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Abstract Correlation-immune (CI) multi-output Boolean functions have the property of keeping
the same output distribution when some input variables are fixed. Recently, a new application of CI
functions has appeared in the system of resisting side-channel attacks (SCA). In this paper, three
new methods are proposed to characterize the t th-order CI multi-output Boolean functions (n-input
and m-output). The first characterization is to regard the multi-output Boolean functions as the
corresponding generalized Boolean functions. It is shown that a generalized Boolean functions fg is
a t th-order CI function if and only if the Walsh transform of fg defined here vanishes at all points
with Hamming weights between 1 and t. Compared to the previous Walsh transforms of component
functions, our first method can reduce the computational complexity from (2m − 1)
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. The last two methods are generalized from Fourier spectral characterizations. Especially,
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Boolean functions.
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1 Introduction

The correlation-immune (CI) functions were originally used to resist Siegenthaler’s correlation at-
tack [18](or ‘divide and conquer attack ’ [17]) in stream ciphers in the last century. The correlation
immunity of functions gradually loses its interest with the development of new attacks. But, recently,
in paper [9,8], a new application of CI functions has appeared in the system of resisting side-channel
attacks (SCA), which has renewed interest. These attacks on the implementations of block ciphers in
embedded systems like smart cards, FPGA or ASIC assume an attacker model different from clas-
sical attacks, and are extremely powerful in practice. These implementations then need to include
counter-measures, which reduces the efficiency of the cryptosystem and adds additional storage. The
CI functions allow cost reduction of counter-measures to SCA. Moreover, these functions need to
have low Hamming weights.

We focus on the characterization of CI functions. A characterization of CI Boolean functions was
obtained by Xiao and Massey [21] in terms of the Walsh transform in 1988. That is, a Boolean function
is t th-order CI if and only if its Walsh transform vanishes for all points with Hamming weights
between 1 and t. In 1959 Golomb [10] introduced the concept of the invariants of Boolean functions in
order to classify Boolean functions. This work was collected in his book Shift Register Sequences [11],
Chapter VIII. Golomb did not mention the original applications for cryptography of his work on
invariants until his paper [12] published in 1999. In fact, his work is the same concept with the Walsh
spectral characterization of CI Boolean functions. It has been proposed in [5] to call this the Golomb-
Xiao-Massey characterization. The Golomb-Xiao-Massey characterization of multi-output correlation
immune functions comes directly from the one of correlation immune Boolean functions. That is, a
multi-output Boolean function is t th-order CI if and only if all its nonzero linear combinations of the
component functions are t th-order CI. In addition to Golomb-Xiao-Massey characterization, other
methods to characterize CI functions, such as matrices [14,3], orthogonal arrays [4,1], and the Fourier
spectra [20,19] were also proposed.

Since there is a natural one-to-one correspondence between vectors in F
m
2 and integers in [0, 2m−1],

we can represent a multi-output Boolean function as a corresponding generalized Boolean function.
Schmidt [16] gave the 2-adic expansion for a generalized Boolean function (this expansion is unique),
and used it to study generalized bent functions that are applied in MC-CDMA. Similarly, we use this
representation to get new characterizations for multi-output CI Boolean functions. Our first charac-
terization shows that a multi-output Boolean function is a t th-order CI Boolean function if and only
if the Walsh transform of the corresponding generalized Boolean function fg defined in this paper van-
ishes at all points with Hamming weights between 1 and t. Compared to the previous Walsh spectral
characterization method, this method reduces the complexity of calculations from (2m−1)

∑t
j=1

(

n

j

)

to m
∑t

j=1

(

n
j

)

to determine whether a function is t th-order CI. Wang and Gong [20] investigated

discrete Fourier transform of (single-output) Boolean functions and deduced an equivalent condition
for t th-order CI Boolean functions. Fourier spectral characterizations are generalized here to charac-
terize the t th-order multi-output CI Boolean functions. And these Fourier spectral characterizations
are much more efficient to characterize the symmetric multi-output CI Boolean functions.

The rest of the paper is organized as follows. In Section 2, we introduce three representations
of multi-output Boolean functions, the definitions of the correlation immunity, as well as the Walsh
transform of the multi-output Boolean functions. In Section 3, we present three new characterizations
for multi-output CI Boolean functions. The first characterization is in terms of the Walsh transform
and the last two characterizations are in terms of the Fourier transforms over the complex field.
Section 4 concludes the paper.

