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A GENERAL BRIDGE THEOREM FOR SELF-AVOIDING

WALKS

CHRISTIAN LINDORFER

Abstract. Let X be an infinite, locally finite, connected, quasi-transitive
graph without loops or multiple edges. A graph height function on X is a
map adapted to the graph structure, assigning to every vertex an integer,
called height. Bridges are self-avoiding walks such that heights of interior
vertices are bounded by the heights of the start- and end-vertex. The num-
ber of self-avoiding walks and the number of bridges of length n starting at
a vertex o of X grow exponentially in n and the bases of these growth rates
are called connective constant and bridge constant, respectively. We show
that for any graph height function h the connective constant of the graph
is equal to the maximum of the two bridge constants given by increasing
and decreasing bridges with respect to h. As a concrete example, we apply
this result to calculate the connective constant of the Grandparent graph.

1. Introduction and results

Let (X,∼) be a simple, locally finite, connected, infinite graph consisting
of a countable set of vertices X and a symmetric neighbourhood relation ∼.
We consider a walk on the graph as a sequence of vertices, where consecutive
vertices in the walk must be adjacent in the graph and call it self-avoiding (or
a SAW), if no vertex of the graph is contained twice in this sequence. The
length of a walk will be the length of the sequence reduced by one, so the
number of “steps” in the walk.
We shall consider only graphs which are quasi-transitive, i.e. the automor-

phism group of X acts with finitely many orbits on X . Fix some vertex o
of X and denote by cn,o the number of SAWs of length n starting at o. The
existence of

µ(X) = lim
n→∞

c1/nn,o

and its independence of the choice of o were shown in [6] by Hammersley

and the number µ(X) is called the connective constant of the graph X .
The study of self-avoiding walks, primarily in lattice graphs, was initiated

by the chemist and Nobel laureate P. J. Flory (see his book [3]) as a tool
for studying long-chain polymer growth. Physicists are especially interested in
SAWs in the integer lattices Zd for d ≥ 2 and a lot of work has been dedicated
to the subject. Good references are the monograph by Madras and Slade

[10] and the lecture notes by Bauerschmidt et al. [1]. Although some good
bounds are known for µ(Zd), the precise values for d ≥ 2 are still unknown.
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A highlight has been the very well received paper [2] by Duminil-Copin

and Smirnov, who proved that the connective constant of the honeycomb lat-

tice equals
√

2 +
√
2. In the final part of the proof they used the Hammersley-

Welsh method, a decomposition of walks into bridges, which was introduced
in [7] and serves as the basis of our bridge theorem.
A graph height function h on a quasi-transitive graph X is a map assigning

to every vertex v of X an integer h(v), called the height of v. Graph height
functions have to be adapted to the graph structure according to Definition 2.1.
They are used to define bridges, which are self-avoiding walks π = (v0, . . . , vn)
satisfying

h(v0) < h(vi) ≤ h(vn), 0 < i < n.

Similarly to the connective constant of a graph, one can now define the bridge
constant β(X, h), the base of the exponential growth of the number of bridges
bn,o of length n starting at o, which is again independent of the choice of o.

β(X, h) = lim
n→∞

b1/nn,o .

The definitions of graph height functions, bridges and the bridge constant
were first given by Hammersley and Welsh in [7] for the graph Z

d, where
h mapped any vertex to its first coordinate. In this paper the authors also
invented the above mentioned method of decomposing self-avoiding walks into
bridges and used it to show that the connective constant is equal to the bridge
constant. Grimmett and Li then generalized graph height functions, bridges
and the bridge constant to quasi-transitive graphs in [5] and proved a version
of the bridge theorem, stating that the bridge constant with respect to a uni-

modular graph height function is equal to the connective constant of such a
graph.
The goal of this paper is to generalize the bridge theorem, in the sense

that we do not need graph height functions to be unimodular. Our main
result Theorem 3.2 states that for any graph height function h on X the
connective constant µ(X) is equal to the maximum of the bridge constant
β(X, h) corresponding to h and the bridge constant β(X,−h) corresponding
to the ”reflected” graph height function −h.
As a consequence of this theorem, all results discussed by Grimmett and

