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Abstract

In this note, we improve on results of Hoppen, Kohayakawa and Lef-

mann about the maximum number of edge colorings without monochro-

matic copies of a star of a fixed size that a graph on n vertices may admit.

Our results rely on an improved application of an entropy inequality of

Shearer.

1 Introduction

Let r be a positive integer andG andH be (simple) graphs. We define cr,H(G) as
the number of r-edge-colorings of G (i.e., functions c : E(G) → [r] = {1, . . . , r})
without a monochromatic copy of H as a subgraph. For instance, when H is
the path on 3 vertices (we denote it by P3), cr,H(G) is simply the number of
proper r-edge-colorings of G. Furthermore, let cr,H(n) be the maximum value
of cr,H(G) as G runs through all graphs on n vertices. A graph G is called
(r,H)-extremal if cr,H(G) = cr,H(|V (G)|).
For every r, n and H , we have the following general bounds:

rex(n,H) ≤ cr,H(n) ≤ rr·ex(n,H), (1)

where ex(n,H) = max{e : there is G with n vertices, e edges and H * G} is
the classical extremal (or Turán) number of H .
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The lower bound is obtained by taking G as an H-free graph on n vertices and
ex(n,H) edges (i.e., an H-free extremal graph); the upper bound follows from
the fact that in any r-coloring of a graph on n vertices and at least r·ex(n,H)+1
edges there is a monochromatic subgraph on at least ex(n,H) + 1 edges, by the
Pigeonhole Principle, and hence a monochromatic H .

This problem traces back to a question of Erdős and Rothschild ([4]) that cor-
responds to r = 2 and H = K3 in the setup above. More precisely, they
conjectured that c2,K3(n) matches the lower bound in (1) for all n large enough,
which was proved by Yuster:

Theorem 1. [11] c2,K3(n) = 2⌊n
2/4⌋ for all n ≥ 6.

He conjectured further that the same result holds for H = Kt and proved an
asymptotic version of the conjecture, which was settled later by Alon, Balogh,
Keevash and Sudakov for 2 and 3 colors:

Theorem 2. [1] For every fixed t, there is n0 such that c2,Kt
(n) = 2ex(n,Kt)

and c3,Kt
(n) = 3ex(n,Kt) hold for n > n0.

Their proof uses Szemerédi’s Regularity Lemma, and hence the value of n0 it
gives is a tower type with height exponential in k. More recently, Hàn and
Jiménez [6] improved n0 to an exponential function of k, namely exp(Ck4),
getting much closer to the lower bound of exp(Ck) mentioned in [1].

They also dealt with the case r > 3, showing that the lower bound in (1) is
not the correct value of cr,Kt

(n) in this case, i.e., the Kt-free Turán graphs are
not the (r,Kt)-extremal graphs in this case. We refer to their paper [1] for the
detailed results.

Pikhurko and Yilma [10] determined the (r,Kt)-extremal graphs r = 4, t = 3, 4
and n sufficiently large. They are (not Kt-free) Turán graphs. Together with
Staden [9], they generalized it to the following: we want to color the edges of a
graph on n vertices using s colors in a way that, for every 1 ≤ i ≤ s, there is
no monochromatic Kti of color i. They proved that for any choice of n, s and
ti, there is a complete multipartite graph that attains the maximum number of
colorings. A similar result is proved in [2], where a fixed pattern of colors (not
necessarily monochromatic) in a clique is forbidden.

Considering the disjoint union of two (r,H)-extremal graphs on n and m ver-
tices, it is easy to see, assuming H is a connected graph, that cr,H(n + m) ≥
cr,H(n)·cr,H(m) holds for all positive integersm and n (i.e., the function cr,H(n)
is supermultiplicative). A lemma of Fekete ([5]) implies, then, that the limit
br,H = limn→∞ cr,H(n)1/n ∈ R ∪ {∞} exists.

Hoppen, Kohayakawa and Lefmann addressed the problem for some graphs H
with linear Turán number (i.e., ex(n,H) = O(n)). By (1), these are exactly the
graphs for which br,H is finite. They settled the question when H is a matching
of fixed size ([7]), and studied it for other classes of bipartite graphs, including
paths and stars ([8]). Surprisingly, only very few exact values of br,H are known
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in these cases. In this note, we will improve some of the current upper bounds
when the forbidden graph is a star. We now state the best known upper and
lower bounds followed by our corresponding improvements on the upper bounds
in each case.