2 Preliminaries

The following notations will be used throughout the paper.
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- n and m are positive integers.
- F2m is a finite field with 2m elements. Z2m is a residue class ring of integers modulo 2m.
- F

m∗
2 = F

m
2 \ {0}.

- For c = (c1, c2, · · · , cn) ∈ F
n
2 , wt(c) denotes the Hamming weight of c, i.e., the number of nonzero

terms in c.
- For 1 ≤ i ≤ m, ωi = exp( 2π

√
−1

2i ) is a 2ith primitive root of unity over the complex field.
- #{·} denotes the number of elements in the set {·}.
- Sn is a symmetric group consisting of permutations of the set {1, 2, · · · , n}. π ∈ Sn is a permutation

of symbols {1, 2, · · · , n}.

2.1 The Representations of Multi-output Boolean Functions

Here we give three representations of a multi-output Boolean function: representations as compo-
nent functions, as a trace function, and as a generalized Boolean function. We shall introduce them
respectively in this section.

A Boolean function is a function fb: F
n
2 → F2 with variable x = (x1, x2, · · · , xn), where F2 is the

finite field with two elements, and F
n
2 is n-dimension vector space over F2. It can be represented by

its algebraic normal form (ANF):

fb(x) =

2n−1
∑

k=0

ck

n
∏

j=1

x
kj

j , ck ∈ F2,

where (k1, k2, · · · , kn) is the binary expansion of k.
A n-input and m-output multi-output Boolean function can be represented as a function from F

n
2

to F
m
2 : f(x) = (f1(x), f2(x), · · · , fm(x)). Every component function fi, 1 ≤ i ≤ m, is a Boolean

function. Obviously, f(x) is a (single-output) Boolean function when m = 1. Multi-output Boolean
functions are also called vectorial Boolean functions. We will refer to a multi-output Boolean function
as an (n,m)-function for simplicity.

A multi-output Boolean function can be represented as a trace function from F2n to F2m when m

is a divisor of n. The vector space F
n
2 can be endowed with the structure of the field F2n . Then any

multi-output Boolean function f(x) can be viewed as a function from F2n to F2m (F2m is a sub-field
of F2n). A multi-output Boolean function f(x) can be represented in the form

Trnm(

2n−1
∑

j=0

δjx
j), δj ∈ F2n ,

where Trnm(x) = x+ x2m

+ x22m

+ x23m

+ · · ·+ x2n−m

is the trace function from F2n to F2m .
A generalized Boolean function fg is a function from F

n
2 to Z2m . Such a function can be uniquely

expressed as a linear combination of the monomials

1, x1, x2, · · · , xn, x1x2, x1x3, · · · , xn−1xn, · · · , x1x2x3 · · ·xn,

where the coefficient of each monomial belongs to Z2m . Since there is a natural one-to-one correspon-
dence between the vectors in F

m
2 and the elements in Z2m , we can represent a multi-output Boolean

function as its corresponding generalized Boolean function, i.e.,

fg(x1, x2, · · · , xn) =

m
∑

i=1

2i−1
fi. (1)

Such representation was used to study generalized bent functions by Schmidt [16].
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Note that in formula (1), each fi is a Boolean function which is calculated modulo 2, while the
summation

∑m
i=1 2

ifi is calculatedmodulo 2m. So the algebraic normal form of the general generalized
Boolean function fg cannot be directly obtained from the weighted sum of the algebraic normal of the
component Boolean function fi. For example, let f(x1, x2, x3) = (f1, f2) be a multi-output Boolean
function where

f1 = x1x2,

f2 = x2 + x3.

It is clear 2f2 + f1 = x1x2 +2x2 +2x3. However, from the truth table of the function f(x1, x2, x3) =
(f1, f2), we have

fg = 2x1x2 + 2x2x3 + x2 + x3.

Table 1: Truth table of the function f(x1, x2, x3) = (f1, f2)

x3 x2 x1 (f1, f2) fg(x1, x2, x3)
0 0 0 00 0
0 0 1 00 0
0 1 0 01 1
0 1 1 11 3
1 0 0 01 1
1 0 1 01 1
1 1 0 00 0
1 1 1 10 2

For more information about correlation-immune Boolean and vectorial functions, we invite the
readers to consult the excellent chapters provided by Carlet [6,7].

2.2 Correlation Immunity

The multi-output CI Boolean functions are defined initially from the perspective of probability theory,
which is similar to the definition of CI of single-output Boolean functions.

