 2.4. Let H be an ordered graph, σ = r<(H,H,H), ε = 1
4σ
−σ, δ = |E(H)| 12σ−σ, and

n > σ. If E1, E2 ⊆ E(Kn) with Ei inducing at most εn|V (H)| copies of H, i ∈ [2], then |E1∪E2| 6
(1− δ)

(
n
2

)
.

Proof. Let t = |V (H)|, E = E1 ∪ E2, and E′ = E(Kn) \ E. Then for each set of σ vertices
in Kn there is a copy of H with all edges in E1, all edges in E2, or all edges in E′. Note
that each copy of H in Kn is contained in at most nσ−t such σ-sets. Thus there are at least(
n
σ

)
nt−σ copies of H in Kn with all edges in one of E1, E2, or E′. Therefore E′ induces at least(

n
σ

)
nt−σ − 2εnt > (σ−σ − 2ε)nt = 1

2σ
−σnt copies of H. Since each edge in E′ is contained in at

most nt−2 copies of H, there are at least |E(H)| 12σ−σnt/nt−2 = |E(H)| 12σ−σn2 > δ
(
n
2

)
edges in

E′. Thus |E| 6 (1− δ)
(
n
2

)
.

The following lemma is implicitly contained in [31] for unordered graphs.

Lemma 2.5 (Ramsey Containers [31]). Let H be an ordered graph without isolated vertices. Then
there are constants N0, C ′, δ > 0, and a function g mapping ordered graphs to ordered graphs such
that for each n, n > N0, and each F 6∈ R<(H) on vertex set [n] there is an ordered graph P with

(a) V (P ), V (g(P )) ⊆ [n],

(b) P ⊆ F ⊆ g(P ),

(c) |E(P )| 6 C ′n2−1/m2(H),

(d) |E(g(P ))| 6 (1− δ)
(
n
2

)
.

Proof. Consider some (large) n and an ordered complete graph K on vertex set [n]. Let H = Hn
be a hypergraph with vertex set E(K) that contains an edge E ⊆ E(K) if and only if E forms a
copy of H in K. Observe that there is a 1-1 correspondence between subsets of V (H) and ordered
graphs on vertex set [n] (without isolated vertices). Let t = |V (H)|, r = |E(H)|. Then H is

r-uniform, |V (H)| =
(
n
2

)
, |E(H)| =

(
n
t

)
, and its average degree is d(H) = r|E(H)|

|V (H)| . Let δ and ε be
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given by Lemma 2.4 and let C 6 1 be given by Theorem 18 for r and ε as defined here. Further let
τ = tt

Cn
−1/m2(H) and let v(`) = min{|V (H ′)| | H ′ ⊆ H, |E(H ′)| = `}, for ` ∈ [r]. Finally choose

N0 > max{r<(H), t} such that tt

CN
−1/m2(H)
0 6 1 and consider n > N0. Then d(H) > 0 and for

each `, 2 6 ` 6 r,

m2(H) = max
H′⊆H
|V (H′)|>3

|E(H′)|−1
|V (H′)|−2 > max

H′⊆H,|E(H′)|=`
`−1

|V (H′)|−2 = `−1
v(`)−2 , (1)

∆`(H) 6
(
n−v(`)
t−v(`)

)
6 nt−v(`)

(1)

6 n
t−2− `−1

m2(H) 6
tt
(
n
t

)
(
n
2

) n−
`−1

m2(H)

6 r|E(H)|
|V (H)| C

(
tt

C

)`−1
n
− `−1

m2(H) = Cdτ `−1.

Due to Theorem 18 there is a function f : 2V (H) → 2V (H) such that for each independent set I of H
there is S ⊆ V (H) with S ⊆ I ⊆ f(S), |S| 6 τ |V (H)|, and |E(H[f(S)])| 6 ε|E(H)|. Now consider
some F 6∈ R<(H) on n vertices and a 2-coloring of the edges of F with no monochromatic copy of H.
Then the color classes form independent sets I1 and I2 in H (since H has no isolated vertices). As

argued above there are sets S1, S2 ⊆ V (H) with Si ⊆ Ii ⊆ f(Si), |Si| 6 τ |V (H)| 6 tt

Cn
2−1/m2(H),

and |E(H[f(Si)])| 6 ε|E(H)| 6 εnt, i = 1, 2. Due to the latter condition and Lemma 2.4 we have

|f(S1)∪ f(S2)| 6 (1− δ)n2. The statement of the lemma follows with C ′ = 2 t
t

C , P being the graph
formed by S1 ∪ S2, and g(P ) being the graph formed by f(S1) ∪ f(S2).

Proof of Theorem 9. Let H be an ordered graph which is not a partial matching, that is, m2(H) >
1
2 . We shall show that there is a constant c such that with p = cn−1/m2(H) a random graph G(n, p)
is an ordered Ramsey graph of H with probability tending to 1 as n tends to infinity. First suppose
that H has no isolated vertices. Let N0, C ′, δ > 0 be constants and let g be a function given by
Lemma 2.5. Let P denote the set of ordered graphs P with V (P ) ⊆ [n], |E(P )| 6 C ′n2−1/m2(H),
and no isolated vertices. Note that we can assume that |E(g(P ))| 6 (1 − δ)

(
n
2

)
for each P ∈ P.

For sufficiently large c the probability that there is some P ∈ P with P ⊆ G(n, p) ⊆ g(P ) is at
most

∑

P∈P
P (P ⊆ G(n, p) ⊆ g(P )) 6

∑

P∈P
p|E(P )|(1− p)δ(n

2)

=

bC′n2−1/m2(H)c∑

i=0

((n
2

)

i

)
pi(1− p)δ(n

2) (2)

6

bC′n2−1/m2(H)c∑

i=0

(
en2p
i

)i
e−pδ(

n
2) (3)

6 C ′n2
(

en2p
C′n2−1/m2(H)

)C′n2−1/m2(H)

e−pδ(
n
2) (4)

6 C ′n2
(
ec
C′

)C′n2−1/m2(H)

e−(cδ/4)n
2−1/m2(H)

= C ′n2e(

<0︷ ︸︸ ︷
C′+C′ ln(c)−C′ ln(C′)−(cδ/4))n

>0︷ ︸︸ ︷
2−1/m2(H)

−→ 0 (n→∞).

Here equality 2 holds since for each i there are
((n

2)
i

)
graphs on i edges in P. Inequality 3 holds

since
((n

2)
i

)
6 (en2/i)i. Finally inequality 4 holds since for any fixed r > 0 the function (r/x)x of

x is increasing for 0 < x 6 r (note that its derivative is (r/x)x(ln(r/x)− 1)) and C ′n2−1/m2(H) 6
ecn2−1/m2(H) = en2p. If n > N0 and G(n, p) 6∈ R<(H), then by Lemma 2.5 there is some
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P ∈ P with P ⊆ G(n, p) ⊆ g(P ). Thus the calculation above shows that G(n, p) ∈ R<(H) with
probability tending 1 as n→∞.

