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Abstract

A vertex v of the underlying graph of a symmetric matrix A is called ‘Parter’ if the nullity of the
matrix obtained from A by removing the row and column indexed by v is more than the nullity of A.
Let A be a singular symmetric matrix with rank r whose underlying graph is a tree. It is known that
the number of Parter vertices of A is at most r − 1. We prove that when r is odd this number is at
most r − 2. We characterize the trees where these bounds are achieved.
Keywords: Acyclic Matrix, Nullity, Parter Vertex, Tree.
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1. Introduction

In this article, all graphs are assumed to be finite, undirected, and without loops or multiple edges. Let F
denote a field and let G be a graph with vertex setV(G) and edge set E(G). Denote by SF(G) the set of
all the symmetric matrices A with entries in F, whose rows and columns are indexed byV(G), such that
for every two distinct vertices u, v ∈ V(G), the (u, v)-entry of A is nonzero if and only if {u, v} ∈ E(G).
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Indeed, since G is loopless, this definition imposes no restriction on the diagonal entries of matrices in
SF(G). The adjacency matrix of G, denoted byA(G), is a (0, 1)-matrix in SF(G) all of whose diagonal
entries are equal to 0. In fact, the matrices in SF(G) can be seen as weighted adjacency matrices of G.
For any tree T , we refer to the elements of SF(T ) as acyclic matrices.

Before proceeding further, let us first set some notation and terminology. For an n × n matrix A with
entries in a field F, the kernel of A is defined as ker(A) = {x ∈ Fn | Ax = 0}. The dimension of ker(A)
is called the nullity of A and is denoted by η(A). Moreover, the dimension of row (column) space of A
is called the rank of A and is denoted by rank(A). For every matrix A in SF(G) and subset X of V(G),
the principal submatrix of A obtained by deleting the rows and the columns indexed by X (respectively,
V(G) \ X) is denoted by A(X) (respectively, A[X]). For simplicity, we write A(v) instead of A({v}). For a
subset X ofV(G), we use the notation 〈X〉 for the subgraph of G induced by X.

Let G be a graph with n = |V(G)| and let A ∈ SF(G). For each vertex v ∈ V(G), since A(v) is
an (n − 1) × (n − 1) submatrix of A and adding a row or a column can increase the rank by at most 1,
rank(A) − rank(A(v)) ∈ {0, 1, 2}, which implies that η(A) − η(A(v)) ∈ {−1, 0, 1}. Following [7], we refer
to a vertex v ∈ V(G) as a Parter vertex of A if η(A(v)) = η(A) + 1. Equivalently, a vertex v ∈ V(G) is
a Parter vertex of A if and only if rank(A(v)) = rank(A) − 2. We denote the number of Parter vertices
of A by p(A). For a scalar σ ∈ F, the geometric multiplicity of σ as an eigenvalue of A is denoted by
ησ(A). Note that ησ(A) = η(A − σI) and so, as there is no restriction on the diagonal entries of matrices
in SF(G), the definitions and results in case σ = 0 can be generalized for any eigenvalue σ.

In this article, we deal with the maximum number of Parter vertices of singular acyclic matrices.
We know by Proposition 4.4 of [7] that the number of Parter vertices of a singular matrix with rank r
whose underlying graph has no isolated vertices is at most r − 1. This upper bound is tight. Further, we
know from [3] and [6] that the maximum number of Parter vertices of n × n singular acyclic matrices
is 2b n−1

2 c − 1. As a generalization, we prove in this paper that the number of Parter vertices of singular
acyclic matrices with rank r is at most 2b r

2c − 1. We also characterize the structure of trees which
achieve this upper bound. It is noteworthy that, by [1], the maximum number of Parter vertices of n × n
nonsingular acyclic matrices is 2bn

2c.
Some other type results on Parter vertices of acyclic matrices are considered in the literature. For

instance, we refer to [2], [4], and [9] among others.

2. Results

We begin this section with the following definition. Recall that an edge of a graph is called a cut-edge if
it is not contained in any cycle of the graph.

Definition 1. Let G be a graph and A ∈ SF(G). Use V(G) to index the components of each vector in
ker(A). Define G↓A to be the set of vertices v ∈ V(G) such that there exists a vector x ∈ ker(A) with
xv , 0. Also, define G↑A to be the set of vertices v ∈ V(G) such that there exist a cut-edge {v,w} ∈ E(G)
and a vector x ∈ ker(A) with xv = 0 and xw , 0. Put G

�

A = V(G) \ (G↓A ∪G↑A).