Definition 1 Let t be an integer such that 0 ≤ t ≤ n. An (n,m)-function f(x) is called t th-order
CI if its output distribution does not change when at most t coordinates xi of x are kept constant.
In other words,

Pr(f(x1, x2, · · · , xn) = (y1, y2, · · · , ym)|xij = aj , 1 ≤ j ≤ t)

= Pr(f(x1, x2, · · · , xn) = (y1, y2, · · · , ym))
(2)

for every t-subset {i1, · · · , it} ⊆ {1, · · · , n}, aj ∈ F2(1 ≤ j ≤ t), and (y1, y2, · · · , ym) ∈ F
m
2 .

We will refer to a t th-order CI (n,m)-function as (n,m, t)-CI function for simplicity. The Walsh
transform of an (n,m)-function f(x) is the function which maps any ordered pair (u,v) ∈ F

n
2 × F

m∗
2

to the value at u of the Walsh transform of the component function v · f(x), that is,

f̂(u,v) =
∑

x∈F
n
2

(−1)v·f(x)+u·x
. (3)

Fact 1 An (n,m)-function is an (n,m, t)-CI function if and only if f̂(u, v) = 0 for v 6= 0, 1 ≤
wt(u) ≤ t, where wt(u) denotes the Hamming weight of u.
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If we consider an (n,m)-function by a generalized Boolean Function, then equation (2) shall be
rewritten as

Pr(fg(x1, x2, · · · , xn) = α|xij = aj , 1 ≤ j ≤ t)

= Pr(fg(x1, x2, · · · , xn) = α)
(4)

for every t-subset {i1, · · · , it} ⊆ {1, · · · , n}, aj ∈ F2(1 ≤ j ≤ t), and α ∈ Z2m .

3 New Characterizations

In this section, we present three new characterizations for multi-output CI Boolean functions. Our
first two characterizations shall consider the multi-output Boolean functions as generalized Boolean
functions. The last characterization considers the multi-output Boolean functions from the perspective
of component functions.

3.1 The First Characterization

We give a new method to characterize a multi-output CI Boolean function in terms of its correspond-
ing generalized Boolean function’s Walsh transform.

Theorem 1 Let fg(x1, x2, · · · , xn) be a generalized Boolean function. Then fg(x1, x2, · · · , xn) is an
(n,m, t)-CI function if and only if

∑

x∈F
n
2

ω
fg(x)
i (−1)c·x = 0, (5)

for 1 ≤ wt(c) ≤ t and 1 ≤ i ≤ m, where ωi is a 2ith primitive root of unity in the complex field.

We introduce the ‘linear combination lemma’ [21,2] before proving theorem 1.

Fact 2 [21] The discrete random variable Z is independent of the k independent binary random
variables X = (X1, X2, · · · , Xk) if and only if Z is independent of the sum c1X1+c2X2+, · · · ,+ckXk

for every choice of c = (c1, c2, · · · , ck) ∈ F
k∗
2 .

Now, we shall prove Theorem 1 by using Fact 2.

Proof The equation (5) can be divided into two parts. One is for c · x = 0, and the other is for
c · x = 1, i.e.,

∑

c·x=0

ω
fg(x)
i −

∑

c·x=1

ω
fg(x)
i = 0. (6)

We denote that

aα = #{x : fg(x) = α, c · x = 0},

and

bα = #{x : fg(x) = α, c · x = 1},

where 0 ≤ α ≤ 2m − 1. Hence, equation (6) is equivalent to

2m−1
∑

α=0

aαω
α
i −

2m−1
∑

α=0

bαω
α
i = 0 ⇐⇒

2m−1
∑

α=0

(aα − bα)ω
α
i = 0.
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For any integer d, let Φd(z) be the dth cyclotomic polynomial [15], which is a monic polynomial of
degree φ(d) (Euler function). It is known that

Φ2i(z) =
∏

{(z − ξ
j) : 0 ≤ j ≤ 2n − 1, gcd(j, 2n) = 2n−i},

where gcd denotes the great common divisor and ξ = exp( 2π
√−1
2n ). We have

Φ2(z) = z + 1, Φ4(z) = z
2 + 1, · · · , Φ2m(z) = z

2m−1

+ 1.

