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Abstract

We initiate the study of applying the Combinatorial Nullstellensatz to the DP-coloring
of graphs even though, as is well-known, the Alon-Tarsi theorem does not apply to DP-
coloring. We define the notion of good covers of prime order which allows us to apply
the Combinatorial Nullstellensatz to DP-coloring. We apply these tools to DP-coloring
of the cones of certain bipartite graphs and uniquely 3-colorable graphs. We also extend
a result of Akbari, Mirrokni, and Sadjad (2006) on unique list colorability to the context
of DP-coloring. We establish a sufficient algebraic condition for a graph G to satisfy
χDP (G) ≤ 3, and we completely determine the DP-chromatic number of squares of all
cycles.
Keywords. Graph coloring, List coloring, Alon-Tarsi Number, Combinatorial Nullstel-
lensatz, DP-coloring.
Mathematics Subject Classification. 05C15, 05C25, 05C31, 05C69

1 Introduction

We only consider nonempty, finite, undirected, simple graphs unless otherwise noted.
Generally speaking we follow West [34] for terminology and notation. The set of natural
numbers is N = {1, 2, 3, . . .}. Given a set A, P(A) is the power set of A. For m ∈ N, we write
[m] for the set {1, . . . ,m}. If G is a graph and S,U ⊆ V (G), we use G[S] for the subgraph of
G induced by S, and we use EG(S,U) for the subset of E(G) with an endpoint in S and an
endpoint in U . If an edge in E(G) connects the vertices u and v, the edge can be represented
by uv or vu. We use α(G) for the size of the largest independent set in G. For v ∈ V (G),
we write dG(v) for the degree of vertex v in the graph G, and we use ∆(G) and δ(G) for
the maximum and minimum degree of a vertex in G respectively. If G1 and G2 are vertex
disjoint graphs, we write G1 ∨G2 for the join of G1 and G2. Also, G

k denotes the kth power
of graph G (i.e., Gk has the same vertex set as G and edges between any two vertices within
distance k in G).
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If D is a simple directed graph (i.e., digraph), we view the edge set of D as a subset of
V (D)× V (D). When (u, v) ∈ E(D) we say that u is the tail of the edge and v is the head of
the edge. For v ∈ V (D) we use d+G(v) for the outdegree of v, and we use d−G(v) for the indegree
of v. An orientation of an undirected graph G is a directed graph D with V (D) = V (G) and
each edge in E(D) is formed as follows: for each uv ∈ E(G), exactly one of the ordered pairs:
(u, v) or (v, u) is put in E(D).

1.1 Combinatorial Nullstellensatz and its Application to List Coloring

The focus of this paper is to apply the Combinatorial Nullstellensatz to DP-coloring
of graphs, a far-reaching and insightful generalization of list coloring of graphs. In this
subsection we review the Combinatorial Nullstellensatz and briefly overview how it has been
applied to list coloring problems.

Suppose that F is a field. We use F[x1, . . . , xn] for the ring of polynomials in n variables
with coefficients in F. If p(x1, . . . , xn) ∈ F[x1, . . . , xn], then we use [

∏n
i=1 x

ti
i ]p to denote the

element in F that is the coefficient of the term
∏n

i=1 x
ti
i in the expanded form of p(x1, . . . , xn).

We are now ready to state the Combinatorial Nullstellensatz.

Theorem 1 (Combinatorial Nullstellensatz [2]). Suppose F is a field and f ∈ F[x1, . . . , xn].
If f has degree

∑n
i=1 ti, [

∏n
i=1 x

ti
i ]f 6= 0, and S1, . . . , Sn are subsets of F with |Si| > ti for

each i ∈ [n], then there is an (s1, . . . , sn) ∈
∏n

i=1 Si such that f(s1, . . . , sn) 6= 0 1.

Many exciting applications of Theorem 1 have appeared in the literature. Since we are
seeking to apply Theorem 1 to a generalization of list coloring, we will now highlight how
Theorem 1 has been applied to list coloring. We will begin with some definitions.

In the classical vertex coloring problem we wish to color the vertices of a graph G with
up to m colors from [m] so that adjacent vertices receive different colors, a so-called proper

m-coloring. The chromatic number of a graph, denoted χ(G), is the smallest m such that
G has a proper m-coloring. List coloring is a well-known variation on the classical vertex
coloring problem, and it was introduced independently by Vizing [32] and Erdős, Rubin,
and Taylor [12] in the 1970’s. For list coloring, we associate a list assignment, L, with a
graph G such that each vertex v ∈ V (G) is assigned a list of colors L(v) (we say L is a list
assignment for G). The graph G is L-colorable if there exists a proper coloring f of G such
that f(v) ∈ L(v) for each v ∈ V (G) (we refer to f as a proper L-coloring of G).

A list assignment L is called an m-assignment for G if |L(v)| = m for each v ∈ V (G).
The list chromatic number of a graph G, denoted χℓ(G), is the smallest m such that G is
L-colorable whenever L is an m-assignment for G 2. We say G is m-choosable if m ≥ χℓ(G).
If f : V (G) → N, we say that G is f -choosable if G is L-colorable whenever L is a list
assignment for G satisfying |L(v)| = f(v) for each v ∈ V (G).

Given a graph G with V (G) = {v1, . . . , vn}, the graph polynomial of G, denoted fG, is
given by fG(x1, x2, . . . , xn) =

∏

vivj∈E(G), j>i(xi − xj). Importantly, notice that it is possible

1Note that when we evaluate f(s1, . . . , sn), addition and multiplication are performed in F.
2Clearly, χ(G) ≤ χℓ(G) for any graph G since an m-assignment could assign the same m colors to every

vertex in V (G).
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to view fG as an element of F[x1, . . . , xn] where F is any field 3. Notice also that fG is
homogenous of degree |E(G)|. Also, if L is a list assignment for G such that L(v) ⊂ N for
each v ∈ V (G), then G is L-colorable if and only if there is a (c1, . . . , cn) ∈

∏n
i=1 L(vi) such

that fG(c1, c2, . . . , cn) 6= 0. This observation makes it clear as to why Theorem 1 can be
useful in attacking list coloring problems.

We will now introduce one of the most useful tools for applying the Combinatorial Nullstel-
lensatz to list coloring: the celebrated Alon-Tarsi Theorem. Suppose D is a simple digraph.
We say that E is a circulation contained in D if E is a spanning subgraph of D and for each
v ∈ V (D), d−E(v) = d+E(v). We say a circulation is even (resp. odd) if it has an even (resp.
odd) number of edges.