Now suppose that H contains a isolated vertices and let H ′ be obtained from H by removing
all isolated vertices. Note that m2(H) = m2(H ′). Let c = c(H ′) denote a constant such that with
p = cn−1/m2(H) we have G(n, p) ∈ R<(H ′) with probability tending 1 as n → ∞ which exists as
argued before. Further let c′ = (a + 2)1/m2(H)c, p′ = c′n−1/m2(H), and consider a random graph
F = G(n, p′) with vertex set [n]. We claim that F ∈ R<(H) with probability tending 1 as n→∞.
Indeed, consider U(n) = {(a+ 1)k | 1 6 k 6 n−a

a+1 } ⊆ [n] and the subgraph F ′ of F with vertex set

U(n). Let ñ = |U(n)| = b(n−a)/(a+1)c > n/(a+2). Then p′ > c′((a+2)ñ)−1/m2(H) = cñ−1/m2(H).
So F ′ behaves like G(ñ, cñ−1/m2(H)) and therefore F ′ ∈ R<(H ′) with probability tending 1 as
n → ∞ by the choice of c. Finally observe that there are a vertices in F to the left of U(n),
a vertices to the right of U(n), and a vertices between any pair of vertices from U(n). So any
monochromatic copy of H ′ in F ′ yields a monochromatic copy of H in F . Therefore F ∈ R<(H)
with probability tending 1 as n→∞.

Proof of Theorem 10. Let H be an ordered graph such that m(F ) > m2(H) for each F ∈ R<(H).
Then H is not a partial matching by Theorem 3. Let c denote the constant given by Theorem 9,
that is, with p = cn−1/m2(H) a random graph G(n, p) is an ordered Ramsey graph of H with
probability tending to 1 as n tends to infinity. Let p = cn−1/m2(H), F = G(n, p), and fix some
integer t > 0. We shall prove that F ∈ R<(H) and F [V ] 6∈ R<(H) for each t-subset V ⊆ V (F )
with probability tending to 1 as n tends to infinity. Hence there is a minimal ordered Ramsey
graph contained in F on more than t vertices. Since t is arbitrary there are minimal ordered
Ramsey graphs of H of arbitrarily large order and hence H is Ramsey infinite.

Consider n sufficiently large such that p 6 1. Let F̃ denote the underlying (unordered) graph
of F , and let F denote the set of all ordered graphs in R<(H) with t vertices. We show that

with high probability F̃ does not contain the underlying graph of any member of F as a subgraph.
Consider some fixed F ′ ∈ F . We have m(F ′) > m2(H) by assumption. Therefore

pn1/m(F ′) = n1/m(F ′)−1/m2(H) −→ 0 (n→∞).

So with high probability F̃ does not contain the underlying graph of F ′ as a subgraph by The-
orem 19. In particular F does not contain F ′ as an ordered subgraph. This shows that with
probability tending to 1 (as n → ∞) F does not contain any member of F as a subgraph, since
F is a finite set. So with probability tending to 1 (as n → ∞) F [V ] 6∈ R<(H) for each t-subset
V ⊆ V (F ).

Altogether we see that for sufficiently large n there is an ordered graph F with F ∈ R<(H) and
F [V ] 6∈ R<(H) for each t-subset V ⊆ V (F ). Therefore there are arbitrarily large minimal ordered
Ramsey graphs of H and hence H is Ramsey infinite.

Proof of Theorem 11. Let H be a Ramsey finite ordered graph. Then there is F ∈ R<(H) with
m(F ) 6 m2(H) by Theorem 10. Therefore m2(H) 6 1 by Theorem 1 and thus m(F ) 6 1, that
is, H is a forest and F is a pseudoforest. Hence H does not contain any ordered copy of P4 by
Lemma 2.2 (b) and (c), that is, H is a star forest. Moreover each star on three edges in H is either
a right star or a left star by Lemma 2.2 (d). Finally consider the components of H with at least
two edges that are not monotone paths. Then either all these components are left stars or all these
components are right stars by Lemma 2.2 (b).

2.3 Proof of Theorem 12

Let s and t be positive integers and let H1, . . . ,Hs, H
′
1, . . . ,H

′
t be loosely connected ordered graphs

such that (Hi, H
′
j) is Ramsey finite for all i ∈ [s], j ∈ [t]. In particular neither of H1, . . . ,Hs,

H ′1, . . . ,H
′
t is an isolated vertex. Further let H = H1 t · · · tHs and H ′ = H ′1 t · · · tH ′t. In order

to prove that (H,H ′) is Ramsey finite we shall show that each minimal ordered Ramsey graph
of (H,H ′) is a member of the following finite family of ordered graphs. Let F ts denote the set of
all ordered graphs that are isomorphic to a (not necessarily disjoint) union of ordered graphs F ji ,

i ∈ [s], j ∈ [t], where F ji is a minimal ordered Ramsey graph of (Hi, Hj), and for each i ∈ [s],
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Figure 10: A Ramsey graph for (H1 tH2 tH3, H
′
1 tH ′2 tH ′3) where F ji ∈ R<(Hi, H

′
j), i, j = 1, 2,

3. The subgraphs of the same color correspond to constant j, the subgraphs on the same horizontal
layer (above, on, respectively below the line of vertices) correspond to constant i.

j ∈ [t− 1], we have F ji ≺ F j+1
i , and for each i ∈ [s− 1], j ∈ [t], we have F ji ≺ F ji+1. See Figure 10

for an illustration in the case s = t = 3. For some graph A ∈ F ts that is isomorphic to such a union
of graphs F ji , i ∈ [s], j ∈ [t], let Aji denote the copy of F ji in A. Note that F ts is finite. We claim
that F ∈ R<(H,H ′) if and only if F contains some member of F ts.

Consider a 2-coloring of the edges of some A ∈ F ts. We shall prove that there is a red copy
of H or a blue copy of H ′ by induction on s and t. If s = 1, then A = A1

1 t · · · t At1 where
Aj1 ∈ R<(H,H ′j) for each j ∈ [t]. If t = 1, then A = A1

1 t · · · t A1
s where A1

i ∈ R<(Hi, H
′) for

each i ∈ [s]. In both cases it is easy to see that there is either a red copy of H or a blue copy of
H ′. Hence A ∈ R<(H,H ′). Suppose that s, t > 1. Let A′ denote the subgraph of A formed by
all subgraphs Aji with (i, j) 6= (s, t). Then A′ contains some member of F ts−1 and some member
of F t−1s . By induction, A is in R<(H,H ′1 t · · · tH ′t−1) and in R<(H1 t · · · tHs−1, H ′). If there is
no red copy of H and no blue copy of H ′ in A′, then there is a red copy of H1 t · · · tHs−1 and a
blue copy of H ′1 t · · · tH ′t−1. Observe that A′ ≺ Ats in A. Since Ats ∈ R<(Hs, H

′
t) there is a red

copy of H or a blue copy of H ′ in either case. Thus A ∈ R<(H,H ′).

Now consider an ordered graph F that does not contain any member of F ts. We shall prove
that F 6∈ R<(H,H ′) by induction on s and t. Consider the case s = 1. If t = 1 then F does
not contain any minimal ordered Ramsey graph of (H1, H

′
1) = (H,H ′). Clearly F 6∈ R<(H,H ′).

Suppose that t > 1 and let p denote the rightmost vertex in F such that {q ∈ V (F ) | p 6 q}
induces a copy of some graph from R<(H,H ′t) in F . Let F` and Fr denote the subgraphs of F
induced by all vertices strictly to the left respectively strictly to the right of p. Then F` does not
contain any member of F t−11 . By induction on t there is a coloring of the edges of F` without red
copies of H or blue copies of H ′1t · · ·tH ′t−1. Moreover there is a coloring of Fr without red copies
of H or blue copies of H ′t. Color all remaining edges blue (that is, all edges incident to p and all
edges between F` and Fr). Then there is no red copy of H since H = H1 is loosely connected (so
in particular not an isolated vertex). Moreover each blue copy of H ′t contains some vertex q with
q 6 p and thus there is no blue copy of H ′. This shows that F 6∈ R<(H,H ′). If t = 1 and s > 1,
then F 6∈ R<(H,H ′) due to symmetric arguments.