For 1 ≤ i ≤ m, Φ2i(z) is a monic polynomial with integer coefficients that is the minimal polynomial
over the rational field of any primitive 2ith root of unity. Since ωi is a 2ith primitive root of unity in the
complex field, and Φ2i(z) is irreducible in the integer ring, then every Φ2i(z) divide

∑2m−1
α=0 (aα−bα)z

α.
In addition, Φ2i(z) are pairwise coprime for 1 ≤ i ≤ m. Let h(z) denote the product of Φ2i(z) for
1 ≤ i ≤ m, i.e.,

h(z) = (z + 1)(z2 + 1) · · · (z2
m−1

+ 1) =
z2

m

− 1

z − 1
= 1 + z + z

2 + · · ·+ z
2m−1

.

Note that
∑2m−1

α=0 (aα − bα)z
α must be a multiple of h(z), and deg(

∑2m−1
α=0 (aα − bα)z

α) = deg(h(z)),
we obtain that

a1 − b1 = a2 − b2 = · · · = a2m−1 − b2m−1.

Since
2m−1
∑

α=0

aα =

2m−1
∑

α=0

bα = 2n−1 ⇒

2m−1
∑

α=0

(aα − bα) = 0,

we obtain that
aα − bα = 0 ⇒ aα = bα.

Thus, fg(x) is independent of c · x for 1 ≤ wt(c) ≤ t. Then we get fg(x) is independent of
xi1 , xi2 , · · · , xit according to Fact 2. In other words,

Pr (fg(x) = α|xi1 , xi2 · · ·xit) = Pr (fg(x) = α) .

which is exactly the definition of the (n,m, t)-CI function. ⊓⊔

Compared to the previous Walsh spectral characterization (Fact 1), this characterization reduces
the computational complexity from (2m − 1)

∑t
j=1

(

n
j

)

to m
∑t

j=1

(

n
j

)

.

3.2 The Second Characterization

The second characterization is in terms of Fourier spectra of sequences described by the corresponding
generalized Boolean functions. We first introduce the concept of the discrete Fourier transform (DFT)
over the complex field of the sequences. Note that DFT over the complex field introduced here is the
traditional DFT, which is different from the DFT over the finite field [13].

We describe a sequence fg of length 2n corresponding to a generalized Boolean function fg by
listing the values taken by fg(x1, x2, · · · , xn) as (x1, x2, · · · , xn) which ranges over all its 2n values
in lexicographic order. In other words, sequence fg is defined by

fg = (fg(0), fg(1), · · · , fg(2
n − 1)),

where fg(k) = fg(x1, x2, · · · , xn) and (x1, x2, · · · , xn) is the binary representation of the integer k

for 0 ≤ k ≤ 2n − 1, i.e., k =
∑n

i=1 xi2
i−1. For example, for n = 3 and m = 2 we have 3x1x2x3 =

(000000023) and 2x1x2 +3x3 + 1 = (10101032) respectively.
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Let ωi be a 2ith primitive root of unity over the complex field for 1 ≤ i ≤ m. The polynomials
associated with sequences (every sequence defined by the generalized Boolean function fg) are given
by

F
{i}(z) =

2n−1
∑

k=0

ω
fg(k)
i z

k
, 1 ≤ i ≤ m. (7)

Definition 2 Let ξ = exp( 2π
√
−1

2n ) be a 2nth primitive root of unity over the complex field. The
discrete Fourier transform (DFT) of sequences (every sequence defined by the generalized Boolean
function fg) over the complex field are defined by

F
{i}
fg

(j) =

N−1
∑

k=0

ω
fg(k)
i ξ

−kj
, 0 ≤ j ≤ N − 1, (8)

where 1 ≤ i ≤ m, ωi is a 2ith primitive root of unity over the complex field.

It is obvious that the equation (8) is the DFT of a sequence defined by a Boolean function when
m = 1. Let π · fg = fg(xπ(1), xπ(2), · · · , xπ(n)) be a function obtained by permuting the variables
in fg, and π · F (z) be the polynomial associated with the function π · fg. Then the Fourier spectral
characterization is given below.

Theorem 2 Let fg(x1, x2, · · · , xn) be a generalized Boolean function. Then fg(x1, x2, · · · , xn) is an
(n,m, t)-CI function if and only if

F
{i}
π·fg

(2n−t) = 0,

for ∀π ∈ Sn and 1 ≤ i ≤ m.

Proof Recall the polynomials F {i}(z) in equation (7) and the definition of DFT in Definition 2, we
have

F
{i}
π·fg

(2n−t) = π · F {i}(ξ−2n−t

).