All the assertions of the following theorem are proved in [8].

Theorem 2. For any tree T with |V(T )| > 2 and any singular matrix A ∈ SF(T ), the following hold.

(i) For any v ∈ V(T ), η(A(v)) = η(A) − 1 if and only if v ∈ T ↓A.

(ii) For any v ∈ T ↑A, η(A(v)) = η(A) + 1.
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(iii) T ↓A = V(T ) if and only if T ↑A = ∅. If one of these occurs, then η(A) = 1.

(iv) The number of connected components of 〈T ↓A〉 is η(A) + |T ↑A|.

(v) If T

�

A , ∅, then A[T

�

A ] is nonsingular.

(vi) For any connected component C of 〈T ↓A〉, ker(A[C]) is spanned by a nowhere-zero vector.

Let T be a tree with |V(T )| > 2 and let A ∈ SF(T ) be a singular matrix. Parts (i) and (ii) of Theorem
2 imply that the subsets T ↓A, T ↑A, T

�

A are mutually disjoint, and moreover, the set of Parter vertices of A
contains the vertices in T ↑A and is contained in T ↑A ∪ T

�

A . The following example shows that, in general,
the set of Parter vertices of A does not coincide with T ↑A or T ↑A ∪ T

�
A .

Example 3. Let T be the tree depicted in Figure 1 and consider the singular matrix

A =


0 0 1 0 0 0
0 0 1 0 0 0
1 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 ∈ SF(T ).

Easy computations show that T ↓A = {v1, v2}, T ↑A = {v3}, T

�

A = {v4, v5, v6}, and the set of Parter vertices of
A is {v3, v4, v6}.

Figure 1. The tree in Example 3.

The following corollary is a partial consequence of Theorem 2 (vi).

Corollary 4. Let T be a tree and let A ∈ SF(T ) be a singular matrix. Assume that v ∈ T ↓A is of degree 1
and its neighbor is contained in T ↑A. Then the (v, v)-entry of A is 0.

Definition 5. Denote the tree on 2 vertices by P2. Attaching a P2 to a vertex of a tree T by one edge is
called the adding pendant P2 operation on T .

We recall the next theorem whose proof can be found in [5].

Theorem 6 (Du–da Fonseca [5]). Let T be a tree on n > 2 vertices.

(i) There is a nonsingular matrix A in SF(T ) with p(A) = n if and only if T is obtained from P2 by a
sequence of adding pendant P2 operations.

(ii) There is a nonsingular matrix A in SF(T ) with p(A) = n−1 if and only if T is obtained from a star
by a sequence of adding pendant P2 operations.

We need the following lemma to prove our main theorem.
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Lemma 7. Let T be a tree and let A ∈ SF(T ) be a singular matrix such that |T ↑A| = 1, |T

�

A | > 2, and
〈T ↓A〉 has no edge. Then a vertex in T

�

A is a Parter vertex of A if and only if it is a Parter vertex of A[T
�

A ].

Proof. Fix a vertex v ∈ T

�

A and put B = A[T

�

A ]. By Definition 1 and Corollary 4, we may assume that

A =


v T

�

A \{v} T ↑A T ↓A
v α x> β 0

T

�

A \{v} x C y 0
T ↑A β y> γ z>
T ↓A 0 0 z 0


for some scalars α, β, γ ∈ F and column matrices x, y, z. Since z is nonzero,

rank(A) = rank


α x> β 0
x C y 0
0 0 γ z>

0 0 z 0

 = rank
ï
α x>

x C

ò
+ 2 = rank(B) + 2 (1)

and

rank
(
A(v)

)
= rank

 C y 0
y> γ z>

0 z 0

 = rank

 C y 0
0 γ z>

0 z 0

 = rank(C) + 2 = rank
(
B(v)

)
+ 2. (2)

Now, it follows from (1) and (2) that v is a Parter vertex of A if and only if v is a Parter vertex of B. �

We are now in the position to state and prove our main result. We establish below that, for every tree
T and singular matrix A ∈ SF(T ), the number of Parter vertices of A is at most 2b rank(A)

2 c − 1. We also
characterize the trees which achieve the upper bound.

Theorem 8. The following statements hold for any tree T .

