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Abstract

A pair (T0, T1) of disjoint sets of vertices of a graph G is called a perfect

bitrade in G if any ball of radius 1 in G contains exactly one vertex in T0

and T1 or none simultaneously. The volume of a perfect bitrade (T0, T1)
is the size of T0. In particular, if C0 and C1 are distinct perfect codes
with minimum distance 3 in G then (C0 \C1, C1 \C0) is a perfect bitrade.
For any q ≥ 3, r ≥ 1 we construct perfect bitrades in the Hamming graph
H(qr + 1, q) of volume (q!)r and show that for r = 1 their volume is
minimum.

Keywords: perfect code, one-error-correcting code, trade, bitrade, spherical
bitrade, perfect bitrade, MDS code, alternating group

1 Introduction

Bitrades are used for constructing large classes of codes and designs and investi-
gating nontrivial structural properties of these combinatorial objects. It should
be noted that in general bitrades are defined independently on including them
into codes or designs. Bitrades could exist even regardless of existence of the
parent objects with the corresponding parameters. These facts provide a serious
additional motivation for constructing bitrades and studying their properties.
Classical problems in this area are the existence of bitrades and bounds on their
volumes.

In the paper we consider the problem of constructing perfect bitrades, which
concerns to the classical problem of existence of perfect codes in the non prime
power case. In 1973 Zinoviev and Leontiev [19] and independently Tietäväinen
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[15] proved that if q is a power of a prime number then there are only perfect
codes with the parameters of q-ary Hamming codes, binary and ternary Golay
codes. The number of perfect one-error-correcting codes is double exponential
[8], however full classification and enumeration are still open problems. By
attempts of several authors it was proved that for minimum distances more
than 5 there are no perfect codes over a non prime alphabets. In [1] Bassalygo
at al. established the nonexistence of perfect codes for q = 2i3j, i, j ≥ 1
with minimum distance at least 5. In 1964 Golomb and Posner proved the
nonexistence of perfect codes of length 7 with minimum distance 3 over the
alphabet of six elements. More information could be found in [20] and in the
survey [4] with the lists of references there. A special case of bitrades arize
from components (i-components, α-components) of codes. We refer to [14] for
a survey on the switchings of i-components in perfect codes, see also [10, 11].
We note that a concept of bitrades was developed for MDS codes, see a work of
Potapov [12].

A Steiner (w− 1, w, n)-bitrade (T0, T1) is defined as a pair of disjoint collec-
tions T0 and T1 of w-subsets of a n-element point set, such that any (w − 1)-
subset of the point set is a subset of exactly one set in T0 and T1 or none. A
lower bound on the volume (i.e. the size of |T0|) of such bitrade is obtained by
Hwang in [6] along with a characterization for the bitrades of minimum volume.
For a survey on Steiner and other related bitrades we refer to [5]. Krotov et
al. [9] suggested a generalization of this concept for q-ary Steiner bitrades and
established an attainable lower bound for their volumes.

For perfect bitrades that are embedded into perfect codes inH(n, 2) the lower
bound 2(n−1)/2 for their volumes is known, see Etzion and Vardy [3] or Solov’eva
[13]. The argument of [3] holds for the perfect bitrades regardless of being
embedded into a perfect code and for any odd n not necessarily being a power
of two but one. The bound is attained on so-called minimum i-components,
that were used for constructing first nonlinear perfect binary codes by Vasil’ev.
A classification of perfect bitrades in the binary case was obtained by Krotov
for n = 9 in [7].