First, we consider small forbidden stars (S3 and S4) and 2-colorings, where St

is the star on t edges (and t + 1 vertices). For S3, Hoppen, Kohayakawa and
Lefmann had the following bounds:

Theorem 3. [8] b2,S3 ≤
√
6 ≈ 2.45. On the other hand, the graph consisting

of n/6 disjoint copies of the complete bipartite graph K3,3 gives b2,S3 ≥ 6
√
102 ≈

2.16.

We improve the upper bound above to:

Theorem 4. There is a constant c such that c2,S3(n) ≤ c·183n/10. In particular,
b2,S3 ≤ 183/10 ≈ 2.38.

Their result for S4 is:

Theorem 5. [8] b2,S4 ≤
√
20 ≈ 4.47. On the other hand, the graph consisting

of the union of n/10 disjoint bipartite graphs K5,5 gives b2,S4 ≥ 3.61.

Our improved upper bound in this case is:

Theorem 6. b2,S4 ≤ 2005/18 ≈ 4.36.

Next, we consider 2-colorings that forbid monochromatic big stars. Hoppen,
Kohayakawa and Lefmann, in the same paper, proved the following:

Theorem 7. [8] For every t, b2,St
≤
(

2t−2
t−1

)1/2
. Furthermore, a certain complete

bipartite graph gives b2,St
≥ 2−(

√
2/2+o(1))

√
t log(t) ·

(

(

2t−2
t−1

)

)1/2

.

We improve the upper bound for large t as follows:

Theorem 8. For large values of t, we have:

b2,St
≤
(√

2
2 ·
(

2t−2
t−1

)

)

2t−3
4t−7

.

Finally, we fix the forbidden star to be S3 and consider r-colorings. The bounds
in Hoppen, Kohayakawa and Lefmann’s paper are:

Theorem 9. [8] For every r, br,S3 ≤
(

(2r)!
2r

)1/2

. On the other hand, some

complete bipartite graph shows that br,S3 ≥ r−(3
√

log(3)/4+o(1))r ·
(

(2r)!
2r

)1/2

.

The new upper bound for this quantity that we prove here is:

Theorem 10. If r is a sufficiently large integer, then

br,S3 ≤
(

r(2r − 1)!2

22r−2

)

2r−1
8r−6

∼
8
√
2

4
√
e
·
(

(2r)!

2r

)1/2

≈ 0.85 ·
(

(2r)!

2r

)1/2

.
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2 Notation and preliminary lemma

Given a graph G, we call an edge e = uv ∈ E(G) an ab-edge (a ≤ b) if
{d(u), d(v)} = {a, b}. Furthermore, we denote by mab the number of ab-edges
(sometimes we will write ma instead of maa for short) and by va the number of
vertices of degree a in G.

We now state and prove a simple lemma that will be used throughout the proofs
of this paper.

Lemma 1. For every r ≥ 2, t ≥ 3 and n, there is an (r, St)-extremal graph G
on n vertices and a constant c(r, t) (which is at most rt+ 1) with the following
properties: ∆(G) ≤ r(t − 1) − 1, and d(v) ≥

⌈

r
2

⌉

· (t − 1) holds for all but at
most c(r, t) vertices v ∈ V (G).

Proof. Let G be a graph on n vertices. If G has a vertex of degree at least
r(t−1)+1, all of its r-edge colorings contain a monochromatic St, by Pigeonhole
Principle, so cr,St

(G) = 0. Furthermore, if there is a vertex v of degree exactly
r(t − 1), then for an edge e incident to v, the graph G′ = G− e has at least as
many colorings as G. Indeed, every coloring of G induces a coloring of G′ in an
injective way, since the color of the other (r − 1)(t− 1)− 1 edges incident to v
define the color of the edge e uniquely.

On the other hand, if G has two vertices u, v of degree less than
⌈

r
2

⌉

· (t−1) not
joined by an edge, the graph G′ = G+uv has at least as many good colorings as
G, since in every partial coloring of G′ that comes from a coloring of G, there is
at least one free color for the edge uv. Therefore, we may assume that all such
vertices induce a clique, which implies that there is at most

⌈

r
2

⌉

·(t−1)+1 ≤ rt+1
of them.