So suppose that s, t > 1. If F does not contain any member of F ts−1, then F 6∈ R<(H1 t · · · t
Hs−1, H ′) by induction on s. Hence F 6∈ R<(H,H ′). So assume that F contains some member of
F ts−1. Let A denote such a copy where for each i ∈ [s − 1] and j ∈ [t] the rightmost vertex of Aji
is leftmost among all such copies. Note that we can simultaneously choose such leftmost vertices
for all i ∈ [s− 1] and j ∈ [t]. If F does not contain any subgraph of the form B1 t · · · tBt where
Bj ∈ R<(Hs, H

′
j) for each j ∈ [t], then the arguments from case s = 1 show that F 6∈ R<(Hs, H

′)
and thus F 6∈ R<(H,H ′). Otherwise let B = B1 t · · · t Bt denote such a subgraph of F where
for each j ∈ [t] the leftmost vertex of Bj is rightmost among all such subgraphs. Again we can
simultaneously choose such rightmost vertices for all j ∈ [t]. Since A∪B 6∈ F ts there is j ∈ [t] such
that Bj is not to the right of Ajs−1. See Figure 11 for an illustration. Let p denote the rightmost

vertex of Ajs−1 and let F` and Fr denote the subgraphs of F induced by all vertices strictly to the
left respectively strictly to the right of p. By the choice of A the graph F` does not contain any
member of F js−1. By the choice of B the graph Fr does not contain any subgraph of the form
B′j t · · · tB′t where B′j′ ∈ R<(Hs, Hj′), j 6 j′ 6 t. Therefore there is a coloring of the edges of F`
without red copies of H1 t · · · tHs−1 or blue copies of H ′1 t · · · tH ′j by induction on s. Similarly
there is a coloring of the edges of Fr without red copies of Hs or blue copies of H ′j t · · · tH ′t due
to the arguments from case s = 1. Color all remaining edges red (that is, all edges incident to p
and all edges between F` and Fr). Then each red copy of H1 t · · · tHs−1 contains some vertex q
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6→ (Hs, H
′
j t · · · tH ′t)

F`

6→ (H1t· · ·tHs−1, H ′1t· · ·tH ′j)

Figure 11: An illustration of the proof of Theorem 12. Here Aji ∈ R<(Hi, H
′
j), B

j ∈ R<(Hs, H
′
j),

and F does not contain any element from F ts . Therefore a combination of colorings of F` and Fr
shows that F 6→ (H1 t · · · tHs, H

′
1 t · · · tH ′t).

G G′ G G′

G tG′ G ◦G′

G G

3⊕2 G

Figure 12: Three different types of unions of ordered graphs.

with p 6 q. Hence there is no red copy of H. Similarly we see that there is no blue copy of H ′

since all edges incident to p and all edges between F` and Fr are red (and H ′j is not an isolated
vertex). Altogether F 6∈ R<(H,H ′). This shows that each minimal ordered Ramsey graph F of
(H,H ′) contains some F ′ ∈ F ts. Since we proved in the beginning that F ′ ∈ R<(H,H ′), we have
that F = F ′ and F ∈ F ts. Thus (H,H ′) is Ramsey finite.

2.4 Proof of Theorems 14 and 15

Proof of Theorem 14. As H and H ′ are χ-unavoidable there is an integer k such that each ordered
graph of chromatic number at least k contains a copy of H and a copy of H ′. For each t > 3 let
Gt be an ordered graph of chromatic number at least k2 and girth at least t. First we prove that
Gt ∈ R<(H,H ′). Consider a 2-coloring of the edges of Gt. Since χ(Gt) > k2 one of the color
classes forms an ordered graph of chromatic number at least k. Therefore this subgraph contains
a (monochromatic) copy of both of H and H ′. Thus Gt ∈ R<(H,H ′).

For each t > 3 let G′t be a minimal ordered Ramsey graph of (H,H ′) that is a subgraph of
Gt. For each t > 3 the graph G′t contains a cycle, since R<(H,H ′) contains no forest. As Gt
has girth at least t, infinitely many of the graphs G′t are not isomorphic. Thus (H,H ′) is Ramsey
infinite.

For the proof of Theorem 15 it remains to consider pairs of χ-unavoidable connected ordered
graphs that are not covered by Theorem 14, i.e., that have a forest as an ordered Ramsey graph.
Recall that all pairs of ordered graphs having a forest as a Ramsey graph are characterized by
Theorem 3. We give explicit constructions of infinitely many ordered Ramsey graphs for these
pairs using so-called determiners as building blocks. We introduce determiners and give explicit
constructions of such ordered graphs next. The concept of (unordered) determiners is used by
Burr et al. [13] to construct Ramsey graphs with certain properties.

Let ~Sp denote a right star with p edges. In the proof we shall frequently use the following unions
of ordered graphs G and G′. Recall that the intervally disjoint union G t G′ is a vertex disjoint
union of G and G′ where all vertices of G are to left of all vertices of G′. Further the concatenation
G◦G′ of two ordered graphs G and G′ is obtained from GtG′ by identifying the rightmost vertex
in the copy of G with the leftmost vertex in the copy of G′. For an integer b > 0 we shall write
tbG and ◦bG for an intervally disjoint union respectively a concatenation of b copies of G. Finally
a⊕b G denotes the ordered graph obtained from ~Sa t (tbG) by connecting the leftmost vertex of
this union with the leftmost vertex of each of the b copies of G. See Figure 12 for an illustration.
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Figure 13: A left determiner for (H,H2(d)) (left) and a right determiner for (H,H3
3 (d)) (right)

with respective good colorings (red solid and blue dashed edges). Here H is a right star on two
edges and d1 = d2 = 1 and d3 = 2.

D≤i−1 D≤i−1 D≤i−1

di − 1

}

u u1 u2 us

Figure 14: A left determiner for (H,Hi) with s = |E(H)| = 3, di = 3, and a good coloring of its
edges. Here D6i−1 is a left determiner for (H,Hi−1).

Given integers i, j with 1 6 j 6 i, and a sequence d = d1, d2, . . . of positive integers, let
Hi(d) = ~Sdi ◦ · · · ◦ ~Sd1 and Hj

i (d) = ~Sdi ◦ · · · ◦ ~Sdj be right caterpillars. For convenience let H0(d)

and Hi+1
i (d) each denote a single vertex ordered graph. Consider a right star H and a sequence

d = d1, d2, . . . of positive integers. A left determiner for (H,Hi(d)), i > 0, is an ordered graph F
such that

• for any 2-coloring of the edges of F without red copies of H there is a blue copy of Hi(d)
that contains the leftmost vertex of F , and

• there is a good coloring of the edges of F , that is, a 2-coloring without red copies of H or blue
copies of Hi+1(d) such that there is a unique blue copy of Hi(d) that contains the leftmost
vertex of F and this copy is induced and isolated in the blue subgraph.

A right determiner for (H,Hj
i (d)), 1 6 j 6 i+ 1, is an ordered graph F such that

• for any 2-coloring of the edges of F without red copies of H or blue copies of Hi(d) there is
a blue copy of Hj

i (d) that contains the rightmost vertex of F , and

• there is a good coloring of the edges of F , that is, a 2-coloring without red copies of H or blue
copies of Hi(d) such that there is a unique blue copy of Hj

i (d) that contains the rightmost
vertex of F and this copy is induced and isolated in the blue subgraph.

See Figure 13 for examples of determiners.

Lemma 2.6. Let H be a right star with at least one edge, let d be a sequence of positive integers,
and let i, j be non-negative integers with j 6 i+ 1. Then there is a left determiner for (H,Hi(d))
and, if j > 2, there is a right determiner for (H,Hj

i (d)).

