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ON THE EXISTENCE OF DENSE SUBSTRUCTURES IN FINITE GROUPS

CHING WONG

Abstract. Fix k ≥ 6. We prove that any large enough finite group G contains k elements which span
quadratically many triples of the form (a, b, ab) ∈ S × G, given any dense set S ⊆ G × G. The quadratic
bound is asymptotically optimal. In particular, this provides an elementary proof of a special case of a

conjecture of Brown, Erdős and Sós. We remark that the result was recently discovered independently by
Nenadov, Sudakov and Tyomkyn.

1. Introduction

This note is devoted to the study of a special case of a long-standing conjecture of Brown, Erdős and Sós
[1] in 1976, which was originally formulated as a hypergraph extremal problem, and was found equivalent to
the following by Solymosi, see [4].

Conjecture 1 (Brown-Erdős-Sós [1]). Fix k ≥ 6. For every c > 0, there exists a threshold N = N(c) such
that if A is a finite quasigroup of order larger than N , then for every S ⊆ A × A with |S| ≥ c|A|2 where
c > 0, there exists a set of k elements of A which spans at least k − 3 triples of the form (a, b, ab) ∈ S ×A.

This conjecture is proved true only when k = 6, by Ruzsa and Szemerédi [3] in 1978. The problem turns
out to be delicate and remains unapproachable over decades in its full generality, for all k ≥ 7.

It is desirable to look for subfamilies of quasigroups for which the conjecture is valid and a natural
candidate is groups, where associativity holds. By exploiting this additional structure, the groundbreaking
result of Solymosi [4] shows the validity of the conjecture when k = 7 for finite groups.

Using the regularity lemma, Solymosi and the author [5] extended the result of [4] to k = 11, 12 and
k ≥ 15. Surprisingly, instead of the conjectured lower bound k − 3, we found asymptotically 4k/3 triples
spanned by a set of k elements. One is then led to the question: For finite groups, what is the right magnitude
of the maximum number of triples spanned by k elements?

In this note we give an elementary proof that such lower bound is quadratic in k, matching the trivial
upper bound k2. An immediate consequence is an alternate proof of conjecture 1 for finite groups when k is
large.

Theorem 2. Let k ≥ 6 be an integer, then there exists a threshold N = N(k) such that if G is a finite
group of order larger than N , then for every S ⊆ G×G with |S| ≥ c|G|2 where c > 0, there exists a set of k
elements of G which spans at least c

210 k
2 triples (a, b, ab) from S, i.e. (a, b) ∈ S.

A stronger result, where the coefficient of k2 is independent of c, was recently discovered independently
by Nenadov, Sudakov, and Tyomkyn.

The rest of this note is dedicated to the proof of theorem 2. The main ingredient is the construction of
explicit subsets whose arbitrary two-fold products are highly structured. This is demonstrated in section 2
for the model groups Zn and Z

n
m, which are respectively large in the order and the exponent.

The case of general abelian groups can be readily reduced to these model groups, using the Fundamental
Theorem of Finite Abelian Groups, which states that every finite abelian group is a direct product of cyclic
groups. Finally, the argument can be carried over to arbitrary finite groups by considering cosets of the
form ℓH , Hr and ℓHr, where H is a large abelian subgroup whose existence is guaranteed by a theorem of
Pyber’s [2]. This is the content of section 3.

2. Idea of the proof

Fix k ≥ 1. Let G be a finite (abelian) group. For every element x ∈ G, we will construct a subset Ax of
G with the following properties:
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(1) The set Ax has size k.
(2) The set AxAy := {ab ∈ G : a ∈ Ax, b ∈ Ay} has size at most 2k.
(3) If x 6= y, then Ax 6= Ay.
(4) Any (a, b, ab) ∈ G3 is contained in k2 many Bx,y’s, where

Bx,y := {(a, b, ab) ∈ G3 : a ∈ Ax, b ∈ Ay}.
Then, by pigeonhole principle, together with (3) and (4), there exists Bx,y that contains at least |S|k2/|G|2

triples from S, for any S ⊆ G×G. Note that the triples in Bx,y are spanned by the elements Ax∪Ay∪AxAy,
which has size at most 4k, by condition (1) and (2). The assumption that |S| ≥ c|G|2 implies that there is
a set of 4k elements of G which spans at least ck2 triples from S.

