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ISOMETRIES BETWEEN FINITE GROUPS

RICARDO A. PODESTÁ, MAXIMILIANO G. VIDES

Abstract. We prove that if H is a subgroup of index n of any cyclic group G then G can
be isometrically embedded in (Hn, dnHam), thus generalizing previous results of Carlet (1998)
for G = Z2k and Yildiz and Ödemiş Özger (2012) for G = Zpk with p prime. Next, for any
positive integer q we define the q-adic metric dq in Zqn and prove that (Zqn , dq) is isometric
to (Zn

q , dRT ) for every n, where dRT is the Rosenbloom–Tsfasman metric. More generally,
we then demonstrate that any pair of finite groups of the same cardinality are isometric to
each other for some metrics that can be explicitly constructed. Finally, we consider a chain
C of subgroups of a given group and define the chain metric dC and chain isometries between
two chains. Let G,K be groups with |G| = qn, |K| = q and let H < G. Using chains, we
prove that under certain conditions, (G, dC) ≃ (Kn, dRT ) and (G, dC) ≃ (H [G:H], dBRT )
where dBRT is the block Rosenbloom–Tsfasman metric which generalizes dRT .

1. Introduction

Historical background. The Hamming metric dHam is the most classic and commonly used
metric in coding theory, typically in codes defined over finite fields. Since the 90s, the Lee
metric dLee was also considered on the rings Zm. The Gray map is an isometry between
(Z4, dLee) and (Z2 × Z2, dHam). This map naturally extends to an isometry from Zn

4 to
Z2n
2 . In a famous paper from 1994, Hammons et al ([8]) used the Gray isometry to explain

the formal duality exhibited by some pairs of binary non-linear codes such as Kerdock and
Preparata codes and Goethals and Goethals–Delsarte codes (previously, Nechaev obtained
some similar results in [11]).

Few years later, Salagean-Mandache ([16]) proved that, except for the known case p =
n = 2, it is not possible to construct a metric d induced by a weight in Zpn such that (Zpn , d)
is isometric to (Zn

p , dHam) for any prime p. This result was then extended by Sueli Costa and
collaborators showing the non-existence of isometries from Zmn to a Hamming space Xn,
|X| = m (see [14] for m = p prime, [10] for arbitrary m).

In another direction, Carlet ([2]) generalized the Gray map to an embedding between
Z2k and Z2k−1

2 preserving distances. This map naturally extends coordinatewise to (Z2k)
n

and Z2k−1n
2 . A couple of years later, Yildiz–Özger ([17]) proved that Zpk , with p an odd

prime, can be isometrically embedded into Zpk−1

p with the Hamming metric for any k > 1
(see Remark 4.5). From a more general point of view, Greferath and Schmidt ([7]) further
generalized the Gray map to an embedding from an arbitrary finite chain ring R with the
homogeneous metric to the residue field F = R/m with de Hamming metric. More precisely,
(R, dHom) →֒ (F qm−1

, dHam) where q = |F | and m = length(R). They used their map to
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construct interesting non-linear binary codes. More recently, D’Oliveira and Firer ([4], [5])
showed that up to a decoding equivalence, any metric space can be isometrically embedded
into a hypercube with the Hamming metric.

The goal of this work is to better understand isometries and isometric embeddings between
finite groups (typically finite fields or finite rings for their applications in coding theory). We
will give new explicit isometries and isometric embeddings from cyclic groups and also provide
a general procedure to obtain isometries between arbitrary groups.

Outline and results. Now, we briefly summarize the structure of, and the results in, the paper.
In Section 2, we first recall some basic preliminaries on metric spaces, G-invariant metrics
and isometries. If G is a group acting on a metric space (X, d), we define the associated
symmetry group and their G-representations. In Proposition 2.4 we show that given (X, d)
with a G-representation, there is a bijection ϕ : X → G inducing a group structure on X
and a metric dG on G such that ϕ is a group isomorphism and ϕ : (X, d) → (G, dG) is an
isometry.

In the next section we give a simple group-theoretical proof of the known result that
there are no cyclic representations of a Hamming space Xn for X of prime cardinality (see
Proposition 3.3). In particular, there is no isometry between Zpn and (Zn

p , dHam).

In Section 4 we consider isometric embeddings, i.e. injective maps between metric spaces
preserving distances. We generalize the result of Yildiz–Özger asserting that Zpk , p prime,

can be isometrically embedded into Zpk−1

p for any k > 1 with the Hamming metric. In
Theorem 4.4 we generalize this result by proving that for any m and any subgroup H of Zm

of index n, Zm can be isometrically embedded into Hn with the Hamming metric. This allows
to isometrically embed a ring into rings of different characteristics as noted in Remark 4.7.
In Example 4.8 we consider the subgroups of Z12. In Remark 4.9 we show that the isometric
embedding of Z2n into Zn

2 with the Hamming metric recovers the Lee metric on Z2n.

In Section 5, for any q, n ∈ N with q ≥ 2, we define the q-adic metric dq on Zqn . The
RT -metric was introduced by Rosenbloom and Tsfasman in [15] and has since then proven
to be a quite useful metric in coding theory. In Theorem 5.2 we give a short and direct proof
that Zqn with the q-adic metric is isometric to (Zq)

n with the RT -metric, that is

(Zqn , dq) ≃ (Zn
q , dRT ).

In the next section we show that any isometry between subgroups can be extended to the
ambient groups (see Theorem 6.1). This implies that any pair of groups of the same size (and
hence all) are isometric (see Corollary 6.3). So, for instance, Z3

2, Z2 ×Z4, Z8, D4 and Q8 are
all mutually isometric.

In Section 7, we consider metrics on chain of subgroups and chain isometries. If G has
a chain C of subgroups, in Definition 7.1 we introduce the associated chain metric dC . In
Remark 7.2 we show how the q-adic metric and the RT -metric can be naturally considered
as chain metrics. In Definition 7.5 we define the notion of chain isometry, that is when two
chains of subgroups of the same length of two groups of the same size are isometric.

To say that two groups are chain isometric gives more information than merely saying that
they are isometric, since this implies that every step of the chains are isometric to each other
(see (4.4)). In Theorem 7.11, using geometric chains (see (7.9)) we generalize Theorem 5.2
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to groups not necessarily cyclic. More precisely, if H < G, with |G| = qn and |H| = q then
(G, dC) ≃ (Hn, dRT ) where dC is the chain metric associated to some chain of length n with
initial term H. The most general result will be obtained in the next section.

Finally, in Section 8, we consider the block Rosenbloom–Tsfasman metric dBRT which
generalizes the RT -metric (see Definition 8.1). In Theorem 8.2 we prove that given a proper
subgroup H of a group G and a chain C with initial term H we have that G with the metric
dC induced by the chain is isometric to H [G:H] with the block RT -metric, i.e.

(G, dC) ≃ (H [G:H], dBRT ).

2. Invariant metrics on groups

In this paper X will always denote a finite set and G a finite group. We begin by recalling
some standard definitions. A function d : X × X → R≥0 is called a metric on X if it is
definite positive, symmetric, and satisfies the triangle inequality. That is, (a) d(x, y) ≥ 0 and
d(x, y) = 0 ⇔ x = y, (b) d(x, y) = d(y, x), and (c) d(x, y) ≤ d(x, z) + d(z, y) hold for all
x, y, z ∈ X. The pair (X, d) is called a metric space. If d takes values in N0 and Im(d) ⊂ [[0, n]]
with n = |X| we say that d is integral and that (X, d) is an integral metric space.

Given an injective function f : X → Y between sets and a metric d on Y , one can define
the pullback metric of f on X by

(2.1) df (x, x
′) = d(f(x), f(x′)), x, x′ ∈ X.

Two metric spaces (X1, d1) and (X2, d2) are said to be isometric, denoted by (X1, d1) ≃
(X2, d2), if there is an isometry between X1 and X2. That is, there is a bijection ϕ : X1 → X2

such that for every x, y ∈ X1 we have

(2.2) d1(x, y) = d2(ϕ(x), ϕ(y)).

In other words, d1 is the pullback metric of d2.

A metric d on X can be naturally extended to the metric dn on Xn in the following way

(2.3) dn(x, y) =
n∑

i=1

d(xi, yi)

with x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn. For instance, the Hamming metric dHam on X
extends to Xn giving the most popular metric in coding theory

dn
Ham

(x, y) =
n∑

i=1

dHam(xi, yi) = |{1 ≤ i ≤ n : xi 6= yi}|.

