
On the anti-Ramsey numbers of linear forests∗

Tian-Ying Xie
School of Mathematical Sciences

University of Science and Technology of China

Hefei, Anhui, 230026, China.

xiety@mail.ustc.edu.cn

Long-Tu Yuan
School of Mathematical Sciences

East China Normal University

Shanghai, 200241, China.

ltyuan@math.ecnu.edu.cn

Abstract

For a fixed graph F , the anti-Ramsey number, AR(n, F ), is the maximum number of
colors in an edge-coloring of Kn which does not contain a rainbow copy of F . In this paper,
we determine the exact value of anti-Ramsey numbers of linear forests for sufficiently large n,
and show the extremal edge-colored graphs. This answers a question of Fang, Győri, Lu and
Xiao.
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1 Introduction

In this paper, only finite graphs without loops and multiple edges will be considered. Let Kn and
Pn be the clique and path on n vertices, respectively. An even path or odd path is a path on even
or odd number of vertices. A linear forest is a forest whose components are paths. For a given
graph G = (V (G), E(G)), if v ∈ V (G) is a vertex of G, let NG(v), dG(v) be the neighborhood and
degree of v in graph G respectively, and if U ⊆ V , let NU (v) be the neighborhood of v in U , and
NG(U) be the common neighborhood of U in G. An universal vertex is a vertex in V (G) which is
adjacent to all other vertices in V (G). Denote the minimum degree of G by δ(G). Let W and U
be two subsets of V (G), denote the induced subgraph on W of G by G[W ], denote the subgraph
of G with vertex set U ∪W and edge set E(U,W ) = {uw ∈ E(G), u ∈ U,w ∈ W} by G[U,W ].
An edge-colored graph is a graph G = (V (G), E(G)) with a map c : E(G)→ S. The members in
S are called colors. A subgraph of an edge-colored graph is rainbow if its all edges have different
colors. The representing graph of an edge-colored graph G is a spanning subgraph of G obtained
by taking one edge of each color in c. Denoted by R(c,G) the family of representing subgraphs
of an edge-colored graph G with coloring c.

For a fixed graph F and an integer n, the anti-Ramsey number of F is the maximum number
of colors in an edge-coloring of Kn which does not contain F as a rainbow subgraph, and denote
it by AR(n, F ). The anti-Ramsey number was introduced by Erdős, Simonovits and Sós [3] in
1975. They determined the anti-Ramsey numbers of cliques when n is sufficiently large. Later,
in 1984, Simonovits and Sós [7] determined the anti-Ramsey number of paths.
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Theorem 1.1. (Simonovits and Sós, [7]) Let Pk be a path on k vertices with k ≥ 2. If n is
sufficiently large, then

AR(n, Pk) =

(
bk−12 c − 1

2

)
+

(⌊
k − 1

2

⌋
− 1

)(
n−

⌊
k − 1

2

⌋
+ 1

)
+ 1 + ε,

where ε = 1 if k is even and ε = 0 otherwise.

Moreover, they have given the unique extremal edge-colorings as following. Let U be a vertex
subset of Kn with |U | = bk−12 c − 1, all the edges which are incident with U have different colors,
the all edges of Kn[V (Kn) − U ] colored by another one color if k is odd or other two colors
otherwise. Denoted by CPk

(n) the family of above extremal edge-colorings of Kn of Pk.
In 2004, Schiermeyer [8] determined the anti-Ramsey number of matchings for n ≥ 3t+ 3.

Theorem 1.2. (Schiermeyer, [8]) AR(n, tK2) =
(
t−2
2

)
+ (t− 2)(n− t+ 2) + 1 for all t ≥ 2 and

n ≥ 3t+ 3.

And after that, Chen, Li and Tu [9] and Fujita, Magnant and Ozeki [10] independently showed
that AR(n, tK2) =

(
t−2
2

)
+ (t− 2)(n− t+ 2) + 1 for all t ≥ 2 and n ≥ 2t+ 1.

In 2016, Gilboa and Roditty [5] determined that for large enough n, the anti-Ramsey number
of L∪ tP2 and L∪kP3 when t and k are large enough and L is a graph satisfying some conditions.

Very recently, Fang, Győri, Lu and Xiao [4] have given an approximate value of anti-Ramsey
number of linear forests and determined the anti-Ramsey number of linear forests whose all
components are odd paths.