To fix the idea, we consider the model cases Zn and Z
n
m.

2.1. When G ∼= Zn is a cyclic group. Fix k ≥ 1 and let n ≥ 4k. For x ∈ Zn, let

Ax = {x+ i ∈ Zn : 0 ≤ i ≤ k − 1}
be a set of k elements of Zn. We check the other 3 conditions one by one. The set

Ax +Ay = {a+ b : a ∈ Ax, b ∈ Ay} = {x+ y + j ∈ Zn : 0 ≤ j ≤ 2k − 2}
has 2k − 1 elements. It is clear that different elements x, y ∈ Zn yield different sets Ax, Ay . To see that the
last condition holds, one can choose x from the set {a, a− 1, . . . , a− (k − 1)} ⊆ Zn, and choose y from the
set {b, b− 1, . . . , b− (k − 1)} ⊆ Zn, given any (a, b, a+ b) ∈ Z

3
n.

2.2. When G ∼= Z
n
m, for some m ≥ 2. Fix integers ρ ≥ 1, 1 ≤ t < m and let n be large such that

mn ≥ 4tmρ. (We suppose for now that k = tmρ − 1.) For x = (x1, . . . , xn) ∈ Z
n
m, let

Ax = {(z1, . . . , zρ, xρ+1 + i, xρ+2, . . . , xn) ∈ Z
n
m : zi ∈ Zm, 0 ≤ i ≤ t− 1}\{x}

be a set of tmρ − 1 elements of Znm. The set

Ax +Ay = {a+ b : a ∈ Ax, b ∈ Ay}
⊆ {(z1, . . . , zρ, xρ+1 + yρ+1 + j, xρ+2 + yρ+2, . . . , xn + yn) ∈ Z

n
m : zi ∈ Zm, 0 ≤ j ≤ 2t− 2}

has size at most (2t− 1)mρ ≤ 2(tmρ − 1). Since x 6∈ Ax, it is easy to see that different elements x, y ∈ Z
n
m

yield different sets Ax, Ay. Finally, given (a, b, a+ b) ∈ (Znm)3, the number of Bx,y that contains (a, b, a+ b)
is (tmρ − 1)2. Indeed, one can choose x from the set

{(z1, . . . , zρ, aρ+1 − i, aρ+2, . . . , an) ∈ Z
n
m : zi ∈ Zm, 0 ≤ i ≤ t− 1}\{a}.

and choose y from the set

{(z1, . . . , zρ, bρ+1 − i, bρ+2, . . . , bn) ∈ Z
n
m : zi ∈ Zm, 0 ≤ i ≤ t− 1}\{b}.

3. Proof of theorem 2

Let us recall Pyber’s theorem on the existence of large abelian subgroup of a finite group.

Theorem 3 (Pyber [2]). There exists µ > 0 such that every finite group G contains an abelian subgroup H

of order at least eµ
√

log |G|.

For a fixed k ≥ 1, let G be a finite group that has so large an order that contains an abelian subgroup H
with

(1) |H | ≥ eµ
√

log |G| ≥ k3k log k.

By the Fundamental Theorem of Finite Abelian Groups, H is isomorphic to

Zm1
× · · · × Zmτ

,

where mi’s are prime powers, with |H | = ∏τ

i=1mi. Let φ : Zm1
× · · · × Zmτ

→ H be an isomorphism.
By pigeonhole principle, there exist elements ℓ, r ∈ G such that

(2) |S ∩ (ℓH ×Hr)| ≥ c|H |2.
Depending on the values mi’s, we have 2 cases.
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If mi > k for some i, reorder the cyclic groups if necessary, assume that m1 > k. In this case, we set
ρ = 0 and t = k. We show in this section that we can get a set of 4(k− 1) < 4k elements of G that spans at
least c(k − 1)2 ≥ c

4k
2 triples from S.

