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Abstract

The eigenvalues of the Hamming graph H(n, q) are known to be
λi(n, q) = (q − 1)n − qi, 0 ≤ i ≤ n. The characterization of equitable
2-partitions of the Hamming graphs H(n, q) with eigenvalue λ1(n, q) was
obtained by Meyerowitz in [15]. We study the equitable 2-partitions of
H(n, q) with eigenvalue λ2(n, q). We show that these partitions are re-
duced to equitable 2-partitions of H(3, q) with eigenvalue λ2(3, q) with
exception of two constructions.

1 Introduction

An ordered r-partition (C1, . . . , Cr) of the vertex set of a graph is called equitable
if for any i, j ∈ {1, . . . , r} there is Sij such that any vertex of Ci has exactly Sij

neighbors in Cj . The elements of the partition are called cells. It is well-known
(see e.g. [6]) that the eigenvalues of the matrix S = (Sij)i,j∈{1,...,r}, which is
called the quotient matrix of the equitable partition, are necessarily eigenvalues
of the adjacency matrix of the graph. An eigenvalue of an equitable partition
is an eigenvalue of its quotient matrix.

Equitable partitions of various graphs are solutions for certain covering and
optimization problems in coding, graph and design theories, projective geom-
etry and etc. Such objects as 1-perfect codes, (w − 1) − (n,w, λ)-designs [16]
and their q-analogues, including q-ary Steiner triple systems [4], spreads and
Cameron-Liebler line classes in PG(n, q) [7] can be defined in terms of equitable
2-partitions of Hamming, Johnson and Grassman graphs.

A subset of the vertex set of the graph is called a completely regular code
if the distance partition with respect to the subset is equitable. Obviously any
cell of an equitable 2-partition is a completely regular code. Completely regular
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codes in Hamming graphs include Preparata, some BCH and perfect codes. For
a survey on completely regular codes in Hamming graphs we refer to [2].

In throughout the paper we index the eigenvalues of the graphs in the de-
scending order, starting with zeroth. The eigenvalues of the Hamming graph
H(n, q) are known to be λi(n, q) = (q − 1)n − qi, i ∈ {0, . . . , n}, see e.g. [5].
The characterization of all completely regular codes (in particular equitable 2-
partitions) with the first eigenvalue was obtained for the Hamming and Johnson
graphs by Meyerowitz in [15]. In the paper we consider the case when equitable
2-partitions of the Hamming graphs have the second eigenvalue.

In binary case the equitable 2-partitions were studied by Fon-Der-Flaas [9,
10]. Consider an equitable 2-partition of the Hamming graph H(n, 2) with an
asymmetric quotient matrix and eigenvalues λi(n, 2) and n. In [10] Fon-Der-
Flaas showed that the number i of the minimum eigenvalue is not greater than
2n/3. Later in [11] he constructed 2-partitions which eigenvalue numbers attain
the above bound. Krotov and Vorob’ev [12] studied the existence problem of
such partitions and obtained a new necessary condition in terms of elements
of quotient matrices. They also gave a characterization of such partitions in
H(12, 2) with only one open case left. The database of equitable 2-partitions of
binary Hamming graphs can be found in [13].

In case of arbitrary q, the equitable 2-partitions of H(n, q) with the first
eigenvalue could be described as those that can be obtained from 2-partitions
of H(1, q) by adding n − 1 nonessential coordinate positions [15]. The case of
linear equitable 2-partitions, i.e. such that the cells are cosets by a linear code
of dimension n − 1 were characterized in [3] (see also [14]). Note that these
partitions are related to Hamming codes and therefore generally have numbers
of their eigenvalues exceeding 2.

In the paper [18] every eigenvector of H(n, q) with eigenvalue λi(n, q) was
related to a set of eigenvectors of H(n − 1, q) with eigenvalue λi−1(n − 1, q)
in a certain manner. Based on this connection the minimum weights of the
eigenvectors of H(n, q) with eigenvalue λ1(n, q) [18] and arbitrary eigenvalue
[19] were found. In case of equitable partitions the approach of [18] relates every
equitable 2-partition of H(n, q) with eigenvalue λi(n, q) to a set of eigenvectors
of H(n − 1, q) with eigenvalue λi−1(n − 1, q) whose entries take values in the
set {0, 1,−1}. We characterize all eigenvectors with eigenvalue λ1(n − 1, q) of
the Hamming graph H(n − 1, q) taking values {0, 1,−1} in Section 4. The
description of these vectors impose restrictions on the structure of the parent
equitable 2-partition of H(n, q) with eigenvalue λ2(n, q), which are shown to be
equitable 2-partitions of H(3, q) in Section 4 up to several constructions that
we give in Section 3. The basic theory concerning equitable partitions of the
Hamming graphs and the details of the approach from [18] are given in Section
2.

2



2 Equitable partitions of the Hamming graphs

Let B1, . . . , Bn be finite sets, x and y be two tuples from the cartesian product
B1 × . . . × Bn. We say that x is s-adjacent to y if x and y differ only in sth
coordinate. The vertex set of the Hamming graph H(n, q) is the cartesian nth
power of a set A of size q and vertices x and y are adjacent if they are differ
in exactly one coordinate position. Throughout the paper, N denotes the set
{1, . . . , n}.