Proof. Let s = |E(H)|, d = d1, d2, . . ., Hi = Hi(d), and Hj
i = Hj

i (d). First we shall construct a
left determiner for (H,Hi) by induction on i. It is easy to see that a single vertex graph is left
determiner for (H,H0) and a right star on s+d1−1 edges is a left determiner for (H,H1). Suppose
that i > 2 and let D6i−1 denote a left determiner for (H,Hi−1), which exists by induction. Let
D = (di − 1) ⊕s D6i−1, let D1, . . . , Ds denote the copies of D6i−1 in D, and let ut denote the
leftmost vertex of Dt, 1 6 t 6 s, see Figure 14 for an illustration.

To see that D is a left determiner for (H,Hi) consider a 2-coloring of its edges without a red
copy of H. Let u denote the leftmost vertex of D. Since u is of degree di + s− 1, it is incident to
at least di blue edges. Consider the rightmost vertex v such that the edge uv is blue. Then v = ut
for some t ∈ [s], and hence v is leftmost in a blue copy of Hi−1. Thus there is a blue copy of Hi

that contains u.
It remains to give a good coloring of the edges of D. Recall that D6i−1 has a good coloring, that

is, a 2-coloring of its edges without red copies of H or blue copies of Hi such that the blue copy of
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Figure 15: A right determiner for (H,Hj
i ) with s = |E(H)| = 3, dj = 3, and a good coloring

of its edges. Here D6j−1 is a left determiner for (H,Hj−1) and D>j+1 is a right determiner for

(H,Hj+1
i ).

Hi−1 that contains the leftmost vertex of D6i−1 is induced and isolated in the blue subgraph. Color
D1, . . . , Ds according to such a coloring. Moreover color some s − 1 of the edges uut, 1 6 t 6 s,
in red, and all other edges incident to u in blue. See Figures 13 and 14. Clearly there is no red
copy of H and no blue copy of Hi+1. Moreover the blue copy of Hi that contains u is induced
and isolated in the blue subgraph. Hence this coloring is a good coloring of D. Thus D is a left
determiner for (H,Hi).

Next we shall construct right determiners for (H,Hj
i ) for i, j with i + 1 > j > 2. Consider

some fixed i > 1. We shall construct a right determiner for (H,Hj
i ) by induction on i + 1 − j

(that is, “from left to right”), using the already constructed left determiners. We see that a single
vertex graph is a right determiner for (H,Hi+1

i ). This forms the base case i + 1 − j = 0, that
is, j = i + 1. Suppose that i + 1 − j > 0, that is, j 6 i. Let D>j+1 denote a right determiner

for (H,Hj+1
i ), which exists by induction, and let D6j−1 denote a left determiner for (H,Hj−1)

(note that j − 1 > 1). Let D′ = (dj − 1) ⊕s−1 D6j−1, let x denote the leftmost vertex in D′,
let D1, . . . , Ds−1 denote the copies of D6j−1 in D′, and let vt denote the leftmost vertex in Dt,
1 6 t 6 s − 1. Obtain an ordered graph D from D>j+1 ◦D′ by adding a vertex y to the right of
all other vertices and an edge between x and y. See Figure 15.

We claim that D is a right determiner for (H,Hj
i ). Consider a 2-coloring of the edges of D

without red copies of H or blue copies of Hi. We shall find a blue copy of Hj
i that contains y. By

construction x is rightmost in a blue copy of Hj+1
i . Moreover x is left endpoint of at least dj blue

edges. Assume that the edge xy is red. Consider the rightmost vertex z such that the edge xz is
blue. Then z = vt for some t, 1 6 t 6 s− 1, and hence z is leftmost in a blue copy of Hj−1. Thus
there is a blue copy of Hi, a contradiction. This shows that xy is colored blue and there is a blue
copy of Hj

i that contains y.
It remains to give a good coloring of D. Recall that D>j+1 has a good coloring, that is, a

2-coloring of its edges without red copies of H or blue copies of Hi such that the blue copy of
Hj+1
i that contains x is induced and isolated in the blue subgraph. Similarly D6j−1 has a good

coloring. Color the leftmost copy of D>j+1 in D and each Dt, 1 6 t 6 s − 1, according to such
colorings. Color the edges xvt red, 1 6 t 6 s − 1, and all remaining edges with left endpoint x
blue. See Figures 13 and 15 for an illustration. Clearly there is no red copy of H and no blue copy
of Hi (since j > 2). Moreover the blue copy of Hj

i that contains y is induced and isolated in the

blue subgraph. Hence D is a right determiner for (H,Hj
i ).

Finally we need the following structural observation on χ-unavoidable ordered graphs. A
bonnet is an ordered graph on four or five vertices u1 < u2 6 u3 < u4 6 u5 with edge set
{u1u2, u1u5, u3u4}, or on vertices u1 6 u2 < u3 6 u4 < u5 with edge set {u1u5, u4u5, u2u3}. Two
edges xy, x < y, and x′y′, x′ < y′, are crossing is x < x′ < y < y′ or x′ < x < y′ < y. An ordered
path P = u1 · · ·un is tangled if for a vertex ui, with 1 < i < n, that is either leftmost or rightmost
in P there is an edge in the subpath u1 · · ·ui that crosses an edge in the subpath ui · · ·un.

Lemma 2.7. Let G be a χ-unavoidable connected ordered graph with at least one edge where each
vertex has at most one neighbor to the left (right). Then G is a right (left) caterpillar.

Proof. Suppose that each vertex in G has at most one neighbor to the left. We shall show that
G is a right caterpillar. Since G is χ-unavoidable and connected it is a tree and contains neither
a bonnet nor a tangled path [1]. Call a vertex a of G displayed if there is no edge bc in G with
b < a < c (such vertices are called inner cut vertices in [1]). Note that a segment of a right
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Figure 16: A Ramsey graph for (H,Hi) where H is a right star on two edges and Hi is a right
caterpillar with at least three segments where a = max{dj+2, dj+1} − 1 and dj > a+ 1.

caterpillar contains exactly two displayed vertices, namely its leftmost and rightmost vertex. We
call a subgraph of G a potential segment if it is induced by an interval I in G whose leftmost and
rightmost vertex are displayed in G and all other vertices in I are not displayed in G. Let G′ be
a potential segment. We shall show that G′ is a right star. Note that G′ is connected, since G is
connected, and a vertex in G′ is displayed in G if and only if it is displayed in G′. Let u denote the
leftmost vertex of G′ and let v be a neighbor of u in G′. For the sake of a contradiction assume
that there is an edge vv′ in G′ with v < v′. By definition of G′ the vertex v is not displayed in G,
and thus not in G′. Hence there is an edge xy in G′ with u 6 x < v < y. We have y 6= v′ since v′

has only one neighbor to the left. If u = x then {u, v, v′, y} forms a tangled path in case y < v′,
and a bonnet in case v′ < y. If u 6= x then consider a path in G′ that contains uv and xy, which
exists since G′ is connected. Since uv and xy are crossing and each vertex in G′ has at most one
neighbor to the left we see that this path is tangled. In either case there is a contradiction and
hence no edge vv′ with v < v′ exists in G′. If v′v is an edge in G′ with v′ < v then u = v′ by
assumption. Altogether G′ is a right star. This shows that every potential segment of G is a right
star. Therefore G is a right caterpillar (as G contains at least on edge). If each vertex in G has at
most one neighbor to the right, then G is a left caterpillar due to symmetric arguments.