Li in section 5 of [5] concerning locality of connected constants also hold in
the case where the graph height functions are not unimodular. In particular
they obtained conditions, under which the connective constants of sequences
of graphs possessing unimodular graph height functions converges to the con-
nective constant of a limit graph of this sequence. The proofs in the non-
unimodular case work exactly the same after replacing corresponding results
by the results obtained in this paper, so they will not be discussed here.
In Section 4, we provide a concrete example. The Grandparent graph was

given by Trofimov in [12] as an example of a connected, locally finite, tran-
sitive graph with a non-unimodular automorphism group, so it admits only
non-unimodular graph height functions. We calculate the bridge constants
with respect to the generic graph height function and use our version of the
bridge theorem to obtain the connective constant of the Grandparent graph.
This connective constant can also be obtained by using a different method
described in [9].
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2. Terminology and preliminaries

We consider a graph (X,∼) as a countable set of vertices X together with
a symmetric neighbourhood relation ∼ on X . We will usually write X for the
graph and omit ∼. Two vertices u and v are called adjacent if u ∼ v. The
degree degX(v) of a vertex v in X is the number of vertices of X which are
adjacent to v. We call X locally finite, if degX(v) < ∞ for every v ∈ X .
A walk π on a graph X is a sequence of vertices (v0, v1, . . . , vn) of X such

that any two consecutive vertices of the sequence are adjacent in X . We denote
by π− = v0 its first vertex, by π+ = vn its last vertex and by |π| = n the length
of the walk. A walk π is called self-avoiding (or a SAW), if no vertex of X
occurs more than once in π. A graph X is called connected if for any pair
(u, v) of vertices there is a walk on X starting at u and ending at v.
The automorphism group AUT(X) of a graph X is the group of all per-

mutations σ on X such that for all u, v ∈ X it holds that u ∼ v if and
only if σ(u) ∼ σ(v). For a subgroup Γ ≤ AUT(X) and some v ∈ X we
write Γv = {γv | γ ∈ Γ} ⊂ X for the orbit of v under the action of Γ and
Γv = {γ ∈ Γ | γv = v} ⊂ Γ for the vertex stabilizer of v in Γ. The group Γ
is said to act quasi-transitively on X if the action of Γ on X admits finitely
many orbits and it acts transitively if there is exactly one orbit. The graph
X is called transitive (respectively quasi-transitive) if its automorphism group
AUT(X) acts transitively (respectively quasi-transitively) on X .
As we are interested in the growth rate of the number of SAWs of length n

for n going to infinity, we only consider infinite graphs. We denote by X the
set of all infinite, connected, locally finite and quasi-transitive graphs.
The following definition of graph height functions on graphs in X is taken

from [5].

Definition 2.1. Let X ∈ X . A graph height function on X is a pair (h,Γ),
where

(i) h : X → Z,
(ii) Γ ≤ AUT(X) is a subgroup of graph automorphisms acting quasi-

transitively on X and h is Γ-difference-invariant in the sense that

h(γv)− h(γu) = h(v)− h(u) for all γ ∈ Γ, u, v ∈ X,

(iii) for every v ∈ X , there exist u, w ∈ X adjacent to v such that

h(u) < h(v) < h(w).

A graph height function (h,Γ) is called unimodular if the action of Γ on X is
unimodular, i.e., if |Γuv| = |Γvu| for all u, v ∈ X with v ∈ Γu.
Denote by d = d(h,Γ) the smallest integer satisfying h(u) − h(v) ≤ d for all
u ∼ v. When talking about a graph height function (h,Γ) we will often simply
write h and omit Γ.

Remark 2.2. There are graphs in X which do not support any graph height
functions. This is still true when considering the set of all Cayley graphs of
finitely generated groups: it was shown in [4], that neither the Cayley graph
of the Grigorchuk group nor the Cayley graph of the Higman group admits a
graph height function.
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Let X ∈ X and (h,Γ) be a graph height function on X . For any v ∈ X
we use the following notation for special sets of SAWs (v = v0, v1, . . . , vn) of
length n ≥ 0 on X starting at v:

• Cn,v . . . all SAWs.
• Bn,v . . . bridges : h(v) < h(vi) ≤ h(vn) for all i ∈ [1, n].