Theorem 1.3. (Fang, Győri, Lu and Xiao, [4]) Let F = ∪ki=1Pti be a linear forest, where k ≥ 2,
and ti ≥ 2 for all 1 ≤ i ≤ k. Then

AR(n, F ) =

(
k∑

i=1

⌊
ti
2

⌋
− ε

)
n+O(1),

where ε = 1 if all ti are odd and ε = 2 otherwise.

For a given graph family F , the Turán number of F is the maximum number of edges of a
graph on n vertices which does not contain a copy of any graph in F as a subgraph, denote it by
ex(n,F).

The anti-Ramsey problem of linear forest is strongly connected with the Turán number of
linear forest. Hence, we introduce some results of the Turán numbers of paths and linear forests.

In 1959, Erdős and Gallai showed the upper bound of the Turán number of Pk as the following
theorem.

Theorem 1.4. (Erdős and Gallai, [2]) For any integers k, n ≥ 1, we have ex(n, Pk) ≤ k−2
2 n.

The Turán number of linear forest have been determined by Bushaw and Kettle [1] and Lidicky,
Liu and Palmer [6] for sufficiently large n.

Theorem 1.5. (Bushaw and Kettle, [1]) Let k ·P3 be the vertex disjoint union of k copies of P3.
Then for n ≥ 7k, we have

ex(n, k · P3) =

(
k − 1

2

)
+ (k − 1)(n− k + 1) +

⌊
n− k + 1

2

⌋
.
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Remark Later, Yuan and Zhang [11] determined ex(n, k · P3) for all values of k and n.

Theorem 1.6. (Lidicky, Liu and Palmer, [6]) Let F = ∪ki=1Pti be a linear forest, where k ≥ 2
and ti ≥ 2 for all 1 ≤ i ≤ k. If at least one ti is not 3, then for n sufficiently large,

ex(n, F ) =

(∑k
i=1bti/2c − 1

2

)
+

(
k∑

i=1

⌊
ti
2

⌋
− 1

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 1

)
+ c,

where c = 1 if all ti are odd and c = 0 otherwise. Moreover, the extremal graph is unique.

The extremal graph in Theorem 1.6, denote by GF (n), is a graph on n vertices with a vertex
set U of order (

∑k
i=1bti/2c−1) such that all the vertices in U are universal vertices and GF (n)−U

contains a single edge if each ti is odd or V (G)− U is an independent subset otherwise.
The anti-Ramsey numbers of linear forests which consist of odd paths are determined by

Gilboa and Roditty [5] for AR(n, k · P3) and Fang, Győri, Lu and Xiao [4] otherwise. In [4],
they asked the following question: determining the exact value of anti-Ramsey number of a linear
forest when it contains even paths. We will establish the following theorem.

From now on, let F = ∪ki=1Pti be a linear forest with at least one ti is even, where k ≥ 2,
ti ≥ 2 for all 1 ≤ i ≤ k. Define CF (n) to be a family of edge-colorings of Kn with a subset U of
order

∑k
i=1bti/2c− 2, the all edges which are incident with U have different colors and the edges

in V (Kn)− U are colored by another 1 + ε colors, where ε = 1 if exactly one ti is even or ε = 0
if at least two ti are even. (see Figure 1).

 (b) (a)

U U

Figure 1: CF (n), (a) when F contains at least two components with even vertices; (b) when F
contains exact one component with even vertices

Theorem 1.7. There is a function f(t1, . . . , tk) such that if n ≥ f(t1, . . . , tk), then

AR(n, F ) =

(∑k
i=1bti/2c − 2

2

)
+

(
k∑

i=1

⌊
ti
2

⌋
− 2

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 2

)
+ 1 + ε,

where ε = 1 if exactly one ti is even or ε = 0 if at least two ti are even. Moreover, the extremal
edge-colorings must be in CF (n).

2 Proof of Theorem 1.7

First, we prove a useful lemma for the extremal problems of linear forests.
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Lemma 2.1. Let G be an F -free graph on n vertices with |V (F )| = f . Let F1 = ∪i∈LPti be a
subgraph of F , where L ⊆ [k] and

∑
i∈Lbti/2c ≥ 2, let F2 = F − F1. If G contains a copy of F1

as a subgraph and

e(G)−
(
|F1|

2

)
− ex(n− |F1|, F2) ≥

(∑
i∈L

⌊
ti
2

⌋
− 7

4

)
n,

then any copy of F1 in G contains a subset U of order
∑

i∈Lbti/2c−1 with common neighborhood
of size at least 2f2 + 8f in V (G)− U .