Proof of Theorem 15. Recall that (H,H ′) is a Ramsey finite pair of χ-unavoidable connected or-
dered graphs with at least two edges each. First we shall prove that (H,H ′) is a pair of a right star
and a right caterpillar or a pair of a left star and a left caterpillar. Then, using the determiners
introduced above, we give constructions of infinitely many minimal ordered Ramsey graphs of such
pairs if the caterpillar is not almost increasing.

Since H and H ′ are connected and χ-unavoidable both H and H ′ are trees. Since (H,H ′) is
Ramsey finite there is a forest in R<(H,H ′) due to Theorem 14. Due to Theorem 3 and since
H and H ′ are connected and have at least two edges each, we assume, without loss of generality,
that H is a right star while each vertex of H ′ has at most one neighbor to the left. Since H ′ is
a χ-unavoidable tree, H ′ is a right caterpillar due to Lemma 2.7. Let d = d1, . . . , di denote the
defining sequence of H ′ = Hi(d). Recall that H ′ is almost increasing if d2 6 · · · 6 di and, if i > 3,
d1 6 d3. In particular if H ′ is not almost increasing, then either there is some j, 1 6 j 6 i−2, with
dj > max {dj+1, dj+2}, or there is some j, i > j > 3, with dj−1 > dj . Below we give constructions
of infinitely many minimal ordered Ramsey graphs for both cases, showing that H ′ is indeed almost
increasing.

Recall that Ht = Ht(d) and Ht+1
i = Ht+1

i (d) are the subgraphs of Hi(d) that consist of the t
rightmost segments respectively the i− t leftmost segments of Hi(d), 0 6 t 6 i+ 1. Let D6t be a
left determiner for (H,Ht), 0 6 t < i, and let D>t be a right determiner for (H,Ht

i ), 2 6 t 6 i+ 1,
which exist due to Lemma 2.6.

Case 1 : There is j, 1 6 j 6 i− 2, with dj > max {dj+1, dj+2}. We shall prove that (H,Hi(d)) is
Ramsey infinite by constructing infinitely many minimal Ramsey graphs. Let a = max{dj+2, dj+1}−
1. Obtain a graph Γ′ from (a⊕|E(H)|−1D6j)tD>j+3 by adding an edge between the leftmost and
the rightmost vertex. Similarly obtain a graph Γ′′ from (a⊕|E(H)|−1D6j+1)tD>j+3 by adding an
edge between the leftmost and the rightmost vertex. For n > 1 let Γn = D>j+3 ◦Γ′′ ◦ (◦nΓ′)◦D6i.
See Figure 16 for an illustration in case |E(H)| = 2.

First we shall prove that Γn → (H,Hi). We refer to bold and dashed edges like given in
Figure 16, that is, an edge is dashed if it is the longest edge in the copy Γ′′ or in one of the copies
of Γ′, and an edge is bold if it has the same left endpoint as some dashed edge and its right endpoint
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is leftmost in a copy of D6j+1 (in Γ′′) or D6j (in Γ′). Consider a 2-coloring of the edges of Γn
without red copy of H. Observe that the left endpoint of each dashed edge is rightmost in a blue
copy of Hj+3

i and left endpoint of at least a+ 1 > dj+2 blue edges. Hence, if a dashed edge is blue,

then its right endpoint is rightmost in a blue copy of Hj+2
i .

First suppose that all dashed edges are blue. Consider the rightmost copy K of Γ′ and its
dashed edge xy, x < y. Then x is rightmost in a blue copy of Hj+2

i and y is leftmost in a blue
copy of Hj . We see that the blue edge xy with a further blue edges in K yields a blue copy of Hi.

Now suppose that the dashed edge uv, u < v, in Γ′′ is red. Note that u is rightmost in a blue
copy of Hj+3

i . Consider the rightmost vertex z such that the edge uz is blue. Since there are a+ 1
blue edges with left endpoint u (and uv is red), the edge uz is a bold edge. Since a > dj+2− 1 and
z is the leftmost vertex in a blue copy of H6j+1, there is a blue copy of Hi.

Finally suppose that there is a blue dashed edge whose right endpoint w is incident to a red
dashed edge. Consider the rightmost vertex z such that the edge wz is blue. Since there are a+ 1
blue edges with left endpoint w (and the dashed edge with left endpoint w is red), the edge wz
is a bold edge. Recall that w is rightmost in a blue copy of Hj+2

i . Since a > dj+1 − 1 and z is
leftmost in a blue copy of Hj , there is a blue copy of Hi. Altogether Γn → (H,Hi).

Next we shall show that each minimal Ramsey graph of (H,Hi) that is a subgraph of Γn
contains all dashed edges, that is, contains at least n + 1 edges. Let Γ̄ be obtained from Γn by
removing some dashed edge ē. We construct a coloring of Γ̄ without red copies of H or blue copies
of Hi as follows. Note that Γ̄ consists of two connected components. First consider the component
that contains the left endpoint of ē. Color all bold edges in this component in red, all other edges
with left endpoint equal to the left endpoint of some bold edge in blue. The remaining edges form
vertex disjoint copies of D>j+3, D6j+1, and D6j . Color each of these determiners according to
a good coloring. There is no red copy of H since at most |E(H)| bold edges have a common left
endpoint. Moreover there is no blue copy of Hi within one of the determiners. The blue edges
not in one of the determiners form a right caterpillar where each segment has a + 1 edges. Since
a+1 < dj and since the blue copies of Hj+3

i in the copies of D>j+3 are induced and isolated, there
is no blue copy of Hi.

Now consider the component that contains the right endpoint of ē. For each vertex p in this
component that is the left endpoint of some dashed edge color this dashed edge and |E(H)| − 2
further edges with left endpoint p in red and all other edges with left endpoint p blue. The
remaining edges form vertex disjoint copies of D>j+3 and D6j . Color each of these determiners
according to a good coloring. Clearly there is no red copy of H. Each component of the blue
subgraph is contained in a copy of D>j+3 ◦ (a⊕|E(H)|−1D6j). Similar as before we see that there
is no blue copy of Hi. This shows that Γ̄ 6∈ R<(H,Hi).

For each n > 1 choose a minimal Ramsey graph of (H,H ′) contained in Γn. The arguments
before show that infinitely many of these graphs are pairwise non-isomorphic. Thus (H,H ′) is
Ramsey infinite.

Case 2 : There is j, i > j > 3, with dj−1 > dj . We shall prove that (H,Hi) is Ramsey infinite by
constructing infinitely many minimal Ramsey graphs. An illustration of the following construction
is given in Figure 17. Let Γ denote an ordered graph obtained from ~Sdj−1 tD>j+1 by adding an
edge between the leftmost and the rightmost vertex (recall that D>j+1 is a right determiner for

(H,Hj+1
i )). For n > 1 let F ′n be defined as follows. Start with a right determiner D>j for (H,Hj

i )
and let x < y denote its two rightmost vertices. Add a copy of D>j+1 that has all its vertices
to the right of x and has y as its rightmost vertex. Call the resulting graph D. To this graph
D concatenate n copies Γ1, . . . ,Γn of Γ and a left determiner D6j−1 for (H,Hj−1), one after the
other in this order. Finally add dj−1 − dj > 0 isolated vertices and an intervally disjoint union of
|E(H)| − 1 left determiners D6j−2 for (H,Hj−2) to the right of all current vertices. Altogether

F ′n = D ◦ (◦nΓ) ◦D6j−1 t (tdj−1−djK1) t (t|E(H)|−1D6j−2).