Sometimes, the extended metric dn is also called d. This is a particular case of the product
metric. If (Xi, di), i = 1, . . . , n are metric spaces then the product metric dπ = d1 × · · · × dn
on X = X1 × · · · ×Xn is given by

dπ(x, y) = d1(x1, y1) + · · ·+ dn(xn, yn)

for x = (x1, . . . , xn), y = (y1, . . . , yn).

A map w : X → R is called a weight function if w(x) ≥ 0 for all x ∈ X and w(x) = 0
for exactly one element x of X. If w takes integral values and moreover Im(w) ⊂ [[0, N ]] for
some N ∈ N we will say that w is an integral weight. The pair (X,w) is called a weight space
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or integral weight space if w is integral. If (X,+) is a group, then w must also satisfy the
subadditive property, that is w(x + y) ≤ w(x) + w(y) for every x, y ∈ X. Given a metric
space (X, d) and a ∈ X we can canonically define a weight function wa by

wa(x) = d(x, a), x ∈ X.

If |X| = n, there are n different weight functions as above. For instance, if X is a finite set
and x0 is a fixed element, the Hamming weight relative to x0 is given by

(2.4) wx0(x) = dHam(x, x0) =

{
1 if x 6= x0,

0 if x = x0.

If (X, d) is a metric space with integral weight function w, the weight distribution of (X, d)
is the set of weight frequencies {A0, A1, . . . , AN} where Ai = #{x ∈ X : w(x) = i}. The
weight enumerator polynomial of (X, d) is defined by

(2.5) W(X,d)(t) =
∑

x∈X

tw(x) =

N∑

i=0

Ait
i.

Let (X1, d1), (X2, d2) be two metric spaces such that 0 ∈ X1,X2 and consider the product
space X = X1 ×X2 with the product metric d1 × d2. Notice that we get

W(X,d)(t) = W(X1,d1)(t) +W(X2,d2)(t) +
∑

(x1,x2)∈X∗
1×X∗

2

tw((x1,x2))

where X∗
i denotes Xi r {0} for i = 1, 2.

All metrics and weights considered in this paper will be integral.

G-invariant metrics. We are interested in the particular case in which X = G is a group.
The metric d is called right (resp. left) translation invariant if for any g, g′, h in G we have

d(gh, g′h) = d(g, g′)

(resp. d(hg, hg′) = d(g, g′)). If G is abelian both notions coincide and d is called translation
invariant. There is a distinguished weight function w(x) = d(x, e), where e is the identity
element of G. Also, if (G,w) is a weight space, one can define a metric d on G by

d(x, y) = w(x− y)

for every x, y ∈ G, provided that w(−x) = w(x) holds for every x ∈ G (or, in multiplicative
notation, requiring that d(x, y) = w(xy−1) with w(x−1) = w(x) for every x ∈ G), which is
automatic for elementary 2-groups.

Let SX denote the permutation group of X. If G acts on X we have G ≤ SX .

Definition 2.1. Let (X, d) be a metric space and G ≤ SX . We say that (X, d) is σ-invariant
for σ ∈ G, denoted dσ = d, if

d(σ(x), σ(y)) = d(x, y)

for all x, y ∈ X. Further, (X, d) is called G-invariant if d is σ-invariant for every σ ∈ G.
The symmetry group of (X, d) is defined by

(2.6) Γ(X, d) = {σ ∈ SX : dσ = d}.

We will say that (X, d) has a G-representation if there is a group G ≤ Γ(X, d) which is regular
(or simply transitive); that is, |G| = |X| and the action of G is transitive.
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Notice that if X = G and d is right translation invariant then d is GR-invariant, where
GR : G → SG is the right regular representation given by g 7→ Rg for g ∈ G with Rg(x) = xg
for any x ∈ G. Furthermore, (X, d) is GR-invariant if and only if GR ≤ Γ(X, d). Similarly,
the above facts hold for d a left translation invariant metric and the left regular representation
GL.

Remark 2.2. Let f : X → Y be a bijective map from X to a G-invariant metric space (Y, d).
Then, the action σY of G on Y can be transferred to X in such a way that the pullback metric
df becomes G-invariant. In fact, defining the action of G on X by σX = f−1 ◦σY ◦f we have

df (σX(x), σX (x′)) = df
(
f−1(σY (f(x))), f

−1(σY (f(x
′)))

)

= d
(
σY (f(x)), σY (f(x

′))
)
= d(f(x), f(x′)) = df (x, x

′)

for x, x′ ∈ X, where we have used that d is G-invariant.

Example 2.3. Let (X, d) be a metric space with |X| = n and d the discrete metric, that is
d(x, x) = 0 and d(x, y) = 1 for every x 6= y. Then Γ(X, d) ≃ Sn and, hence, (X, d) has a
G-representation for every group of order n, as a consequence of Cayley’s Theorem.

We now show that given a G-representation on a metric space (X, d), the group G inherits
a metric and the set X inherits a group structure.

Proposition 2.4. Suppose that the metric space (X, d) has a G-representation. Then, there
is a bijection ϕ : X → G which induces a group structure on X and a metric dG on G such
that ϕ is a group isomorphism and ϕ : (X, d) → (G, dG) is an isometry. Moreover, dG = dϕ−1

is translation invariant, that is dG(g1h, g2h) = dG(g1, g2) for every g1, g2, h ∈ G.

Proof. Fix an element x0 ∈ X. Since G acts regularly on X, G acts transitively on X and
|G| = |X|. Thus, for each x ∈ X there is a unique g = gx ∈ G such that g(x0) = x. Hence,
we can define the map

ϕ : X → G, x 7→ gx.

This gives a group structure on X by considering the product

xy = gy(x).

To check associativity, note that x(yz) = gyz(x) and (xy)z = gz(xy) = gzgy(x). Since
gzgy(x0) = zy = gyz(x0) we have that gzgy = gyz and hence x(yz) = (xy)z for any x, y, z ∈ G.
It is easy to see that x0 is the identity element in X and

x−1 = ϕ−1(g−1
x ) = g−1

x (x0).

Therefore, ϕ is a group homomorphism and hence an isomorphism.

Now, d induces the metric dG in G by

dG(gx, gy) = d(x, y).

Clearly, (X, d) and (G, dG) are isometric since dG(ϕ(x), ϕ(y)) = d(x, y), by definition. It only
remains to show that dG is translation invariant. For gx, gy, h ∈ G we have

dG(gx · h, gy · h) = dG((gx · h)(x0), (gy · h)(x0)) = d(h(gx(x0)), h(gy(x0)))

= d(h(x), h(y)) = d(x, y) = dG(gx, gy)

as we wanted to see. �
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Remark 2.5. A similar idea as in the previous proposition was established by Forney in
([6]) in the context of geometrically uniform signal sets in Rn with the Euclidean metric.

We now illustrate the above proposition, showing that the G-representations of a set
strongly depend on the chosen metric and on the symmetry of the group. For clarity we will
sometimes use the graph of distances of a finite metric space (X, d). If |X| = n, the graph of
distances of X is the weighted complete graph Kn where each edge xy has weight d(x, y).

Example 2.6. Consider the set X = {x, y, w, z}. Since X has 4 elements, any G-representation
of X has only two possibilities: G ≃ Z4 or G ≃ Z2 × Z2.

Consider some metrics on X given by the following graphs of distances:

x

y

z

w

1

2

1

2

1 1

Figure 1. d1

x

y

z

w

1

1

2

1

1 2

Figure 2. d2

x

y

z

w

3

2

1

2

3 1

Figure 3. d3

We now show that the number of G-representations of (X, d) depends strongly on the
chosen metric. Let

G1 = 〈ρ = (xywz)〉 and G2 = 〈τ1 = (xy)(wz), τ2 = (xz)(yw)〉

be the groups defined by the permutations ρ and τ1, τ2, respectively. Note that G1 ≃ Z4,
G2 ≃ Z2 × Z2, and that they act transitively on X.

(i) We have that (X, d1) is Gi-invariant, that is Gi ≤ Γ(X, d1), for i = 1, 2. Fix x as the
identity element in X and define ϕ1 : X → G1 as follows

x 7→ e, y 7→ ρ = (xywz), w 7→ ρ2 = (xw)(yz), z 7→ ρ3 = (xzwy).