A function on the vertex set of a graph is called a λ-eigenfunction if the
vector of its values is an eigenvector of the adjacency matrix of the graph with
eigenvalue λ or the all-zero vector.

Given a code (a set of vertices of a graph) C, by χC we denote the charac-
teristic function of the code in the vertex set of the graph. Let (u1, . . . , ur) be
an eigenvector of the quotient matrix S of an equitable partition (C1, . . . , Cr)
with eigenvalue λ. Then it is easy to see that the function

∑

i∈{1,...,r} uiχCi
is a

λ-eigenfunction of the adjacency matrix of the graph, which is known as Lloyd’s
theorem.

Theorem 1. [6] An eigenvalue of an equitable partition of a graph is an eigen-
value of the graph.

Let (C,C) be an equitable 2-partition of a k-regular graph G with the quo-
tient matrix S. Then it is easy to see that the eigenvalues of S are k and
S11−S21. Moreover, the considerations prior to Lloyd’s theorem imply that χC

is the sum of a k-eigenfunction (which is a constant uniquely defined by S) and
a two-valued (S11 − S21)-eigenfunction of G that is constant on C and C. It is
well-known that if the characteristic function of a set in H(n, q) is orthogonal
to any λj(n, q)-eigenfunction, for all j such that 1 ≤ j ≤ t, then the code is a
t−orthogonal array (see e.g. [8][Theorem 4.4]). In particular, in the case when
(C,C) is an equitable 2-partition of H(n, q) with the second eigenvalue, the cell
C is evenly distributed in the induced Hamming subgraphs H(n− 1, q).

Proposition 1. Let (C,C) be an equitable 2-partition of a k-regular graph G
with the quotient matrix S. Then the following statements hold:

1. |C| = |V (G)|S21/(S12 + S21) and the eigenvalues of the partition are
k, S11 − S21.

2. If G is H(n, q) and S11 − S21 = λ2(n, q), then for any i ∈ N , α ∈ A we
have that

|{x ∈ C : xi = α}| = S21q
n−2/2.

Proof. Double counting of edges in G between C and C gives that |C| =
S21

S12+S21

|V (G)|. When G = H(n, q) and S11 − S21 = λ2(n, q) = (q − 1)n − 2q

we have S11 + S12 = n(q − 1) which gives |C| = S21q
n−1/2. Since C is a 1-

orthogonal array, |{x ∈ C : xi = α}| is a constant number and we obtain the
required.

Let f be a function defined on the vertices An of H(n, q), α ∈ A, i ∈ N . Let
(f)αi be the function such that (f)αi (y

′) is f(y), where yi = α and y′ is obtained
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from y by deleting i-th coordinate position. Denote by Ui(n, q) the space of
λi(n, q)-eigenfunctions of H(n, q).

Lemma 1. [18] Let f be a λi(n, q)-eigenfunction of H(n, q). Then the following
statements hold:

1. For any k ∈ N , α, α′ ∈ A the function (f)αk − (f)α
′

k is λi−1(n − 1, q)-
eigenfunction of H(n− 1, q).

2. For any k ∈ N and α ∈ A the function (f)αk is in Ui−1(n− 1, q)⊕Ui(n−
1, q).

Corollary 1. Let (C,C) be an equitable 2-partition of H(n, q) with eigenvalue

λi(n, q) and k ∈ N , α, β ∈ A. Then the function (χC)
α
k − (χC)

β
k is a λi−1(n−

1, q)-eigenfunction of H(n− 1, q) taking values {0, 1,−1}.

Proof. The function χC is the sum of a λi(n, q)-eigenfunction and a constant

function and the latter vanishes in the expression (χC)
α
k − (χC)

β
k .

3 Constructions of equitable 2-partitions of
H(n,q) with the second eigenvalue

Let f be a function defined on the cartesian product B1 × . . . × Bn. We say
i ∈ N is an essential coordinate of f , if there are i-adjacent vertices x and y
such that f(x) 6= f(y). A coordinate is essential for a 2-partition of B1 × . . .×
Bn if it is essential for the characteristic function of one of its cells. Given a
function f : An −→ R, we define the function f+ : An+1 −→ R by the rule
f+(x1, . . . , xn, xn+1) = f(x1, . . . , xn) for any xn+1 ∈ A.

The following result is a folklore, its proof is straightforward. Lemma in case
of equitable 2-partitions of the Hamming graph H(n, 2) could be found in [9].

Lemma 2. [9] 1. Let f be a real-valued function defined on An. Then f is
λi(n, q)-eigenfunction iff f+ is λi(n+ 1, q)-eigenfunction.

2. Let (C,C) be arbitrary 2-partition of H(n, q), i be a nonessential coor-
dinate of the partition. Then (C,C) is equitable with eigenvalue λi(n, q) iff the
partition of H(n − 1, q) obtained by deleting ith position in all tuples of C and
C is equitable with eigenvalue λi(n− 1, q).

We say that a function defined on B1× . . .×Bn (2-partition of B1× . . .×Bn

respectively) is reduced if all coordinates from N are essential for the function
(the characteristic function of a cell of the partition respectively).