(i) For any singular matrix A ∈ SF(T ) with rank(A) > 2,

p(A) 6 2
õ

rank(A)
2

û
− 1. (3)

(ii) There exists a singular matrix A ∈ SF(T ) with p(A) = rank(A) − 1 if and only if T is of the
form depicted in Figure 2 (a) for some trees T1, . . . ,Tk obtained from P2 by a sequence of adding
pendant P2 operations.

(iii) There exists a singular matrix A ∈ SF(T ) with odd rank and p(A) = rank(A) − 2 if and only if
either

T is of the form shown in Figure 2 (a) for some trees T1, . . . ,Tk where one of them is obtained
from a star with an odd number of vertices by a sequence of adding pendant P2 operations,
and the rest are obtained from P2 by a sequence of adding pendant P2 operations,

or
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T is of the form indicated in Figure 2 (b) for some trees T1, . . . ,Tk obtained from P2 by a
sequence of adding pendant P2 operations.

Furthermore, the number of vertices in S a and S b are respectively equal to rank(A) − 1 and rank(A) − 2
for every tree T of the form depicted in Figure 2 and singular matrix A ∈ SF(T ) achieving the equality
in (3). Note that in each of (a) and (b), all of T1, . . . ,Tk together may be absent.

Figure 2. The extremal trees in Theorem 8.

Proof. Let n = |V(T )|. Consider a singular matrix A ∈ SF(T ) with rank r > 2. Note that n > 3. If
T ↑A = ∅, then we find from Parts (i) and (iii) of Theorem 2 that p(A) = 0 and r = n − 1, so (3) holds and
there is nothing more to prove. Hence, it what follows, we assume that |T ↑A| > 1. We first consider the
case r = 2. It follows from Theorem 2 (iv) that the number of connected components of 〈T ↓A〉 is at least
n − 1. As |T ↑A| > 1 and T ↑A ∩ T ↓A = ∅, we conclude that |T ↓A| = n − 1 and therefore p(A) = |T ↑A| = 1 by
Theorem 2 (ii). This proves (3) for r = 2. Furthermore, since 〈T ↓A〉 has n− 1 vertices and n− 1 connected
components, 〈T ↓A〉 is an edgeless graph on n−1 vertices. As T is a tree, the unique vertex in T ↑A is adjacent
to all the vertices in T ↓A and so T is of the form depicted in Figure 2 (a), where all of the trees T1, . . . ,Tk

are absent. Thus, there is nothing more to prove in the case r = 2. From now on, we assume that |T ↑A| > 1
and r > 3.

We are going to establish (3). By Theorem 2 (i), each Parter vertex of A is contained in T ↑A ∪ T

�

A ,
implying that

p(A) 6
∣∣∣T ↑A∣∣∣ +

∣∣∣T �A ∣∣∣ . (4)

As |T ↑A| > 1, we have∣∣∣T ↑A∣∣∣ +

∣∣∣T �A ∣∣∣ 6 (∣∣∣T ↑A∣∣∣ +

∣∣∣T �A ∣∣∣) +

(
η(A) +

∣∣∣T ↑A∣∣∣) − (η(A) + 1
)
. (5)

Also, we obtain from Theorem 2 (iv) that η(A) + |T ↑A| 6 |T
↓

A|. Hence, it follows from |T ↑A|+ |T

�

A | = n− |T ↓A|
that (∣∣∣T ↑A∣∣∣ +

∣∣∣T �A ∣∣∣) +

(
η(A) +

∣∣∣T ↑A∣∣∣) − (η(A) + 1
)
6
(

n −
∣∣∣T ↓A∣∣∣) +

∣∣∣T ↓A∣∣∣ − (η(A) + 1
)

= r − 1. (6)

From (4), (5), and (6) we conclude that p(A) 6 r − 1. So, in order to prove p(A) 6 2b r
2c − 1, it suffices to

show that if p(A) = r − 1, then r is even. Suppose that p(A) = r − 1. Then, the equalities occur in (4)–(6).
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It follows from (5) that |T ↑A| = 1 and hence |T

�

A | = r − 2 by (4). Hence, it follows from (6) that 〈T ↓A〉 is an
edgeless graph on n − r + 1 vertices. If r = 3, then T is a star whose center is a vertex in T ↑A and, using
Corollary 4, it is straightforwardly checked that p(A) = 1, which contradicts p(A) = r − 1. Therefore,
r > 4. It follows from Theorem 2 (v) that A[T

�

A ] is nonsingular. Using Lemma 7 and Theorem 6 (i), r
must be even, as required.