Also, define ϕ2 : X → G2 by

x 7→ e, y 7→ τ1 = (xy)(wz), w 7→ τ1τ2 = (xw)(yz), z 7→ τ2 = (xz)(yw).

By Proposition 2.4, there are isometries (X, d1) ≃ (G1, dG1) and (X, d1) ≃ (G2, dG2). Note
that under the isomorphisms G1 ≃ Z4 and G2 ≃ Z2×Z2 the metrics dG1 and dG2 correspond
to the Lee metric dLee on Z4 and to the Hamming metric d2

Ham
on Z2 × Z2. That is

(X, d1) ≃ (Z4, dLee) and (X, d1) ≃ (Z2 × Z2, d
2
Ham).

In particular, by transitivity, we have recovered the known isometry between Z4 and Z2×Z2

given by the Gray map.

(ii) Consider now the metric d2. Notice that (X, d2) is G2-invariant but it is not G1-invariant.
In this case, (X, d2) has only one G-representation with G ≃ Z2 × Z2.

(iii) Finally, observe that when the metric d3 is considered, the metric space (X, d3) has
no G-representations at all because the group of symmetries of (X, d) is trivial (none of the
groups can preserve the distances). ♦
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Remark 2.7. From now on, if G is a group, (G, d) will denote a metric space where the
distance d is G-invariant and G acts by right translations, i.e. we identify G with its right
regular representation GR ≤ SG.

3. Hamming spaces are not isometric to cyclic groups

Due to the relevance shown by the Gray map G : Z4 → Z2
2 in coding theory, people was

concerned whether there is a generalization of this isometry sending Zpn to (Zp)
n, with p

prime. As already mentioned in the Introduction, Salagean-Mandache proved ([16]) that,
except for the known case p = n = 2, it is impossible to construct a metric d in Zpn such that
(Zpn , d) is isometric to (Zn

p , dHam). Sueli Costa and collaborators deal with the existence of
isometries of a Hamming space Xn, |X| = m (see [14] for m = p prime, [10] for arbitrary m).
They proved that there are no G-representations of the Hamming space Xn with G a cyclic
group, except for the Gray map and the trivial case n = 1; that is, we have

Theorem 3.1 ([10]). Let (Xn, dHam) be a Hamming space, with |X| = m. If (m,n) 6= (2, 2)
and n > 1, there does not exist any cyclic group G and any metric d on G such that (G, d)
is isometric with (Xn, dHam).

We will give an alternative simple proof of this result, using group theory, in the case that
|X| = p is prime.

Lemma 3.2. If G is a finite group containing two subgroups H ≃ Zk
p and K ≃ Zpℓ, with p

prime and k, ℓ ∈ N, then the order of G is divisible by pk+ℓ−1.

Proof. By Sylow’s theorems it is enough to consider only the case when G = P is a p-group.
Therefore, P contains subgroups H and K isomorphic to Zk

p and Zpℓ respectively. Then we
have that

|P | ≥ |HK| =
|H||K|

|H ∩K|
≥

pk · pℓ

p
= pk+ℓ−1,

where we have used that |H ∩K| = 1 or p, since H ∩K is cyclic of order p. Since |P | is a
power of p and |P | ≥ pk+ℓ−1, then |P | is divisible by pk+ℓ−1. �

We now restate Theorem 3.1 in terms of representations for spaces of prime cardinality.

Proposition 3.3. Let (Xn, dHam) be a Hamming space, with |X| = p prime. If (p, n) 6= (2, 2)
and n > 1, then there is no cyclic representation of (Xn, dHam). In particular, there is no
isometry between Zpn and (Zn

p , dHam).

Proof. The Hamming space Xn has a cyclic representation if and only if the symmetry group
has an element of order pn, such that the subgroup generated by this element acts regularly.
It is known that the symmetry group of the Hamming space is (see for instance [1] or [13])

Γ(Xn, dHam) ≃ Sp ≀ Sn = (Sp)
n ⋊ Sn,

where ≀ denotes wreath product. Assume that there exists a cyclic representation of (Xn, dHam).
We have that Zpn ( Γ(Xn, dHam) and also that Zn

p ( Γ(Xn, dHam). Thus, by Lemma 3.2,
pn+n−1 must divide |Γ(Xn, dHam)|, that is

p2n−1 | (p!)nn!
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On the other hand, note that if νp denotes the p-adic valuation, we have

νp((p!)
nn!) = nνp(p!) + νp(n!) = nνp(p) + νp(n!) = n+ νp(n!).

Now, suppose that n = n0 + n1p + n2p
2 + · · · + nrp

r is the p-adic expansion of n, and let
sp(n) = n0+n1+ · · ·+nr. Then, the Legendre formula for the p-adic valuation of n! implies

that νp(n!) =
n−sp(n)

p−1 . Then we have that

(3.1) νp((p!)
nn!) = n+

n−sp(n)
p−1 ≤ n+ n− 1 = 2n− 1.

Moreover, the equality holds in (3.1) if and only if p = 2 and n = 2k for some k.

It only remains to prove the case p = 2. It is enough to show that if

g ∈ Γ(Xn, dnHam) ≃ Zn
2 ⋊ Sn

then its order satisfies |g| < 2n. We recall Landau’s function G(n) = max{ord(σ) : σ ∈ Sn}

and the known bound G(n) ≤ e
n
e . Now, if g = (t, s) with t ∈ Zn

2 and s ∈ Sn then we have
|g| ≤ |t||s| ≤ 2e

n
e , by the bound on Landau’s function. In particular if n > 2,

|g| ≤ 2e
n
e < 2n,

and hence there is no element of order 2n in Γ(Xn, dnHam). �

4. Isometric embeddings

We begin with the following definition.

Definition 4.1. A map ϕ : (X1, d1) → (X2, d2) between metric spaces is an isometric
embedding if it is injective and preserves distances. That is, for every x, y ∈ X1 we have

d1(x, y) = d2(ϕ(x), ϕ(y)).

As we previously mentioned, for any fixed m, the cyclic group Zm cannot be isometric to
any Hamming space (Xn, dn

Ham
) where m = |Xn|. However, there are isometric embeddings

of Zpk into the Hamming space Zpk−1

p with p prime due to Carlet ([2], p = 2), Greferath and
Yildiz–Özger ([7] and [17], any prime), thus generalizing the Gray map. Namely, we have the
following result.

Theorem 4.2 ([2], [7], [17]). Let p be a prime and k > 1, then there exists an isometric

embedding from (Zpk , d) to (Zpk−1

p , dp
k−1

Ham ).

In this section we will generalize the previous result to any cyclic group. More precisely, we
will see that, for any m ∈ N, it is always possible to isometrically embed Zm into a Hamming
space Xn with m < |Xn| for some n. For simplicity we will denote this by

Zm →֒ (Xn, dnHam).

Let G = Zm = {0, 1, . . . ,m − 1} and H be a subgroup of index n, i.e. n = [G : H].
Consider v ∈ Hn and ρ ∈ Sn. We define the map (well-defined since H is a group)

Ψv,ρ : Zm → Hn, t 7→ Ψt(ρ) · v

where ρ · v is the action ρ(v1, . . . , vn) = (vρ(1), . . . , vρ(n)) and

Ψt(x) =
xt−1
x−1 = xt−1 + · · · + x+ 1.
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In the previous notations, we have the following.

Lemma 4.3. Let H be a subgroup of G = Zm of index n. Suppose H = 〈h〉 and ei =
(0, . . . , 1, . . . , 0) ∈ Zn

m with 1 in the i-th coordinate. If v = hei and ρ is an n-cycle then Ψv,ρ

is injective.

Proof. For 0 ≤ t < m, if t = qn+ r with 0 ≤ r < n, then using that ρ(ei) = eρ(i) we have

Ψv,ρ(t) =

t−1∑

k=0

ρk(hei) = (q + 1)

r−1∑

k=0

h eρk(i) + q

n−1∑

k=r

h eρk(i).

Now, for 0 ≤ s < m, if s = q′n+ r′ with 0 ≤ r′ < n, we can see that Ψv,ρ(s) = Ψv,ρ(t) if and
only if q = q′, and r = r′, that is, only if s = t. Therefore Ψv,ρ is injective. �

We now generalize Theorem 4.2 to Zm, with m any positive integer.