3.1 Permutation switching construction

Here we present a construction of equitable 2-partitions of H(n, q) from specific
equitable 2-partitions of H(2, q) by switchings of coordinate positions.

Recall that the Cartesian product G�H of graphs G and H is a graph with
the vertex set V (G)×V (H); and any two vertices (u, u′) and (v, v′) are adjacent
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if and only if either u = v and u′ is adjacent to v′ in H , or u′ = v′ and u is
adjacent to v in G.

Firstly, we describe all equitable 2-partitions of H(1, q)�H(1, q′) with the
smallest eigenvalue.

Proposition 2. A 2-partition (C,C) of H(1, q)�H(1, q′) is equitable with the
quotient matrix S and eigenvalue −2 if and only if |C ∩K|/|K| = S21/(q + q′)
for any maximal clique K of H(1, q)�H(1, q′).

Proof. Let C be a subset of H(1, q)�H(1, q′) such that any maximal clique K
contains exactly a|K| vertices of C. Then the partition (C,C) is equitable with

the quotient matrix

(

a(q + q′)− 2 (1 − a)(q + q′)
a(q + q′) (1− a)(q + q′)− 2

)

and has eigenvalue

-2.
If K is a maximal clique in H(1, q)�H(1, q′), then it is easy to see that

the partition (K,K) is an equitable 2-partition of H(1, q)�H(1, q′) with the

quotient matrix

(

|K| − 1 q + q′ − 1− |K|
1 q + q′ − 3

)

that has eigenvalue |K| − 2.

Let (C,C) be an equitable partition of H(1, q)�H(1, q′) with the eigenvalue
−2. Then χK = f0 + f1, χC = h0 + f2, where f0 and h0 are constant functions
that are uniquely defined by the quotient matrices of the partitions, f1 is a
(|K|−2)-eigenfunction and f2 is a (−2)-eigenfunction. Since eigenvectors of the
adjacency matrix with different eigenvalues are orthogonal, we have that:

|C ∩K| =
∑

v∈V (H(1,q)�H(1,q′))

χK(v)χC(v) =
∑

v∈V (H(1,q)�H(1,q′))

h0(v)f0(v),

which does not depend on K, but only on |K|, since the value of f0 is
uniquely determined by the quotient matrix of the partition (K,K). Since
the graph H(1, q)�H(1, q′) could be parted into maximal cliques of the size
|K|, the number |C ∩ K|/|K| is equal to |C|/qq′. Finally, from Proposi-
tion 1 we have |C| = S21qq

′/(S12 + S21), which taking into account that
S12 + S21 = q + q′ − 2 − S11 + S21 = q + q′ implies that the percentage of
C in K is S21/(q + q′).

Construction A. Let A1, . . . , An−1 be a partition of A. The vertices of
H(2, q) are parted into Ai ×A, i = 1, . . . , n− 1. Consider a 2-partition (C,C)
of H(2, q) such that |C ∩K|/|K| is the same for any maximal clique K of any
subgraph induced by Ai×A, i = 1, . . . , n−1. By Proposition 2 the restriction of
(C,C) to any of these subgraphs is equitable. Moreover, (C,C) is an equitable
2-partition of H(2, q) with the eigenvalue λ2(2, q) = −2 as any maximal clique
of H(2, q) is a union of maximal cliques of the subgraphs.

Define C+ to be obtained from C by adding n − 2 nonessential coordinate
positions, i.e. C+ = {(x1, x2, y3, . . . , yn) : (x1, x2) ∈ C, yi ∈ A, i ∈ {3, . . . , n}}.

From Lemma 2 the partition (C+, C+) ofH(n, q) is equitable with eigenvalue
λ2(n, q). The construction allows switchings of coordinates to be applied. Given

5



a permutation π of the coordinates from N and x ∈ An by π(x) denote the tuple
(xπ(1), . . . , xπ(n)), for a subset M of An denote by π(M) the set {π(x) : x ∈ M}.
Let πi be the transposition (2, i+1), and π1 be the identity permutation. Define
C+

π to be
⋃

i=1,...,n−1

πi(Ai ×An−1 ∩ C+).

Note that the essential coordinates of (Cπ , Cπ) are N , while those of (C,C)
are 1 and 2. The construction above is somewhat similar to the construction of
nonsystematic binary 1-perfect codes by consecutive switchings of i-components
[1].

Theorem 2. The partition (C+
π , C+

π ) is an equitable 2-partition of H(n, q) with
the same quotient matrix as that of (C+, C+) and eigenvalue λ2(n, q).

Proof. Let S be the quotient matrix of the partition (C+, C+). Define (x)π to
be πi(x), for all i ∈ N \n, x ∈ Ai×An−1. The mapping (·)π permutes the second
and (i + 1)th coordinate positions for vertices in Ai × An−1, so its restriction
to the subgraph induced by Ai × An−1 is an automorphism of the subgraph.
The permutation πi fixes 1, so the restriction of (·)π to the subgraph induced by
Ai×An−1 acts on the set of maximal cliques consisting of 1-adjacent vertices of
the subgraph. By the choice of the initial partition (C,C), the percentages of C+

in all maximal cliques consisting of pairwise 1-adjacent vertices of the subgraph
are the same and are equal to S21/(S12 + S21). Since (C+)π is Cπ and (·)π
permutes these cliques, the percentage of Cπ in these cliques is S21/(S12+S21).