Let U be the set of isolated vertices and let W denote the set of leftmost vertices of the graphs
D6j−2 added in the last step. Let γt denote the leftmost vertex of Γt in F , 1 6 t 6 n and let γn+1
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Figure 17: A Ramsey graph for (H,Hi) where H is a right star and Hi is a right caterpillar whose
defining sequence contains dj < dj−1 for some j, i > j > 3. The dashed edges form a complete
bipartite graph.

be the rightmost vertex of Γn. We obtain an ordered graph Fn from F ′n by adding a complete
bipartite graph between U ∪W and {γ1, . . . , γn}.

First we shall prove that Fn → (H,H ′). For the sake of contradiction consider a 2-coloring
of the edges of F = Fn without red copies of H or blue copies of H ′. We shall prove that γt is
rightmost in a blue copy of Hj

i , 1 6 t 6 n + 1, by induction on t. For t = 1 this holds since

γ1 is rightmost in a right determiner for Hj
i . Consider t > 1. Since γt−1 is left endpoint of

dj + |U |+ |W | = dj−1 + |E(H)|−1 edges there are at least dj−1 blue edges with left endpoint γt−1.
Consider the rightmost vertex z with γt−1z colored blue. Since γt−1 is rightmost in a blue copy of
Hj
i , z is rightmost in a blue copy of Hj−1

i . Hence z 6∈ W , since otherwise there is a blue copy of
Hi as each vertex in W is leftmost in a blue copy of Hj−2. Hence all edges between W and γt−1
are red and, since |W | = |E(H)|− 1, all other edges with left endpoint γt−1 are blue. In particular
γt−1γt and dj − 1 further edges γt−1z, with γt−1 < z < γt, are blue. Since there is a blue copy

of Hj+1
i with rightmost vertex γt−1, γt is rightmost is a blue copy of Hj

i . These arguments show

that γn+1 is rightmost in a blue copy of Hj
i . This forms a blue copy of Hi together with a blue

copy of Hj−1 in the left determiner D6j−1 with leftmost vertex γn+1, a contradiction. Therefore
Fn → (H,H ′).

Next we shall show that each minimal Ramsey graph of (H,H ′) that is a subgraph of Fn
contains all edges γtγt+1, 1 6 t 6 n. Let F̄ be obtained from Fn by removing the edge γsγs+1

for some s, 1 6 s 6 n. We construct a coloring of Γ̄ without red copies of H or blue copies of
H ′ = Hi as follows. For each t 6 s color all edges between γt and W red and all other edges with
left endpoint γt blue. For each t, s+ 1 6 t 6 n, color the edge γtγt+1 red and all other edges with
left endpoint γt blue. The remaining edges are contained in an edge disjoint union of determiners
and are colored according to a good coloring of each determiner. There are no red copies of H
since a good coloring of a determiner has no red copy of H and each γt, 1 6 t 6 n is left endpoint
of at most |W | = |E(H)| − 1 red edges. Assume that there is a blue copy H̄ of Hi. Consider the
unique vertex u in H̄ that is contained in a (blue) copy of Hj and a (blue) copy of Hj

i . Due to the
good colorings of the determiners we have u = γt for some t ∈ [n+1]. For each t > s+1 the vertex
γt is not leftmost in a blue copy of Hj since j > 3. Hence there are no blue copies of Hi containing
a vertex γt with t > s+ 1. Consider the vertices γt for t 6 s− 1. Each of these is left endpoint of
dj−1 blue edges, but γtγt+1 is the only such blue edge whose right endpoint has further neighbors
to the right. Note that there are only dj − 1 neighbors z of γt with γt < z < γt+1. Since dj < dj−1
and j > 3 no vertex γt with t 6 s− 1 is leftmost in a blue copy of Hj−1. Therefore no such vertex
γt is leftmost in a blue copy of Hj , since γt+1 is leftmost in a blue copy of Hj−1 otherwise. This
shows that there is no blue copy of Hi and F̄ 6∈ R<(H,Hi).

For each n > 1 choose a minimal Ramsey graph of (H,H ′) contained in Fn. The arguments
before show that infinitely many of these graphs are pairwise non-isomorphic. Thus (H,H ′) is
Ramsey infinite.
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F1 F2 F3 F4

Figure 18: A Ramsey graph for (H,Hi) where H is a right star with four edges and Hi is a right
caterpillar with di = 2. Here F1, F2, F3, F4 ∈ R<(H,Hi−1) such that for any coloring without red
copies of H there is a blue copy of Hi−1 that contains the leftmost vertex of Ft, t = 1, 2, 3, 4. The
graphs F1, . . . , F4 might share vertices and edges as long as their leftmost vertices are mutually
distinct.

2.5 Proof of Theorem 16

Recall that (H,H ′) is a pair of a right star and a right caterpillar or a pair of a left star and a
left caterpillar and d1, . . . , di is the defining sequence of the caterpillar. Suppose that i 6 2 or
d1 6 · · · 6 di. In order to prove that (H,H ′) is Ramsey finite we shall show that each minimal
ordered Ramsey graph of (H,H ′) is a member of a finite family of ordered graphs defined below.
Without loss of generality assume that H is a right star with s edges and H ′ is a right caterpillar.
Let Ht denote the subgraph of H ′ that consist of the t rightmost segments of H ′, 0 6 t 6 i.
Observe that Hi = H ′. Recursively define sets Fj , 1 6 j 6 i, of ordered graphs as follows. Let

F1 = {~Ss+d1−1} (recall that ~Sp is a right star on p edges). Consider j > 1. An ordered graph F
is in Fj if and only if its leftmost vertex u has exactly s + dj − 1 neighbors v1 < · · · < vs+dj−1
and there are (not necessarily disjoint) subgraphs F1, . . . , Fs of F with E(F − u) = ∪st=1E(Ft),
Ft ∈ Fj−1, and vt+dj−1 is leftmost in Ft, 1 6 t 6 s. See Figure 18. Note that for each j ∈ [i] the
set Fj is finite. We shall show that each minimal ordered Ramsey graph of (H,Hi) is in Fi. Hence
(H,Hi) is Ramsey finite.

First of all observe that for each j ∈ [i] each graph in Fj is in R<(H,Hj). Even more, for each
coloring of the edges of some graph F ∈ Fj without red copies of H there is a blue copy of Hj

containing the leftmost vertex of F .

If i = 1, then H ′ = H1. It is easy to see that F ∈ R<(H,H1) if and only if F contains a copy of
~Ss+d1−1. Therefore ~Ss+d1−1 is the only minimal ordered Ramsey graph of (H,H1). In particular

each graph in R<(H,H1) contains some member of F1 = {~Ss+d1−1} and (H,H1) is Ramsey finite.
Now consider the case i = 2 and some ordered graph F that does not contain copies of any member
of F2. We shall give a coloring of the edges of F without red copies of H or blue copies of H2. Let
D1 denote the set of all vertices in F that are leftmost in a copy of some member of F1 = {~Ss+d1−1}
in F . For u ∈ V (F ) let r(u) denote its right degree, that is, the number of edges uv in F with
u < v. Note that u ∈ D1 if and only if r(u) > s+ d1 − 1. We color the edges of F in three steps.
In the first step color each edge uv, with u < v, red if v ∈ D1, and there are d2 − 1 vertices z
with u < z < v. In the second step color arbitrary further edges red, such that for each u ∈ V (F )
there are in total exactly min{s − 1, r(u)} red edges uv with u < v. In the last step color all yet
uncolored edges blue. First assume for the sake of a contradiction that there is a blue copy of H2.
Let uv denote the longest edge incident to the leftmost vertex u in this copy. Then v is leftmost
in a blue copy of H1 and hence r(v) > s + d1 − 1 due to the second step. In particular v ∈ D1.
Moreover there are d2 − 1 vertices z with u < z < v. Hence uv is colored red in the first step, a
contradiction as uv is blue. Next assume that there is a red copy of H. Then its was created in the
first step. Hence the leftmost vertex u of this red copy of H has s+ d2 − 1 neighbors to the right
in F , the s rightmost of which are contained in D1. Thus u is leftmost in a copy of some graph
from F2, a contradiction. Altogether F 6∈ R<(H,H2). This proves that a graph is in R<(H,H2)
if and only if it contains a copy of some F ′ ∈ F2. Since each member of F2 is in R<(H,H2) each
minimal ordered Ramsey graph of (H,H2) is in F2. Therefore (H,H2) is Ramsey finite.