Theorem 4.4. Let H be a subgroup of G = Zm of index n. Consider v = hei ∈ Hn with
H = 〈h〉, 1 ≤ i ≤ n, and ρ ∈ Sn an n-cycle. Then we have the isometric embedding

(4.1) Ψv,ρ : (Zm, dn) →֒ (Hn, dn
Ham

),

where dn is the translation invariant metric with associated weight given by

(4.2) wn(t) =





t if t ≤ n,

n if n ≤ t ≤ m− n,

m− t if m− n ≤ t ≤ m− 1.

Proof. Consider Ψ̃v,ρ : Zm → Hn ⋊ Sn given by t 7→ (Ψt(ρ) · v, ρ
t) and notice that it is a

homomorphism. In fact, given t, s ∈ Zm we have

Ψ̃v,ρ(t)Ψ̃v,ρ(s) = (Ψt(ρ)v, ρ
t) (Ψs(ρ)v, ρ

s)

= (ρsΨt(ρ)v +Ψs(ρ)v, ρ
tρs)

=
(
ρs(ρt−1 + · · ·+ ρ+ 1)v + (ρs−1 + · · ·+ ρ+ 1)v, ρt+s

)
(4.3)

=
(
(ρt+s−1 + · · ·+ ρ+ 1)v, ρt+s

)

= (Ψt+s(ρ)v, ρ
t+s) = Ψ̃v,ρ(t+ s).

Further, if t+ s ≡ u (mod m), then Ψv,ρ(t + s) = Ψv,ρ(u) and ρt+s = ρu, and hence we get
Ψ̃v,ρ(s+ t) = Ψ̃v,ρ(u).

Note that Ψv,ρ = π ◦ Ψ̃v,ρ, so we have the following diagram

(4.4)
Zm Hn ⋊ Sn

Hn.

Ψ̃v,ρ

Ψv,ρ

π

Now, Ψv,ρ is 1-1 by Lemma 4.3 and hence Ψ̃v,ρ is also injective.

Denote Ψv,ρ by Ψ and let dn be the pull-back metric in Zm of the Hamming metric in Hn,
that is

dn(a, b) = dn
Ham

(Ψ(a),Ψ(b)).
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Hence Ψ preserves the metric dn by definition.

We now prove that dn is translation invariant. Note that Hn ⋊ Sn ( SnH ⋊ Sn, since
H ( SH by Cayley’s Theorem, and Γ(Hn, dnHam) ≃ SnH ⋊ Sn. Thus, we have

(4.5) Hn ⋊ Sn ( Γ(Hn, dn
Ham

).

In this way, for every a, b, c ∈ Zm we have

dn(a+ c, b+ c) = dn
Ham

(Ψ(a+ c),Ψ(b+ c))

= dn
Ham

(
ρcΨ(a) + Ψ(c), ρcΨ(b) + Ψ(c)

)

= dnHam(Ψ(a),Ψ(b)) = dn(a, b),

where in the second equality we have used (4.5) and that Ψ(a+ c) = ρcΨ(a)+Ψ(c), deduced
from (4.3).

Finally, we check the weights. For t ∈ Zm we have

wn(t) = dnHam(Ψ(t), 0) = wHam(Ψ(t)) = wHam((ρ
t−1 + · · · + 1) · hei).

Thus, considering t = qn+ r, with 0 ≤ r < n, we arrive at

wn(t) = wHam

(
(q + 1)

r−1∑

k=0

h eρk(i) + q

n−1∑

k=r

h eρk(i)
)
,

from which (4.2) readily follows. �

In the situation of the previous theorem, there are φ(m
n
)n! different isometric embeddings

Ψhei,ρ, where φ is the Euler totient function. Indeed, there are n vectors ei, (n− 1)! different
n-cycles ρ and φ(m

n
) different generators h of H of index n in Zm. However, all these maps

have the same associated metric dn.

Remark 4.5. Let G = Zpk with p prime and for 1 ≤ i ≤ k − 1 consider the subgroup
Hi = Zpi of index ni = pk−i. By the previous theorem, there is an isometric embedding

(Zpk , dni
) →֒

(
(Zpi)

pk−i

, d pk−i

Ham

)

determined by Ψej ,ρ for any ej ∈ Hni

i and any ni-cycle ρ in Sni
. In particular, if we take

H1 = Zp , v = e1 = (1, 0, . . . , 0) and ρ = (12 · · · n1) then the weight wn1 becomes the
extended Lee weight over Zpk

w
L
(x) =





x if x ≤ pk−1,

pk−1 if pk−1 ≤ x ≤ pk − pk−1,

pk − x if pk − pk−1 ≤ x ≤ pk − pk − 1.

and thus we recover the isometric embedding (Zpk , dL
) →֒ (Zpk−1

p , d pk−1

Ham ) previously given by
Yildiz–Özger ([17], Theorem 2.1).

Remark 4.6. Consider G = Zm. One could want Hn to be of the least possible size such
that Ψ is close to be a bijective embedding (i.e. an isometry). In this case, we must choose H
minimizing |H|n. On the other hand, if we want to minimize the dimension of the Hamming
space of the embedding, we should choose H to be the subgroup of maximum cardinality.
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For instance, let G = Zp1
k1p2

k2 = Zp1
k1 × Zp2

k2 where p1 < p2 are different primes. By
Theorem 4.4 and choosing H = Zp1

k1−1p2
k2 in order to minimize the size of the embedding

space, we have the isometric embedding

Z
p
k1
1 p

k2
2

→֒
(
(Z

p
k1−1
1 p

k2
2
)p1 , d p1

Ham

)
.

On the other hand, we can apply the same theorem to Zp1
k1 and Zp2

k2 separately and then
concatenate the spaces obtaining the isometric embedding

Zk1
p1

× Zk2
p2

→֒
(
(Z

p
k1−1
1

)p1 × (Z
p
k2−1
2

)p2 , d p1
Ham × d p2

Ham

)
.

However, note that although in general the second group is smaller, we must pay the price
that the coordinates have different alphabets.

Remark 4.7. It is possible to isometrically embed a ring into rings of different characteristics.
In fact, if G = Zpq with p, q primes, by Theorem 4.4 we have Zpq →֒ ((Zp)

q, d q
Ham) and

Zpq →֒ ((Zq)
p, d p

Ham).

Example 4.8. Let G = Z12, we can consider the four subgroups H1 ≃ Z2, H2 ≃ Z3,
H3 ≃ Z4 and H4 ≃ Z6 with corresponding indices n1 = 6, n2 = 4, n3 = 3 and n4 = 2. Thus,
by Theorem 4.4 we have the four isometric embeddings Z12 →֒ (Hni

i , dni
Ham) for i = 1, 2, 3, 4.

That is

Z12 →֒ (Z6
2, d

6
Ham

), Z12 →֒ (Z4
3, d

4
Ham

), Z12 →֒ (Z3
4, d

3
Ham

), Z12 →֒ (Z2
6, d

2
Ham

).

By (4.2), we have the following weight distributions

t 0 1 2 3 4 5 6 7 8 9 10 11
w1(t) 0 1 2 3 4 5 6 5 4 3 2 1
w2(t) 0 1 2 3 4 4 4 4 4 3 2 1
w3(t) 0 1 2 3 3 3 3 3 3 3 2 1
w4(t) 0 1 2 2 2 2 2 2 2 2 2 1

The corresponding weight enumerators are

W(Z12,d1)(t) = t6 + 2t5 + 2t4 + 2t3 + 2t2 + 2t+ 1,

W(Z12,d2)(t) = 5t4 + 2t3 + 2t2 + 2t+ 1,

W(Z12,d3)(t) = 7t3 + 2t2 + 2t+ 1,

W(Z12,d4)(t) = 9t2 + 2t+ 1.

(4.6)

Note that the associated metrics di obtained are all different and that the metric d1 is just
the Lee metric.

Remark 4.9. In general, considering different subgroups H of G, the isometric embeddings
provided by Theorem 4.4 give rise to different metrics. In the particular case that G = Z2n,
we have H = Zn, and the isometric embedding

Z2n →֒ ((Z2)
n, dn

Ham
)

recovers the Lee metric on Z2n since the associated weight function w is given by
(
w(i)

)2n−1

i=0
= (0, 1, 2, . . . , n − 1, n, n − 1, . . . 2, 1).
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5. Isometries between Zqn and Zn
q

Here we will prove that the groups Zqn and Zn
q are isometric for positive integers n and q

with q ≥ 2 by using metrics different from the Hamming metric. Namely, the RT -metric in
Zn
q and the q-adic metric on Zqn that we now define.