For a vertex x ∈ C+, x1 ∈ Ai we see that (·)π maps the set of all j-neighbors
from C+, for all j ≥ 2, to the set of all j-neighbors of (x)π from Cπ because
they are all in Ai × An−1. A maximum clique of H(n, q) formed by pairwise
1-adjacent vertices is the union of maximal cliques of the subgraphs induced
by Ai × An−1, i ∈ N \ n. Since the percentages of C and Cπ in the cliques
in subgraphs are the same, we conclude that the numbers of vertices that are
1-adjacent to x from C+ and that of (x)π from Cπ coincide, so (x)π is adjacent
to S11 vertices of Cπ . The proof in case when x ∈ C+ is analogous.

3.2 Alphabet liftings of two induced cycles in H(4,2)

Consider the construction of equitable partitions using alphabet liftings by
Vorob’ev in [20], which resembles the Zinoviev construction for perfect codes
[21] (see also [17]). Let A0, . . . , Aq′−1 be the sets of the same size that partition
A. Here we identify the alphabet set A′ of H(n, q′) with {0, . . . , q′ − 1}.

Given a partition (C1, . . . , Cr) of H(n, q′) define Di, 1 ≤ i ≤ r to be

⋃

(x1,...,xn)∈Ci

Ax1
× . . .×Axn

.
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Theorem 3. [20] Let (C1, . . . , Cr) be an equitable partition of H(n, q′) with
the set of eigenvalues {λi(n, q

′) : i ∈ I}. Then the partition (D1, . . . , Dr) is an
equitable partition of H(n, q) with the set of eigenvalues {λi(n, q) : i ∈ I}.

Let C = {(0001), (0011), (0010), (0110), (1110), (1100), (1101), (1001)}.
The complement C of C is {(0000), (0100), (0101), (0111), (1111), (1011),
(1010), (1000)}. We see that both C and C are induced cycles in H(4, 2), so
any vertex of C is adjacent to exactly two vertices of C and the partition (C,C)

is equitable with the quotient matrix

(

2 2
2 2

)

. Moreover, all 4 coordinates of

the partition are essential and λ2(4, 2) = 0 is its eigenvalue.

Corollary 2. (construction B) Let (C,C) be a partition of H(4, 2) into two
induced cycles of length 8. A0, A1 = A0, |A0| = |A1| = q/2 and D be
⋃

(x1,x2,x3,x4)∈C Ax1
× Ax2

× Ax3
× Ax4

. Then (D,D) is an equitable partition

of H(4, q) with eigenvalue λ2(4, q).

4 Main results

Here we obtain the description of λ1(n, q)-eigenfunctions with the values in
{0, 1,−1} and utilize it for the reconstruction of equitable 2-partitions ofH(n, q)
with eigenvalue λ2(n, q).

4.1 λ1(n, q)-eigenfunctions with the values in {0,1,-1}

Consider two functions on the vertices of Hamming graphs. Given i ∈ N ,
A,B ⊂ A, A ∩B = ∅, A ∪B 6= ∅ we say that f defined on An is the (A,B, i)-
quasi string if

f(x) =











1, xi ∈ A

−1, xi ∈ B

0, otherwise

.

Given i, j ∈ N , i 6= j, and two nonempty subsets A,B of A we say that f
defined on An is the (A,B, i, j)-quasi cross if

f(x) =











1, xi ∈ A, xj /∈ B

−1, xi /∈ A, xj ∈ B

0, otherwise

.

Lemma 3. Let f be a function from An to {−1, 0, 1}. The function f belongs
to U0(n, q)⊕ U1(n, q) iff it is the (A,B, i, j)-quasi cross or the (A,B, i)-quasi
string or a constant.

Proof. Let us prove this lemma by induction on n. If n = 1, then it is easy to
see that f is either a constant or the (A,B, i)-quasi string.
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Let us prove the induction step. Fix β ∈ A. Lemma 1 implies that fα
n −fβ

n ∈
U0(n, q) for any α ∈ A \ β. Hence fα

n − fβ
n is a constant, which we denote by

cα, so we have that
fα
n ≡ fβ

n + cα. (1)

Now, we consider three cases. Given a function g by E(g) we denote the set
of its values.

Case 1. In this case we suppose that {−1, 1} ⊆ E(fβ
n ). Using the equality

(1), we see that E(fα
n ) contains numbers cα − 1 and cα + 1. Since E(f) ⊆

{−1, 0, 1}, we have cα = 0 for any α ∈ A \ {β}. So fα
n ≡ fβ

n for any α ∈
A \ {β}. By Lemma 1 we obtain fβ

n ∈ U0(n− 1, q)⊕ U1(n− 1, q). Then using
the induction assumption for fβ

n , we finish the proof in this case.
Case 2. Let E(fβ

n ) be {0, 1} or {−1, 0}. Without loss of generality, we
assume that E(fβ

n ) = {0, 1}. Using (1) and the fact that E(f) ⊆ {−1, 0, 1}, we
obtain that cα ∈ {−1, 0} for any α ∈ A \ {β}. Denote C = {α ∈ A \ {β} : cα =
−1}.