• Bn,v . . . reversed bridges : h(v) > h(vi) ≥ h(vn) for all i ∈ [1, n].
• Hn,v . . . half-space-walks (HSW): h(v) < h(vi) for all i ∈ [1, n].
• Hn,v . . . reversed half-space-walks : h(v) > h(vi) for all i ∈ [1, n].

By convention all of the above sets contain the walk of length 0 consisting of
the single vertex v. We denote by cn,v, bn,v, bn,v, hn,v and hn,v the cardinalities
of the respective sets Cn,v, Bn,v, Bn,v, Hn,v and Hn,v. Note that because of
symmetry, reversed bridges and reversed half-space-walks with respect to h
are bridges and HSWs with respect to the ”reflected” height function −h, so
we will state most results only for bridges and HSWs.
Let π be a walk on X . The span of π is defined as the maximal height

difference of two vertices in π:

span(π) = hmax(π)− hmin(π), where

hmax(π) = max
v∈π

h(v), hmin(π) = min
v∈π

h(v).

It is clear that for any bridge π, span(π) = h(vn)− h(v0).
The group Γ acts quasi-transitively on X and is h-difference invariant, so it

is possible to define

cn = max
v∈X

cn,v, bn = min
v∈X

bn,v and bn = min
v∈X

bn,v.

Any SAW (v = v0, . . . , vn+m) ∈ Cn+m,v can be decomposed into a pair
(v0, . . . , vn) ∈ Cn,v and (vn, . . . , vn+m) ∈ Cm,vn of SAWs. Picking v such that
cn+m,v = cn+m results in

cn+m = cn+m,v ≤ cn,vcm ≤ cncm,

so (cn)n≥0 is a sub-multiplicative sequence. On the other hand the concatena-
tion of the bridges (v = v0, . . . , vn) ∈ Bn,v and (vn, . . . , vn+m) ∈ Bm,vn results
in the bridge (v0, . . . , vn+m) ∈ Bn+m,v. Picking v such that bn+m,v = bn+m

yields
bnbm ≤ bn,vbm ≤ bn+m,v = bn+m.

Fekete’s Lemma on sub-additive sequences provides the existence of the limits

µ(X) := lim
n→∞

c1/nn , β(X, h) := lim
n→∞

b1/nn , β(X, h) := lim
n→∞

b1/nn .

Here µ(X) depends only on the underlying graph X and is called the con-
nective constant of X and β(X, h) and β(X, h) depend on the graph and the
chosen height function h and are called the bridge constant and reversed bridge
constant of X with respect to h, respectively. We will usually omit the graph
and the height function if they are clear and just write µ, β and β.
Trivially it holds that bn ≤ cn, so we obtain

(2.1) bn ≤ βn ≤ µn ≤ cn, n ≥ 0,

and the similar statement for bn and β. Hammersley showed in [6], that

lim
n→∞

c1/nn,v = µ for every v ∈ X
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and Grimmett and Li proved in [5] the similar statement

lim
n→∞

b1/nn,v = β for every v ∈ X.

We conclude that it is possible to obtain connected constant and bridge con-
stant as the radius of convergence of the generating functions of self-avoiding
walks and bridges starting at any vertex v, respectively, independent of the
choice of v.

3. The bridge theorem

One of the main results of [5] is the bridge theorem.

Theorem 3.1 (Thm. 4.3 in [5]). Let X ∈ X possess an unimodular graph

height function (h,Γ). Then µ(X) = β(X, h).

Note that as a consequence, the bridge constant β(X, h) does not depend
on the choice of the unimodular graph height function h. However, there are
simple examples showing that unimodularity is required in this theorem, one
of them being the grandparent graph, which will be discussed in Section 4.
The main result in this paper is the following extension of this bridge theo-

rem, holding without the requirement of unimodularity.