Definition 5.1. Let n, q ∈ N with q ≥ 2. The q-adic metric dq in Zqn is given by

(5.1) dq(x, y) = min
0≤i≤n

{i : qn−i | x− y}

for any x, y ∈ Zqn .

Indeed, dq is a translation invariant metric. To check that it is a metric it is enough to
show the triangle inequality, the other conditions being straightforward. Let x, y, z ∈ Zqn

and suppose that

i = d(x, z), j = d(z, y) and k = d(x, y).

Then, qn−i | x− z and qn−j | z − y, and thus we have that

qn−max{i,j} | (x− z) + (z − y) = x− y.

Hence we have k ≤ max{i, j} and therefore d(x, y) ≤ d(x, z) + d(z, y). In fact, dq is an
ultrametric. Finally, we have dq(x+ z, y+ z) = dq(x, y) by definition, hence dq is translation
invariant. Notice that alternatively we have

dq(x, y) = ⌈logq
(
ord(x− y)

)
⌉,

where ord denotes the order of an element in the group. In particular, if q = p is prime we
simply get dp(x, y) = logp

(
ord(x− y)

)
.

We recall that the Rosenbloom–Tsfasman metric (or RT -metric) was originally defined
over Fn

q ([15]), hence for q a prime power. However, this metric can be defined over Gn for
any group G. Thus, we now define the RT -metric on Zn

q for any pair of integers n, q with
q ≥ 2 as follows:

(5.2) dRT (x, y) = max
1≤i≤n

{i : xi − yi 6= 0} .

Note that dRT is translation invariant by definition. It is known that it coincides with the
poset metric dP on Zn

q given by the chain poset P defined by 1 � 2 � · · · � n (see [12]).

Now, we construct an explicit isometry between the groups Zqn and Zn
q with the previous

metrics. Let q ≥ 2 and n be positive integers and consider the function

ϕ : Zn
q → Zqn

ϕ(a1, a2, . . . , an) 7→ a1q
n−1 + a2q

n−2 + · · ·+ an−1q + an (mod qn).
(5.3)

One can check that its inverse

(5.4) ϕ−1 : Zqn → Zn
q
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is given by the q-base expansion, namely

(5.5)

0 7→ 0000 · · · 000
1 7→ 0000 · · · 001
...

...
q − 1 7→ 0000 · · · 00(q − 1)
q 7→ 0000 · · · 010

q + 1 7→ 0000 · · · 011
...

...
q2 − 1 7→ 0000 · · · 0(q − 1)(q − 1)
q2 7→ 0000 · · · 100

q2 + 1 7→ 0000 · · · 101
...

...
qn − 1 7→ (q − 1)(q − 1)(q − 1)(q − 1) · · · (q − 1)(q − 1)(q − 1)

We now show that ϕ as in (5.3) preserves distances.

Theorem 5.2. For any n, q ∈ N with q ≥ 2 the map ϕ : (Zn
q , dRT ) → (Zqn , dq) as in (5.3) is

an isometry.

Proof. To see that ϕ is an isometry between metric groups we must show that ϕ preserves
distances and that the involved metrics are translation invariant.

Let x, y ∈ Zn
q and suppose that dRT (x, y) = k. This means that xk 6= yk and xi = yi for

i = k + 1, . . . , n. On the other hand,

dq(ϕ(x), ϕ(y)) = min
0≤i≤n

{i : qn−i | ϕ(x) − ϕ(y)}

where, by (5.3), we have that

ϕ(x)− ϕ(y) = (x1 − y1) q
n−1 + (x2 − y2) q

n−2 + · · · + (xk − yk) q
n−k (mod qn),

with xk − yk 6= 0. Thus
dq(ϕ(x), ϕ(y)) = k = dRT (x, y)

and hence ϕ preserves distances. Finally, we have previously observed that both dRT and dq
are translation invariant and the result thus follows. �

Notice that, by (5.1), (5.2) and Theorem 5.2, the weight enumerators are

(5.6) W(Zqn ,dq)(t) = W(Zn
q ,dRT )(t) =

n∑

i=0

(qi − qi−1) ti = (q − 1)

n∑

i=0

qi−1 ti.

Example 5.3. We now illustrate the previous theorem showing that the groups Z3
2 and Z8

are isometric. We take the dRT metric on Z3
2 and the 2-adic metric d2 on Z8. In this case,

the map ϕ−1 : Z8 → Z3
2 in (5.4) is given by

0 7→ (0, 0, 0), 2 7→ (0, 1, 0), 4 7→ (1, 0, 0), 6 7→ (1, 1, 0),

1 7→ (0, 0, 1), 3 7→ (0, 1, 1), 5 7→ (1, 0, 1), 7 7→ (1, 1, 1).

The graphs of distances of the groups are as follows:



14 RICARDO A. PODESTÁ, MAXIMILIANO G. VIDES

0

1

2

3

4

5

6

7

(Z8, d2)

1

2
2

3

3 3

3

1

2

2

3

3

3

1

2

3
3

3

1

2

3

3 2

3

3

2

3

3

(0,0,0)

(0.0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(Z3
2, dRT )

1

2
2

3

3 3

3

1

2

2

3

3

3

1

2

3
3

3

1

2

3

3 2

3

3

2

3

3

One can easily check that the map ϕ preserves distances.

Also, note that the associated weight functions wRT : Z3
2 → [[0, 3]] and w2 : Z8 → [[0, 3]]

are given by

wRT (x) =





0 if x = (0, 0, 0),

1 if x = (1, 0, 0),

2 if x = (a, 1, 0),

3 if x = (a, b, 1),

and w2(x) =





0 if x = 0,

1 if x = 4,

2 if x = 2, 6,

3 if x = 1, 3, 5, 7,

with a, b ∈ Z2. The weight enumerators are thus

W(Z3
2,dRT )(t) = W(Z8,d2)(t) = 4t3 + 2t2 + t+ 1.

6. Extending isometries of subgroups

In this section we show that any isometry between metric subgroups can be extended to
an isometry between the ambient groups with extended metrics. We recall from Remark 2.7
that all the metrics considered are G-invariant. More precisely, we have the following

Theorem 6.1. Let G1 and G2 be two finite groups with |G1| = |G2| and let H1 ( G1,
H2 ( G2 be non-trivial proper subgroups with |H1| = |H2|. Then, any isometry between H1

and H2 can be extended to an isometry between G1 and G2.

Proof. Suppose that (H1, d1) ≃ (H2, d2) and let τ : H1 → H2 be the isometry. Now, for
i = 1, 2, we extend the metrics di of Hi to metrics d̃i of Gi as follows:

(6.1) d̃i(x, y) :=





di(x, y) if x− y ∈ Hi,

max
u,v∈Hi

{di(u, v)} + 1 if x− y 6∈ Hi.

Clearly d̃i(x, y) = 0 if and only if x = y and d̃i(x, y) = d̃i(y, x). We must check that d̃i
satisfies the triangular inequality. Let x, y, z ∈ Gi. If x− y, x− z, z − y ∈ Hi it follows from
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the triangular inequality from di. Now, if one of x− z or z − y is not in Hi, say x− z, then

d̃i(x, z) = max
u,v∈Hi

{di(u, v)} + 1

and we have d̃i(x, z) = d̃i(x, y) if x−y /∈ Hi or d̃i(x, z) ≥ d̃i(x, y) if x−y ∈ Hi, and the claim
follows.

Now, suppose that m = |G1| = |G2| and h = |H1| = |H2|. Let Ti be a complete set of
representatives of the right cosets of Hi in Gi for i = 1, 2. Consider any bijection ρ : T1 → T2

and define the map

G1
η

−→ G2

h+ gj 7−→ τ(h) + ρ(gj),
(6.2)

where g1, g2, . . . , gm
h

are the elements of T1. It is clear that η is bijective.

Note that x, y belong to the same coset of H1 if and only if η(x), η(y) belong to the same
coset of H2. Therefore we conclude that

d̃1(x, y) = d1(x, y) = d2(η(x), η(y)) = d̃2(η(x), η(y))

and hence (G1, d̃1) ≃ (G2, d̃2), as it was to be shown. �

Remark 6.2. In the previous proof, the isometry η given by (6.2) is not unique, since η = ηρ
depends on the bijection ρ between the complete set of representatives of right cosets T1 on
G1 and T2 on G2 chosen. However, two such metrics differ by a distance preserving map.
That is, if ρ and ρ′ are two bijections from T1 to T2 then there is some f ∈ Γ(G, d̃2) such
that ηρ = f ◦ ηρ′ . In fact, if f = ηρ ◦ η

−1
ρ′ then

d̃2(f(x), f(y)) = d̃2
(
ηρ(η

−1
ρ′ (x)), ηρ(η

−1
ρ′ (y))

)
= d̃1(η

−1
ρ′ (x), η

−1
ρ′ (y)) = d̃2(x, y)

and hence f preserves distances.