Proof. Let G = (V,E) be an F -free graph on n vertices. Assume that G contains a copy of F1

on subset P and p = |P |. Let t =
∑

i∈Lbti/2c. Since G is F -free, G[V − P ] contains no copy of
F2. Hence e(G[V − P ]) ≤ ex(n − p, F2) and the number of edges between P and V − P in G is
at least e(G)−

(
p
2

)
− ex(n− p, F2) ≥ (t− 7

4)n. Let n0 be the number of vertices in V − P which
have at least t− 1 neighbors in P , this is,

n0 = |{v ∈ V − P : |NP (v)| ≥ t− 1}|.

Then the number of edges between V − P and P is at most n0p+ (n− p− n0)(t− 2). Hence

n0p+ (n− p− n0)(t− 2) ≥
(
t− 7

4

)
n.

So,

n0 ≥
n/4 + p(t− 2)

p− t+ 2
.

Since there are
(

p
t−1
)

subsets with size t − 1 in P , and n is large enough, there is a subset U of

size t− 1 in P which has at least n0/
(

p
t−1
)
≥ 2f2 + 8f common neighbors in V − P .

Lemma 2.2. Let Kn be a complete graph on n vertices with an edge-coloring c. Let U and
W be vertex disjoint subsets of V (Kn) with |U | = u, |W | = w and u,w > 0. If there are two
representing graphs L1

n and L2
n in R(c,Kn) such that U has at least s common neighbours in L1

n

and W has at least s + su common neighbours in L2
n, then there is a representing graph Ln in

R(c,Kn) such that U and W have at least s common neighbours in Ln respectively.

Proof. Let X with size s and Y with size s+ su be the common neighbours of U in L1
n and the

common neighbours of W in L2
n respectively. Since there are su colors between X and U , there

is a subset Y ′ of Y with size at least s such that the colors between W and Y ′ are all different
from the colors between X and U . The result follows.

The following lemma is trivial. We left its proof to the readers.

Lemma 2.3. For large n, AR(n, P2 ∪ P2) = 1 and AR(n, P3 ∪ P2) = 2.

Let t1 ≥ t2 . . . ≥ tk ≥ 2 and

fF (n) =

(∑k
i=1bti/2c − 2

2

)
+

(
k∑

i=1

⌊
ti
2

⌋
− 2

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 2

)
+ 1 + ε,

where ε = 1 if exactly one ti is even and ε = 0 if at least two ti are even. Let F0 = F − Ptk .
We begin with a minimal degree version of the anti-Ramsey problem of linear forests.
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Lemma 2.4. Let c be an edge-coloring of Kn which does not contain a rainbow copy of F with
at least fF (n) colors and n ≥ g(t1, . . . , tk). If the minimum degree of each representing graph
is at least

∑k
i=1bti/2c − 2, then the number of colors of c is exactly fF (n), and the extremal

edge-coloring must be in CF (n).

Proof. Let c be an edge-coloring of Kn on vertex set V with at least fF (n) colors. Since
fF (n) >ex(n, F0) when n is sufficiently large, each representing graph in R(c,Kn) contains a
copy of F0. Let L1

n ∈ R(c,Kn) be a representing graph. Let |V (F )| = f . By Lemma 2.3, we may
assume that F is not P2 ∪ P2 nor P3 ∪ P2, so

∑k
i=1bti/2c ≥ 3.

Claim 1. There is a representing graph Ln ∈ R(c,Kn) such that it contains two disjoint vertex
subset U and W 1 of order u = |U | =

∑k−1
i=1 bti/2c − 1 and w = |W | = btk/2c − 1 such that

|NLn(U)| ≥ 2f + 8 and |NLn(W )| ≥ 2f + 8 if W 6= ∅.

Proof. Since F is not P2 ∪ P2 nor P3 ∪ P2, we have
∑k−1

i=1 bti/2c ≥ 2 and

e(L1
n)−

(
|V (F0)|

2

)
− ex(n− |V (F0)|, Ptk)

≥
(∑k

i=1bti/2c − 2

2

)
+

(
k∑

i=1

⌊
ti
2

⌋
− 2

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 2

)
+ 1 + ε

−
(∑k−1

i=1 ti
2

)
− tk − 2

2

(
n−

k−1∑
i=1

ti

)

>

(
k−1∑
i=1

⌊
ti
2

⌋
− 7

4

)
n.