Theorem 3.2 (General Bridge Theorem). Let X ∈ X be a graph possessing

a graph height function (h,Γ). Then

(3.1) µ(X) = βmax(X, h) := max{β(X, h), β(X, h)}.
One inequality is clear from (2.1), we only need to show µ ≤ βmax. For

convenience we first provide a detailed proof of the transitive case which we
then generalize to the quasi-transitive case.
Let X ∈ X be a graph and (h,Γ) be a graph height function on X and

assume that the group Γ acts transitively on X . Then the value of cn,v does
not depend on v and is therefore equal to cn. Moreover elements of Γ map
bridges onto bridges and HSWs onto HSWs, implying that also bn,v and hn,v

do not depend on v, so we can omit v in the notation.
For simplicity we fix some vertex o of X with h(o) = 0 and write Cn, Bn, Hn

and Bn, Hn for the sets of SAWs, bridges, HSWs and their reversed versions
starting at o, respectively. Moreover for every v ∈ X we fix some element
γv ∈ Γ with γv(o) = v. The concatenation of two walks π1 = (o, v1, . . . , vm),
π2 = (o, w1, . . . , wn) is defined as the walk

π1π2 := (o, v1, . . . , vm, γvm(w1), . . . , γvm(wn)).

Similarly, the decomposition of π1 at vl is defined to provide the two walks
(o, v1, . . . , vl) and (γ−1

vl
(vl), . . . , γ

−1
vl
(vn)), both of them starting at o.

Denote by Bn(a) the set of bridges in Bn having span a ≥ 0 and by bn(a) the
cardinality of this set. Note that b0(0) = 1 and for d = d(h,Γ) from Definition
2.1 it trivially holds that bn(a) = 0 for a > dn because the height distance per
step is at most d. It follows that

(3.2) bn =

dn
∑

a=0

bn(a).
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Take any HSW π = (v0, v1, . . . , vn) of length n ≥ 1. We use the following
iterative process to decompose π into an alternating sequence of bridges and
reversed bridges: Let i0 = 0 and in step j ≥ 1 define

aj = max
i∈[ij−1,n]

|h(vi)− h(vij−1
)|,

and ij as the largest index in [ij−1, n], where the maximum is attained. Then
the sub-walk πj = (vij−1

, . . . , vij) of π is a bridge if j is odd and a reversed
bridge if j is even. Moreover by definition the span of πj is aj .
By construction the span decreases in every step, so a1 > · · · > ak > 0.

We denote by Hn(a1, . . . , ak) the set of HSWs in Hn decomposing into an
alternating sequence of bridges and reversed bridges of spans a1, . . . , ak and by
hn(a1, . . . , ak) its cardinality. It is clear that for n ≥ 1

(3.3) hn =
∑

k>0

∑

a1>···>ak>0

hn(a1, . . . , ak).

Moreover for k = 1 it follows directly from the definition that hn(a1) = bn(a1).

Lemma 3.3. Let n, k ≥ 1 and a1 > a2 > · · · > ak > 0. Then

(3.4) hn(a1, . . . , ak) ≤
n
∑

m=0

bm(a1 + a3 + . . . )bn−m(a2 + a4 + . . . ).

Proof. Let π ∈ Hn(a1, . . . , ak). We use the decomposition described before to
construct a pair (π+, π−) consisting of a bridge and a reversed bridge, both
starting at o. We begin by decomposing π into the walks π1, . . . , πk such that
the span of πi is ai for every i and πi is a bridge if i is odd and a reversed bridge
otherwise. Let π+ = π1π3 . . . be the concatenation of all πi which are bridges
(i odd) and π− = π2π4 . . . be the concatenation the πi which are reversed
bridges (i even). This construction can be seen in Figure 1.

h

0 o

vi1

vi2

vi3

vi4

a1

a1 + a3

−a2

−a2 − a4

π1

π2 π3

π4

π2

π3

π4

Figure 1. Decomposition of a HSW π into bridges and reversed
bridges and construction of π+ and π− (dashed).
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Clearly π+ is a bridge and its span is a1 + a3 + . . . and π− is a reversed
bridge and its span is a2 + a4 + . . . . Moreover from the knowledge of the
sequence a1, . . . , ak and the two walks π+ and π− the original walk π can be
uniquely constructed, so the construction of the pair (π+, π−) is injective. Let
m = |π1|+|π3|+ . . . be the sum of lengths of the odd-index sub-walks πi. Then
π+ ∈ Bm(a1 + a3 + . . . ) and π− ∈ Bn−m(a2 + a4 + . . . ) and (3.4) follows. �

A partition into distinct integers of a positive integer A is a way to write
A as a sum of distinct positive integers. Two partitions are considered the
same if they differ only in the order of their summands. Denote by PD(A)
the number of different partitions of the integer A ≥ 1. For consistency let
PD(0) = 1. Hardy and Ramanujan showed in [8] that for A → ∞:

(3.5) logPD(A) ∼ π

(

A

3

)1/2

.