By Lemma 1 we obtain fβ
n ∈ U0(n− 1, q)⊕ U1(n− 1, q). Using the induc-

tion assumption for fβ
n , we obtain that fβ

n is the (A,B, i)-quasi string. Moreover,
B = ∅ because E(fβ

n ) = {0, 1}. Then f is the (A,C, i, n)-quasi cross due to the
definition of the cross.

Case 3. Let fβ
n be a constant. Using (1), we obtain that fα

n is a constant
for any α ∈ A \ {β}. Then either f is a constant, or f is the (A,B, n)-quasi
string.

Let us now prove the sufficiency part. Obviously, the (A,B, 1)-quasi string
belongs to U0(1, q) ⊕ U1(1, q) because the latter is the space of all real-valued
functions on H(1, q). The (A,B, i)-quasi string in H(n, q) is obtained from
the (A,B, 1)-quasi string in H(1, q) by adding n − 1 nonessential coordinate
positions, so by Lemma 2 it is in U0(n, q)⊕ U1(n, q).

On the other hand, it is easy to see that the (A,B, i, j)-quasi cross is the
sum of the (A,A, i)-quasi string and the (B,B, j)-quasi string that belong to
U0(n, q)⊕U1(n, q), so the (A,B, i, j)-quasi cross is also in U0(n, q)⊕U1(n, q).

It is easy to see that the (A,B, i)-quasi string is in U1(n, q) iff |A| = |B|. If x
is a zero of the (A,B, i, j)-quasi cross then x is i-adjacent to |A| vertices y such
that f(y) = 1 and |A| vertices y such that f(y) = −1. If x is such that f(x)
is positive (or negative) then x is i-adjacent or j-adjacent to |A| + q − |B| − 2
vertices y that have positive (or negative) value |B|+ q− |A|− 2. Again, taking
into account Lemma 2, the (A,B, i, j)-quasi cross is λ1(n, q)-eigenfunction iff
|A| = |B|. When |A| = |B| the (A,B, i)-quasi string is called the the (A,B, i)-
string and the (A,B, i, j)-quasi cross is called the (A,B, i, j)-cross. The previous
lemma implies the following.

Lemma 4. Let f be an arbitrary function from An to {0,−1, 1}. The function
f is λ1(n, q)-eigenfunction iff it is the (A,B, i, j)-cross or the (A,B, i)-string or
the all-zero function.
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4.2 Equitable 2-partitions of H(n,q) with eigenvalue
λ2(n, q)

Theorem 4. Let (C,C) be an equitable partition of H(n, q) with the quotient
matrix S that has eigenvalue λ2(n, q). If (χC)

α′

k − (χC)
α
k is the (A,B, i, j)-cross

and there is s ∈ N \ {i, j, k} that is essential for (χC)
α
k or (χC)

α′

k then (C,C)
is obtained by Construction B.

Proof. Without restriction of generality, suppose that k = n. Moreover, we
have |A| = |B|, so up to an isomorphism of the Hamming graph we assume that
A = B and (χC)

α′

k − (χC)
α
k is the (A,A, i, j)-cross. Then we have following the

properties.

{x : xn = α′, xi ∈ A, xj ∈ A}, {x : xn = α, xi ∈ A, xj ∈ A} ⊂ C, (2)

{x : xn = α, xi ∈ A, xj ∈ A}, {x : xn = α′, xi ∈ A, xj ∈ A} ⊂ C. (3)

Let x and y be n-adjacent vertices such that xn = α, yn = α′,

xi = yi ∈ A, xj = yj ∈ A. Then x and y are both in C or not. (4)

Let x and y be n-adjacent vertices such that xn = α, yn = α′,

xi = yi ∈ A, xj = yj ∈ A. Then x and y are both in C or not. (5)

By conditions of the theorem there is a pair of s-adjacent vertices x0000 ∈ C
and x0001 ∈ C such that their nth positions are both α′ or α and their ith
and jth positions are in A or not simultaneously by properties (2), (3). By
properties (4) and (5) the essential coordinate positions for (χC)

α
n and (χC)

α′

n

coincide, so we can assume that x0000
n = x0001

n = α′.
Moreover, we assume that both x0000

i = x0001
i = β′, x0000

j = x0001
j = γ′

are in A (the case when they are in A is proven analogously). W.l.o.g. up
to an automorphism of H(n, q) we assume that α and x0001

s = δ ∈ A, α′ and
x0000
s = δ′ ∈ A. By β and γ denote any two elements of A, so we have that

α, β, γ, δ ∈ A, α′, β′, γ′, δ′ ∈ A.
Denote by xa1a2a3a4 the vertex obtained from x0000 by changing its nth

position from α′ to α iff a1 = 1, its ith position from β′ to β iff a2 = 1, its jth
position from γ′ to γ iff a3 = 1, its sth position from δ′ to δ iff a4 = 1. The
graph spanned by {xa : a ∈ {0, 1}4} is H(4, 2). We now show that the partition
(C,C) could be reconstructed on the subgraph.