Suppose G is a graph with V (G) = {v1, . . . , vn}, and suppose that D is an orientation
of G. Let diff(D) denote the absolute value of the difference in the number of even and

odd circulations contained in D. Alon and Tarsi [3] showed that diff(D) =

∣

∣

∣

∣

[
∏n

i=1 x
d+
D
(vi)

i ]fG

∣

∣

∣

∣

when fG ∈ R[x1, . . . , xn]. This and Theorem 1 immediately imply the following result.

Theorem 2 (Alon-Tarsi Theorem [3]). Let D be an orientation of the graph G. Suppose

that f : V (G) → N is given by f(v) = 1 + d+D(v) for each v ∈ V (G). If the number of

even and odd circulations contained in D differ, then G is f -choosable, and consequently

χℓ(G) ≤ maxv∈V (G)(1 + d+D(v)).

Many applications and extensions of the Alon-Tarsi Theorem have appeared in the liter-
ature (see e.g., [3, 13, 14, 15, 19, 28, 30, 29, 31, 33, 35]).

1.2 DP-coloring and generalized S-labelings of Graphs

In 2015, Dvořák and Postle [11] introduced DP-coloring (they called it correspondence
coloring) in order to prove that every planar graph without cycles of lengths 4 to 8 is 3-
choosable. DP-coloring has been extensively studied over the past 5 years (see e.g., [4, 5, 6,
7, 8, 9, 10, 20, 21, 22, 23, 24, 25, 26, 27]). Intuitively, DP-coloring considers the worst-case
scenario of how many colors we have to use in a list coloring if we no longer can identify the
names of the colors. Following [6], we now give the formal definition. Suppose G is a graph. A
cover of G is a pair H = (L,H) consisting of a graph H and a function L : V (G) → P(V (H))
satisfying the following four requirements:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u), L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (the matching may be empty).

Suppose H = (L,H) is a cover of G. An H-coloring of G is an independent set in H of
size |V (G)|. It is immediately clear that an independent set I ⊆ V (H) is an H-coloring of G
if and only if |I ∩ L(u)| = 1 for each u ∈ V (G).

3Unless otherwise noted, when we are working with a graph polynomial fG(x1, . . . , xn) we assume that
fG ∈ R[x1, . . . , xn].
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Given a function f : V (G) → N, we say H is an f -cover if |L(u)| = f(u) for each
u ∈ V (G). Along the lines of f -choosability of graphs, we say that G is f -DP-colorable if
G is H-colorable whenever H is an f -cover of G. We say G is DP-m-colorable if G is f -
DP-colorable when f(u) = m for each u ∈ V (G). A cover H = (L,H) is called m-fold if
|L(u)| = m for each u ∈ V (G). The DP-chromatic number of a graph G, χDP (G), is the
smallest m ∈ N such that G is DP-m-colorable.

Given an m-assignment, L, for a graph G, it is easy to construct an m-fold cover H
of G such that G has an H-coloring if and only if G has a proper L-coloring (see [6]). It
follows that χℓ(G) ≤ χDP (G). This inequality may be strict since it is easy to prove that
χDP (Cn) = 3 whenever n ≥ 3, but the list chromatic number of any even cycle is 2 (see [6]
and [12]). Notice that likem-choosability, the graph property of having DP-chromatic number
at most m is monotone. The coloring number of a graph G, denoted col(G), is the smallest
integer d for which there exists an ordering, v1, v2, . . . , vn, of the elements in V (G) such that
each vertex vi has at most d − 1 neighbors among v1, v2, . . . , vi−1. It is easy to prove that
χ(G) ≤ χℓ(G) ≤ χDP (G) ≤ col(G) ≤ ∆(G) + 1, and Dvořák and Postle [11] observed that
χDP (G) ≤ ∆(G) provided that G is neither a cycle nor a complete graph.

Since there are striking similarities and differences between DP-coloring and list coloring
(see the citations mentioned above), it is natural to ask whether the Combinatorial Nullstel-
lensatz or an analogue of the Alon-Tarsi Theorem can be applied to DP-coloring. As many
researchers have noticed, for any n ∈ N the counterclockwise orientation of the edges of a
copy of C2n+2, D, has 2 even circulations and 0 odd circulations. Moreover, the outdegree
of every vertex in D is 1 which means χℓ(C2n+2) ≤ 2 by the Alon-Tarsi Theorem. However,
χDP (C2n+2) = 3. So, we are not able to replace χℓ(G) with χDP (G) in the statement of the
Alon-Tarsi Theorem (i.e., Theorem 2).

The purpose of this paper is to explore the possibility of applying the Combinatorial
Nullstellensatz to the study of DP-coloring of graphs, despite this setback. In fact, our
arguments will apply to a far-reaching generalization of many coloring problems, S-labeling,
recently introduced by Jin, Wong, and Zhu [16]. Specifically, the notion of S-labeling is a
common generalization of signed k-coloring, signed Zk-coloring, DP-coloring, group coloring,
and coloring of gained graphs. Suppose that S is some nonempty subset of the symmetric
group Sk over some set A with |A| = k. An S-labeling of graph G is a pair (D,σ) consisting
of an orientation D of G and a function σ : E(D) → S. A proper k-coloring of (D,σ) is a
mapping f : V (G) → A such that σ((x, y))(f(x)) 6= f(y) for each (x, y) ∈ E(D). We say G

is S-k-colorable if there is a proper k-coloring of (D,σ) whenever (D,σ) is an S-labeling of
G. Observe that a graph G is DP-k-colorable if and only if G is Sk-k-colorable.

1.3 Outline of the Results

The key obstacle to overcome in applying the Combinatorial Nullstellensatz to DP-
coloring is: the graph polynomial fG is typically viewed as a polynomial over R which allows
us only to prove results in the DP-coloring context on covers that correspond to list assign-
ments. In this paper we view graph polynomials as polynomials over some appropriate finite
field which allows us to apply the Combinatorial Nullstellensatz to certain covers with list
sizes bounded by a power of a prime. This flexibility allows us to apply the Combinatorial
Nullstellensatz, and the tools derived from it, to many covers that do not correspond to any
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list assignment and to coloring problems of S-labelings (defined above).
In Section 2.1, we define the notion of good covers of prime order which allows us to apply

the Combinatorial Nullstellensatz to DP-coloring as follows (note that in the statement of
the Theorem below t is a prime power and every set L(v) has size at most t).

Theorem 3. Let G be a graph with V (G) = {v1, . . . , vn}, and let H = (L,H) be a good prime

cover of G of order t. Suppose that fG ∈ Ft[x1, . . . , xn]. If [
∏n

i=1 x
ti
i ]fG 6= 0 and |L(vi)| > ti

for each i ∈ [n], then there exists an H-coloring of G.