Lemma 3.4. Let B > π
√

d/3. Then there is a constant K > 0 such that for

all n ≥ 0

(3.6) hn ≤ PD(dn)
n
∑

m=0

bmbn−m ≤ KeB
√
nβn

max.

Proof. The statement trivially holds for n = 0. In the case n > 0 application
of Lemma 3.3 in expression (3.3) and exchanging the finite sums yields

hn ≤
n
∑

m=0

∑

k>0

∑

a1>···>ak>0

bm(a1 + a3 + . . . )bn−m(a2 + a4 + . . . ).

For given A,B ≥ 0 we want to count the number of occurrences of the
summand bm(A)bn−m(B) in the sum on the right-hand side. Clearly the total
number of sequences a1 > · · · > ak > 0 with a1+a3+· · · = A and a2+a4+· · · =
B is bounded from above by the number PD(A + B). Using that the height
distance per step is at most d, it follows that

hn ≤
n
∑

m=0

dm
∑

A=0

d(n−m)
∑

B=0

PD(A+B)bm(A)bn−m(B).

From PD(A+B) ≤ PD(dn) and (3.2) the first inequality in (3.6) follows:

hn ≤ PD(dn)

n
∑

m=0

(

dm
∑

A=0

bm(A)

)





d(n−m)
∑

B=0

bn−m(B)





= PD(dn)

n
∑

m=0

bmbn−m.

The second inequality in (3.6) follows from bn ≤ βn (see (2.1)) and the existence
of a constant K > 0 such that

(n+ 1)PD(dn) ≤ KeB
√
n

for every n > 0, which is a consequence of (3.5). �
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Lemma 3.5. Let C > π
√

2d/3. Then there is an integer N such that for all

n ≥ N

(3.7) cn ≤ eC
√
n+1βn+1

max.

Proof. Let π = (v0, . . . , vn) be any SAW of length n and l the maximal index
in [0, n] such that h(vl) = hmin(π). By the definition of graph height functions
there is a neighbour v′ of vl with h(v′) < h(vl). Hence (vl, vl+1, . . . , vn) and
(v′, vl, vl−1, . . . , v0) are HSWs in Hn−l and Hl+1 respectively. This construction
is shown in Figure 2 and yields

cn ≤
n
∑

l=0

hn−lhl+1.(3.8)

h

v0

vl−1

vl vl+1

vn

v′

Figure 2. Decomposition of a SAW into two HSWs.

Let ǫ > 0 such that C − ǫ > π
√

2d/3. By Lemma 3.4 there is a K > 0 such
that for every n ≥ 0

cn ≤
n
∑

l=0

K2 exp

(

C − ǫ√
2

(√
n− l +

√
l + 1

)

)

βn+1
max.

Using this estimate and the inequality
√
a +

√
b ≤

√
2a+ 2b, which holds for

all a, b ∈ R
+ we obtain

cn ≤ (n+ 1)K2 exp
(

(C − ǫ)
√
n + 1

)

βn+1
max.(3.9)

For n large enough (3.7) follows. �

We are now able to finish the proof of Theorem 3.2. Using µn ≤ cn (see

(2.1)) and Lemma 3.5 it follows that for C > π
√

2d/3 and n large enough

µn−1e−C
√
n ≤ cn−1e

−C
√
n ≤ βn

max.