Given a perfect bitrade (T0, T1) in the Hamming graph H(n, q), it is not
hard to see that the vector χT0 − χT1 is an eigenvector of the adjacency matrix
of H(n, q) with the eigenvalue −1. Here χT0 and χT1 denote the characteristic
vectors of T0 and T1 respectively in the vertex set of H(n, q). This fact relates
the problem of determining the minimum volume of perfect bitrades to the
problem of finding eigenvectors of H(n, q) with minimum size of support. For
eigenvalue −1 this problem was firstly considered in [18] and solved for the
eigenvalue (n− 1)q−n in [16] by Valyuzhenich. The approach of work [16] was
further extended in [17] for arbitrary eigenvalue of the Hamming graph with
complete solution for all eigenvalues in case when q is at least 4. In particular,

the result [17] implies a lower bound 2n−
n−1
q (q − 1)

n−1
q for the volume of the

perfect bitrades in H(n, q), q ≥ 4. A construction for perfect bitrades from [18]

gives the upper bound 2
n−1
q

+1q
(n−1)(q−2)

q on the minimum volume of a bitrade
in H(n, q) for q being powers of primes.
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The current paper is organized as follows. Basic definitions and a revision
of some previous results are given in Section 2. In particular, we introduce a
concept of a spherical bitrade which is crucial for obtaining the main results of
the paper. Basic theory regarding spherical and perfect bitrades is presented in
Section 3. We reveal interrelations between perfect and spherical bitrades and
eigenfunctions of Hamming graphs and obtain a natural recursive construction
for spherical bitrades. In particular, the results of Section 3 allow to reduce the
problem of constucting perfect bitrades in H(qr+1, q) to constructing spherical
bitrades in H(q, q). The latter is solved in Section 4 as we split the opposite of
the repetition code by the parity corresponding permutation in order to obtain
bitrades. Thus we construct perfect bitrades in the Hamming graph H(qr+1, q)
of the volume (q!)r for any q ≥ 3, r ≥ 1. In Section 5 using a combinatorial
argument we show that the actual value of the minimum volume of perfect
bitrade in H(q + 1, q) is q!.

2 Definitions and preliminaries

The vertex set of the Hamming graph H(n, q) consists of the tuples of length n
over the alphabet set {0, . . . , q − 1} which we denote by A and tuples x and y
are adjacent if they differ in exactly one coordinate position. A code in a graph
G is a subset of its vertices. The size of C is |C| and its minimum distance
dC is dC = minx,y∈C,x 6=yd(x, y), where d(x, y) is the length of a shortest path
connecting x and y. A code C is one-error-correcting perfect (in throughout
what follows perfect) if the balls of radius 1 centered at the vertices of C part
the vertex set of G. If C and D are codes in G, d(C,D) denotes min{d(x, y) :
x ∈ C, y ∈ D}.

When C is a code in the Hamming graph H(n, q) we use a traditional ex-
pression q-ary code of length n. If q is a power of a prime, the alphabet set A is
associated with the Galois field Fq of order q. In this case we consider the linear
space Fn

q on the set vertices of H(n, q) naturally inherited from Fq. With this
regard, a code is called linear, if it is a linear subspace of Fn

q . The well-known
Singleton bound states that the size of a q-ary code C of length n with minimum
distance dC is not greater than qn−dC+1. If the size of the code C attains the
Singleton bound, C is called a MDS code.

Let x be a vertex of a graph G. Denote by O(x) the sphere of radius one
centered at x, i.e. the set of the neighbors of x in G. Let S0 and S1 be two
disjoint codes in G. The ordered pair (S0, S1) is called a spherical bitrade in G
if for any vertex x of G we have

|O(x) ∩ S0| = |O(x) ∩ S1| ∈ {0, 1}.

Denote by O(x) the ball of radius one centered at a vertex x in G, i.e. O(x) =
O(x) ∪ {x}. The ordered pair (S0, S1) is called a perfect bitrade in G if for any
vertex x of G we have

|O(x) ∩ S0| = |O(x) ∩ S1| ∈ {0, 1}.
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The volume of a spherical or perfect bitrade (S0, S1) is |S0| (or |S1|).
A real-valued function f defined on the vertex set of a graph G is called a

λ-eigenfunction, if it is not the all-zero function and

λf(x) =
∑

y∈O(x)

f(y).

In other words, the vector of the values of f is an eigenvector of the adja-
cency matrix of the graph G with the eigenvalue λ. It is well-known that the
eigenvalues of the adjacency matrix of the Hamming graph H(n, q) is the set
{n(q − 1)− qi : i ∈ {0, . . . , n}}.