Finally consider the case i > 3 and an ordered graph F that does not contain copies of any
member of Fi. We shall give a coloring of the edges of F without red copies of H or blue copies
of Hi. By assumption we have d1 6 · · · 6 di. Observe that there is a copy of Hj−1 in Hj that
contains the leftmost vertex of Hj for each j, 2 6 j 6 i. Moreover, the leftmost vertex of each
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Figure 19: All edges uv with u < v, h(u) = j−1, and h(v) > j−1 are colored red if there are dj−1
vertices between u and v (left). If u 6∈ Dj , then u is not leftmost in a red copy of H. Moreover if
u is leftmost in a blue copy of Hj , then h(u) > j (and u is in Dj) since otherwise uv is colored red
(right).

F ∈ Fj is contained in a copy of some F ′ ∈ Fj−1 in F , 2 6 j 6 i. Recall that for each coloring
of the edges of some graph F ∈ Fj without red copies of H there is a blue copy of Hj containing
the leftmost vertex of F . Hence, for each t ∈ [j], there is also a blue copy of Ht which contains
the leftmost vertex of F under such a coloring. Let D0 = V (F ) and for j ∈ [i] let Dj denote the
set of all vertices in F that are leftmost in a copy of some graph from Fj in F . As argued above
we have ∅ = Di ⊆ Di−1 · · · ⊆ D1 ⊆ D0. For u ∈ V (F ) let h(u) denote the largest j with u ∈ Dj .
Color an edge uv, with u < v, red if and only if h(u) 6 h(v) and there are dh(u)+1 − 1 vertices z
with u < z < v.

For the sake of a contradiction assume that there is a red copy H̄ of H. Let u denote the
leftmost vertex in H̄ and let j = h(u). For each other vertex v in H̄ there are dj+1 − 1 vertices
z with u < z < v, h(v) > j, and hence v ∈ Dj , as argued above. Thus u is leftmost in a copy of
some graph from Fj+1 in F , a contradiction as h(u) = j. See Figure 19 (left).

Let H0 denote the single vertex ordered graph. Next we shall prove by induction on j, 0 6 j 6 i,
that for each vertex u which is leftmost in a blue copy of Hj we have u ∈ Dj . This clearly holds
for j = 0. So consider j > 0 and a blue copy H ′′ of Hj . Let uv denote the longest edge incident
to the leftmost vertex u of H ′′. Then v is leftmost in a blue copy of Hj−1 and hence v ∈ Dj−1 by
induction. In particular h(v) > j − 1. Moreover there are dj − 1 vertices z with u < z < v. Hence
h(u) > j, since otherwise h(u) 6 h(v) and dj − 1 > dh(u)+1 − 1, and thus uv is colored red. See
Figure 19 (right). Therefore u ∈ Dj . Since Di = ∅ there is no blue copy of Hi.

Altogether F 6∈ R<(H,Hi). This proves that a graph is in R<(H,Hi) if and only if it contains
a copy of some F ′ ∈ Fi (since each member of Fi is in R<(H,Hi), as argued above). Therefore,
each minimal ordered Ramsey graph of (H,Hi) is contained in Fi. In particular (H,Hi) = (H,H ′)
is Ramsey finite.

3 Conclusions

We study the structure of the set R<(H,H ′) of ordered Ramsey graphs for pairs (H,H ′) of ordered
graphs. First of all we characterize all such pairs (H,H ′) that have some forest in R<(H,H ′) in
Theorem 3. A pair of unordered forests has a forest as a Ramsey graph if and only if one of the
forests is a star forest. In contrast to this, we give pairs of ordered star forests that do not have
any forest as a Ramsey graph. Next Theorem 4 characterizes all pairs of connected ordered graphs
that have a pseudoforest as a Ramsey graph. Again it turns out that the pairs of ordered graphs
that have pseudoforests as Ramsey graphs are much more restricted than in the unordered case.
We do not have a full answer for disconnected ordered graphs. It might be true that Lemma 2.2
covers all pairs of ordered graphs that do not have any pseudoforest as a Ramsey graph.

Question 1. Which pairs of (disconnected) ordered graphs have a pseudoforest as a Ramsey graph?

Then we consider the question for which pairs of ordered graphs the set R<(H,H ′) contains only
finitely many minimal elements. The corresponding question in the unordered setting is answered
whenever H = H ′, but a complete answer in the asymmetric case is known only if one of H or
H ′ is a forest (see Theorems 6, 7, 8). Similar to the unordered setting we show that any ordered
graph H that contains a cycle is Ramsey infinite. Moreover Corollary 17 shows that a connected
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Figure 20: Ordered graphs that are not known to be Ramsey finite or infinite.

ordered graph H is Ramsey finite if and only if H is a star with its center to the right or to the
left of all its leaves (called left respectively right star). This is in contrast to the unordered setting
where a connected graph is Ramsey finite if and only if it is a star with an odd number of edges
(see Theorems 6 and 8).

With Theorem 10 we establish a relation between the question for smallest densities of ordered
Ramsey graphs and the question for Ramsey finiteness. Using a result of Rödl and Ruciński [34]
(Theorem 1) we see that any Ramsey finite ordered graph has a pseudoforest as a Ramsey graph.
Now our results from the first part show that every Ramsey finite ordered graph is a star forest with
strong restrictions on the centers of the stars, see Theorem 11. Further we show that every Ramsey
finite ordered graph which is χ-unavoidable has a forest as a Ramsey graph by Theorem 14. This
yields that any Ramsey finite χ-unavoidable ordered graph is a forest of left stars or a forest of
right stars. We think that the assumption of χ-unavoidable is not necessary here, see Conjecture 4
below.

Disconnected ordered graphs. To some extent vertex disjoint unions of (unordered) graphs
are rather easy to handle with respect to their Ramsey graphs. A Ramsey graph for a vertex
disjoint union of graphs G and H is given by a vertex disjoint union of a Ramsey graph of G,
a Ramsey graph of H, and a Ramsey graph of the pair (G,H). For ordered graphs there are
many different vertex disjoint unions and we do not see a uniform way to build ordered Ramsey
graphs. This is one reason why beyond Theorems 11 and 14 we do not have many results in
the disconnected case, although we characterize all connected Ramsey finite graphs as mentioned
above. Some examples of ordered graphs which are not known to be Ramsey finite or infinite are
given in Figure 20.

Most striking is our lack of understanding Ramsey graphs of ordered graphs with isolated
vertices. Suppose that H is an ordered graph and H ′ is obtained from H by adding an isolated
vertex. If F ∈ R<(H) is minimal then a minimal graph in R<(H ′) is obtained by adding a suitable
set of isolated vertices to F . Therefore H ′ is Ramsey infinite if H is Ramsey infinite, but the
reverse statement is open.

Question 2. Is there a Ramsey finite ordered graph H such that adding some isolated vertices to
H yields a Ramsey infinite ordered graph?

We consider the special case of intervally disjoint unions of Ramsey finite graphs in Theorem 12
(which also does not cover isolated vertices). While such a union turns out to be Ramsey finite
the reverse statement is open.