Applying the n-th root and sending n to infinity yields

µ ≤ βmax,

finishing the proof of Theorem 3.2 in the transitive case.
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We will now briefly discuss the additional steps required to generalize the
proof to the case where Γ acts quasi-transitively on the graph X . For this we
need a few additional definitions and results from [5].
Let the action of Γ on X admit M orbits and {o1, . . . , oM} be a system

of representatives of the orbits. Let r = r(h,Γ) be the smallest non-negative
integer such that for any 0 ≤ i, j ≤ M there is some vj ∈ Γoj and a bridge
ν(i, j) of length at most r starting at oi and ending at vj , such that vj is the
unique vertex of maximal height in the walk. The walk obtained by going
along ν(j, i) in the reversed direction (from vj to oi) is a reversed bridge and
will be denoted by ν(i, j). It has been shown in [5] (Propositions 3.2 and 4.2)
that r(h,Γ) exists for any graph height function and moreover that for any
v ∈ X

(3.10) bn,v ≤ βn+r, n ≥ 0.

From now on we denote for v ∈ X and a ≥ 0 by Bn,v(a) the set of bridges
of span a starting at v and by bn,v(a) the cardinality of this set.
Furthermore, for any v ∈ X and a1 > · · · > ak > 0 let Hn,v(a1, . . . , ak)

be the set of HSWs in Hn,v, which can be decomposed into an alternating
sequence of bridges and reversed bridges of spans a1, . . . , ak as described in the
transitive case and let hn,v(a1, . . . , ak) be its cardinality. Lemma 3.3 can be
replaced by the following:

Lemma 3.6. Let n, k ≥ 1, a1 > a2 > · · · > ak > 0 and v ∈ X. Then

hn,v(a1, . . . , ak) ≤ (r + 1)k−1
n
∑

m=0

(

kr
∑

s=0

∑

t≥0

bm+s,v(a1 + a3 + · · ·+ t)

)

(

kr
∑

s′=0

∑

t′≥0

bn−m+s′,v(a2 + a4 + · · ·+ t′)

)

.

(3.11)

Proof. Given a walk π in Hn,v(a1, . . . , ak), we decompose it into the alternating
sequence (π1, π2, . . . , πk) of bridges and reversed bridges as in the transitive
case. The main difficulty is that it is not always possible to concatenate the
bridges πl and πl+2 directly, as π+

l and π−
l+2 may lie in different orbits. Let

(i(0), . . . , i(k − 2)) and (j(0), . . . , j(k − 2)) be sequences defined such that
v ∈ Γoi(0), π

+
l ∈ Γoi(l) for l ≥ 1 and π−

l+2 ∈ Γoj(l) for l ≥ 0. Let

νl =

{

ν(i(l), j(l)) if l is odd,

ν(i(l), j(l)) if l is even.

Define π+ as the concatenation of the bridges π1, ν1, π3, ν3, . . . (odd indices)
and π− as the concatenation of the reversed bridges ν0, π2, ν2, π4, . . . (even
indices). This construction can be seen in Figure 3.
Let m be the sum of the lengths of πi having odd index i. Then π+ is

in Bm+s,v(a1 + a3 + · · · + t) for some 0 ≤ s ≤ kr and t ≥ 0 and π− is in
Bn−m+s′,v(a2 + a4 + · · ·+ t′) for some 0 ≤ s′ ≤ kr and t′ ≥ 0 as every ν-walk
has length at most r. The construction is not injective because for a given
pair (π+, π−) we cannot directly identify the contained ν-walks. However, the
length of any ν-walk is in [0, r], so there are at most (r + 1) possibilities per
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h

v

π1

π2 π3

π4

ν0

ν1

π3

ν2

π2

π4

Figure 3. Construction of π+ and π−, dotted lines are ν-walks.

ν-walk. Therefore any pair (π+, π−) can be constructed at most (r + 1)k−1

times and (3.11) follows. �

Lemma 3.4 is replaced by the following:

Lemma 3.7. There is a constant B > 0 such that for any n ≥ 0 and v ∈ X

(3.12) hn,v ≤ eB
√
nβn

max.

Proof. We begin with the observation that for all integers a, l ≥ 0

(3.13)
∑

t≥0

bl,v(a+ t) ≤ bl,v.