For a pair of tuples x and y over the same alphabet define their concatenation
by x|y. If C and D are two codes then denote by C × D the following code
{x|y : x ∈ C, y ∈ D}. Let f and g be two real-valued functions on the vertices of
H(n, q) and H(n′, q) respectively. The tensor product of f and g is the function
f ·g defined on the set of vertices ofH(n+n′, q) as follows: (f ·g)(x|y) = f(x)g(y).

Lemma 1. [17][Corollary 1] Let f be a λ-eigenfunction of H(n, q) and g be a
µ-eigenfunction of H(n′, q). Then the function f · g is a (λ + µ)-eigenfunction
of H(n+ n′, q).

Let i1, . . . , ik be pairwise distinct coordinate positions, {i1, . . . , ik} ⊆
{1, . . . , n} and a1, . . . , ak be symbols of the alphabet set A. The set of all tuples
x of length n over A such that xil = al for any l ∈ {1, . . . , k} is called a face in
H(n, q) and is denoted by Γa1...ak

i1...ik
. Any position from {1, . . . , n}\{i1, . . . , ik} in

the face Γa1...ak

i1...ik
is called free. We finish the preliminary part of the paper with

a well-known result of Delsarte.

Theorem 1. [2] Let f be a (n(q − 1) −mq)-eigenfunction of H(n, q) for m ∈
{0, . . . , n}. Then for any k ≤ m − 1, any pairwise distinct elements i1, . . . , ik
of {1, . . . , n} and symbols a1, . . . , ak of A the sum of the values of f on the face
Γa1...ak

i1...ik
is zero.

Corollary 1. Let f be a (n(q − 1) − mq)-eigenfunction of H(n, q) for j ∈
{0, . . . , n} . Then for any pairwise distinct elements i1, . . . , im−1 of {1, . . . , n}
and symbols a1, . . . , ak of A the function f has at least two nonzero values on
the face Γ

a1...am−1

i1...im−1
or all values of f on Γ

a1...am−1

i1...im−1
are zeroes.

3 Spherical and perfect bitrades

3.1 Bitrades and eigenfunctions

We now give a characterization for perfect bitrades in graphs and spherical
bitrades in Hamming graphs in terms of eigenfunctions of these graphs.

Proposition 1. Let T0 and T1 be disjoint codes in a graph G of diameter at least
3. The ordered pair (T0, T1) is a perfect bitrade in G if and only if dT0 = dT1 = 3
and χT0 − χT1 is a (−1)-eigenfunction of G.
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Proof. Let for a pair of disjoint codes T0 and T1 the equality |O(x) ∩ T0| =
|O(x) ∩ T1| be fulfilled for any vertex x of G. We see that this property holds
if and only if −(χT0 − χT1)(x) =

∑
y∈O(x)

χT0(y) − χT1(y) for any vertex x of G,

i.e. χT0 − χT1 is a (-1)-eigenfunction of G.
Obviously, the balls of radius one centered at the vertices of a code with

minimum distance d are disjoint if and only if d is at least 3. Let (T0, T1) be a
perfect bitrade, x and y be neighbors from T0 and T1. Let z be a neighbor of x
but not a neighbor of y. By the definition of a perfect bitrade, z has a neighbor
in T1 at distance 3 from y.

A graph G of diameter d is called distance-regular, if there are constants
pkij , i, j, k ∈ {0, . . . , d} such that for any pair of vertices x, y, d(x, y) = k pkij =
|{z : d(x, z) = i, d(z, y) = j}|. In throughout what follows ⊕ denotes the
addition via modulo 2.

Lemma 2. Let G be a distance-regular graph with p111, p
2
21 6= 0. We have the

following:
1. Let C be a code in G. Then |O(x) ∩ C| ≤ 1 if and only if dC ≥ 3.
2. Let S0 and S1 be disjoint codes in G. Then χS0 −χS1 is a 0-eigenfunction

of G if and only if |O(x) ∩ S0| = |O(x) ∩ S1| for any vertex x of G.
3. Let (S0, S1) be a spherical bitrade in G or dS0 , dS1 ≥ 3, χS0 − χS1 be a

0-eigenfunction of G. Then dS0 = dS1 = 3.