We then show how Theorem 3 can be used to prove the well-known result that non-trivial
trees have DP-chromatic number equal to 2. We also discuss how this result in fact applies
to coloring problems of S-labelings.

In Section 2.2, we show how Theorem 3 above along with the Quantitative Combinatorial
Nullstellensatz, a generalization of the Combinatorial Nullstellensatz, can be used to prove
results on DP-coloring of cones of certain graphs. Specifically, we prove the following result.

Theorem 4. Let G be a connected bipartite graph with |V (G)| = |E(G)|. Then, G′ =
K1 ∨ G is f -DP-colorable with f(v1) = 2 for the universal vertex, and f(v) = 3 for all

v ∈ V (G′)− {v1}.

In Section 2.3, we extend some of the ideas of Section 2.2 to apply to the cones of certain
uniquely 3-colorable graphs. We also prove a DP-coloring analogue of the Theorem in [1],
where it is shown that existence of a single appropriate list assignment that leads to a unique
coloring of a graph G, in fact implies the f -choosability of G. We illustrate applications of
these results with some simple examples.

In Section 3 we utilize some properties of the finite field of order 3 to establish a sufficient
algebraic condition for a graph G to satisfy χDP (G) ≤ 3.

Corollary 5. Suppose G is a graph with χDP (G) ≥ 2 and V (G) = {v1, . . . , vn}. Let F ⊆
F3[x1, . . . , xn] be the set of at most 2|E(G)| polynomials given by:

F =







∏

vivj∈E(G), j>i

(xi + bi,jxj) : each bi,j ∈ {−1, 1}







.

If for each f ∈ F there exists (t1, t2, . . . , tn) ∈
∏n

i=1{0, 1, 2} such that [
∏n

i=1 x
ti
i ]f 6= 0, then

χDP (G) ≤ 3.

We will also demonstrate that for a connected graph G with cycles, we can reduce the
number of polynomials to be tested to at most 2|E(G)|−|V (G)|+1. We end Section 3 by showing
some applications of Corollary 5. In particular, we show the converse of Corollary 5 does
not hold. We show that χDP (K4,4 − {e1, e2}) = 3, where {e1, e2} is any matching of size
two in K4,4. We also completely determine the DP-chromatic number of all cycle squares:
χDP (C

2
3 ) = 3, χDP (C

2
5 ) = 5, and χDP (C

2
n) = 4 whenever n ∈ {4, 6, 7, 8, . . .}.

While this paper initiates the study of applying the Combinatorial Nullstellensatz to DP-
coloring, it is by no means exhaustive. Much remains to be discovered regarding applications
of the Combinatorial Nullstellensatz and the Quantitative Combinatorial Nullstellensatz to
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DP-coloring. For example, it would be interesting to see if the results in Section 2.3 could
be extended to larger families of uniquely k-colorable graphs. It would also be interesting to
extend the results of Section 3 and find sufficient algebraic conditions for a graph to satisfy
χDP (G) ≤ t for t > 3.

2 Using the Combinatorial Nullstellensatz

2.1 Combinatorial Nullstellensatz and Good Covers

As we will see below, applying the Combinatorial Nullstellensatz will require us to consider
graph polynomials as having coefficients in some finite field. So, when t is a power of a prime,
we use Ft to denote the finite field of order t. We say that an f -cover H = (L,H) of a graph
G is a prime cover of G of order t whenever t is a power of a prime and maxv∈V (G) f(v) ≤ t.
When the choice of t is implicitly known, we simply use the phrase prime cover or prime

f -cover. Since a prime cover could be defined with any large enough prime power t, unless
otherwise noted, we choose t to be the smallest prime power that is meaningful in context.
When fG is the graph polynomial of graph G and we write fG ∈ Ft[x1, . . . , xn], we are viewing
fG as a polynomial in n variables over Ft.

Suppose G is a graph with V (G) = {v1, . . . , vn}. From this point forward, if H = (L,H)
is a prime cover of G of order t, we will always name the vertices of H so that L(v) ⊆ {(v, j) :
j ∈ Ft} for each v ∈ V (G). Moreover, for each vivj ∈ E(G) with j > i, we let AH

vivj
(resp.

BH
vivj

) be the second coordinates of the set of vertices in L(vi) (resp. L(vj)) saturated by the
matching EH(L(vi), L(vj)). The saturation function associated with EH(L(vi), L(vj)) is the
function σH

vivj
: AH

vivj
→ BH

vivj
that maps each q ∈ AH

vivj
to the unique r ∈ BH

vivj
with property

(vi, q)(vj , r) ∈ EH(L(vi), L(vj)). We say that σH
vivj

is good if there is a β ∈ Ft such that for

each a ∈ AH
vivj

,

a− σH
vivj

(a) = β

where subtraction is performed in Ft (note: we take σH
vivj

to be good if AH
vivj

= ∅); that is,
there is a fixed difference between second coordinates of all pairs of matched vertices in H
that correspond to a single edge in G. When σH

vivj
is not good, we say that it is bad. It is

now natural to say the cover H is good if there exists a way to name the vertices of H so that
L(v) ⊆ {(v, j) : j ∈ Ft} for each v ∈ V (G) and every associated saturation function σH

vivj
,

for vivj ∈ E(G) with j > i, is good. From this point forward, whenever we are considering
a good prime cover H = (L,H), we will always assume that the vertices of H have been
named so that every saturation function is good. There is a straightforward application of
the Combinatorial Nullstellensatz when H = (L,H) is a good prime cover of G.

Theorem 3. Let G be a graph with V (G) = {v1, . . . , vn}, and let H = (L,H) be a good prime

cover of G of order t. Suppose that fG ∈ Ft[x1, . . . , xn]. If [
∏n

i=1 x
ti
i ]fG 6= 0 and |L(vi)| > ti

for each i ∈ [n], then there is an H-coloring of G.

Proof. For each v ∈ V (G), let P (v) = {j ∈ Ft : (v, j) ∈ L(v)}. For each vivj ∈ E(G) with
j > i, there is a βi,j ∈ Ft such that a − σH

vivj
(a) − βi,j = 0 for each a ∈ AH

vivj
(note: we
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arbitrarily choose βi,j if AH
vivj

= ∅). Now, let f̂ ∈ Ft[x1, . . . , xn] be the polynomial given by

f̂(x1, x2, . . . , xn) =
∏

vivj∈E(G), j>i

(xi − xj − βij).