Question 3. Let H, H ′ and H ′′ denote ordered graphs such that (H,H ′ tH ′′) is Ramsey finite.
Are both pairs (H,H ′) and (H,H ′′) Ramsey finite?

It is worth noting that the answer to the corresponding question in the unordered setting is
negative. For example let H be the graph formed by a vertex disjoint union of a star on 5 edges
and a star on 2 edges and let H ′ denote a star on 3 edges. Then (H,H ′) is Ramsey infinite [9]
and there is an integer k such that adding k isolated edges to H ′ yields a Ramsey finite pair of
graphs [19] (see also Theorem 8).

The main corollary of Theorem 12 states that each pair of a monotone matching and any
other ordered graph is Ramsey finite. This is similar to Theorem 7(a) stating that any pair of an
(unordered) graph and some matching is Ramsey finite. Moreover Theorem 7(b) states a result due
to  Luczak [26] that (H,H ′) is Ramsey infinite for each graph H which is not a matching and any
other graph H ′ which contains a cycle. We think that also this property carries over to monotone
matchings. It might be possible to transfer the arguments from [26] to ordered graphs to give a
positive answer to the following question.
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Question 4. Let H be an ordered graph that contains a cycle and let H ′ be an ordered forest that
is not a monotone matching. Is (H,H ′) Ramsey infinite?

The asymmetric case. We think that Theorem 10 generalizes to the asymmetric case as follows.
Kohayakawa and Kreuter [24] introduce the asymmetric 2-density for a pair of graphs (H,H ′) with

m2(H) > m2(H ′) given by m2(H,H ′) = max
{

|E(H′′)|
|V (H′′)|−2+1/m2(H) | H ′′ ⊆ H ′, |E(H ′′)| > 1

}
.

Conjecture 2. Let H and H ′ be an ordered graphs with m2(H) > m2(H ′). If m(F ) > m2(H,H ′)
for each F ∈ R<(H,H ′), then (H,H ′) is Ramsey infinite.

One can see from the proof of Theorem 10 that an asymmetric version of Theorem 9 (on Ramsey
properties of random graphs) is sufficient to prove Conjecture 2. Recently Gugelmann et al. [23]
prove a slightly weaker statement for a pair (H,H ′) of unordered graphs. In the conclusions they
claim that there is some c such that for p > cn−1/m2(H,H

′) log(n) the probability that G(n, p) is
a Ramsey graph of (H,H ′) tends to 1 as n tends to infinity. Again one can see from the proof of
Theorem 10 that such a bound on p (in the ordered setting) is sufficient for a proof of Conjecture 2.

Along with Conjecture 2, a generalization of Theorem 1 to the asymmetric case would reveal
more Ramsey infinite pairs of (ordered) graphs. We propose the following conjecture based on
the fact that each pair (H,H ′) of graphs is Ramsey infinite provided that neither H nor H ′ is a
matching and exactly one of H or H ′ contains a cycle [26] (see Theorem 7).

Conjecture 3. Let H and H ′ be graphs with m2(H) > m2(H ′). If neither H nor H ′ is a matching
and at least one of H or H ′ contains a cycle, then m(F ) > m2(H,H ′) for each F ∈ R(H,H ′).

If Conjecture 3 holds, then the result from [23] mentioned above shows that all pairs of (un-
ordered) graphs which contain a cycle are Ramsey infinite and all Ramsey finite (unordered) graphs
are characterized in [19] (see Theorem 8), settling the main open question in the unordered setting.
A similar discussion is given in [30].

In the ordered setting several cases remain open, even if Conjectures 2 and 3 hold. First note
that pairs of ordered graphs involving a matching are not covered by either of the conjectures.
We discuss such pairs in the paragraph on disconnected ordered graphs above. Next observe that
m2(H,H ′) 6 1 for every pair (H,H ′) of ordered forests. Hence Conjecture 2 covers all such
pairs which do not have a pseudoforest as a Ramsey graph. It remains to consider such pairs
having a pseudoforest as a Ramsey graphs, which corresponds to the result of Theorem 10 from
the symmetric case. Theorem 14 applies to the asymmetric case as well and shows that a Ramsey
finite pair of χ-unavoidable ordered forests has a forest as a Ramsey graph. This discussion leads
to the following conjecture as we think that the assumption χ-unavoidable is not necessary here.
Some more evidence is provided in [36].

Conjecture 4. Let (H,H ′) be a Ramsey finite pair of ordered forests. Then R<(H,H ′) contains
a forest.

With Theorem 15 we show that the reverse statement of Conjecture 4 does not hold and that the
family of all Ramsey finite pairs of ordered graphs might be rather diverse (see also Conjecture 5).

Theorems 15 and 16 deal with pairs of connected χ-unavoidable ordered forests. The only pairs
of connected χ-unavoidable ordered graphs that we do not cover are formed by a right (left) star
and an almost increasing right (left) caterpillar with defining sequence d2 < d1 6 d3 6 · · · 6 di
for some i > 3. We conjecture that these pairs are Ramsey finite. A proof of the case i = 3 and
|E(H)| = 2 of the following conjecture is given in [36].

Conjecture 5. Let (H,H ′) be a pair of χ-unavoidable connected ordered graphs with at least two
edges each. Then (H,H ′) is Ramsey finite if and only if (H,H ′) is a pair of a right star and an
almost increasing right caterpillar or a pair of a left star and an almost increasing left caterpillar.

In Theorem 16 we show that there are Ramsey finite pairs of ordered stars and ordered cater-
pillars of arbitrary diameter. Again this is in contrast to the unordered setting where for any
Ramsey finite pair (H,H ′) of forests either one of H or H ′ is a matching or both are star forests
(with additional constraints, see Theorem 8).
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Figure 21: Colorings of an ordered K6 without monochromatic copies of K3 t K1 (left) or a
monochromatic copy of K3 with an isolated vertex between its vertices (right).

Ramsey equivalence of ordered graphs. Finally we mention another line of research that
might show an entire different behavior in the ordered setting than for unordered graphs. Two
ordered graphs are called Ramsey equivalent if they have the same set of ordered Ramsey graphs.
This notion was introduced for graphs by Szabó et al. [39] and studied in several subsequent
papers [2, 5, 20]. While it is easy to find Ramsey equivalent pairs of non-isomorphic graphs it
remains open whether there is such a pair of connected graphs. Surprisingly we do not know any
Ramsey equivalent pair of non-isomorphic ordered graphs so far, even without the restriction on
connectivity.

Question 5. Are there non-isomorphic ordered graphs H and H ′ with R<(H) = R<(H ′)?

Figure 21 shows that an ordered K3 is not Ramsey equivalent to any ordered graph formed by
a union of K3 and an isolated vertex. Nevertheless, we think that that Kn is Ramsey equivalent
to some ordering of a union of Kn and an isolated vertex for sufficiently large n. Further we
observe here that for any ordered graph H and each minimal ordered Ramsey graph F of H there
are colorings c` and cr of the edges of F such that each monochromatic copy of H contains the
leftmost vertex of F under c` and the rightmost vertex of F under cr. This shows that if H and
H ′ are Ramsey equivalent and H ⊆ H ′, then each copy of H in H ′ contains the leftmost and the
rightmost vertex of H ′.

Acknowledgements. We would like to thank Maria Axenovich and Yury Person for fruitful
discussions that especially simplified Theorems 9 and 10.
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[13] S. A. Burr, J. Nešetřil, and V. Rödl. On the use of senders in generalized Ramsey theory for
graphs. Discrete Math., 54(1):1–13, 1985.
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Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 317–346. János
Bolyai Math. Soc., Budapest, 1993.
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