Starting with (3.3) and using Lemma 3.6 and (3.13) yields

hn,v ≤
∑

k>0

∑

a1>···>ak>0
a1+···+ak≤dn

(r + 1)k
n
∑

m=0

(

kr
∑

s=0

bm+s,v

)(

kr
∑

s′=0

bn−m+s′,v

)

.

Any partition of an integer A into k distinct integers satisfies k(k + 1) ≤ 2A

and therefore k <
√
2A. This fact together with statement (3.10) and the easy

observation βmax ≤ ∆ implies

hn,v ≤
∑

k>0

∑

a1>···>ak>0
a1+···+ak≤dn

(r + 1)k(n + 1)(kr + 1)2βn+2kr+2r
max

≤ dnPD(dn)(r + 1)
√
2dn(n+ 1)(

√
2dnr + 1)2∆2

√
2dnr+2rβn

max.

Using (3.5), for B large enough, (3.12) follows. �

Finally we obtain the analogue to Lemma 3.5, which which can be proved
in the same way.
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Lemma 3.8. There is a constant C > 0 such that for any n ≥ 0 and v ∈ X

(3.14) cn,v ≤ eC
√
nβn

max.

From this statement it follows directly that µ ≤ βmax, which finishes the
proof of Theorem 3.2.

4. Bridges in the Grandparent graph

In this section we provide an example of a graph which does not possess a
unimodular graph height function. We calculate the bridge constants and use
the bridge theorem to obtain the connective constant.
An end of a tree is an equivalence class of one-way infinite SAWs, where two

walks are equivalent if they share all but finitely many initial vertices. Fix some
end ω of the infinite 3-regular tree T3 and let the graph ”hang down” from the
end ω. Then the graph can be seen as the union of horizontal layers Hk, k ∈ Z,
every vertex v ∈ Hk is adjacent to one vertex in Hk−1, called predecessor of
v and denoted by p(v), and two vertices in Hk+1, called successors of v. We
write pk(v) for the k-th predecessor of v, i.e. the vertex obtained by k times
application of p to v. Similarly we denote by Sk(v) the set of all vertices u such
that pk(u) = v. We add the additional pairs (v, p2(v)) to the neighbourhood
relation of the graph and end up with the graph in Figure 4, where the newly
related vertices are connected by dashed edges. This graph is often called the
Grandparent graph and we will denote it by GP .

ω

Hk−2

Hk−1

Hk

Hk+1

Hk+2

v

p(v)

S(v)

Figure 4. Grandparent graph GP .

GP is transitive and it is not a Cayley graph of any group, a proof for this
was given by Soardi and Woess in [11]. Moreover it is not hard to see that
all graph automorphisms on GP fix the end ω. For any vertex v of X

|AUT(GP )vp(v)| = 1 6= 2 = |AUT(GP )p(v)v|,
thus the action of AUT(GP ) is not unimodular. This implies that there cannot
exist a unimodular graph height function on GP .
GP admits the obvious graph height function (h,AUT(GP )), where the map

h associates to every vertex v the index k of the layer Hk containing v.
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We fix a vertex o and use ordinary generating functions to count bridges
starting at o and calculate the bridge constants β(GP, h) and β(GP, h). From
the structure of the graph it is intuitively clear that there are more bridges then
reversed bridges starting at o, so we start by counting bridges. Let for a ≥ 0
Ba,v be the set of all bridges of span a starting at a vertex v and Ba(x) be the
ordinary generating functions corresponding to this class, which is independent
of v and given by

Ba(x) =
∑

n≥0

bn(a)x
n.

Then Ba(x) is a polynomial for every a ≥ 0 and it is not hard to obtain

B0(x) = 1, B1(x) = 2x, B2(x) = 4x+ 4x2 + 4x3.

By (3.2), the generating function B(x) counting all bridges is

B(x) :=
∑

n≥0

bnx
n =

∑

a≥0

Ba(x).