Since the minimal polynomial of ξ−2n−t

over the rational field is Φ2t(z), we obtain that F
{i}
π·fg

(2n−t) =

π ·F {i}(ξ−2n−t

) = 0 is equivalent to the fact that Φ2t(z)|(π ·F {i}(z)). We first consider permutation
π to be identity. Since

F
{i}(z) =

2n−1
∑

k=0

ω
fg(k)
i z

k =
∑

x∈F
n
2

ω
fg(x)
i

n
∏

i=1

(z2
i−1

)xi , 1 ≤ i ≤ m,

we have

Φ2t(z)|F {i}(z) ⇐⇒ F
{i}(z) ≡ 0 (mod Φ2t(z)) ⇐⇒

∑

x∈F
n
2

ω
fg(x)
i

n
∏

i=1

(z2
i−1

)xi ≡ 0 (mod Φ2t(z)).

From the definition of the cyclotomic polynomial, we know Φ2t(z) = z2
t−1

+ 1, so

Φ2t(z)|z2
i

− 1, for ∀i ≥ t.

Then we have

Φ2t(z)|F {i}(z) ⇐⇒
∑

x∈F
n
2

ω
fg(x)
i

t
∏

i=1

(z2
i−1

)xi ≡ 0 (mod z
2t−1

+ 1). (9)
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Then the summation in (9) can be divided into two parts, where the first part is for xt = 0 and the
second part is for xt = 1. Hence Φ2t(z)|F {i}(z), 1 ≤ i ≤ m, is equivalent to

∑

x1,...,xt−1,xt=0

ω
fg(x)
i

t−1
∏

i=1

(z2
i−1

)xi −
∑

x1,...,xt−1,xt=1

ω
fg(x)
i

t−1
∏

i=1

(z2
i−1

)xi = 0.

Combining like terms about z, the above condition is equivalent to

∑

x1,...,xt−1





∑

xt=0,xt+1,...,xn

ω
fg(x)
i −

∑

xt=1,xt+1,...,xn

ω
fg(x)
i



 (z2
i−1

)xi = 0,

so the coefficients of (z2
i−1

)xi are
∑

xt=0,xt+1,··· ,xn

ω
fg(x)
i −

∑

xt=1,xt+1,··· ,xn

ω
fg(x)
i = 0. (10)

Now, we denote that
aα = #{x : fg(x) = α, xt = 0, xt+1, · · · , xn},

and
bα = #{x : fg(x) = α, xt = 1, xt+1, · · · , xn},

where 0 ≤ α ≤ 2m − 1. Thus, equation (10) is equivalent to

2m−1
∑

α=0

aαω
α
i −

2m−1
∑

α=0

bαω
α
i = 0 ⇐⇒

2m−1
∑

α=0

(aα − bα)ω
α
i = 0

Since ωi is a 2ith primitive root of unity in the complex field, and Φ2i(z) is irreducible in the

integer ring, then every Φ2i(z) divide
∑2m−1

α=0 (aα − bα)z
α. In addition, Φ2i(z) are pairwise coprime

for 1 ≤ i ≤ m. Let h(z) denote the product of all Φ2i(z), 1 ≤ i ≤ m,

h(z) = (z + 1)(z2 + 1) · · · (z2
m−1

+ 1) =
z2

m

− 1

z − 1
= 1 + z + z

2 + · · ·+ z
2m−1

.

Note that
∑2m−1

α=0 (aα − bα)z
α must be a multiple of h(z), and deg(

∑2m−1
α=0 (aα − bα)z

α) = deg(h(z)),
we obtain that

a1 − b1 = a2 − b2 = · · · = a2m−1 − b2m−1.

Since
2m−1
∑

α=0

aα =

2m−1
∑

α=0

bα = 2n−t ⇒

2m−1
∑

α=0

(aα − bα) = 0,

we obtain that aα − bα = 0. In other words,

Pr (fg(x) = α|xt = 0, x1, · · · , xt−1) = Pr (fg(x) = α|xt = 1, x1, · · · , xt−1)

for ∀t and ∀α, i.e.,

Pr (fg(x) = α|x1, · · · , xt−1, xt) = Pr (fg(x) = α|x1, · · · , xt−1) .