Lemma 5. xa ∈ C iff a ∈ {0000, 0100, 0101, 1000, 1010, 1011, 0111, 1111}

9



Proof. Note that by (4) and (5) for any a ∈ {0, 1}3 the vertex x0a is in C iff x1a

is in C when x0a
i , x0a

j ∈ A or x0a
i , x0a

j ∈ A. Using this and taking into account
(2) and (3) we have that

xa ∈ C if a ∈ {0000, 0100, 0101, 1000, 1010, 1011}, (6)

xa ∈ C if a ∈ {0001, 0010, 0011, 1001, 1100, 1101}. (7)

We now show that x0110 is in C and x0111 is in C. Denote by xa1a2a4 the
vertex obtained from xa1a2a3a4 by deleting its jth coordinate position.

Consider the values of the function (χC)
γ′

j − (χC)
γ
j on {xa1a2a3 : al ∈

{0, 1}, l = 1, 2, 3}, γ′ = x0000
j , γ = x0010

j . From (6) and (7) we have that

((χC)
γ′

j − (χC)
γ
j )(x

000) = χC(x
0000)− χC(x

0010) = 1,

((χC)
γ′

j − (χC)
γ
j )(x

001) = χC(x
0001)− χC(x

0011) = 0,

((χC)
γ′

j − (χC)
γ
j )(x

100) = χC(x
1000)− χC(x

1010) = 0.

If x0110 is in C then

((χC)
γ′

j − (χC)
γ
j )(x

010) = χC(x
0100)− χC(x

0110) = 0.

If x0111 is not in C then

((χC)
γ′

j − (χC)
γ
j )(x

011) = χC(x
0101)− χC(x

0111) = 1.

Therefore, if x0110 is in C or x0111 is in C then (χC)
γ′

j − (χC)
γ
j has at least

three essential coordinate positions. However, by Corollary 1 (χC)
γ′

j − (χC)
γ
j is

a λ1(n− 1, q)-eigenfunction of H(n− 1, q), so it has not more then two essential
coordinates according to the characterization in Lemma 4. Therefore we have
that x0110 ∈ C and x0111 ∈ C and then x1110 ∈ C and x1111 ∈ C since changing
nth position to α preserves the property of being in C in this case by properties
(4) and (5).

Lemma 6. We have that S12 = S21 = q, |A| = q/2 and the following holds up
to an isomorphism of H(n, q).

A vertex x such that xi, xj ∈ A is in C iff xs ∈ A, (8)

A vertex x such that xi, xj ∈ A is in C iff xs ∈ A. (9)

Proof. Let A′ be {x′
s : x′ ∈ C is s-adjacent to x0000}. Lemma 5 holds for any

vertex x0001 ∈ C that is s-adjacent to x, so we have that

A \A′ = {xs : x ∈ C is s-adjacent to x0111}. (10)

10



We now evaluate the numbers of the neighbors of x0000, x0111 from C. By
the definition of equitable partition, it is S12, where (Sij)i,j=1,2 is the quotient
matrix of the partition (C,C). Consider the vertices obtained from x0000 ∈ C by
changing its jth symbol to an element from A. By property (3) these vertices
are not in C, so there are at least |A| + |A′| vertices from C, that are s- or
j-adjacent to x0000. By property (3) the vertices obtained from x0111 ∈ C by
changing its ith symbol to an element of A are in C. The above combined with
(10) gives that

S12 ≥ max{|A|+ |A′|, 2q − |A′| − |A|}. (11)

Now count the neighbors of x0001 and x0110 in C. For x0001 there are |A| i-
neighbors and q−|A′| s-neighbors from C. For x0110 there are q−|A| j-neighbors
and |A′| s-neighbors from C. Then we have that

S21 ≥ max{q + |A| − |A′|, q − |A|+ |A′|}. (12)

Since λ2(n, q) = n(q − 1)− 2q = S11 − S21 is an eigenvalue of the equitable
partition with the quotient matrix S we have that S12 + S21 = 2q, which com-
bined with the inequalities (11) and (12) implies that |A′| = |A| = q/2 (in below
up to an automorphism of H(n, q) we assume that A′ = A) and S12 = S21 = q.
Moreover, the bound (11) is attained. This implies that the neighbors of x0000

from C as exactly those j- and s-neighbors of x0000 counted while obtaining
(11). So all l-adjacent vertices of x0000, l ∈ N \{j, s} are in C. Analogously, the
vertices from C adjacent to the vertex x0001 are exactly those i-and s-adjacent
vertices to x0001 counted while obtaining bound (12). We conclude that all
vertices that are l-adjacent vertices to x0001, l ∈ N \ {i, s} are in C. The con-
sideration above holds for any two s-adjacent vertices x0000 ∈ C and x0001 ∈ C
and we know their neighbors from C and C respectively, so (8) and (9) hold.

