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The geometry connectivity of hypergraphs
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Abstract

Let G be a k-uniform hypergraph, LG be its Laplacian tensor. And βpGq denotes

the maximum number of linearly independent nonnegative eigenvectors of LG corre-

sponding to the eigenvalue 0. In this paper, βpGq is called the geometry connectivity

of G. We show that the number of connected components of G equals the geometry

connectivity βpGq.
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1. Introduction

In 1973, Fiedler pointed that a graph G is connected if and only if the second

smallest eigenvalue of Laplacian matrix LG is more than zero, this eigenvalue is called

algebraic connectivity of graph G, denoted by αpGq [1]. Usually, this conclusion is

called the Fiedler Theorem.

Theorem 1.1. [1] A graph G is connected if and only if αpGq ą 0.

The Fiedler Theorem give the tight relation to the fundamental graph property

and eigenvalues of graphs, it attracts much attention and huge literatures followed.

In 1975, Fiedler further studied the algebraic connectivity of graph G in [2]. He

showed that the eigenvector corresponding to αpGq induces partitions of the ver-

tices of G that are natural connected clusters [3, 4]. This property is important and

efficient for partitioning of graphs. After the publication of [2], the eigenvector cor-

responding to αpGq has been adopted by computer scientists and used in algorithmic

partitioning applications, see [5, 6].

Further, the Fiedler Theorem can be generalized as follows.
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Theorem 1.2. [7, 8] The number of connected components of a graph G equals the

algebraic multiplicity of Laplacian eigenvalue 0 of G.

The connectivity and the number of connected components hypergraphs are

important topics as well. But for the k-uniform hypergraph G pk ě 3q, from the

Example 2.6, we can see that the Theorem 1.1 and Theorem 1.2 can’t be generalized

to hypergraphs directly. In [9, 10, 11], the authors characterized the connectivity of

hypergraphs by subtensors of the Laplacian tensor.

In this paper, we study the connectivity and the number of connected compo-

nents of k-uniform hypergraphs in terms of eigenvectors of Laplacian tensor. We

give the concept of the (Z-)geometry connectivity of k-uniform hypergraph G as

follows.

Definition 1.3. The (Z-)geometry connectivity of k-uniform hypergraph G, denoted

by βpGq (βZpGq), is defined as the maximum number of linearly independent non-

negative (Z-)eigenvectors of Laplacian tensor corresponding to the (Z-)eigenvalue

0.

We show that the number of connected components of a k-uniform hypergraph

G is the (Z-)geometry connectivity βpGq (βZpGq).

2. Preliminaries

In this section, we introduce some concepts and lemmas.

For a positive integer n, denote rns “ t1, 2, . . . , nu. Let Rrk,ns and R
rk,ns
` denote

the set of k-order n-dimensional real tensors and nonnegative tensors, respectively.

When k “ 2, the Rr2,ns (resp. R
r2,ns
` ) is the set of all n ˆ n real (resp. nonnegative)

matrices. Let Cn, Rn and Rn
` denote the set of n-dimensional complex vectors, real

vectors and nonnegative vectors, respectively.

A tensor A “ pai1i2¨¨¨ikq P Rrk,ns is called symmetric if its each entry ai1i2¨¨¨ik is

invariant under any permutation of i1, i2, . . . , ik.

A tensor I “ pδi1¨¨¨ikq P Rrk,ns is called the identity tensor if whose entry δi¨¨¨i “ 1

for all i and zero otherwise.

For A “ pai1i2¨¨¨imq P R
rm,ns
` , it is associated to a directed graph GpAq “

pV pAq, EpAqq, where V pAq “ t1, 2, . . . , nu and EpAq “ tpi, jq : aii2¨¨¨im ą 0, j P

ti2, . . . , imuu. A nonnegative tensor A P R
rm,ns
` is called weakly irreducible if the

associated directed graph GpAq is strongly connected (see [12, 13]).