Notice that if (p1, p2, . . . , pn) ∈
∏n

i=1 P (vi) satisfies f̂(p1, p2, . . . , pn) 6= 0, then I = {(vi, pi) :
i ∈ [n]} is an H-coloring of G. To see why this is so, suppose for the sake of contradiction
that q > r and (vq, pq) is adjacent to (vr, pr) in H. Since Ft is an integral domain and

f̂(p1, p2, . . . , pn) 6= 0, we know that pr − pq − βr,q 6= 0. On the other hand, since (vq, pq) is
adjacent to (vr, pr) in H,

0 = pr − σH
vrvq

(pr)− βr,q = pr − pq − βr,q

which is a contradiction.
Now, notice that fG and f̂ are polynomials of degree

∑n
i=1 ti = |E(G)|. Also, [

∏n
i=1 x

ti
i ]fG =

[
∏n

i=1 x
ti
i ]f̂ . So, by the Combinatorial Nullstellensatz since |P (vi)| = |L(vi)| > ti for each

i ∈ [n], there is a (p1, p2, . . . , pn) ∈
∏n

i=1 P (vi) such that f̂(p1, p2, . . . , pn) 6= 0. The result
follows.

We now comment on how Theorem 3 in fact applies to S-k-coloring, the common gener-
alization of signed k-coloring, signed Zk-coloring, DP-coloring, group coloring, and coloring
of gained graphs, defined earlier. Suppose that G is a graph with V (G) = {v1, . . . , vn} and
t is a power of a prime. Let St be the symmetric group over Ft. Suppose that S is the
subset of St consisting of all the permutations p ∈ St with the property that i − p(i) is the
same element of Ft for all i ∈ Ft (subtraction is performed in Ft). Theorem 3 implies that if
fG ∈ Ft[x1, . . . , xn], [

∏n
i=1 x

ti
i ]fG 6= 0, and t > ti for each i ∈ [n], then G is S-t-colorable. This

is because given any S-labeling (D,σ) of G there is a corresponding t-fold cover H = (L,H)
of G with the following properties: (1) H is a good prime cover of order t and (2) there is an
H-coloring of G if and only if there is a proper t-coloring of (D,σ).

Theorem 3 also sheds some light on why the Alon-Tarsi Theorem cannot be applied in
the DP-coloring context to even cycles. Suppose that n ∈ N, G = C2n+2, and H = (L,H)
is a 2-fold cover of G. If we view fG as an element of F2[x1, . . . , xn], then [

∏2n+2
i=1 xi]fG = 0,

and the hypotheses of Theorem 3 will not be satisfied. We will also see below in Section 3
that the converse of Theorem 3 does not hold.

We now show how Theorem 3 can be used to prove a well-known DP-coloring result. Our
proof will make use of the fact that if H = (L,H) is any 2-fold cover of a graph G with
V (G) = {v1, . . . , vn} and vertices of H arbitrarily named so that L(v) ⊆ {(v, j) : j ∈ F2} for
each v ∈ V (G), then it must be that for each vivj ∈ E(G) with j > i, σH

vivj
is good.

Proposition 6. Let T be a tree on at least two vertices. Then, χDP (T ) = 2.

Proof. Let V (T ) = {v1, . . . , vn}. Since T has at least one edge, χDP (T ) > 1. Suppose
H = (L,H) is an arbitrary 2-fold cover of G. Clearly, H is a good prime cover of G. It is well
known that there exists an acyclic orientation, D, of T with the property that d+D(vi) ≤ 1.

Thus, diff(D) = 1. Working over F2, this means that [
∏n

i=1 x
d+
D
(vi)

i ]fG 6= 0. Theorem 3 then
implies that G is H-colorable. It follows that χDP (T ) ≤ 2.
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Even though the converse of Theorem 3 does not hold in general, when the hypotheses
of Theorem 3 are not met, Theorem 3 can provide a “clue” as to how one might construct
a cover to establish a lower bound on the DP-chromatic number of a graph. Here is an
illustration of this idea.

Suppose that G is the line graph of a copy of Kp+1 where p is an odd prime. Suppose
V (G) = {v1, . . . , vn} and we view fG as a polynomial in n variables over Fp. In [31], Schauz

showed that [
∏n

i=1 x
p−1
i ]fG = 0. This means that there may exist a p-fold cover H of G such

that there is no H-coloring of G and for each vivj ∈ E(G) with j > i, σH
vivj

is good. This may
be seen as clue. Bernshteyn and Kostochka [6] famously showed that if M is the line graph
of a d-regular graph, then χDP (M) ≥ d + 1. In order to prove this result, they construct a
d-fold cover H′ of M for which there is no H′-coloring, and in their proof, it is easy to observe
that H′ is a good prime cover of order d, thus confirming the clue for constructing such a
cover. Of course, in practice, using such a clue may not be easy. We will give a more detailed
use of similar ideas in Proposition 18 below.

2.2 DP-Coloring the Cone of a Graph

In 2008 Schauz gave a generalization of the Combinatorial Nullstellensatz (see [29, 31]).
The generalization is called Quantitative Combinatorial Nullstellensatz, and we will show
how this generalization along with Theorem 3 can be applied to DP-coloring of the cone of
certain graphs. The cone of a graph G is defined to be K1 ∨G, and the vertex corresponding
to the K1 is called the universal vertex. In this section, we will always denote the universal
vertex with v1.

Theorem 7 (Quantitative Combinatorial Nullstellensatz [29, 31]). Let P1, P2, . . . , Pn be finite

nonempty subsets of a field F and P =
∏n

i=1 Pi. Suppose for j ∈ [n], dj = |Pj |− 1. For every

P (x1, . . . , xn) ∈ F[x1, . . . , xn] of degree at most
∑n

j=1 dj ,

[

n
∏

i=1

xdii

]

P

=
∑

(p1,p2,...,pn)∈P

N(p1, p2, . . . , pn)
−1P (p1, p2, . . . , pn)

where

N(p1, p2, . . . , pn) =

n
∏

j=1





∏

ǫ∈Pj−{pj}

(pj − ǫ)



 .

Note: If |Pj | = 1, we take
∏

ǫ∈Pj−{pj}
(pj − ǫ) to equal 1.

Proposition 8. Let G be a connected bipartite graph with |V (G)| = |E(G)|. Let G′ = K1∨G.

Then, there is an H-coloring of G′ for every good prime f -cover H with f(v1) = 1 for the

universal vertex, and f(v) = 3 for all v ∈ V (G).

Proof. Let G have the bipartition X,Y with |X| = m, |Y | = n, and let X = {v2, . . . , vm+1}
and Y = {vm+2, . . . , vm+n+1}. Suppose we view the graph polynomial fG′ as a polynomial in
m+n+1 variables over F3. Suppose that P1 = {0} and Pi = {0, 1, 2} for i = 2, 3, . . . ,m+n+1.
Let P =

∏n
i=1 Pi. Let y = (y1, y2, . . . , ym+n+1) be the element of P such that y1 = 0,

y2 = y3 = · · · = ym+1 = 1, and ym+2 = ym+3 = · · · = ym+n+1 = 2. Similarly, let z =
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(z1, z2, . . . , zm+n+1) be the element of P such that z1 = 0, z2 = z3 = · · · = zm+1 = 2, and
zm+2 = zm+3 = · · · = zm+n+1 = 1. Since G has a unique bipartition, y and z are the only
elements in P for which f is nonzero.