3 Applying an entropy lemma

In this section, we will outline the general framework on which our proofs will
rely. We start by stating a crucial lemma from [3]. Before stating it, let us
recall the definition of a projection. For a set F of vectors in F1 × · · · ×Fm and
a subset S of {1, . . . ,m}, the projection of F on S is defined as πS(F), where
πS : F1×· · ·×Fm →

⊗

i∈S Fi is the function that, for every i ∈ S, (πS(v))i = vi
(vi denotes the coordinate of the vector v corresponding to the factor Fi). To
put it simply, the projection of a vector on S “erases” its coordinates whose
indices do not belong to S and leave the other coordinates unchanged.

Lemma 2. Let F be a family of vectors in F1×· · ·×Fm. Let G = {G1, . . . ,Gn}
be a collection of subsets of M = {1, . . . ,m}, and suppose that each element
i ∈ M belongs to at least k members of G. For j = 1, . . . , n let Fj be the set of
all projections of the members of F on Gj. Then
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|F|k ≤
n
∏

j=1

|Fj |. (2)

In our proofs, we will take F to be the set of r-edge-colorings of a graph G
without monochromatic copies of St. It is a family of vectors in [r]|E(G)|, where
an edge-coloring c : E(G) → [r] is identified with the vector indexed by the
edges of G whose value in entry e ∈ E(G) is c(e).

For each ab-edge ei of G, we will take a set Gi to be the set of indices of ei and
the edges incident to it, and we take 2r(t − 1)− 2 − (a + b) identical unit sets

G1
i , . . . ,G

2r(t−1)−2−(a+b)
i containing the index of ei. This choice guarantees that

each edge is counted 2r(t− 1)− 3 times among the sets in G, so we may apply
inequality (2) with k = 2r(t− 1)− 3.

Let us now estimate the size of the Fj . It is the number of restrictions of r-
edge-colorings of G without monochromatic St to the subgraph spanned by the
edges in the set Gj . The number of r-edge-colorings without monochromatic St

of this subgraph is an upper bound for |Fj |.
For the unit sets Gi

j , it is clear that |F i
j | ≤ r. Otherwise, let us denote by f(x)

the number of r-edge-colorings without monochromatic St of a star on x edges
in which the color of exactly one edge is fixed (although f depends on r and t
as well, we omit these variables from the notation of f as they will be fixed and
clear from the context). If we color an ab-edge ei and then the stars hanging on
its endpoints, we get |Fi| ≤ rf(a)f(b).

Taking into account both types of sets, an ab-edge contributes to the right-hand
side of (2) with a factor of g(a, b) = r2r(t−1)−1−(a+b)f(a)f(b).

Plugging this bound in (2), we get an optimization problem in terms of the
number of ab-edges of G. This problem would be significantly simplified if we
could assume that almost all edges of G are aa-edges.

This is indeed the case, since whenever we have a pair of independent ab-edges
(a 6= b) e = uv and f = xy, say, d(u) = d(x) = a and d(v) = d(y) = b,
such that ux and vy are not edges (note that there is always a pair of such
ab edges if we have more than a + b of them), we may consider the graph
G′ formed by G by deleting uv and xy and adding ux and vy. Note that G′

has two less ab-edges, one more aa-edge and one more bb-edge than G. On
the other hand, the upper bounds on the number of colorings of G and G′

given by (2) are the same, since g(a, b)2 = g(a, a) · g(b, b), and the degrees of
the endpoints of all other edges remain unchanged. Therefore, repeating this
procedure as long as we can, we may assume that G has at most a constant
number of ab-edges with a 6= b (bounded, for instance, by

∑

a + b over the
range

⌈

r
2

⌉

· (t− 1) ≤ a 6= b ≤ r(t− 1) + 1). In particular, we may rewrite (2) as
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|F|2r(t−1)−3 ≤ c ·
r(t−1)−1
∏

a=⌈ r

2 ⌉·(t−1)

(r2r(t−1)−1−2af(a)2)ma

= c′ ·
r(t−1)−1
∏

a=⌈ r

2 ⌉·(t−1)

(r2r(t−1)−1−2af(a)2)ava/2, (3)

where the range of a in the product comes from Lemma 1.