Proof. 1. The sufficiency is clear. If there are vertices from C at distance 1 or
2 in G, then they obviously have a common neighbor x, so |O(x) ∩ C| ≥ 2.

2. Follows from the definition of a 0-eigenfunction of G.
3. Since p221 is nonzero there is a path of length 4: x, x1, x2, x3 in G such

that x ∈ Si, x
2 ∈ Si⊕1, d(x

3, x) = 2, i ∈ {0, 1}. The vertex x3 is a neighbor of
x2 from Si⊕1. By the definition of a spherical bitrade and the second statement
of the current lemma x3 must have a neighbor from Si. The latter is at distance
3 from x because dSi

≥ 3 (see the first statement of the current lemma), so
dSi

= 3.

Proposition 2. Let G be a distance-regular graph with p111, p
2
21 6= 0. The fol-

lowing statements are equivalent for codes S0 and S1 in G:
i. The pair (S0, S1) is a spherical bitrade in G.
ii. The minimum distances of S0 and S1 are 3 and χS0 − χS1 is a 0-

eigenfunction of G.
iii. The minimum distances of S0 and S1 are 3, d(S0, S1) = 2 and for any

x ∈ Si there are exactly p011/p
2
11 vertices in Si⊕1 at distance 2 from x.

Proof. (i)∼(ii) Follows from the first and the second statements of Lemma 2.
(i)∼(iii) Let (S0, S1) be a spherical bitrade. Then by the third statement of

Lemma 2 we have dS0 = dS1 = 3. Suppose that x ∈ S0 is a neighbor of y ∈ S1.
Then by the definition of a spherical bitrade, x has a neighbor from S0, which
contradicts the first statement of Lemma 2. Therefore, d(S0, S1) is 2.

5



Now let S0 and S1 be two codes with minimum distances three such that
d(S0, S1) = 2. A vertex x from S0 ∪ S1 has no neighbors in S0 and S1 because
dS0 = dS1 = 3, d(S0, S1) = 2.

If x is in S0 ∪ S1 then |O(x) ∩ S0| = |O(x) ∩ S1| = 0. (1)

Given a vertex x from Si let us consider the set {y ∈ Si⊕1 : d(x, y) = 2},
i ∈ {0, 1}. Each of the vertices from this set has exactly p211 common neighbors
with x. Moreover, distinct vertices from {y ∈ Si⊕1 : d(x, y) = 2} have disjoint
sets of common neighbors with x because dSi⊕1 = 3. Now each of the neighbors
of x is a neighbor of exactly one vertex from Si⊕1 if and only if there are exactly
|O(x)|/p211 = p011/p

2
11 vertices from Si⊕1 at distance 2 from x. Taking into

account the property (1), the proposition follows.

In nonbipartite case we have the following characterization for Hamming
graphs.

Corollary 2. The following assertions are equivalent for q greater or equal to
3 and for two disjoint q-ary codes S0 and S1 of length n:

i. The pair (S0, S1) is a spherical bitrade in H(n, q).
ii. The minimum distances of S0 and S1 are 3 and χS0 − χS1 is a 0-

eigenfunction of H(n, q).
iii. The minimum distances of S0 and S1 are 3, d(S0, S1) = 2 and for any

x ∈ Si there are exactly (q − 1)n/2 tuples of Si⊕1 at distance 2 from x.

The eigenvalues of the Hamming graph are {n(q − 1)− qi : i ∈ {0, . . . , n}}.
Then taking into account the eigenfunction representations given in Proposition
1 and Corollary 2 we see that a spherical (perfect respectively) bitrade exists in
H(n, q) then necessarily n is qr (qr + 1 respectively), for some r ≥ 1.

3.2 Perfect bitrades from spherical bitrades

Proposition 3. Let (S0, S1) be a spherical bitrade in H(qr, q). Then (S0 ×
{0} ∪ S1 × {1}, S0 × {1} ∪ S1 × {0}) is a perfect bitrade.