If mi ≤ k for all i, reorder the cyclic groups if necessary, assume that m1 = m2 = · · · = mλ = m ≥ 2 is
the most popular index among the mi’s and it occurs λ times. In this case, we set integers 1 ≤ t < m and
ρ ≥ 1 such that

(3) tmρ ≤ k < (t+ 1)mρ,

and we get a set of 4(tmρ − 1) ≤ 4k elements of G that spans at least c(tmρ − 1)2 ≥ c
16k

2 triples from S.
We note that in the second case, ρ < λ. By (1), we have

k3k log k ≤ |H | =
τ∏

i=1

mi ≤ kτ ,

which implies that τ ≥ 3k log k ≥ 2k log k/ log 2 ≥ 2k log k/ logm. Since there are at most k possible distinct
values of mi’s, λ ≥ 2 log k/ logm > log k/ logm. On the other hand, (3) implies that k ≥ mρ, and so
ρ ≤ log k/ logm.

Now, with the above chosen ρ and t, we do the following. Let ω1 = (1, 0, . . . , 0) ∈ Zm1
× · · · × Zmτ

,
ω2 = (0, 1, 0, . . . , 0) ∈ Zm1

× · · · × Zmτ
, and so on. For x ∈ H , define

A
(1)
ℓx := {ℓxφ(ω1)

σ1 · · ·φ(ωρ)σρφ(ωρ+1)
σ : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{ℓx} ⊆ ℓH,

and

A(2)
xr := {xφ(ω1)

σ1 · · ·φ(ωρ)σρφ(ωρ+1)
σr : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{xr} ⊆ Hr.

We now check the 4 corresponding conditions stated in section 2 one by one, as 4 lemmata.

Lemma 4. For each x ∈ H, we have

|A(1)
ℓx | = |A(2)

xr | = tmρ − 1.

Proof. Since τ ≥ ρ+ 1, we have mi = m for all 1 ≤ i ≤ ρ+ 1. Hence, the elements

{σiωi ∈ Zm1
× · · · × Zmτ

: 1 ≤ i ≤ ρ+ 1 and 0 ≤ σi ≤ m− 1}
are all distinct. This implies that the elements

{φ(ωi)σi ∈ H : 1 ≤ i ≤ ρ+ 1 and 0 ≤ σi ≤ m− 1}

are distinct as well. With t < m, each of the sets A
(1)
ℓx and A

(2)
xr has size tmρ − 1. �

Lemma 5. For x, y ∈ H, we have

|A(1)
ℓx A

(2)
yr | ≤ 2(tmρ − 1).

Proof. Recall that H is abelian. We write

A
(1)
ℓx A

(2)
yr

⊆ {ℓxφ(ω1)
σ1 · · ·φ(ωρ)σρφ(ωρ+1)

σyφ(ω1)
ψ1 · · ·φ(ωρ)ψρφ(ωρ+1)

ψr : 0 ≤ σi, ψj ≤ m− 1 and 0 ≤ σ, ψ ≤ t− 1}
= {ℓxφ(ω1)

σ1+ψ1 · · ·φ(ωρ)σρ+ψρφ(ωρ+1)
σ+ψyr : 0 ≤ σi, ψj ≤ m− 1 and 0 ≤ σ, ψ ≤ t− 1}

= {ℓxφ(ω1)
σ1 · · ·φ(ωρ)σρφ(ωρ+1)

σyr : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ 2t− 2},

which shows that the set A
(1)
ℓx A

(2)
xr ⊆ ℓHr has size at most (2t− 1)mρ ≤ 2(tmρ − 1). �

The lemma below guarantees that the sets Bℓx,yr are distinct for different pairs of (x, y) ∈ H2, where

Bℓx,yr := {(ℓa, br, ℓabr) ∈ ℓH ×Hr × ℓHr : ℓa ∈ A
(1)
ℓx , br ∈ A(2)

yr }.