A direct consequence of this result is that every pair of groups of the same size are
isometric. For groups of prime cardinality, the isometry is trivial in the sense that both
metrics are Hamming metrics.

Corollary 6.3. Let G1 and G2 be groups of the same cardinality. Then, there exists an
isometry φ : (G1, d1) → (G2, d2) where d1 and d2 are certain metrics in G1 and G2. Moreover,
if |Gi| is not prime then di can be chosen in such a way that di 6= d

Ham
for i = 1, 2.

Proof. Suppose m = |G1| = |G2|. If m is not prime, consider a prime p dividing m. Then,
there are non-trivial proper subgroups H1 < G1 and H2 < G1 with p = |H1| = |H2|.
Considering the Hamming metric in both H1 and H2 it is clear that these subgroups are
isometric, that is (H1, dHam) ≃ (H2, dHam). From Theorem 6.1, this isometry lifts to an
isometry

(G1, d1) ≃ (G2, d2),

where the metric di = d̃Ham for i = 1, 2 and d̃ is as in (6.1). That is, di(x, x) = 0,

(6.3) di(x, x+ h) = 1 if h ∈ H r {0} and di(x, x+ g) = 2 if g ∈ GrH,

for any x ∈ Gi and i = 1, 2.

If m = p, then G1 ≃ G2 ≃ Zp and they are trivially isometric with the Hamming metrics.
This completes the proof. �
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Remark 6.4. By Corollary 6.3, for any m,n ≥ 2 there exist, for instance, non-trivial isome-
tries Zmn ≃ (Zm)n, Fqn ≃ (Fq)

n, Dm ≃ Z2m, etc.

Let H ( G be a non-trivial proper subgroup and d a metric in H. In the sequel we will
denote by

(6.4) d̃ = ExtGH(d)

(or simply ExtH(d) when G is understood) the metric in G induced by the extension given
in Theorem 6.1 (see (6.1)). We will call this the extended metric of d from H to G.

We now illustrate the previous theorem for groups of small order n = 4, 6, 8.

Example 6.5 (n = 4). Let G1 = Z4 and G2 = Z2
2. It is known that (Z4, dLee

) is isometric to
(Z2

2, d
2
Ham

) via the Gray map. We now show that they are isometric by using Theorem 6.1.

Consider the subgroups H1 = Z2 ( Z4 and H2 = Z2 × {0} ( Z2 × Z2, both with the
Hamming metric dHam. These subgroups are isometric via the inclusion map ι : Z2 → Z2×{0}
given by x 7→ (x, 0). By Theorem 6.1 and (6.4) we have that

(
Z4, d̃1 = ExtZ4

Z2
(dHam)

)
≃

(
Z2
2, d̃2 = ExtZ2×Z2

Z2×{0}(dHam)
)
.

Notice that ExtZ4
Z2
(dHam) = d2, the 2-adic metric, and ExtZ2×Z2

Z2×{0}(dHam) = dRT , the RT -
metric. In fact, by (5.1) and (5.2) we have

d2(x, y) = min
0≤i≤2

{i : 22−i | x− y} and dRT (x, y) = max
1≤i≤2

{i : xi − yi 6= 0}

respectively. Hence, by (6.1) or (6.3), for any x, y ∈ Z4 we have

d̃1(x, y) = 1 = d2(x, y) if x− y = 2,

d̃1(x, y) = 2 = d2(x, y) if x− y = 1, 3,

while for any u, v ∈ Z2
2 we get

d̃2(u, v) = 1 = dRT (u, v) if u− v = (1, 0),

d̃2(u, v) = 2 = dRT (u, v) if u− v = (0, 1), (1, 1).

We wish to point out that, although d2 and d̃RT are different from d
Lee

and dHam, these
metrics are correspondingly equivalent, i.e. d2 ≃ d

Lee
and dRT ≃ dHam, in a precise sense that

we will not discuss here (this will be treated in another work).

Example 6.6 (n = 6). We now consider the groups Z6 and D3. By Theorem 6.1, we have two
different isometries between them, taking as H1,H2 subgroups of order 2 or 3, respectively.
Namely,

(Z6, ExtZ2(d)) ≃ (S3, Ext〈ρ〉(d)) and (Z6, ExtZ3(d)) ≃ (S3, Ext〈τ〉(d)),

where ρ is a 2-cycle, τ a 3-cycle and d is the Hamming metric in Z2 and Z3, respectively.

Apart from the Hamming and Lee metrics, in addition we have the metrics obtained by
the previous subgroup construction. The corresponding weight functions and enumerators
are given by
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Z6 0 1 2 3 4 5 enumerator
wHam 0 1 1 1 1 1 5t+ 1
wZ2 0 2 2 1 2 2 4t2 + t+ 1
wZ3 0 2 1 2 1 2 3t2 + 2t+ 1
wLee 0 1 2 3 2 1 t3 + 2t2 + 2t+ 1

and

S3 id (12) (13) (23) (123) (132) enumerator
wHam 0 1 1 1 1 1 5t+ 1
w〈(12)〉 0 1 2 2 2 2 4t2 + t+ 1
w〈τ〉 0 2 2 2 1 1 3t2 + 2t+ 1

where τ is any 3-cycle.

Example 6.7 (n = 8). By Corollary 6.3, all the groups of the same size are isometric to
each other. Thus, for instance, we have

Z3
2 ≃ Z2 × Z4 ≃ Z8 ≃ D4 ≃ Q8.

In fact, note that all these groups have at least one isomorphic copy of Z2 as a subgroup.
Thus, if we take any pair G1, G2 ∈ {Z3

2,Z2 × Z4,Z8,D4,Q8}, with the trivial identifications,
we then have

(G1, ExtG1
Z2

(dHam)) ≃ (G2, ExtG2
Z2

(dHam)).

The associated weights wZ2 are given by

Z8 0 1 2 3 4 5 6 7

w 0 2 2 2 1 2 2 2

Z3
2 (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 1)

w 0 1 2 2 2 2 2 2

Z2 × Z4 (0, 0) (1, 0) (1, 1) (1, 2) (1, 3) (0, 1) (0, 2) (0, 3)

w 0 1 2 2 2 2 2 2

D4 e ρ ρ2 ρ3 τ ρτ ρ2τ ρ2τ

w 0 2 2 2 1 2 2 2

Q8 1 −1 i −i j −j k −k

w 0 1 2 2 2 2 2 2

The weight enumerator is W(G,wZ2
)(t) = 6t2 + t+ 1, where G is any group of order 8.

We now compute the weight enumerators for all the subgroups of all the groups of order 8.
Since isomorphic subgroups give the same metric, we consider subgroups up to isomorphism.
It is clear that Z4 is a subgroup of G1 ∈ {Z8,Z2 ×Z4,D4,Q8}, that Z2 ×Z2 is a subgroup of
G2 ∈ {Z3

2,Z2 × Z4,D4} and that Z2 is a subgroup of G3, any group of order 8.
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Thus, the weight enumerators for the corresponding extended metrics are as follows

W(G1,ExtZ4(dHam
))(t) = 4t2 + 3t+ 1,

W(G1,ExtZ4(dLee
))(t) = 4t3 + t2 + 2t+ 1,

W(G2,Ext
Z
2
2
(d

Ham
))(t) = 4t2 + 3t+ 1,

W(G2,Ext
Z22

(d2
Ham

))(t) = 4t3 + t2 + 2t+ 1,

W(G3,ExtZ2(dHam
))(t) = 6t2 + t+ 1.

7. Chain metrics and chain isometries

In this section we will consider chain metrics and chain isometries on groups with chains
of subgroups, generalizing the construction and results of the previous section.

Definition 7.1. Let G be a group and C a chain of subgroups of G,

(7.1) 〈0〉 = H0 ( H1 ( · · · ( Hn = G.