Proof. By Corollary 2 the function χS0 − χS1 is a 0-eigenfunction of H(qr, q),
d(S0, S1) = 2 and dS0 and dS1 are three. Consider the difference of characteristic
functions χ0 and χ1 of vertices (symbols) 0 and 1 in the complete graph H(1, q).
It is clear that χ0 − χ1 is a (−1)-eigenfunction of H(1, q). By Lemma 1 we
conclude that

(χS0 − χS1) · (χ0 − χ1) = χS0×{0}∪S1×{1} − χS0×{1}∪S1×{0}

is a (−1)-eigenfunction of H(qr + 1, q). The minimum distances of S0 and S1

are three and the distances between vertices of S0 and S1 are at least two. This
implies that the minimum distances of S0×{0}∪S1×{1} and S0×{1}∪S1×{0}
are three. By Proposition 1 we conclude that (S0 × {0} ∪ S1 × {1}, S0 × {1} ∪
S1 × {0}) is a perfect bitrade.
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3.3 A recursive construction for spherical bitrades

Theorem 2. Let (S0, S1) and (S′
0, S

′
1) be spherical bitrades in H(qr, q) and

H(qr′, q). Then (S0 × S′
0 ∪ S1 × S′

1, S0 × S′
1 ∪ S1 × S′

0) is a spherical bitrade in
H(q(r + r′), q).

Proof. By Corollary 2 the functions χS0−χS1 and χS′
0
−χS′

1
are 0-eigenfunctions

of H(qr, q) and H(qr′, q) and the minimum distances of S0, S1, S
′
0, S

′
1 are three.

Consider the tensor product (χS0 −χS1) ·(χS′
0
−χS′

1
). By Lemma 1 this function

is a 0-eigenfunction of H(q(r + r′), q). We have the following equalities:

(χS0 −χS1) · (χS′
0
−χS′

1
) = (χS0 ·χS′

0
)− (χS1 ·χS′

0
)− (χS0 ·χS′

1
)+ (χS1 ·χS′

1
) =

= χS0×S′
0
+ χS1×S′

1
− χS0×S′

1
− χS1×S′

0
= χS0×S′

0∪S1×S′
1
− χS0×S′

1∪S1×S′
0
.

We see that the function χS0×S′
0∪S1×S′

1
−χS0×S′

1∪S1×S′
0
is a 0-eigenfunction

of H(q(r + r′), q). Moreover it is easy to see that the minimum distances of
S0 × S′

0 ∪ S1 × S′
1 and S0 × S′

1 ∪ S1 × S′
0 are also three which follows from the

minimum distances of S0, S1, S
′
0, S

′
1. By Corollary 2 the pair (S0 × S′

0 ∪ S1 ×
S′
1, S0 × S′

1 ∪ S1 × S′
0) is a spherical bitrade.

4 Constructions of spherical and perfect bi-

trades

It is a well-known fact that the action of any automorphism of H(n, q) can
be represented as the action of a permutation π on the coordinate positions
{1, . . . , n} followed by the action of n permutations σ1, . . . , σn of the alphabet
set A:

π(x1, . . . , xn) = (xπ−1(1), . . . , xπ−1(n)),

(σ1, . . . , σn)(x1, . . . , xn) = (σ1(x1), . . . , σn(xn)).

Let SymA and AltA denote the symmetric and alternating groups on the
elements of the set A. Define the codes S0 and S1 as follows:

S0 = {(π(0), π(1), . . . , π(q − 1)) : π ∈ AltA}

S1 = {(π(0), π(1), . . . , π(q − 1)) : π ∈ SymA \AltA}
(2)

Note that

S1 = {(π(1), π(0), π(2), . . . , π(q − 1)) : π ∈ AltA}.

So the group {(π, π, . . . , π) : π ∈ AltA} acts regularly on the tuples of the codes
S0 and S1 and the group {(π, π, . . . , π) : π ∈ SymA} acts regularly on the tuples
of S0 ∪S1. Moreover, the code S1 is obtained from S0 by an authomorphism of
H(q, q), i.e. a transposition of coordinate positions.
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Theorem 3. Let S0 and S1 be the codes defined by (2). Then (S0, S1) is a
spherical bitrade in H(q, q) of volume q!/2.