In 2005, the eigenvalue of tensors was proposed by Qi [14] and Lim [15], inde-

pendently. Let A “ pai1i2¨¨¨imq P Rrm,ns. If there exist λ P C and a nonzero vector
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x “ px1, . . . , xnqT P Cn such that

Axm´1 “ λxrm´1s, (2.1)

then λ is called an eigenvalue of A and x is called an eigenvector of A corresponding

to λ, where Axm´1 P Cn, pAxm´1qi “
n
ř

i2,...,im“1

aii2¨¨¨imxi2 ¨ ¨ ¨xim , i P rns, and xrm´1s “

pxm´1
1 , . . . , xm´1

n qT. The ρpAq “ maxt|λ| : λ is an eigenvalue of Au is called the

spectral radius of A. If there exist λ P R and a nonzero vector x P Rn such that

Axm´1 “ λx and xTx “ 1, (2.2)

then λ is called a Z-eigenvalue of A and x is called a Z-eigenvector of A correspond-

ing to λ. Since the work of Qi [14] and Lim [15], the research on eigenvalues of

tensors and its applications has attracted much attention (see [16, 17, 18]).

In [12, 19, 20, 21], Perron-Frobenius theory of tensors were established. Next, we

introduce some results on Perron-Frobenius theory of tensors that we used in this

paper.

Lemma 2.1. [20] Let A P R
rm,ns
` . If some eigenvalue of A has a positive eigenvector

corresponding to it, then this eigenvalue must be ρpAq.

Lemma 2.2. [12, 21] Let A P R
rm,ns
` be a weakly irreducible tensor. Then ρpAq is

an eigenvalue of A and there exists a unique positive eigenvector corresponding to

ρpAq up to a multiplicative constant.

Lemma 2.3. [21] Let A P R
rm,ns
` be a weakly irreducible tensor. Suppose x is an

eigenvector corresponding to ρpAq. Then x contains no zero elements.

Let a hypergraph G “ pV pGq, EpGqq, where V pGq “ t1, 2, . . . , nu and EpGq “

te1, e2, . . . , emu are the vertex set and edge set of G, respectively. If each edge of

G contains k vertices, then G is called a k-uniform hypergraph. Clearly, 2-uniform

hypergraphs are exactly the ordinary graphs. The degree of a vertex i of G is

denoted by di, where di “ |tej : i P ej , j “ 1, . . . , mu|, i P rns. If all vertices

of G have the same degree, then G is called regular. The adjacency tensor [22] of

k-uniform hypergraph G, denoted by AG, is a k-order n-dimensional nonnegative

symmetric tensor with entries

ai1i2¨¨¨ik “

#

1
pk´1q!

, if ti1, i2, . . . , iku P EpGq;

0, otherwise.
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Let LG “ DG ´ AG be the Laplacian tensor of G [9], where DG is a diagonal tensor,

whose diagonal entries are d1, . . . , dn, respectively.

A path P in a k-uniform hypergraph G is defined to be an alternating sequence of

vertices and edges v0e1v1e2 ¨ ¨ ¨ vl´1elvl, where v0, . . . , vl (resp. e1, . . . , el) are distinct

vertices (resp. edges) of G and vi´1, vi P ei for i “ 1, . . . , l. If there exists a path

starting at u and terminating at v for all u, v P V pGq, then G is called connected.

Let X be a subset of V pGq, GpXq denote the sub-hypergraph of G induced by X .

If GpXq is connected and there isn’t the paths starting at the vertices in X and

terminating at vertices in V zX , then GpXq is called a connected component of G.

Lemma 2.4. [13] Let G be a k-uniform hypergraph. Then G is connected if and

only if adjacency tensor AG is weakly irreducible.

In the following, we give an example to show that the Theorem 1.1 and Theorem

1.2 can’t be generalized to hypergraphs directly.

Example 2.5. The Figure 1 is a 4-uniform hypergraph G, by Theorem 4.3 in [22],

we get that the eigenvalues of AG are 0,´1, 1,´i, i and the corresponding algebraic

multiplicity are 36,16,16,16,16, respectively, where i2 “ ´1.