By Lemma 2.1, one can find a subset U of P with |U | =
∑k−1

i=1 bti/2c − 1 which has common
neighborhoods of size at least 2f2 + 8f in L1

n.
Now we consider the subgraph L1

n[V − U ]. Then we have

e(L1
n[V − U ]) ≥e(L1

n)−
(∑k−1

i=1 b
ti
2 c − 1

2

)
−

(
k−1∑
i=1

⌊
ti
2

⌋
− 1

)(
n−

k−1∑
i=1

⌊
ti
2

⌋
+ 1

)

≥
(∑k

i=1bti/2c − 2

2

)
+

(
k∑

i=1

⌊
ti
2

⌋
− 2

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 2

)
+ 1 + ε

−
(∑k−1

i=1 bti/2c − 1

2

)
−

(
k−1∑
i=1

⌊
ti
2

⌋
− 1

)(
n−

k−1∑
i=1

⌊
ti
2

⌋
+ 1

)

≥
(
btk/2c − 1

2

)
+

(⌊
tk
2

⌋
− 1

)(
n−

k∑
i=1

⌊
ti
2

⌋
+ 2

)
+ 1 + ε

≥
(
b(tk − 1)/2c − 1

2

)
+

(⌊
tk − 1

2

⌋
− 1

)(
n−

k−1∑
i=1

⌊
ti
2

⌋
−
⌊
tk − 1

2

⌋
+ 2

)
+ 1 + ε′

1W can be empty set
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=AR

(
n−

k−1∑
i=1

⌊
ti
2

⌋
+ 1, Ptk

)
.

where ε′ = 1 if tk is even or ε′ = 0 if tk is odd. Moreover, the equality holds if and only if tk is
odd and at least two ti’s are even. Thus, by Theorem 1.1, it is easy to see that c ∈ CF (n) and
we are done, or Kn contains a rainbow copy of Ptk on subset V − U . So there is a representing
graph L2

n ∈ R(c,Kn) such that L2
n[V − U ] contains a copy of Ptk . If tk ≤ 3, let W = ∅; if tk ≥ 4,

by Lemma 2.1, there is a subset W of V − U of size btk/2c − 1 has common neighborhoods of
size at least 2f2 + 8f in L2

n. Now, by Lemma 2.2, there is a representing graph Ln satisfying the
claim, the proof is completed.

Since
∑k

i=1bti/2c ≥ 3, we have |U ∪W | ≥ 1. Let T = V − U −W . We may choose X ⊆ T
and Y ⊆ T be the set of common neighbours of U and W in Ln respectively. By Claim 1, we
have |X| ≥ f + 8 when |U | ≥ 1 and |Y | ≥ f + 8 when |W | ≥ 1.

Claim 2. Let L be the set of common neighbours of U ∪W in Ln. Then |L| ≥ f + 2.

Proof. If U = ∅ or W = ∅, then the claim is obviously true. Let U 6= ∅ and W 6= ∅, then
t1 ≥ t2 . . . ≥ tk ≥ 4. We consider the following two cases: (a) tk is even. Let L3

n be the graph
obtained from Ln by adding an edge ab in Kn[Y ] and deleting the edge cd in Ln colored by c(ab).
Suppose that there are at least three vertices in X ′ = X \ {a, b, c, d} which are not adjacent to
all vertices of W . Since δ(L3

n) ≥ |U ∪W |, there are three vertices of X ′, say x1, x2 and x3, such
that xi is adjacent to yi ∈ T for i = 1, 2, 3. If two of {y1, y2, y3} are not belong to {a, b}, then we
can find a copy of F in L3

n easily. Moreover, the edges in Y ′ = Y \ {a, b, c, d, y1, y2, y3, x1, x2, x3}
can not be colored by c(ab). Otherwise, the graph obtained from Ln by adding an edge colored
by c(ab) in Y ′ and deleting the edge cd contains a copy of F . Now let L4

n be the graph obtained
from Ln by adding an edge x4x5 inside Y ′ and deleting the edge colored by c(x4x5). Note that at
least two of xiyi for 1 ≤ i ≤ 3 belong to L4

n and we delete at most one edge between {x1, x2, x3}
and U or between x4x5 and W , we can easily find a copy of F in L4

n, a contradiction. Thus
there are at most two vertices in X ′ which are not adjacent to all vertices of W . Hence, we have
|L| ≥ f +8−6 = f +2. (b) tk is odd. The proof of this case is similar as case (a) and be omitted.
The proof of the claim is completed.

Claim 3. There are at most 1 + ε colors in c(Kn[T ]).