Proof. We prove that (S0, S1) fulfills the statement (iii) of Corollary 2, i.e.
dSi

= 3, where i ∈ {0, 1}; d(S0, S1) = 2 and for any x ∈ Si there exist (
q
2) tuples

in Si⊕1 at distance 2 from x for any i ∈ {0, 1}.
Let x be the tuple (0, 1, . . . , q−1), x ∈ S0. If π is in SymA then the distance

between the tuples (0, 1, . . . , q − 1) and (π(0), π(1), . . . , π(q − 1)) is always at
least 2 and equals 2 if and only if π is a transposition. So by (2) the only tuples
from S0∪S1 at distance 2 from x are (q2) tuples of S1. Since S0 and S1 are orbits
of the same group and the code S1 is obtained from S0 by an authomorphism
of H(q, q) we have the desired properties.

Theorem 4. For any integer r ≥ 1 and q ≥ 3 there is a spherical bitrade in
H(qr, q) of volume (q!)r/2 and a perfect bitrade in H(qr+1, q) of volume (q!)r.

Proof. In order to obtain a spherical bitrade in H(qr, q) we apply (r− 1) times
the construction of Theorem 2 with the initial bitrade being the spherical bi-
trade in H(q, q) from Theorem 3. This spherical bitrade in H(qr, q) implies the
existence of a perfect bitrade according to Proposition 3.

In the linear case we also have bitrades from MDS codes of significantly
larger volumes than those of constructed in Theorem 3.

Theorem 5. Let q be pr, p be a prime number. Let M be a q-ary linear MDS
code with minimum distance 2, C0 and C1 be q-ary linear MDS codes of length
n with minimum distances 3, C0, C1 ⊂ M , C0 6= C1. Then (C0 \C1, C1 \C0) is
a spherical bitrade in H(q, q) of volume qq−2 − qq−3.

Proof. We show that |O(x) ∩ C0| = |O(x) ∩ C1| is zero if x ∈ M and one
otherwise. Since M has minimum distance 2, C0 and C1 are subcodes of M we
see that any tuple of M has no neighbors in C0 and C1. It remains to show
that if x is not in M then |O(x) ∩ C0| = |O(x) ∩ C1| = 1. Since dC0 = dC1 = 3
we have that |O(x) ∩ C0|, |O(x) ∩ C1| ≤ 1. Then the number of the neighbors
of Ci could be counted as

|Ci| · q(q − 1) = qq−2 · q(q − 1) = qq − |M |.

The neighbors of Ci cannot be in M , so the above implies that each of the tuples
outside of M is a neighbor of only one tuple in C0 and in C1. Since linear codes
C0 and C1 are of dimension q − 2, they meet in a subspace of dimension q − 3
and the expression for the volume of the bitrade (C0 \C1, C1 \C0) follows.

Theorem 6. For any integer r ≥ 1 and q ≥ 3, q = pr, where p is a prime there
is a spherical bitrade in H(qr, q) of volume 2r−1(qq−2 − qq−3)r and a perfect
bitrade in H(qr + 1, q) of volume 2r(qq−2 − qq−3)r.

8



Proof. A spherical bitrade in H(qr, q) of volume 2r−1(qq−2 − qq−3)r is obtained
by Theorem 2 from the spherical bitrade in H(q, q) described in Theorem 5.
We then apply the construction from Proposition 3 to the spherical bitrade in
H(qr, q) in order to obtain a perfect bitrade in H(qr + 1, q).

Remark. There are other spherical bitrades that have rather less symmetric
structure than the described above. In H(5, 5) using a computer we have found
spherical bitrades of the following volumes: 60, 95, 100, 125. A bitrade of
volume 60 can be obtained by Theorem 3, a bitrade of volume 100 exists by
Theorem 5. A spherical bitrade of volume 125 could be obtained by taking C1

to be a coset of a linear MDS code C0 in Theorem 5, the proof for this fact is
the same. This bitrade coincides with the bitrade described in the work [18].