Using the notation of Theorem 7, we see that N(y) = N(z) = (−1)m+n. So, Theorem 7
implies

[

m+n+1
∏

i=2

x2i

]

fG′

=
∑

(p1,p2,...,pn+m+1)∈P

N(p1, p2, . . . , pn+m+1)
−1f(p1, p2, . . . , pn+m+1)

= N(y)−1f(y) +N(z)−1f(z)

= (−1)m+n(−1)m(−1)m+n + (−1)m+n(−1)n = 2(−1)m.

So, we have that
[

∏m+n+1
i=2 x2i

]

fG′

6= 0. Theorem 3 then implies that there is anH-coloring

of G′.

It is worth mentioning that the result of Proposition 8 could also be deduced from the
weaker result that there is an H-coloring of G′ = K1 ∨C2k+2 for every good prime f -cover H
with f(v1) = 1 for the universal vertex, and f(v) = 3 for all v ∈ V (G′)−{v1}. This is because
when G is a connected bipartite graph with |V (G)| = |E(G)| and G′ = K1 ∨G, deleting all
the vertices in V (G′) of degree less than 3 results in a copy of K1 ∨ C2k+2 for some k ∈ N.

With this in mind, we will now work toward an application of Proposition 8. However,
before we present the application we need some terminology and a result from [20]. Suppose
G is a graph and H = (L,H) is an m-fold cover of G with m ≥ χ(G). We say there is a
natural bijection between the H-colorings of G and the proper m-colorings of G if for any set
S of size m and for each v ∈ V (G) it is possible to set L(v) = {(v, j) : j ∈ S} so that whenever
uv ∈ E(G), (u, j) and (v, j) are adjacent in H for each j ∈ S. To see that this definition
makes sense, suppose there is a natural bijection between the H-colorings of G and the proper
m-colorings of G. Then, for each v ∈ V (G) it is possible to set L(v) = {(v, j) : j ∈ [m]} so
that whenever uv ∈ E(G), (u, j) and (v, j) are adjacent in H for each j ∈ [m]. Note that if I
is the set of H-colorings of G and C is the set of proper m-colorings of G, then the function
f : C → I given by

f(c) = {(v, c(v)) : v ∈ V (G)}

is a bijection.

Proposition 9 ([20]). Let T be a tree on n vertices and H = (L,H) be an m-fold cover of

T such that m ≥ 2 and EH(L(u), L(v)) is a perfect matching whenever uv ∈ E(T ). Then,

there is a natural bijection between the H-colorings of T and the proper m-colorings of T .

Suppose G is a graph, and let M = K1 ∨ G. Suppose that v1 is the universal vertex of
M , and suppose that H = (L,H) is a cover of M . Also, suppose that for fixed l,m ∈ N

satisfying l ≤ m, L(v1) = {(v1, j) : j ∈ {0, . . . , l−1}} and L(v) = {(v, j) : j ∈ {0, . . . ,m−1}}
for each v ∈ V (G). We refer to the edges of H connecting distinct parts of the partition
{L(v) : v ∈ V (M)} as cross-edges. For each j ∈ {0, . . . , l − 1} and v ∈ V (G), let

H(j) = H −NH [(v1, j)] and L(j)(v) = L(v)−NH((v1, j)).

9



Now, suppose for each v ∈ V (G), |EH(L(v1), L(v))| = l (i.e., EH(L(v1), L(v)) is as large as
possible). Then, H(j) = (L(j),H(j)) is an (m−1)-fold cover of G. We say that (v1, t) ∈ L(v1)
is a level vertex if H(t) contains precisely |E(G)|(m − 1) cross-edges (i.e., H(t) contains the
maximum possible number of cross-edges).

With this terminology and Proposition 9 in mind, we are ready to present an application
of Proposition 8.

Theorem 4. Let G be a connected bipartite graph with |V (G)| = |E(G)|. Then, G′ =
K1 ∨ G is f -DP-colorable with f(v1) = 2 for the universal vertex, and f(v) = 3 for all

v ∈ V (G′)− {v1}.

As discussed following the proof of Proposition 8, when G is a connected bipartite graph
with |V (G)| = |E(G)| and G′ = K1 ∨G, deleting all the vertices in V (G′) of degree less than
3 results in a copy of K1∨C2k+2 for some k ∈ N. Hence, to complete the proof of Theorem 4,
it is enough to prove the following statement.

Proposition 10. Let G′ = K1 ∨ C2k+2. Then, G′ is f -DP-colorable with f(v1) = 2 for the

universal vertex, and f(v) = 3 for all v ∈ V (G′)− {v1}.

Proof. We label the vertices of the copy of C2k+2 used to form G′ (in cyclic order) as:
v2, v3, . . . , v2k+3. For the sake of contradiction, suppose that H = (L,H) is a prime f -cover
of G′ such that there is no H-coloring of G′. We may suppose that for each vivj ∈ E(G′),
|EH(L(vi), L(vj))| is as large as possible. Let H′ = (L′,H ′) be the 3-fold cover for the path,

P , with vertices v2, v3, . . . , v2k+3, given by H ′ = H[
⋃2k+3

j=2 L(vj)] − EH(L(v2), L(v2k+3)) and
L′(vj) = L(vj) for each j ∈ {2, 3, . . . , 2k+3}. For each j ∈ {2, 3, . . . , 2k+3} suppose we name
the vertices in L(vj): (vj , 0), (vj , 1), (vj , 2), so that there is a natural bijection between the
proper 3-colorings of P and the H′-colorings of P (this is possible by Proposition 9). Also,
arbitrarily name the vertices in L(v1): (v1, 0), (v1, 1). Now, we have named all the vertices in
V (H).

We may assume that σH
v2v2k+3

is bad since otherwise we could delete an element from
L(v1) to obtain a cover of G′ satisfying the hypotheses of Proposition 8. So, we assume
without loss of generality that {(v2, 0)(v2k+3, 0), (v2, 1)(v2k+3, 2), (v2, 2)(v2k+3, 1)} ⊂ E(H).
It is now easy to see that at most one vertex in L(v1) can be a level vertex. Suppose that
(v1, 0) is not a level vertex, and for j ∈ {2, 3, . . . , 2k + 3} let L′′(vj) = L(vj) − NH((v1, 0)).