By the previous Lemma, (2) and (4) the partition (C,C) is reconstructed on
the following set {x ∈ An : xn = α, α′}. We now show that for any β ∈ A the
vertices of {x ∈ An : xn = β} ∩ C are obtained by ”copying” their n-neighbors
either from {x : xn = α} ∩ C or from {x : xn = α′} ∩ C.

Consider f = (χC)
α
n − (χC)

β
n, β ∈ A \ {α, α′}. Then we have that

f(y) = 0 if yi, yj ∈ A or yi, yj ∈ A. (13)

We now show that f (and therefore (χC)
β
n) could be reconstructed in only two

ways.
From (2), we have that f(y) ≤ 0 if yi ∈ A, yj ∈ A. We show that f(y) is

a constant for all y ∈ An−1, yi ∈ A, yj ∈ A. Let y be such that f(y) = −1,
yi ∈ A, yj ∈ A. Then from (13) i and j are essential coordinates for f and
by Lemma 4 we see that f is the (A′, B′, i, j)-cross. Moreover, if z is i- or j-
adjacent to y, f(z) = 0, zi ∈ A, zj ∈ A then by (13) a nonzero y of the function
f is adjacent to at least q+1 zeros of f , which contradicts the definition of the

11



(A′, B′, i, j)-cross. Therefore we have that A′ = B′ = A and from (2) and (4)
we reconstruct C as follows:

n-adjacent vertices of {x : xn = β} and {x : xn = α′} are both in C or not
(14)

Let all y ∈ An−1 such that yi ∈ A, yj ∈ A be zeros of f . Then from (13) we
have that f(y) = 0 when yi ∈ A or yj ∈ A which implies that f is either the
all-zero function or has two nonessential coordinates by Lemma 4. However, in
the latter case a vertex y, yi ∈ A, yj ∈ A is adjacent only to zeros of f , which
contradicts the definition of the cross. Therefore f is the all-zero function and
we reconstruct C as follows:

n-adjacent vertices of {x : xn = β} and {x : xn = α} are both in C or not
(15)

We now show that there are exactly q/2 elements β ∈ A that satisfy (14).
Let z ∈ C be such that zn = α′, zi ∈ A, zj ∈ A. Then by (4) the vertex z is not
l-adjacent to vertices of C, l ∈ N \ i, j, n and by (8) and (9) the vertex z is i- or
j-adjacent to exactly q/2 vertices of C. Therefore, z is n-adjacent with exactly
q/2 = S12 − q/2 vertices of C. In other words there are exactly q/2 elements
β ∈ A that satisfy (14).

Finally, from (8), (9), (14), (15) we see that x is in C iff

(xn, xi, xj , xs) ∈ A×A×A×A ∪A×A×A×A ∪ A×A×A×A∪

A×A×A×A ∪A×A×A×A ∪ A×A×A×A∪

A×A×A×A ∪A×A×A×A,

i.e. the partition (C,C) is obtained from Construction B.

The main result of this section is

Theorem 5. The only reduced equitable 2-partitions of H(n, q) with eigenvalue
λ2(n, q) are:

1. Reduced equitable 2-partitions of H(2, q) and H(3, q)

2. If q is even, the equitable 2-partition of H(4, q) from alphabet liftings of
two induced 8-cycles in H(4, 2) (Construction B).

3. Equitable 2-partitions of H(n, q) obtained by the permutation switchings.
(Construction A).

Proof. Consider (χC)
α
n, α ∈ A. Define the partition of A into sets A1, . . . , At

that we call blocks as follows: α, β are in one block iff (χC)
α
n and (χC)

β
n have

the same sets of essential coordinate positions. The proof follows from Lemmas
8 and 9 below.

12



Lemma 7. If there are at least two blocks, then for any α ∈ A the function
(χC)

α
n has exactly one essential coodinate.

Proof. Let α and β be in different blocks. Then by Lemma 4 (χC)
α
n − (χC)

β
n is

either the (A,B, i)-string or the (A,B, i, j)-cross.
The function (χC)

α
n − (χC)

β
n is not (A,B, i)-string because α and β are in

different blocks. Suppose the opposite. Obviously, i is an essential coordinate
for both (χC)

α
n and (χC)

β
n. Moreover, l ∈ N \{i, n} is not an essential coordinate

for (χC)
α
n−(χC)

β
n, so for any pair of l-adjacent tuples y and y′ of An−1, we have

that (χC)
α
n(y)−(χC)

β
n(y) = (χC)

α
n(y

′)−(χC)
β
n(y

′). In other words, we have that
(χC)

α
n(y)− (χC)

α
n(y

′) = (χC)
β
n(y)− (χC)

β
n(y

′), so l is an essential coordinate for
both (χC)

α
n and (χC)

β
n or not. We conclude that (χC)

α
n and (χC)

β
n are in one

block.
Let (χC)

α
n − (χC)

β
n be (A,B, i, j)-cross. If (χC)

α
n or (χC)

β
n has an essential

coordinate s ∈ N \ {i, j, n}, then by Theorem 4 we have Construction B and
only one block in this case. So, we conclude that (χC)

α
n and (χC)

β
n have exactly

one essential coordinate in {i, j}.

Lemma 8. If there are at least two blocks then (C,C) is obtained by Construc-
tion A.