By taking logarithms, it is clear that we are maximizing a linear function of the
vi. This means, as

∑

vi = n is constant, that the maximum is attained when
all but one of the vi are zero, and the exceptional vi corresponds to the value
that maximizes the function g(a) = (r2r(t−1)−1−2af(a)2)a.

4 Forbidding small stars in 2-edge-colorings

In this section, we prove Theorems 4 and 6. Following the setup in the previous
section, the proofs are quite straightforward:

Proof of Theorem 4. By (3), we have the following bound:

|F|5 ≤ c ·
3
∏

a=2

(27−2af(a)2)ava/2 (4)

= c′ · 32v2 · 183v3/2, (5)

since f(2) = 2 and f(3) = 3 in this case. The fact that 32 < 183/2 ≈ 76
concludes the proof.

Proof of Theorem 6. In this case, simple computations show that f(3) = 4,
f(4) = 7 and f(5) = 10. Therefore, the bound (3) reads as

|F|9 ≤ c · 512m3 · 392m4 · 200m5 = c′ · 5123v3/2 · 3924v4/2 · 2005v5/2.
As 5123/2 ≈ 11585, 3924/2 = 153664 and 2005/2 ≈ 565685, the maximum is
achieved when v3 = v4 = 0 and v5 = n, and the proof is complete.

6



5 Forbidding large monochromatic stars in two-

edge-colorings

In this section, we prove Theorem 8.

Proof of Theorem 8. In this case, f(x) =
∑t−2

k=x−t

(

x−1
k

)

, since given a star on x
edges with one edge colored with color c, we may choose at least x−t and at most
t− 2 of the remaining x− 1 edges to assign c without having a monochromatic
St in any of the colors.

We are done, then, if we find the maximum of g(a) =

(

24t−5−2a
(

∑t−2
k=a−t

(

a−1
k

)

)2
)a

,

for t− 1 ≤ a ≤ 2t− 3. We claim that, for t large enough, the maximum value
of g is attained for a = 2t− 3.

To prove this claim, we will use the following well-known bounds for large a and
t:

(

2t− 3

t− 2

)

≥ 0.9 · 2
2t−3

√
πt

(6)

and

(

a− 1

⌈a−1
2 ⌉

)

≤ 1.01 · 2
a−1

√
πa

, (7)

that are consequences of the well-known Stirling formula: n! ∼
√
2πn(ne )

n.

The first one implies that

g(2t− 3) =

(

2

(

2t− 3

t− 2

)2
)2t−3

>

(

0.92 · 24t−5

πt

)2t−3

> 28t
2−2t log2 t−25.92t+O(log(t)).

Also, we have f(a) ≤ 2a−1, since f(a) is a sum of binomial coefficients in the
(a− 1)-st row of Pascal’s triangle. Hence,

g(a) ≤ (24t−5−2a(2a−1)2)a = 2(4t−7)a.

Suppose first that a ≤ 2t− log2 t. Then the last inequality implies that

g(a) ≤ 2(4t−7)(2t−log2 t) = 28t
2−4t log2 t+O(t) ≤ g(2t− 3)

for large t.
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On the other hand, if 2t−log2 t ≤ a ≤ 2t−4, notice that, as the central binomial
coefficient is the maximum in its row, we have

f(a) =

t−2
∑

k=a−t

(

a− 1

k

)

≤ (2t− a− 1)

(

a− 1

⌈a−1
2 ⌉

)

≤ 1.01(2t− a− 1)
2a−1

√
πa

,

by (7).

The latter estimate implies that

g(a) ≤ (24t−5−2a(1.01(2t− a− 1) · 2a−1/
√
πa)2)a

= 2a(4t−7+2 log2(2t−a−1)+log2(1.01
2/π)−log2 a).

By taking the derivative (for fixed t, with respect to a) of the function in the
exponent, it is easy to see that this bound on g is increasing for 2t − log2 t ≤
a ≤ 2t − 4 and large t. Therefore, the maximum of the bound in this range is
attained for a = 2t− 4, which gives, for large t,

g(a) ≤ 2(2t−4)(4t−7+2 log2(3)+log2(1.01
2/π)−log2 (2t−4))

< 28t
2−2t log2 t−26t+O(log(t))

< g(2t− 3).

Now the fact that g(2t−3) =
(

2
(

2t−3
t−2

)2
)2t−3

, together with (3), gives the result.