Also, let H ′′ = H[
⋃2k+3

j=2 L′′(vj)]. Notice that H′′ = (L′′,H ′′) is a cover for the copy of C2k+2,
C, used to form G′. Since (v1, 0) is not a level vertex, there exists r, q ∈ {2, 3, . . . , 2k + 3}
such that vrvq ∈ E(G′) and |EH′′(L′′(vr), L

′′(vq))| ≤ 1. So, there is a (vq, i) ∈ L′′(vq) that is
not adjacent in H to any elements of L′′(vr). It is therefore possible to greedily construct an
H′′-coloring I of C that contains (vq, i). Then, I ∪ {(v1, 0)} is an H-coloring of G which is a
contradiction.

2.3 Uniquely Colorable Graphs

We will now prove a generalization of Proposition 8. We begin with some terminology. A
graph G is said to be uniquely k-colorable if there is only one partition of its vertex set into
k color classes. From this point forward if G is a uniquely k-colorable graph, we always let

10



{I1, I2, . . . , Ik} be the unique partition of V (G) into k color classes. Also, for each i ∈ [k], we
let ni = |Ii|, and for each 1 ≤ i < j ≤ k, we let mi,j = |EG(Ii, Ij)|.

Proposition 11. Suppose G is a uniquely 3-colorable graph with 2(n1 + n2 + n3) = |E(G)|,
n2 + m1,3 ≡ 0, n3 + m1,2 ≡ 1, and n1 + m2,3 ≡ 2 ( mod 3). Let G′ = K1 ∨ G. Then,

there is an H-coloring of G′ for every good prime f -cover H of order 4 with f(v1) = 1 for

the universal vertex, and f(v) = 4 for all v ∈ V (G).

Proof. We view fG′ as a polynomial in n1 + n2 + n3 + 1 variables over F4 = {0, 1, x, x + 1}.
Clearly, fG′ is a polynomial of degree at most |E(G′)| = 3(n1 + n2 + n3). Suppose that
P1 = {0} and Pi = {0, 1, x, x + 1} for i = 2, 3, . . . , n1 + n2 + n3 + 1. Let P =

∏n
i=1 Pi. Let

I1 = {v2, . . . , vn1+1}, I2 = {vn1+2, . . . , vn1+n2+1}, and I3 = {vn1+n2+2, . . . , vn1+n2+n3+1}, be
the three unique color classes of G.

For each i ∈ [6] let fi : {1, 2, 3} → {1, x, x + 1} be the bijective function such that:
f1(1) = 1, f1(2) = x, f1(3) = x+1, f2(1) = 1, f2(2) = x+1, f2(3) = x, f3(1) = x, f3(2) = 1,
f3(3) = x+1, f4(1) = x, f4(2) = x+1, f4(3) = 1, f5(1) = x+1, f5(2) = 1, f5(3) = x, f6(1) =
x + 1, f6(2) = x, and f6(3) = 1. Now, for each i ∈ [6], let yi = (y1, y2, . . . , yn1+n2+n3+1) be
the element of P such that y1 = 0, y2 = y3 = · · · = yn1+1 = fi(1), yn1+2 = yn1+3 = · · · =
yn1+n2+1 = fi(2), and yn1+n2+2 = yn1+n2+3 = · · · = yn1+n2+n3+1 = fi(3). Since G is uniquely
3-colorable, y1,y2, . . . ,y6 are the only elements in P for which fG′ is nonzero.

Using the notation of Theorem 7, we see that for each i ∈ [6], N(yi) = (−1)n1+n2+n3 = 1.
So, Theorem 7 and the fact that n2 +m1,3 ≡ 0, n3 +m1,2 ≡ 1, and n1 +m2,3 ≡ 2 ( mod 3)
implies

[

n1+n2+n3+1
∏

i=2

x3i

]

fG′

=
∑

(p1,p2,...,pn1+n2+n3+1)∈P

N(p1, p2, . . . , pn1+n2+n3+1)
−1fG′(p1, p2, . . . , pn1+n2+n3+1)

=

6
∑

i=1

fG′(yi)

= xn2+m1,3(x+ 1)n3+m1,2 + xn3+m1,2(x+ 1)n2+m1,3 + xn1+m2,3(x+ 1)n3+m1,2

+ xn1+m2,3(x+ 1)n2+m1,3 + xn3+m1,2(x+ 1)n1+m2,3 + xn2+m1,3(x+ 1)n1+m2,3

= (1)(x + 1) + x(1) + (x+ 1)2 + (x+ 1)(1) + x2 + (1)(x)

= x+ x+ 1 = 1.

So, we have that
[

∏n1+n2+n3+1
i=2 x3i

]

fG′

6= 0. Theorem 3 then implies that there is an

H-coloring of G′.

For a simple application of Proposition 11, consider G = K2 ∨ P5. In G, let v1, v2
be the vertices of the copy of K2, and let the vertices of the copy of P5 (in order) be:
u1, u2, u3, u4, u5. Clearly, G is uniquely 3-colorable, and if we let I1 = {u2, u4}, I2 = {v1, v2},
and I3 = {u1, u3, u5}, then it is clear that the hypotheses of Proposition 11 are satisfied.
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We will now present a DP-coloring analogue of a result that appears in [1], where it is
shown that existence of an appropriate list assignment that leads to a unique coloring of G,
implies f -choosability of G for

∑

v∈V (G) f(v) = |V (G)|+ |E(G)| (for a nontrivial application
of this result in [1] see [18]).

Proposition 12. Let G be a graph, and let f : V (G) → N be such that
∑

v∈V (G) f(v) =
|V (G)| + |E(G)|. If P is a list assignment of G such that for each v ∈ V (G), |P (v)| = f(v)
and P (v) ⊆ Ft for some prime power t, and there is a unique proper P -coloring of G, then

there is an H-coloring of G for every good prime f -cover H of order t.

Proof. Suppose V (G) = {v1, . . . , vn} and H is a good prime f -cover of G of order t. We
view fG as a polynomial in n variables over Ft. Clearly, fG is a polynomial of degree at most
|E(G)| =

∑n
i=1(|P (vi)| − 1). For i ∈ [n], let di = |P (vi)| − 1. Let P =

∏n
i=1 Pi. Since there is

a unique proper P -coloring of G, we know there is exactly one element in P at which fG is
nonzero. Suppose (a1, . . . , an) ∈ P and fG(a1, . . . , an) 6= 0. Using the notation of Theorem 7,

[

n
∏

i=1

xdii

]

fG

= N(a1, . . . , an)
−1fG(a1, . . . , an).

Since Ft is an integral domain, we have that N(a1, . . . , an)
−1fG(a1, . . . , an) 6= 0. Theorem 3

then implies that there is an H-coloring of G.