Lemma 6. (1) If A
(1)
ℓx = A

(1)
ℓy for some x, y ∈ H, then x = y.

(2) If A
(2)
xr = A

(2)
yr for some x, y ∈ H, then x = y.
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Proof. Note that ℓx 6∈ A
(1)
ℓx . This allows us to recover x from the set A

(1)
ℓx .

Consider φ−1(ℓ−1A
(1)
ℓx ) ⊆ Zm1

× · · · × Zmτ
, which is the same as

{φ−1(x) + σ1ω1 + · · ·+ σρωρ + σωρ+1 : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{φ−1(x)}.
Hence, the elements of the set φ−1(ℓ−1A

(1)
ℓx ) as well as φ−1(x) only differ in the first ρ + 1 coordinates. If

we consider only the i-coordinate, where 1 ≤ i ≤ ρ, every but one element appears tmρ−1 times. This
exceptional element from Zmi

is the i-th coordinate of φ−1(x). Now, consider the (ρ + 1)-coordinate. One
of the elements appears only mρ − 1 times. This is the (ρ+ 1)-coordinate of φ−1(x).

The proof of the second statement is similar. �

Lemma 7. Given a triple (ℓa, br, ℓabr) ∈ ℓH×Hr×ℓHr. The number of Bℓx,yr’s which contains (ℓa, br, ℓabr)
is (tmρ − 1)2.

Proof. We need to choose x, y ∈ H such that ℓa ∈ A
(1)
ℓx and br ∈ A

(2)
yr . To have ℓa ∈ A

(1)
ℓx , it is equivalent to

have
a ∈ {xφ(ω1)

σ1 · · ·φ(ωρ)σρφ(ωρ+1)
σ : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{x},

which is in turn the same as choosing x from the (tmρ − 1)-element set

{aφ(ω1)
−σ1 · · ·φ(ωρ)−σρφ(ωρ+1)

−σ : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{a}.
Similarly, one can choose y from the (tmρ − 1)-element set

{bφ(ω1)
−σ1 · · ·φ(ωρ)−σρφ(ωρ+1)

−σ : 0 ≤ σi ≤ m− 1 and 0 ≤ σ ≤ t− 1}\{b}.
Hence, there are (tmρ − 1)2 such Bℓx,yr’s containing the given triple (ℓa, br, ℓabr) ∈ ℓH ×Hr × ℓHr. �

Finally, consider the pairs ((ℓa, br, ℓabr), Bℓx,yr), where (ℓa, br, ℓabr) ∈ Bℓx,yr are triples from S. By (2),
the number of triples from S ∩ (ℓH × Hr) is at least c|H |2. Hence, by lemma 7, the number of pairs we
consider is at least c|H |2(tmρ−1)2. There are |H |2 different Bℓx,yr’s by lemma 6. Using pigeonhole principle,
there is a set Bℓx,yr which contains at least c|H |2(tmρ− 1)2/|H |2 = c(tmρ− 1)2 many triples from S. These

c(tmρ − 1)2 triples are spanned by the set A
(1)
ℓx ∪ A(2)

yr ∪A(1)
ℓx A

(2)
yr , which has at most

|A(1)
ℓx |+ |A(2)

yr |+ |A(1)
ℓx A

(2)
yr | ≤ tmρ − 1 + tmρ − 1 + 2(tmρ − 1) = 4(tmρ − 1)

elements of G by lemma 4 and lemma 5, as desired.
Hence, we found 4k elements of G that span at least c

16k
2 triples from S. By adjusting the constants,

theorem 2 is proved.
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