Proof. We only prove the claim for ε = 1, since the case ε = 0 is much easier. Then there
is exactly one ti is even. Take the representing graph Ln with e(Ln[U ∪W,T ]) maximum and
|NLn(U ∪W )| ≥ f . That is if z1z2 with z1 ∈ T and z2 ∈ U ∪W is not an edge of Ln, then z1z2
is colored by c(z′1z

′
2), where z′1 ∈ T and z′2 ∈ U ∪W .

If Ln is connected, suppose that there are at least three colors in c(Kn[T ]). Then by
Lemma 2.3, we can assume that Ln[T ] contains a copy of P3 ∪ P2. Let P2 = ab and P3 = xyz.
We take e(Ln[x, U ∪W ]) as large as possible. Thus x is adjacent to U ∪W . And ab is connected
to U ∪W ∪ {x, y, z} by a path, let P = wPw′ be the shortest path starting from ab ending at
U ∪W ∪ {x, y, z} with w ∈ U ∪W ∪ {x, y, z}. If w ∈ U ∪W , then V (P ) ∩ {x, y, z} = ∅. If
|U ∪W | = 1, then {u} = U ∪W . Thus we can easily find a copy of F (Note that F = P5 ∪ P2,
F = P4 ∪P3 or F = P3 ∪P3 ∪P2). Let |U ∪W | ≥ 2. If e(Ln[{x}, U ∪W ]) = 1, the edges between
x and U ∪W are colored by the same color. We can take any edge of Kn[{x}, U ∪W ] for Ln. If
e(Ln[{x}, U ∪W ]) ≥ 2, then there are at least two edges between Ln[{x}, U ∪W ]. Thus in both
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cases, we can take an edge xu between x and U ∪W with u 6= w. Thus we can easily find a copy
of F , a contradiction. Now we may suppose w ∈ {x, y, z}. If w ∈ {y, z}. Then xyPw′ or xyzPw′

contains a copy of P4 ending at x, so one can find a copy of F in Ln. If w = x. If xPw′ contains
at least four vertices, one can find a copy of F in Ln; otherwise, we may assume that xa is an
edge in Ln. If z is adjacent to U ∪W in Ln, then zyxa is a copy of P4 which is connected to
U ∪W , then Ln contains a copy of F ; if for there is no edge between U ∪W and z in Ln, then
we may add an edge zz′ with z′ ∈ U ∪W delete the edge in Ln colored by c(zz′). Thus the new
representing graph contains a copy of F , a contradiction.

Assume that Ln is disconnected. Let C1 be the component of Ln containing U ∪W , Z =
V − V (C1) and Q = V (C1)− U ∪W . By the similar argument above, c(Kn[Q] contains at most
two colors. Let L5

n be the graph obtained from Ln by adding an edge vv′ inside L and deleting
the edge colored by c(vv′). Since L5

n[V (C1)] contains a copy of F0, L
5
n[Z] is Ptk -free. So, we have

e(L5
n) ≤

(|U∪W |
2

)
+ |U ∪W ||Q|+ 2 + tk−2

2 |Z| < fF (n), a contradiction. The claim is proved.

Since e(Ln) ≥ fF (n), by Claim 3, we have c ∈ CF (n). The proof is completed.

Proof of Theorem 1.7. Let c be an edge-coloring of Kn contains no rainbow copy of F with at
least fF (n) colors and n ≥ f(t1, . . . , tk), where f(t1, . . . , tk) � g(t1, . . . , tk). Suppose that each
representing graph in R(c,Kn) has minimum degree at least

∑k
i=1bti/2c − 2. Hence, by Lemma

2.4, we have the number of edge-coloring in c is fF (n) and c ∈ CF (n).
Now, we may assume that there is a representing graph Ln ∈ R(c,Kn) with δ(Ln) ≤∑k

i=1bti/2c − 3. So there is a vertex un in V with degree at most
∑k

i=1bti/2c − 3 in Ln. Let
Gn = Kn and Gn−1 = Kn−un. Then Gn−1 is an edge-colored completed graph on n− 1 vertices
with at least fF (n− 1) + 1 colors. If each representing graph in R(c,Gn−1) has minimum degree
at least

∑k
i=1bti/2c − 2, then similar as the argument above, we have Gn−1 contains a rainbow

copy of F . Hence, there is a vertex un−1 in Gn−1 with degree at most
∑k

i=1bti/2c − 2. Thus
we may construct a sequence of graphs Gn, Gn−1, . . . , Gn−` such that the number of coloring of
Gn−` is at least fF (n − `) + ` (note that f(t1, . . . , tk) � g(t1, . . . , tk)). Note that there are at
most

(
n−`
2

)
colors in Gn−`, we get a contradiction when ` is large.
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