We can use Proposition 12 to prove a slightly stronger (albeit obvious 4) version of Propo-
sition 6. The result makes use of the fact that if T is a tree, there is an ordering of the
elements of V (T ), v1, . . . , vn, so that for each i ∈ {2, . . . , n}, vi has exactly one neighbor
among v1, . . . , vi−1.

Corollary 13. Let T be a tree on n vertices with at least one edge. Suppose v1, . . . , vn
is an ordering of the elements of V (T ) so that for each i ∈ {2, . . . , n}, vi has exactly one

neighbor among v1, . . . , vi−1. Then, T is f -DP-colorable for f(v1) = 1 and f(vi) = 2 for each

i ∈ {2, . . . , n}.

Proof. Suppose that H is an arbitrary f -cover of T . We know that H is a good prime f -cover
of order 2. Clearly,

∑

v∈V (T ) f(v) = 2n − 1 = |V (T )|+ |E(T )|. Let P be the list assignment
for T given by L(v1) = {0} and L(vi) = {0, 1} for each i ∈ {2, . . . , n}. Then, it is clear
that there is a unique proper P -coloring of T . Proposition 12 then implies that there is an
H-coloring of T .

3 Prime Covers of Order 3

As we have seen above, prime covers of order 2 are ideal covers to be working with when
applying Theorem 3 (since when we have a prime cover of order 2, H, σH

vivj
is always good,

as we saw in Proposition 6 and Corollary 13). In this section, we will see that if we work a
bit harder, we can obtain a Theorem that applies to all prime covers of order 3. Throughout
this section, unless otherwise noted, we assume that G is a graph with V (G) = {v1, . . . , vn}.
We also assume that H = (L,H) is a prime cover of G of order 3.

4Corollary 13 can be easily proven with greedy coloring. Our purpose in the proof of Corollary 13 is to
give a very simple application of Proposition 12.
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3.1 Dealing with Bad Matchings

In the context of prime covers of order 3, we have the following observation.

Observation 14. Suppose σH
vivj

is bad. Then there exists βi,j ∈ F3 such that a+σH
vivj

(a) = βi,j

for each a ∈ AH
vivj

.

Let M = {σH
vivj

: vivj ∈ E(G), j > i}. Let B : M → {−1, 1}, be the function given by

B(σH
vivj

) =

{

−1 if σH
vivj

is good

1 if σH
vivj

is bad.

Theorem 15. Suppose G is a graph with V (G) = {v1, . . . , vn} and H = (L,H) is a prime

cover of G of order 3 with the vertices of H arbitrarily named so that L(v) ⊆ {(v, j) : j ∈ F3}
for each v ∈ V (G). Let f(x1, . . . , xn) ∈ F3[x1, . . . , xn] be given by

f(x1, . . . , xn) =
∏

vivj∈E(G), j>i

(xi +B(σH
vivj

)xj).

If [
∏n

i=1 x
ti
i ]f 6= 0 and |L(vi)| > ti for each i ∈ [n], then there is an H-coloring of G.

Proof. For each v ∈ V (G), let P (v) = {j ∈ F3 : (v, j) ∈ L(v)}. By Observation 14, for each
vivj ∈ E(G) with j > i, there is a βi,j ∈ F3 such that a+B(σH

vivj
)σH

vivj
(a)− βi,j = 0 for each

a ∈ AH
vivj

(note: we arbitrarily choose βi,j if AH
vivj

= ∅). Now, let f̂ ∈ F3[x1, . . . , xn] be the
polynomial given by:

f̂(x1, x2, . . . , xn) =
∏

vivj∈E(G), j>i

(xi +B(σH
vivj

)xj − βij).

Similar to the analogous result proven in the proof of Theorem 3, if (p1, p2, . . . , pn) ∈
∏n

i=1 P (vi) satisfies f̂(p1, p2, . . . , pn) 6= 0, then I = {(vi, pi) : i ∈ [n]} is an H-coloring of
G.

Notice that f and f̂ are polynomials of degree
∑n

i=1 ti = |E(G)|. Also, [
∏n

i=1 x
ti
i ]f =

[
∏n

i=1 x
ti
i ]f̂ . So, by the Combinatorial Nullstellensatz since |P (vi)| = |L(vi)| > ti for each

i ∈ [n], there is a (p1, p2, . . . , pn) ∈
∏n

i=1 P (vi) such that f̂(p1, p2, . . . , pn) 6= 0. The result
follows.

Interestingly, the polynomials f and f̂ in the proof of Theorem 15 are considered in [33]
where the authors study the Alon-Tarsi Number and Modulo Alon-Tarsi Number of signed
graphs. We can use Theorem 15 to get a sufficient algebraic condition for a graph G to satisfy
χDP (G) ≤ 3.

Corollary 5. Suppose G is a graph with χDP (G) ≥ 2 and V (G) = {v1, . . . , vn}. Let F ⊆
F3[x1, . . . , xn] be the set of at most 2|E(G)| polynomials given by:

F =







∏

vivj∈E(G), j>i

(xi + bi,jxj) : each bi,j ∈ {−1, 1}







.

If for each f ∈ F there exists (t1, t2, . . . , tn) ∈
∏n

i=1{0, 1, 2} such that [
∏n

i=1 x
ti
i ]f 6= 0, then

χDP (G) ≤ 3.
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Proof. Suppose that H = (L,H) is an arbitrary 3-fold cover of G with the vertices of H
arbitrarily named so that L(v) ⊆ {(v, j) : j ∈ F3} for each v ∈ V (G). Let f(x1, x2, . . . , xn) ∈
F3[x1, . . . , xn] be the polynomial given by

f(x1, x2, . . . , xn) =
∏

vivj∈E(G), j>i

(xi +B(σH
vivj

)xj).

Clearly, f ∈ F . So, there exists (t1, t2, . . . , tn) ∈
∏n

i=1{0, 1, 2} such that [
∏n

i=1 x
ti
i ]f 6= 0.

Since |L(vi)| = 3 > ti for each i ∈ [n], there is an H-coloring of G by Theorem 15. Since H
was arbitrary, we have that χDP (G) ≤ 3.

Using the idea of natural bijections (as discussed in the previous Section), it is possible
to simplify Corollary 5 a bit by reducing the number of polynomials that need to be checked.

Corollary 16. Suppose G is a connected graph containing a cycle with V (G) = {v1, . . . , vn},
and T is a spanning tree of G. Let F ⊆ F3[x1, . . . , xn] be the set of at most 2|E(G)|−|V (G)|+1

polynomials given by:

F =











∏

vivj∈E(T ), j>i

(xi − xj)









∏

vivj∈E(G)−E(T ), j>i

(xi + bi,jxj)



 : each bi,j ∈ {−1, 1}







.