Since LG “ D´A “ I´A, by the definition of eigenvalue of tensors, we have the

eigenvalues of LG are 1, 2, 0, 1 ` i, 1 ´ i and the corresponding algebraic multiplicity

are 36,16,16,16,16, respectively.

Obviously, the number of connected component of G is 1. But the algebraic

multiplicity of Laplacian eigenvalue 0 is 16. Thus, the Theorem 1.1 and Theorem

1.2 can’t be generalized to hypergraphs directly.

Figure 1: 4-uniform hypergraph G

3. Main results

In this section, we show that the number of connected components of a k-uniform

hypergraph G equals the (Z-)geometry connectivity βpGq (βZpGq). Before we show

the main results, we first give the following result.

Lemma 3.1. Let G be a connected k-uniform hypergraph. Then βpGq “ 1.
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Proof. Let L̃G “ ∇I ´LG , where ∇ is the maximum degree of G. It’s easy to check

that p0, eq is an eigenpair of LG , where e “ p1, 1, . . . , 1qT P Rn. Then p∇, eq is an

eigenpair of L̃G.

Since G is connected, from Lemma 2.4, AG is weakly irreducible. So we have

L̃G “ ∇I ´ LG “ ∇I ´ DG ` AG is a nonnegative weakly irreducible tensor. Then,

by Lemma 2.1, we get that ∇ is the spectral radius of L̃G.

From Lemma 2.2 and Lemma 2.3, we get that the nonnegative eigenvector of a

nonnegative weakly irreducible tensor corresponding to spectral radius is unique up

to a multiplicative constant. So, e is a unique nonnegative eigenvector corresponding

to spectral radius ∇ of L̃G up to a multiplicative constant.

Let p0, xq is an eigenpair of LG . Obviously,

L̃Gx
k´1 “ p∇I ´ LGqxk´1 “ ∇xrk´1s ´ LGx

k´1 “ ∇xrk´1s.

So p∇, xq is an eigenpair of L̃G . Hence, e is a unique nonnegative eigenvector corre-

sponding to eigenvalue 0 of LG up to a multiplicative constant, i.e., βpGq “ 1.

Let A “ pai1¨¨¨ikq P Rrk,ns, S be a subset of rns, and ArSs “ pai1¨¨¨ikq denote a

k-order |S|-dimensional subtensor of A, where i1, i2, . . . , ik P S.

Theorem 3.2. Let G be a k-uniform hypergraph. Then the number of connected

components of G is the geometry connectivity βpGq.

Proof. Denote LG the Laplacian tensors of G and e “ p1, 1, . . . , 1qT P R
n. Let

GpV1q, . . . ,GpVrq be the connected components of G. Then subtensor LGrVis of LG

is the Laplacian tensors of sub-hypergraphs GpViq, i “ 1, . . . , r. Then we have

LGrVisperVisq
k´1 “ 0, i “ 1, . . . , r. (3.1)

Thus, erVis is a nonnegative eigenvector corresponding to eigenvalue 0 of LGrVis,

i “ 1, . . . , r.

Let eVi
“ px

piq
j q P Rn, its entry x

piq
j “ 1 if j P Vi and zero otherwise, i “ 1, . . . , r.

Then by (3.1), we have

LGpeVi
qk´1 “ 0, i “ 1, . . . , r,

i.e., p0, eV1
q, . . . , p0, eVr

q are eigenpairs of LG. And since Vi

Ş

Vj “ ∅, i, j “ 1, 2, . . . , r,

i ‰ j. We get that eV1
, . . . , eVr

is linearly independent eigenvectors corresponding

to 0 of LG . Next, we prove eV1
, . . . , eVr

is a maximal linearly independent group of

nonnegative eigenvectors corresponding to eigenvalue 0 of LG , i.e., βpGq “ r.
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For any nonnegative eigenvector x “ px1, . . . , xnqT corresponding to eigenvalue

0 of LG, we have LGx
k´1 “ 0 and x P Rn

`. Let xVi
“ px

piq
j q P Rn, its entry x

piq
j “ xj if

j P Vi and zero otherwise, i “ 1, . . . , r. So x “ xV1
`¨ ¨ ¨`xVr

. Since GpV1q, . . . ,GpVrq

are the connected components of G, we get

LGpxVi
qk´1 “ 0, i “ 1, . . . , r.