By Cauchy-Hadamard’s formula the bridge constant β is the reciprocal of the
radius of convergence of the generating function B(x).
For a ≥ 3 we recursively count all bridges π = (v0, v1, . . . , vm) ∈ Ba,o. The

different classes of bridges discussed are shown in Figure 5. The bridge π
starts at v0 = o, so either v1 ∈ S(o) or v1 ∈ S2(o). If v1 ∈ S(o), then the rest
(v1, . . . , vm) of π must be in Ba−1,v1 (class 1).
Let now v1 ∈ S2(o). We distinguish the following sub-cases: If π does not

contain p(v1), the walk (v1, . . . , vm) must be in Ba−2,v1 (class 2).
Otherwise, there is some index l ∈ [2, n] with vl = p(v1) and we can decom-

pose the walk at vl to obtain walks π1 = (v0, . . . , vl) and π2 = (vl, . . . vm). This
means that π1 can have one of two possible shapes, depending on the parity of
l. Let l = 2k in the case where l is even and l = 2k+1 otherwise. In both cases
we have vi ∈ S2(vi−1) for 1 ≤ i ≤ k − 1. The k-th step satisfies vk = p(vk−1)
if l is odd and vk ∈ S(vk−1) for even l. The walk concludes with the steps
vi = p2(vi−1) for k + 1 ≤ i ≤ l. We call walks with this shape U-walks.
Since the span of π is a, the span of the U-walk π1 can be at most a.

Note that for any v there are 2 vertices in S(v) and 4 vertices in S2(v). The
generating function of U-walks of span at most a is thus given by

Ua(x) = 4x2 + 8x3 + · · ·+ (2x)a.

There are three possible ways how the second part π2 of π may look:

(i) π2 ∈ Ba−1,p(v1) and does not contain v1 or a vertex in S(v1). Precisely
half of the bridges in Ba−1,p(v1) satisfy this condition. (class 3)

(ii) If l ≥ 3 then vl−1 ∈ S(v1), hence vl+1 is the other vertex in S(v1) and
(vl+2, . . . , vm) ∈ Ba−3,p(vl+2). (class 4)

(iii) If l = 2, both of the vertices in S(v1) are available for vl+1 and again
(vl+2, . . . , vm) ∈ Ba−3,p(vl+2). (class 5)

Translating these combinatorial observations into generating functions yields
the recursive formula

Ba(x) = fa(x)Ba−1(x) + g(x)Ba−2(x) + ha(x)Ba−3(x),
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o

v1

class 1

o

v1

class 2

o

v1

vl

class 3

o

v1

vl

class 4

o

v1

v2

class 5

Figure 5. Five classes of walks in Bd
a . U-walks are drawn dashed.

where

fa(x) = 2x+ 2x2 1− (2x)a−1

1− 2x
,

g(x) = 4x,

ha(x) = 8x3 + 8x41− (2x)a−2

1− 2x
.

Fix some x0 in R≥0. Then (Bd
a(x0))a≥0 is a sequence in R≥0. It is not hard

to see that

B(x0) =
∑

a≥0

Ba(x0)







< ∞ if lim
a→∞

(fa(x0) + g(x0) + ha(x0)) < 1,

= ∞ if lim
a→∞

(fa(x0) + g(x0) + ha(x0)) > 1.

From this observation it follows that the radius of convergence of B(x) is the
threshold value for x0, which can be found as the smallest positive root of the
polynomial

1− 8x+ 10x2 − 8x3 + 8x4.

So in particular the bridge constant is an algebraic number, which is approxi-
mately

β(GP, h) ≈ 6.64993.

A similar construction can be used to calculate the reversed bridge constant.
For this we define the generating functions Ba(x) and B(x) counting reversed
bridges as above. The main difference is that we obtain the following recursive
formula by looking at the different cases for the final parts of bridges of span
a:

Ba(x) = fa(x)Ba−1(x) + g(x)Ba−2(x) + ha(x)Ba−3(x),
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where

fa(x) = x+ x2 1− (2x)a−2

1− 2x
,

g(x) = x,

ha(x) = x3 + x4 1− (2x)a−3

1− 2x
.

The radius of convergence of B̄(x) is the smallest positive root of the poly-
nomial

1− 4x+ 3x2 − x3 + x4

and its reciprocal is the reversed bridge constant

β(GP, h) ≈ 3.10380.

As an application of the bridge theorem (Theorem 3.2) we obtain the con-
nective constant of GP ,

µ(GP ) = max{β(GP, h), β(GP, h)} ≈ 6.64993.
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