If for each f ∈ F there exists (t1, t2, . . . , tn) ∈
∏n

i=1{0, 1, 2} such that [
∏n

i=1 x
ti
i ]f 6= 0, then

χDP (G) ≤ 3.

Proof. Suppose that H = (L,H) is an arbitrary 3-fold cover of G. We may assume that
|EH(L(vi), L(vj))| = 3 whenever vivj ∈ E(G). LetH ′ = H−

⋃

vivj∈E(G)−E(T )EH(L(vi), L(vj))

and H′ = (L,H ′). Notice that H′ is a 3-fold cover of T . By Proposition 9, it is possible to
assign names to the vertices of H such that L(v) = {(v, j) : j ∈ F3} for each v ∈ V (G) and
there is a natural bijection between the proper 3-colorings of T and the H′-colorings of T .
Let f(x1, . . . , xn) ∈ F3[x1, . . . , xn] be the polynomial given by

f(x1, . . . , xn) =
∏

vivj∈E(G), j>i

(xi +B(σH
vivj

)xj).

Since σH
vivj

is good whenever vivj ∈ E(T ), f ∈ F . So, there exists (t1, t2, . . . , tn) ∈
∏n

i=1{0, 1, 2}

such that [
∏n

i=1 x
ti
i ]f 6= 0. Since |L(vi)| = 3 > ti for each i ∈ [n], there is an H-coloring of G

by Theorem 15. Since H was arbitrary, we have that χDP (G) ≤ 3.

3.2 Some Applications

Proposition 17. χDP (K4,4−{e1, e2}) = 3, where {e1, e2} is a matching of size two in K4,4.

Proof. Since G′ = K4,4 −{e1, e2} contains a copy of C4, we have that χDP (G
′) > 2. Suppose

V (G′) = {v1, . . . , v8}. Using a computer to analyze the 16384 polynomials over F3 contained
in

F =







∏

vivj∈E(G′), j>i

(xi + bi,jxj) : each bi,j ∈ {−1, 1}







,

we see that the hypotheses of Corollary 5 are satisfied. Thus, χDP (G
′) = 3.
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The converse of Corollary 5 does not hold. We now present an example to show this. It is
known that χDP (K3,t) = 3 if and only if t = 2, 3, 4, 5 ([27]). Suppose that G is a copy of K3,5

with partite sets {v1, v2, v3} and {v4, v5, v6, v7, v8}. View the polynomial fG as an element of
F3[x1, . . . , x8]. We know fG is homogenous of degree 15. Let T be the set containing the 8
elements in

∏8
i=1{0, 1, 2} with coordinates summing to 15. It is easy to compute that for each

(t1, t2, . . . , t8) ∈ T , [
∏8

i=1 x
ti
i ]fG = 0. Notice that this example also shows that the converses

of Theorems 3 and 15 do not hold.
Even though the converse of Corollary 5 does not hold, when the hypotheses of Corollary 5

are not satisfied, we can still use that information to give ourselves “clues” about how one
might construct a 3-fold cover for which there is no coloring.

As an example suppose thatG = C2
6 where the vertices ofG in cyclic order are: v1, v2, . . . , v6.

Consider the following polynomials over F3:

f1(x1, x2, . . . , x6) = fG(x1, x2, . . . , x6) and

f2(x1, x2, . . . , x6) = (x1 + x2)(x1 + x3)
∏

vivj∈E(G)−{v1v2,v1v3}, j>i

(xi − xj).

It is not hard to compute: [
∏6

i=1 x
2
i ]f1 = 0 and [

∏6
i=1 x

2
i ]f2 = 1. So, Theorem 15 tells us that

if H = (L,H) is a 3-fold cover for G with vertices of H named so that σH
vivj

is bad when
(i, j) = (1, 2) and when (i, j) = (1, 3) and good otherwise, then there is an H-coloring of G.
On the other hand, there may exist a 3-fold cover for G, H, that is a good prime cover of
order 3 for which there is no H-coloring of G.

This second observation gives us an idea about what the proof of the following Proposition
might look like.

Proposition 18. χDP (C
2
3k) > 3 for any k ≥ 2.

Proof. Let G = C2
3k, and denote the vertices of G in cyclic order as: v1, v2, . . . , v3k. We will

prove the desired result by constructing a 3-fold cover of G for which there is no coloring. For
each i ∈ [3k], let L(vi) = {(vi, t) : t ∈ F3}. Then, let H be the graph with V (H) =

⋃3k
i=1 L(vi).

We draw the edges of H as follows: draw edges so that H[L(vi)] is a complete graph for each
i ∈ [3k] and for each vivj ∈ E(G) − {v3k−2v3k, v3k−1v3k} draw an edge between (vi, t) and
(vj , t) for each t ∈ F3. Finally, for j = 3k − 2, 3k − 1 and each t ∈ F3, draw an edge between
(vj , t) and (v3k, t+ 1) where addition is performed in F3.

Now, H = (L,H) is clearly a 3-fold cover of G. We claim that there is no H-coloring of G.
For the sake of contradiction, suppose that I is an H-coloring of G. We know that there exist
r, q ∈ F3 with r 6= q such that (v1, q), (v2, r) ∈ I. Suppose that l is the element in F3−{q, r}.
The edges in EH(L(v1), L(v3k)) ∪ EH(L(v2), L(v3k)) imply that (v3k, l) ∈ I. By observing
the edges in the induced subgraph H[

⋃3k−1
i=1 L(vi)], we see that (v3k−1, q), (v3k−2, r) ∈ I. It

must be that l = q + 1 or l = r + 1. So, (v3k, l) is adjacent to (v3k−1, q) or (v3k−2, r). This
contradicts the fact that I is an H-coloring of G.

Note that in the proof above H = (L,H) is a 3-fold cover of G such that σH
vivj

is good for

all vivj ∈ E(G). It is also worth mentioning that χℓ(C
2
3k) = 3 can be proven via the Alon-

Tarsi Theorem [17]. It is also known that χℓ(C
2
n) = 4 whenever n ≥ 6 and n is not divisible

by 3 [28]. This along with Proposition 18 and the fact that χDP (G) ≤ ∆(G) provided that

15



G is neither a cycle nor a complete graph, immediately allows us to give the DP-chromatic
number of all cycle squares.

Corollary 19. χDP (C
2
3 ) = 3, χDP (C

2
5 ) = 5, and χDP (C

2
n) = 4 whenever n ∈ {4, 6, 7, 8, . . .}.

Acknowledgment. We are thankful to Xuding Zhu for his encouragement and helpful
comments.
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