Proof. By Lemma 7 the number of blocks is greater then the number of the es-
sential coordinate positions of the partition by 1. Since the partition is reduced,
the number of essential coordinates is n and A1, . . . , An−1 are the blocks of the
partition (C,C). W.l.o.g. for any α ∈ Ai i is the essential coordinate for (χC)

α
n .

Consider a vertex whose nth position is in Ai. Taking into account Proposi-
tion 1 and because each of (χC)

α
n has exactly one essential coordinate by Lemma

7, |C ∩ Ki| = S21/2, |C ∩ Ki| = S12/2 for the maximum clique Ki consisting
of the vertex and its i-neighbors. Let the vertex be from C (C respectively).
Then since i is the only essential coordinate for (χC)

α
n , α ∈ Ai, the vertex is not

j-adjacent to any vertices of C (C respectively ) for j ∈ N \{i, n} and therefore
is n-adjacent to exactly S12/2 vertices of C (S21/2 vertices of C). So we see
that any maximum clique consisting of pairwise n-adjacent vertices of H(n, q)
contains exactly S12/2 vertices of C and S21/2 vertices of C.

Let Kn and K ′
n be two maximum cliques consisting of pairwise n-adjacent

vertices of H(n, q). For i ∈ N \ n denote by Li (L
′
i) those vertices of Kn and

(K ′
n respectively) that have their nth coordinate in Ai. From the shown above

we have that

|Kn ∩ C| = |K ′
n ∩ C| =

∑

i∈N\n

|Li ∩ C| = S12/2. (16)

We now prove that for any i ∈ N \ n we have that

|Li ∩ C| = |L′
i ∩C| = S12|Li|/2q.
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It is sufficient to prove the equality above when for some β ∈ A the vertices
of K ′

n is obtained from the vertices of Kn (and therefore Lj and L′
j for any j ∈

N \{i, n}) by changing their ith coordinate position to β. We see that i-adjacent
pairs of vertices between Lj and L′

j is a perfect matching. This, combined with

the fact that i is not essential for the restriction of (C,C) to An−1 × Aj gives
|Lj ∩ C| = |L′

j ∩C|. Then from (16) we have that |Li ∩ C| = |L′
i ∩C|.

For j in N \n consider the restriction of the partition (C,C) to the subgraph
induced by An−1 × Aj . Each maximum clique of the subgraph consisting of
pairwise j-adjacent vertices contains S12/2 vertices of C and any maximal clique
of the subgraph consisting of pairwise n-adjacent vertices contains has exactly
lj vertices of C. Since the coordinates from N \ {j, n} are nonessential for the
restriction, double counting of C in An−1 × Aj gives that lj/|Aj | = S12/2q is
a constant regardless of j. We have shown that the partition (C,C) is equally
distributed by all maximum cliques Kj, j ∈ N \ n, whose vertices have nth
coordinate in Aj and by the sets x′×Aj , for all x

′ ∈ An−1, j ∈ N . We conclude
that (C,C) is obtained by Construction A by the transposition of coordinate
positions 1 and n.

Lemma 9. If there is one block then (C,C) has not more then 3 essential
coordinates or (C,C) is obtained by Construction B.

Proof. Let α, β be distinct elements of A. Consider (χC)
α
n − (χC)

β
n. By Lemma

4 and Theorem 4 we have the following cases:

• (χC)
α
n − (χC)

β
n is the (A,B, i, j)-cross and there is s ∈ N \ {i, j, n} that is

essential for (χC)
α
n and (χC)

β
n. Then (C,C) is obtained by Construction

B.

• (χC)
α
n − (χC)

β
n is the (A,B, i, j)-cross, the essential coordinates of (χC)

α
n

and (χC)
β
n are in {i, j}. Since α and β are from the same block, i and

j are the essential coordinates for both (χC)
α
n and (χC)

β
n. The partition

(C,C) has exactly three essential coordinates in this case.

• (χC)
α
n − (χC)

β
n is the (A,B, i)-string.

Let (χC)
α
n − (χC)

β
n be the (A,B, i)-string. From the definition of the string we

have that x ∈ C if xn = α, xi ∈ A or xn = β, xi ∈ B and x ∈ C if xn = β, xi ∈ A
or xn = α, xi ∈ B.

Suppose that s, s 6= i, n is an essential coordinate of (χC)
α
n and (χC)

β
n and

there are s-adjacent vertices for x000 ∈ C and x001 ∈ C, x000
n = x001

n = α,
x000
i = x001

i = α̃. Fix α′ ∈ A and denote by xa the vertex which is obtained
from x000 by changing its nth position to β iff a1 = 1 and ith position to α′ iff
a2 = 1 and sth position to x001

s iff a3 = 1. By the properties above we know that
xa ∈ C iff a ∈ {000, 010, 011, 100}. Consider f = (χC)

α̃
i − (χC)

α′

i on the tuples
{xa1a3 : a1, a3 ∈ {0, 1}}, here xa1a3 is obtained from xa1a2a3 by deleting its ith
position. We have that f(x00) = 0, f(x01) = −1, f(x10) = 1, which implies that
f is a cross and we are in the second case.
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