The chain metric on G associated to C is defined by

(7.2) dC(x, y) = i if x− y ∈ Hi rHi−1

for i = 0, . . . , n. Here we use the convention H−1 = ∅.

We now check that dC is indeed a metric. We only have to show that the triangular
inequality holds. Let x, y, z ∈ G and suppose that d(x, y) = i, d(x, z) = j and d(z, y) = k.
Thus, x− y ∈ Hi rHi−1, x− z ∈ Hj rHj−1 and z − y ∈ Hk rHk−1. We can assume that
k ≥ j, therefore

x− y = (x− z)− (y − z) ∈ Hk rHk−1.

This implies that d(x, y) ≤ k ≤ d(x, z) + d(z, y), as we wanted to see.

As a direct consequence of Definition 7.1, the weight enumerator of G with the chain
metric is given by

(7.3) W(G,dC)(x) =

n∑

i=0

(|Hi| − |Hi−1|)x
i.

Remark 7.2. It is worth noting that the q-adic metric in Zqn and the RT -metric in Zn
q are

chain metrics.

(i) Let G = Zqn and consider the chain of subgroups C given by

〈0〉 ( Zq ( Zq2 ( · · · ( Zqn ,

where we are identifying Zqi with 〈qn−i〉 = qn−iZqn for i = 0, . . . , n. In fact, since for x, y ∈ G
we have

x− y ∈ 〈qn−i〉r 〈qn−(i−1)〉 ⇔ qn−i | x− y and qn−(i−1) ∤ x− y

then
dC(x, y) = min

0≤i≤n
{i : qn−i | x− y} = dq(x, y)

holds for any x, y ∈ G, by (5.1) and (7.2).
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(ii) Let G = Zn
q and consider the following chain of subgroups C,

〈0〉 ( Zq ( Z2
q ( · · · ( Zn

q ,

where by abuse of notation Zi
q denotes Zi

q×{0}n−i for i = 1, . . . , n. In fact, since for x, y ∈ G
we have

x− y ∈ Zi
q rZi−1

q ⇔ xi − yi 6= 0 and xi − yi ∈ Zi
q

⇔ xi − yi 6= 0 and xj − yj = 0 for j > i.

Then,
dC(x, y) = max

1≤i≤n
{i : xi − yi 6= 0} = dRT (x, y)

holds for any x, y ∈ G, by (5.2) and (7.2).

Notice that the weight enumerators given in (5.6) are of the form (7.3).

We now exhibit another chain metric. Let G be a finite group and r, n positive integers.
Consider the following chain of groups

(7.4) C : G ⊂ Gr ⊂ Gr2 ⊂ Gr3 ⊂ · · · ⊂ Grn ,

where the inclusions are given by the diagonal maps δi. For instance, δ0 : G → Gr is given
by x 7→ (x, x, . . . , x) with x repeated r-times, δ1 : Gr → Gr2 is given by

(x, x, . . . , x) 7→ ((x, x, . . . , x), (x, x, . . . , x), . . . , (x, x, . . . , x)),

and so on. The chain metric dC associated to C is given as follows. If x = (x1, ..., xrn) ∈ Grn

the weight function associated to C is given by

(7.5) wC(x) = min
0≤i≤n

{i : xj = xj if j ≡ k (mod ri−1)}.

Let m = rn. The group Sm acts on Gm by permutation of coordinates. If σ = (12 · · ·m) ∈ Sm,
one can check that this is equivalent to

(7.6) wC(x) = min
1≤i≤n

{i : σri−1
(x) = x}

for x 6= 0 and wC(x) = 0 if x = (0, 0, . . . , 0). The chain metric is given by dC(x, y) = wC(x−y).
We call this the diagonal chain metric of G, and we denote it by d∆.

Example 7.3. Take G = Z2, r = 2 and n = 3 in (7.4). Then we have

〈0〉 ⊂ Z2 ⊂ Z2
2 ⊂ Z4

2 ⊂ Z8
2.

The possible weights in Z8
2 are 0, 1, 2, 3, 4 given by

wC(x) =





0 if x = (0, 0, 0, 0, 0, 0, 0, 0),

1 if x = (1, 1, 1, 1, 1, 1, 1, 1),

2 if x = (x1, x2, x1, x2, x1, x2, x1, x2) with x1 6= x2,

3 if x = (x1, x2, x3, x4, x1, x2, x3, x4) with x1 6= x3 or x2 6= x4,

4 otherwise.

This is in coincidence with expressions (7.5) and (7.6). It is clear that the corresponding
weight enumerator is given by

W(Z8
2,d∆)(t) = 240t4 + 12t3 + 2t2 + t+ 1.
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Compare with the weight enumerator

W(Z8
2,dRT )(x) = 128t8 + 64t7 + 32t6 + 16t5 + 8t4 + 4t3 + 2t2 + t+ 1

of Z8
2 with the RT -metric. ♦

Let C denote a chain of subgroups as in (7.1) and let d be a metric in H1. The metric in
G obtained by repeated extensions is

(7.7) d̃ = ExtC(d) = ExtHn

Hn−1
◦ · · · ◦ExtH2

H1
(d).

Remark 7.4. In the above situation, if in (7.7) we take the Hamming metric in H1, the
extended metric turns out to be the chain metric of C, i.e.

d̃Ham = dC .

Chain isometries. We now consider isometries between whole chains of groups. Let C
and C′ be two chains of subgroups of the same length of groups G and G’ respectively, say
H1 ( H2 ( · · · ( Hn = G and H ′

1 ( H ′
2 ( · · · ( H ′

n = G′.

Definition 7.5. We say that C is isometric to C′, denoted C ≃ C′, if for every i = 1, . . . , n
there are metrics di of Hi and d′i of H ′

i such that (Hi, di) ≃ (H ′
i, d

′
i). The groups G and G′

are said to be chain isometric if they admit isometric chains.

That is, if two chains C and C′ are isometric we have

(7.8)

H1 ( H2 ( · · · ( Hn = G

|≃ |≃ |≃

H ′
1 ( H ′

2 ( · · · ( H ′
n = G′

We now show that chains of the same length and corresponding sizes are isometric.

Lemma 7.6. Let G and G′ be groups with chains of subgroups C and C′, respectively given
by 〈0〉 6= H = H1 ( H2 ( · · · ( Hn = G and 〈0〉 6= H ′ = H ′

1 ( H ′
2 ( · · · ( H ′

n = G′. If
|Hi| = |H ′

i| for 1 ≤ i ≤ n then we have the chain isometry

(G, dC) ≃ (G′, dC′).

Proof. Since |H1| = |H ′
1| there is a bijection η : H1 → H ′

1 inducing the trivial isometry
(H1, dHam) ≃ (H ′

1, dHam). By applying part (b) of Theorem 6.1 we can lift this isometry

to get (H2, ExtH2
H1

(dHam)) ≃ (H ′
2, Ext

H′
2

H′
1
(dHam)). Repeating this lifting procedure we obtain

that C and C′ are isometric chains with the extended metrics. �

Example 7.7. (i) The isometry Zqn ≃ (Zq)
n given explicitly in Section 5, can be seen as a

chain isometry. In fact, the chains

Zq ⊂ Zq2 ⊂ · · · ⊂ Zqn−1 ⊂ Zqn

| | | |

Zq ⊂ Z2
q ⊂ · · · ⊂ Zn−1

q ⊂ Zn
q

are isometric by the previous lemma.

(ii) There is a chain isometry Zqn ≃ Fn
q given by the chains Zq ⊂ Zq2 ⊂ · · · ⊂ Zqn and

Fq ⊂ F2
q ⊂ · · · ⊂ Fn

q . In fact, any bijection between Fq and Zq with the Hamming metrics
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induces a chain isometry between Fn
q and Zqn . One can replace Fq and Zq by any group Cq

of order q.

Example 7.8 (Galois fields and rings). Let p be a prime and r1, r2, . . . , rn be positive integers
such that r1 | r2 | · · · | rn. Consider the Galois rings Ri = GR(pk, ri) for i = 1, . . . , n. Then
we have the isometric chains of rings

GR(pk, r1) ⊂ GR(pk, r1)
r2
r1 ⊂ · · · ⊂ GR(pk, r1)

rn
r1

| | |

GR(pk, r1) ⊂ GR(pk, r2) ⊂ · · · ⊂ GR(pk, rn)

and, in particular taking k = 1, GR(p, ri) ≃ Fpri , so this becomes

Fpr1 ⊂ (Fpr1 )
r2
r1 ⊂ · · · ⊂ (Fpr1 )

rn
r1

| | |

Fpr1 ⊂ Fpr2 ⊂ · · · ⊂ Fprn

Geometric chains. Let C be a chain 〈0〉 = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn = G with the sizes of
the terms in geometric progression, that is

(7.9) [Hi : Hi−1] = m for i = 1, . . . , n.