Then,

LGrVispxrVisq
k´1 “ 0, i “ 1, . . . , r.

So, xrVis is a nonnegative eigenvector corresponding to eigenvalue 0 of LGrVis if

xrVis ‰ 0, i P rrs. From Lemma 3.1, we know that the number of maximal lin-

early independent nonnegative eigenvectors of GpViq corresponding to eigenvalue 0

of LGrVis is 1. Thus, xrVis “ cierVis, i.e., xVi
“ cieVi

, ci is a constant, i “ 1, . . . , r.

Therefore, x is a linear combination of eV1
, . . . , eVr

. So eV1
, . . . , eVr

is a maximal

linearly independent group of nonnegative eigenvectors corresponding to eigenvalue

0 of LG, i.e., βpGq “ r.

By Theorem 3.2, we can get the following result directly.

Theorem 3.3. A k-uniform hypergraph G is connected if and only if βpGq “ 1.

Obviously, the maximum numbers of linearly independent vectors of sets tx :

LGx
k´1 “ 0 and x P Rn

`u and tx : LGx
k´1 “ 0, xTx “ 1 and x P Rn

`u are equal, i.e.,

βpGq “ βZpGq. By Theorem 3.2, we have the following result.

Theorem 3.4. Let G be a k-uniform hypergraph. Then the number of connected

components of G is the Z-geometry connectivity βZpGq.

Let G be a k-uniform hypergraph and AG be its adjacency tensor. Let βρpGq

denote the maximum number of linearly independent nonnegative eigenvectors of

AG corresponding to spectral radius ρpAGq. We have the following conclusion.

Theorem 3.5. Let G be a k-uniform d-regular hypergraph. Then the number of

connected components of G is βρpGq .

Proof. It’s easy to check that pd, eq is an eigenpair of AG, where e “ p1, 1, . . . , 1qT P

Rn. From Lemma 2.1, d is the spectral radius of AG.

Since G is a d-regular hypergraph, we have its Laplacian tensor is LG “ dI ´AG.

Thus, pλ, xq is an eigenpair of AG if and only if pd ´ λ, xq is an eigenpair of LG.
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So, pd, xq is an eigenpair of AG if and only if p0, xq is an eigenpair of LG. Thus,

βρpGq “ βpGq.

By Theorem 3.2, the statement holds.

Remark 3.6. Let G is an ordinary graph with r connected components. Since Lapla-

cian matrix LG is symmetric, the algebraic multiplicity and the geometry multiplicity

of Laplacian eigenvalue 0 are equal, are both r. It’s easy to know that we can choose

r nonnegative eigenvectors as the basis of characteristic subspace of Laplacian eigen-

value 0. Therefore, when G is an ordinary graph, Theorem 3.2 is the Theorem 1.2,

and Theorem 3.3 is the Fiedler’s result Theorem 1.1, respectively.

Similarly, when G is a d-regular ordinary graph with r connected components,

we can choose r nonnegative eigenvectors as the basis of characteristic subspace of

spectral radius. Thus, by Theorem 3.5, we get that the result of regular graphs “the

number of connected components of G is equal to the algebraic multiplicity of spectral

radius of the adjacency matrix [7, 8]”.

When G is a k-uniform hypergraph, the maximum number of linearly independent

nonnegative eigenvectors and the maximum number of linearly independent eigen-

vectors corresponding to 0 of LG isn’t equal. For example, for 4-uniform hypergragh

G in Figure 1, it’s easy to check that p1, 1, 1, 1qT, p1, 1,´1,´1qT, p1,´1, 1,´1qT and

p1,´1,´1, 1qT are the linearly independent eigenvectors of LG corresponding to 0.

Thus, the geometry connectivity βpGq isn’t equal to the maximum number of linearly

independent eigenvectors corresponding to 0 of LG.
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