6 More colors

Finally, we prove Theorem 10.

Proof of Theorem 10. The bound in (3) can be written as

|F|4r−3 ≤ c′
2r−1
∏

a=r

(r4r−2a−1f(a)2)ava/2. (8)

Again, all it is left to do is to prove that the maximum of g(a) = (r4r−2a−1f(a)2)a

is obtained for a = 2r − 1. With this result, our theorem follows by plugging

vi = 0 for i < 2r−1 and v2r−1 = n in (8) and by the fact that f(2r−1) = (2r−1)!
2r−1 .

We have, from Stirling’s formula,

g(2r − 1) =

(

r(2r − 1)!2

22r−2

)2r−1

= r8r
2−4(2−log(2)) r

2

log(r)
+o( r

2

log(r)
).
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We are going to bound f(a) in two different ways and use each of the bounds
for a different range of the value of a.

First, notice that f(a) ≤ ra−1, since this is the total number of r-colorings of a
star with a − 1 edges. This bound is enough if a ≤ 2r − 2r/ log(r). Indeed, in
this case,

g(a) ≤ (r4r−2a−1 · r2a−2)a

< r(4r−3)(2r−2 r

log(r)
)

= r8r
2−8 r

2

log(r)
+O(r)

< g(2r − 1),

for large r.

Suppose now that that a ≥ 2r− 2r/ log(r). Let us divide the colorings counted
by f(a) according to the number of times each color appears on it. There

are exactly (a−1)!∏
r

i=1 ci!
colorings where the color i appears exactly ci times, where

0 ≤ c1 ≤ 1; 0 ≤ ci ≤ 2, for i ≥ 2;
∑r

i=1 ci = a− 1. The number of solutions of
this equation can be split according to the value of c1. If c1 = 0, the equation
is equivalent to

∑r
i=1 ci = a − 1, with 0 ≤ ci ≤ 2. If c1 = 1, it is equivalent to

∑r
i=1 ci = a− 2, with 0 ≤ ci ≤ 2.

Let us consider the first equation. If a solution has exactly t terms equal to
2, then there are exactly a − 1 − 2t terms equal to 1 and r − a + t terms

equal to 0. Therefore, there are (r−1)!
t!(a−1−2t)!(r−a+t)! solutions with these many

0, 1 and 2, and those solutions contribute with (a−1)!∏
r

i=1 ci!
(r−1)!

t!(a−1−2t)!(r−a+t)! =
(a−1)!

2t
(r−1)!

t!(a−1−2t)!(r−a+t)! to f(a). As the possible values of t range between a− r

and (a−1)/2, the total contribution of the solutions of the first equation to f(a)

is f1(a) =
∑(a−1)/2

t=a−r
(a−1)!

2t
(r−1)!

t!(a−1−2t)!(r−a+t)! . This sum is bounded from above

by (a−1)!(r−1)!
mint(t!(a−1−2t)!(r−a+t)!)

∑(a−1)/2
t=a−r

1
2t ≤ (a−1)!(r−1)!

2a−r−1
1

mint(t!(a−1−2t)!(r−a+t)!) , for

a− r ≤ t ≤ (a− 1)/2.

Similarly, the contribution of the second equation is bounded from above by

f2(a) =
(a−1)!(r−1)!

2a−r−2
1

mint(t!(a−2−2t)!(r−a+t+1)! , where a− r − 1 ≤ t ≤ (a− 2)/2.

First, let us assume that 2r− a ≤ √
r. Considering the ratios of the expressions

inside the minimum above for consecutive values of t, (t+1)!(a−3−2t)!(r−a+t+1)!
t!(a−1−2t)!(r−a+t)!

and (t+1)!(a−4−2t)!(r−a+t+2)!
t!(a−2−2t)!(r−a+t+1)! , it is possible to prove that both minimum values

are attained on the left endpoints of the corresponding ranges of t, namely
t = a− r and t = a− r − 1.

Hence, we can rewrite the upper bounds for the contributions of the equations

as f1(a) ≤ (a−1)!(r−1)!
2a−r−1

1
(a−r)!(2r−a−1)! and f2(a) ≤ (a−1)!(r−1)!

2a−r−2
1

(a−r−1)!(2r−a)! .

9



The two bounds together imply f(a) = f1(a) + f2(a) ≤ 2f1(a) + f2(a) ≤
(a−1)!r!