5 Lower bound for the volumes of perfect bi-

trades in H(q + 1, q)

Theorem 7. The volume of a perfect bitrade in H(q + 1, q) is not less than q!.

Proof. Let (T0, T1) be a perfect bitrade in H(q+1, q), Γ be a face in H(q+1, q)
with (k+1), q ≥ k ≥ 1 free positions. We show that |Γ

⋂
T0|+ |Γ

⋂
T1| ≥ 2(k!)

or |Γ
⋂
T0| + |Γ

⋂
T1| = 0. The proof is by induction on the number of free

positions of Γ.
The base case is when k is 1. Let Γ be a face in H(q + 1, q) with exactly 2

free positions. By Proposition 1 the function χT0 − χT1 is a (−1)-eigenfunction
of H(q+ 1, q). Taking into account Corollary 1 the function χT0 − χT1 has 0 or
at least 2 nonzero values on Γ, i.e. |Γ

⋂
T0|+ |Γ

⋂
T1| is 0 or at least 2.

By induction hypothesis we have that any face with exactly k free positions
has at least (k−1)!·2 tuples of T0∪T1 or none. Without restriction of generality,
suppose that the face Γ = Γ0...0

1...q−k in H(q + 1, q) contains the all-zero tuple 0

from T0. We show that there are at least 2(k!) tuples from T0

⋃
T1 in Γ0...0

1...q−k.
By the definition of a perfect bitrade, the ball centered at 0 ∈ T0 must

contain a unique tuple y of T1. Let y be different from 0 in the position j. All
neighbors of 0 different from y are neighbors of tuples from T1. The neighbors
that are different from 0 in the jth coordinate position are common neighbors
with y ∈ T1. The remaining (q−1)q neighbors are exactly covered by (q−1)q/2
tuples from T1 at distance 2 from 0. Let l be any free position for the face
Γ0...0
1...q−k, i.e. any position from {q − k + 1, . . . , q + 1}. Since k ≥ 2, we choose l

to be distinct from the position j.
Consider the tuples that are different from 0 only in the lth position. Since

l is not j for any α ∈ A \ {0} the tuple (0, . . . , 0, α
l
, 0, . . . , 0) is a neighbor of

a unique tuple from T1 at distance 2 from 0. We denote this tuple by yα. By
Proposition 1 we have dT1 = 3. Then for any distinct α and β, α, β ∈ A \ {0}
we see that

yα = (0, . . . , 0, ∗, 0, 0, . . . , 0, α
l
, 0, . . . . . . , 0)
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and
yβ = (0, . . . , 0, 0, ∗, 0, . . . , 0, β

l
, 0, . . . . . . , 0)

have only one common nonzero coordinate position which is l. We have (q− 1)
such tuples yα, α ∈ A \ {0} and at most q − k of them have nonzero positions
among nonfree positions {1, . . . , q− k} of Γ0...0

1...q−k. Then there are at least k− 1

values for α ∈ A \ {0} such that the face Γ0...0α
1...q−k l contains a tuple yα ∈ T1.

Moreover the face Γ0...00
1...q−k l contains a tuple 0 ∈ T0. We see that there are k

disjoint faces with k free positions that are subsets of Γ0...0
1...q−k and each of them

contains at least (k − 1)! · 2 tuples from T0

⋃
T1 by induction hypothesis. The

theorem follows when k is q.

Corollary 3. The volume of a spherical bitrade in H(q, q) is greater or equal
to q!/2.

Proof. The existence of a spherical bitrade in H(q, q) of volume v implies the
existence of a perfect bitrade in H(q + 1, q) of volume 2v by the construction
of Proposition 3. The result follows from the lower bound given by Theorem
7.

Acknowledgements. The authors express their gratitude to Sergey Av-
gustinovich for critical remarks on the construction from Theorem 3, Vladimir
Potapov for providing a simple argument for the proof of Theorem 5, Anna
Taranenko, Alexandr Valyuzenich and Denis Krotov for valuable comments and
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