For 1 ≤ s ≤ t − 1, let π = (s, t) denote a transposition. Such a permutation exchange the place of
two elements s and t, leaving the others fixed. Φ2t(z)|(π · F {i})(z) for any π = (s, t) is equivalent to
the fact that Pr (fg(x) = α) does not depend on the values of x1, x2, · · ·xt, i.e,

Pr (fg(x) = α|x1, x2 · · ·xt) = Pr (fg(x) = α) .

Then considering any permutation π ∈ Sn, we obtain

Pr

(

fg(x) = α|xπ(1), xπ(2) · · · , xπ(t)

)

= Pr (fg(x) = α) ,

which is exactly the definition of the (n,m, t)-CI function. ⊓⊔



New Characterizations for the Multi-output Correlation-Immune Boolean Functions 9

Definition 3 A generalized Boolean function fg is called a symmetric function if permuting its
variables (x1, x2, · · · , xn) leads to itself.

For symmetric function fg, since fg = π · fg for any permutation π ∈ Sn, the second characterization
for the symmetric functions is much simpler. Only m points of Fourier spectra should be calculated.

Corollary 1 Let fg(x1, x2, · · · , xn) be a symmetric generalized Boolean function. Then fg(x1, x2, · · · , xn)
is an (n,m, t)-CI function if and only if

F
{i}
fg

(2n−t) = 0,

for 1 ≤ i ≤ m.

3.3 The Third Characterization

The Fourier spectral characterization in section 3.2 is to regard the multi-output Boolean function
as a generalized Boolean function. In this section, we give another Fourier spectral characterization
for multi-output CI Boolean functions by the Fourier transform of component functions.

In paper [20], Wang and Gong investigated the Fourier spectral characterizations of CI Boolean
functions. Theorem 4 in [20] showed that a Boolean function is t th-order CI if and only if its Fourier
spectrum vanishes at a special point for any permutation π.

Fact 3 [20] A Boolean function fb is an (n, 1, t)-CI function if and only if Fπ·fb
(2n−t) = 0 for

∀π ∈ Sn.

It is known from Walsh spectral characterization (Fact 1) that a multi-output Boolean function
is t th-order CI if and only if all its nonzero linear combinations of the component functions of f(x)
are t th-order CI. Then another Fourier spectral characterization is given below.

Theorem 3 Let f(x) = (f1(x), f2(x), · · · , fm(x)) be a multi-output Boolean function from F
n
2 to

F
m
2 . Then f(x) is an (n,m, t)-CI function if and only if

Fπ·(v·f(x))(2
n−t) = 0,v 6= 0,

for ∀π ∈ Sn.

Corollary 2 Let f(x1, x2, · · · , xn) be a symmetric multi-output Boolean function from F
n
2 to F

m
2 .

Then f(x1, x2, · · · , xn) is an (n,m, t)-CI function if and only if

F
v·f(x)(2

n−t) = 0,v 6= 0.

4 Conclusions

In this paper, we have studied three new characterizations for multi-output CI Boolean functions.
The first characterization was given in terms of the Walsh transforms of corresponding generalized
Boolean functions. The last two characterizations were obtained in terms of the Fourier transforms
over the complex field.

1. A generalized Boolean function fg is an (n,m, t)-CI function if and only if
∑

x∈F
n
2

ω
fg(x)
i (−1)c·x = 0,

for 1 ≤ wt(c) ≤ t and 1 ≤ i ≤ m, where ωi is a 2ith primitive root of unity in the complex field.
This characterization reduces the computational complexity compared to the previous Walsh
spectral characterization.
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2. A generalized Boolean function fg is an (n,m, t)-CI function if and only if

F
{i}
π·fg

(2n−t) = 0,

for ∀π ∈ Sn and 1 ≤ i ≤ m. Moreover, a symmetric generalized Boolean function fg is an
(n,m, t)-CI function if and only if

F
{i}
fg

(2n−t) = 0,

for 1 ≤ i ≤ m.
3. A multi-output Boolean function f(x) is an (n,m, t)-CI function if and only if

Fπ·(v·f(x))(2
n−t) = 0, v 6= 0,

for ∀π ∈ Sn. A symmetric (n,m)-function is an (n,m, t)-CI function if and only if

F
v·f(x)(2

n−t) = 0, v 6= 0.

The Golomb-Xiao-Massey characterization [10,11,21,12] and the Fourier spectral characterization
[20] of (single-output) Boolean functions can be regarded as a special case of the results in this paper
when m = 1.
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