2a−r−2(a−r)!(2r−a)! . Hence we have the following estimate for g:

g(a) ≤
(

r4r−2a−1(a− 1)!2r!2

22a−2r−4(a− r)!2(2r − a)!2

)a

. (9)

We will prove that the upper bound for g(a) in (9), call it h(a), is increasing
with a in the range 2r− 2r/ log(r) ≤ a ≤ 2r− 5, and that for a = 2r− 4 it gives
a value smaller than g(2r − 1). The cases a = 2r − 3 and a = 2r − 2 will be
dealt with separately.

It is a simple exercise to compute that f(2r−2) = r(2r−2)!/2r−1 and f(2r−3) =
(r + 1)(2r − 2)!/(3 · 2r−1). Thus, g(2r − 2) = (r5(2r − 2)!2/22r−2)2r−2 and
g(2r − 3) = (r5(r + 1)2(2r − 2)!2/(9 · 22r−2))2r−3. Hence, applying Stirling’s
formula, the following estimates hold as r → ∞, where the ci > 0 and c′i are
constants:

g(2r − 1)

g(2r − 2)
=

(

r(2r − 1)!2

22r−2

)2r−1

·
(

r5(2r − 2)!2

22r−2

)−(2r−2)

=
(2r − 1)4r−2 · (2r − 2)!2

r8r−9 · 22r−2

∼ c1 · rc
′

1 · 2
6r

e4r

→ ∞

and

g(2r − 1)

g(2r − 3)
=

(

r(2r − 1)!2

22r−2

)2r−1

·
(

r5(r + 1)2(2r − 2)!2

9 · 22r−2

)−(2r−3)

∼ c2 · 92r−3 · (2r − 1)4r−2 · (2r − 2)!4

r12r−20 · 24r−4

∼ c3 · rc
′

3 · 9
2r · 28r
e8r

→ ∞,

since 26 > e4 and 92 · 28 > e8.

On the other hand, plugging a = 2r − 4 in (9), we get

g(2r − 4) ≤
(

r15(2r − 5)!2

242 · 22r−12

)2r−4

.

Again, Stirling’s formula implies that, for some positive constant c and some
constant c′,

10



g(2r − 1)

g(2r − 4)
≥
(

r(2r − 1)!2

22r−2

)2r−1

·
(

r15(2r − 5)!2

242 · 22r−12

)−(2r−4)

=
((2r − 1)(2r − 2)(2r − 3)(2r − 4))4r−2 · 244r−8(2r − 5)!6

r28r−59 · 226r−46

∼ c · rc′ · 24
4r · 22r
e12r

→ ∞,

when r → ∞, since 244 · 22 > e12.

To prove that h is increasing in this range, we first calculate h(a+ 1)/h(a):

h(a+ 1)/h(a) =
r4r−4a−3r!2a2aa!2(2r − a)2a

24a−2r−2(a− r + 1)2a(a− r + 1)!2(2r − a− 1)!2
.

Computing the logarithm of each term in this expression to the base r, we get,
using that log(n!) = n log(n)− n+O(log(n)), writing α = 2r− a, and ignoring
o(r/ log(r)) terms in the equations that follow, that logr(r

4r−4a−3) = 4α− 4r,
logr(r!

2) = 2r − 2r/ log(r), logr(a
2a) = 2a + (2 log(2))a/ log(r), logr(a!

2) =
2a+2(log(2)−1)a/ log(r), logr((2r−a)2a) = 2a log(α)/ log(r), logr(2

4a−2r−2) =
(4 log(2))a/ log(r) − (2 log(2))r/ log(r), logr((a − r + 1)2a) = 2a, logr((a − r +
1)!2) = 2(a − r) − 2a/ log(r) + 2r/ log(r), and logr((2r − a − 1)!2) = 2(α −
1) log(α− 1)/ log(r). Putting all these expression together, we get the following
estimate for logr(h(a+ 1)/h(a)):

(2 log(2)− 4)
r

log(r)
+ 2a

log(α)

log(r)
− 2(α− 1)

log(α− 1)

log(r)
+ 4α+ o

(

r

log(r)

)

. (10)

But, recalling that α ≥ 3 and a ≥ 2r− 2r/ log(r), we get that this expression is
at least

(2 log(2)− 4)
r

log(r)
+ 2a

log(α)

log(r)
− 2(α− 1)

log(α− 1)

log(r)
+ 4α ≥

(2 log(2)− 4)
r

log(r)
+ 2(2r − 2α)

log(α)

log(r)
+ 12 ≥

(4 log(3) + 2 log(2)− 4)
r

log(r)
+ o

(

r

log(r)

)

,

which is positive for large r, since 4 log(3) + 2 log(2)− 4 > 0. This proves that
h is increasing in this range and completes the proof in the case a ≥ 2r −√

r.