We will call this a geometric chain.

Proposition 7.9. If G admits a geometric chain C of subgroups H = H1 ( · · · ( Hn = G
with H 6= 〈0〉 then we have the isometry

(G, dC) ≃ (Hn, dRT ).

Proof. Let C be the chain H = H1 ( H2 ( · · · ( Hn = G and consider the geometric chain
C′ given by H ⊂ H2 ⊂ H3 ⊂ · · · ⊂ Hn. Starting from the trivial isometry id : H → H with
the Hamming metrics and applying Theorem 6.1, we get that C and C′ are isometric chains.
In particular, G ≃ Hn and

(d̃Ham)
n = dC′ = dRT

as we wanted to see. �

Remark 7.10. The isometries (Zqn , dq) ≃ (Zn
q , dRT ) and (Zqn , dq) ≃ (Fn

q , dRT ) given in
Example 7.7 are instances of geometric chains and of chain isometries given by the previous
proposition.

We now show that the result in Theorem 5.2, i.e. that (Zqn , dq) ≃ (Zn
q , dRT ), can be

generalized to any pair of groups G and Hn of order qn, with G and H not necessarily cyclic.

Theorem 7.11. Let q be a prime power and G,H groups with |G| = qn and |H| = q. Then,

(7.10) (G, dC) ≃ (Hn, dRT ),

where dC is the chain metric associated to some geometric chain of length n.

Proof. Since |G| = qn, by Sylow’s theorems we get that G has a geometric chain C of length
n, say 〈0〉 ⊂ H1 ⊂ · · · ⊂ Hn = G. By Proposition 7.9 we have that

(G, dC) ≃ (Hn
1 , dRT ).
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On the other hand, since |H1| = |H| there is a bijection τ : H1 → H which extends to
τ : Hn

1 → Hn and induces the isometry

(Hn
1 , dRT ) ≃ (Hn, dRT ).

In fact,

dRT (τ(x), τ(y)) = max
1≤i≤n

{i : τ(xi) 6= τ(yi)} = max
1≤i≤n

{i : xi 6= yi} = dRT (x, y).

This implies the result. �

The theorem implies, for instance, that there exists a metric d in the generalized quaternion
group Q2n of order 2n and a metric d′ in the dihedral group D2n−1 of order 2n such that

(Z2n , d2) ≃ (Q2n , d) ≃ (D2n−1 , d′) ≃ (Zn
2 , dRT ).

Also, in the above list one can add all the groups Z2i × Z2n−i with some metrics d(i) for
i = 1, . . . , n − 1.

8. Block Rosenbloom–Tsfasman metric

We will next extend the result for geometric chains given in the previous section for groups
with arbitrary chains. For this, we must first consider a generalization of the RT -metric.

Definition 8.1. Let X be a group and n ∈ N. Given a partition n = m1+ · · ·+mr consider
Xn = Xm1 × · · · ×Xmr . We write x = (x̃1, . . . , x̃r) for an element in Xn, where x̃i ∈ Xmi

for any i. We define the block Rosenbloom–Tsfasman metric (or BRT -metric) on Xn as

(8.1) dBRT (x, y) = max
1≤i≤r

{i : x̃i 6= ỹi}.

Note that for r = n, then m1 = · · · = mn = 1 and hence the BRT -metric is just the
RT -metric. Also, notice that this metric can be seen as the block poset metric (see [9])
associated to the chain poset 1 � 2 � · · · � r.

Theorem 8.2. Let H be a proper subgroup of a group G and C a chain of subgroups with
initial term H. Then we have

(8.2) (G, dC) ≃ (H [G:H], dBRT ).

Proof. Suppose C is the chain H1 = H ⊂ H2 ⊂ · · · ⊂ Hn = G. Consider the group G′ =
H [G:H]. We will construct a chain C′ in G′ of length n, say H ′

1 = H ⊂ H ′
2 ⊂ · · · ⊂ H ′

n = G′,
such that |H ′

i| = |Hi| for all i = 1, . . . , n. Consider H ′
2 = H [H2:H1],

H ′
3 = (H ′

2)
[H2:H1] = (H [H2:H1])[H3:H2] = H [H3:H1]

and in general for every 1 ≤ i ≤ n take

H ′
i = H [Hi:H1].

It is clear that |H ′
i| = |Hi| for i = 1, . . . , n.

By Theorem 6.1, the trivial isometry ϕ1 = id : (H1, dHam) → (H ′
1, dHam) can be lifted to

an isometry

ϕ2 : (H2, ExtH2
H1

(dHam)) → (H ′
2, Ext

H′
2

H′
1
(dHam)).
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By iterating this process we arrive at an isometry

ϕn : (Hn, ExtHn

Hn−1
◦ · · · ◦ ExtH2

H1
(dHam)) → (H ′

n, Ext
H′

n

H′
n−1

◦ · · · ◦Ext
H′

2

H′
1
(dHam)).

That is, we have

(G, dC) ≃ (H [G:H], dC′).

It only remains to show that the chain metric dC′ is the BRT -metric. Put r = [G : H]
and ri = [Hi : Hi−1] for i = 1, . . . , n (where H−1 = 〈0〉). Consider the natural decomposition
Hr = Hr1 × · · · ×Hrn . If x ∈ Hr then x = (x̃1, . . . , x̃n) with x̃i ∈ Hri for any i. Since

dBRT (x, y) = max
1≤i≤n

{i : x̃i 6= ỹi}

one can check that for i = 1, . . . , n we have

dBRT (x, y) = i ⇔ dC′(x, y) = i.

Hence the metrics coincide and the result thus follows. �

Example 8.3. Let G = Zqn and H = Fq, n ≥ 2. By the previous theorem, if we take the
chains

C : 〈0〉 ⊂ Zq ⊂ Zqn and C′ : 〈0〉 ⊂ Fq ⊂ Fn
q

and we consider the decomposition Fn
q = Fq × Fn−1

q we get

(Zqn , dC) ≃ (Fn
q , dBRT ).

Note that the weight function associated to C is

wC =





0 if x = 0,

1 if x ∈ qn−1Zqn r {0},

2 if x ∈ Zqn r qn−1Zqn .

Now, by properly rescaling this weight, we get the following,

w̃C =





0 if x = 0,

qn−1 if x ∈ qn−1Zqn r {0},

qn−2(q − 1) if x ∈ Zqn r qn−1Zqn .

Thus, we obtain

(8.3) (Zqn , d̃C) ≃ (Fn
q , d̃BRT ),

where d̃BRT is a rescaled metric obtained from dBRT . It is easy to check that the rescaled
metrics are also metrics. In the case when q = p is prime, the metric d̃C coincides with the
homogeneous metric (see [3]) defined over the ring Zn

p ,

(8.4) (Zpn , dHom) ≃ (Fn
p , d̃BRT ).

Remark 8.4. As in the previous example, we have the isometry (Zqn , dHom) ≃ (Fn
q , d̃BRT )

for q = pr. Consider the q-ary first order Reed-Muller code RM(1, qn−1) and let G be any
generating matrix of the code whose first row is the all ones vector (1, 1, . . . , 1). The code

RM(1, qn−1) lies in Fqn−1

q with the Hamming metric, and right multiplication by G encodes
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the space Fn
q into RM(1, qn−1), that is RM(1, qn−1) = {xG : x ∈ Fn

q }. Putting these things
together we get

(8.5) (Fn
q , d̃BRT ) → (RM(1, qn−1), d qn−1

Ham ) →֒ (Fqn−1

q , d qn−1

Ham ).

Combining the isometry (8.3) with the embedding (8.5) we get the isometric embedding

(Zqn , d̃C) →֒ (Fqn−1

q , d qn−1

Ham ).

Taking q = p prime, we obtain the following result of Greferath ([7])

(8.6) (Zpn , dHom) →֒ (Zpn−1

p , d pn−1

Ham ).

In this way, similarly as in Section 4, we get isometric embeddings of the form

Zpn →֒ (Fpn−i

pi
, d pn−i

Ham )

for i = 1, . . . , n.
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