Suppose, on the other hand, that
√
r < α < 2r/ log(r). In this case, the

minimum of t!(a − 1 − 2t)!(r − a + t)!, where a − r ≤ t ≤ (a − 1)/2 and of
t!(a− 2− 2t)!(r− a+ t+1)!, where a− r− 1 ≤ t ≤ (a− 2)/2, is not attained on
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the left end of the respective intervals, but in the root of a quadratic equation
that lies in the middle of the interval, where the ratio of consecutive terms is
equal to 1.

In the case of the first equation, this corresponds to the smallest root of the

equation (t+1)!(a−3−2t)!(r−a+t+1)!
t!(a−1−2t)!(r−a+t)! = 1, or (t+1)(r−a+ t+1) = (a− 1− 2t)(a−

2− 2t), which is

t0 =
1

6
(3a+ r − 4−

√

−3a2 + 6ar + r2 + 4r + 4) = a− r + k1,

where k1 = O
(

α2

r

)

.

Hence, using the elementary estimates (ab )
b ≤

(

a
b

)

≤ ( eab )
b and

(

2k
k

)

≤ 4k, we
can prove that

t0!(a− 1− 2t0)!(r − a+ t0)!

(a− r)!(a − 1− 2(a− r))!(r − a+ (a− r))!
=

(

r−α+k1

k1

)

(

2k1

k1

)(

α−1
2k1

)

≥ (r − α+ k1)
k1 · kk1

1

e2k1 · α2k1
,

so the value of the minimum of t!(a− 1− 2t)!(r− a+ t)! is bounded from below
by its value on the left endpoint times the factor in the right-hand side of the
inequality above. Call it m1.

A similar calculation for the second equation proves that

t1!(a− 2− 2t1)!(r − a+ t1 + 1)!

(a− r − 1)!(a− 2− 2(a− r − 1))!(r − a+ (a− r − 1) + 1)!
≥

(r − α− 1 + k2)
k2 · kk2

2

e2k2 · α2k2
,

where k2 = O
(

α2

r

)

. Call the right-hand side of the inequality above m2.

These two estimates together imply that

f(a) ≤ (a− 1)!r!

2a−r−2(a− r)!(2r − a)!
·M,

where M = max{m1,m2}, and hence

g(a) ≤
(

r4r−2a−1(a− 1)!2r!2

22a−2r−4(a− r)!2(2r − a)!2

)a

·M2a = h(a) ·M2a.

This is the bound in (9) with an extra term M2a, where M2a = rO(α2/r).

Applying the estimate (10), we get that
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logr

(

h(2r − 2)

h(a)

)

= logr

(

α
∏

i=3

h(2r − i+ 1)

h(2r − i)

)

=

α
∑

i=3

logr

(

h(2r − i+ 1)

h(2r − i)

)

≥ crα,

for some c > 0.

Finally, as α2/r = o(rα), this inequality implies that

g(a) = h(a) ·M2a

≤ h(2r − 2) ·M2a

rcrα

≤ g(2r − 1) · rO(α2/r)

rcrα

≤ g(2r − 1)

and concludes the proof.

7 Final remarks and open problems

Our argument could be generalized by taking the sets Gj to include bigger neigh-
borhoods of the edge ej . However, in this case, new technical problems arise
when we try to estimate the |Fi|. Somewhat better results could be achieved,
but we do not believe that they get substantially closer to the lower bounds.

We conjecture that b2,S3 = 6
√
102, i.e., the union of disjoint K3,3’s is the graph

with the largest number of 2-edge-colorings without monochromatic S3. In
general, for 2-colorings forbidding monochromatic stars of a fixed size, we think,
in agreement with [8], that the extremal configuration is given by a collection
of copies of a fixed (possibly complete bipartite) graph of constant size.
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