Now, we are going to determine the structure of T when the equality occurs in (3). First, suppose
that p(A) = r − 1. Then, r is an even number at least 4. Moreover, in this case, the equalities occur in
(4)–(6). By (5), we conclude that |T ↑A| = 1 and hence |T

�

A | = r − 2 by (4). Therefore, it follows from (6)
that 〈T ↓A〉 is an edgeless graph on n − r + 1 vertices. In addition, all the vertices of T

�

A are Parter vertices
of A and A[T

�

A ] is nonsingular by Theorem 2 (v). Using Lemma 7, we conclude that all the vertices of
T

�

A are Parter vertices of A[T

�

A ]. Let T1, . . . ,Tk be the connected components of 〈T

�

A 〉. By Theorem
6 (i), we find that each Ti is obtained from P2 by a sequence of adding pendant P2 operations. Thus, T
is of the form depicted in Figure 2 (a), as required. Next, suppose that r is odd and p(A) = r − 2. We
distinguish the three following cases:
Case 1. Assume that the inequality (4) is strict. In this case, the equalities occur in (5) and (6). By (5),
we conclude that |T ↑A| = 1 and hence |T

�

A | = r − 2 by (4). Therefore, it follows from (6) that 〈T ↓A〉 is an
edgeless graph on n− r + 1 vertices. If r = 3, then T is a star whose center is a vertex in T ↑A, we are done.
So, we assume that r > 5. It follows from Theorem 2 (v) that A[T

�

A ] is nonsingular. Now, using Lemma
7 and Theorem 6 (ii), we conclude that T is of the form depicted in Figure 2 (a), as required.
Case 2. Assume that the inequality (5) is strict. So, the equalities occur in (4) and (6). By (5), we
conclude that |T ↑A| = 2 and thus |T

�
A | = r − 4 by (4). Since r is odd, r > 5. As the equality occurs in

(6), we find that 〈T ↓A〉 is an edgeless graph on n − r + 2 vertices. Moreover, Theorem 2 (v) yields that
B = A[T

�

A ] is nonsingular. We claim that p(B) = r − 4. Assume that v is an arbitrary vertex in T

�

A and,
for simplicity, suppose that v is corresponding to the first row of B. By Corollary 4, we may write

A =


v T

�

A \{v} T ↑A T ↓A
v α x> t> 0

T

�

A \{v} x C Y 0
T ↑A t Y> D Z>

T ↓A 0 0 Z 0

,
where x, t are some column matrices and D is a 2 × 2 matrix. Since |T ↓A| > 3 and in view of Definition 1,
Z has two linearly independent rows and then it is straightforwardly seen that

rank
(
A(v)

)
= rank

 C Y 0
Y> D Z>

0 Z 0

 = rank

 C Y 0
0 D Z>

0 Z 0

 = rank(C) + 4.

As p(A) = r−2, |T ↑A| = 2, and |T

�

A | = r−4, all the vertices of T

�

A are Parter vertices of A. In particular, v is
a Parter vertex of A. Therefore, we conclude that rank(B(v)) = rank(C) = r−6 = |T

�

A | −2 = rank(B)−2.
This means that v is a Parter vertex of B which implies that all the vertices of T

�

A are Parter vertices of
B, proving the claim. By Theorem 6 (i), r is even, a contradiction.
Case 3. Assume that the inequality (6) is strict. So, the equalities occur in (4) and (5). By (5), we
conclude that |T ↑A| = 1 and hence |T

�

A | = r − 3 by (4). Thus, it follows from (6) that 〈T ↓A〉 has n − r + 2
vertices and 1 edge. If r = 3, then T is of the form shown in Figure 2 (b) and we are done. So, we assume

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



that r > 5. It follows from Theorem 2 (v) that B = A[T

�

A ] is nonsingular. Denote by w the unique vertex
in T ↓A with no neighbor in T ↑A. We claim that p(B) = r − 3. Assume that v is an arbitrary vertex in T

�

A
and, for simplicity, suppose that v is corresponding to the first row of A and w corresponding to the last
row of A. By Corollary 4, we may assume that

A =



v T

�

A \{v} T ↑A T ↓A\{w} w

v α x> β 0 0
T

�

A \{v} x C y 0 0
T ↑A β y> γ z> 0

T ↓A\{w} 0 0 z D t
w 0 0 0 t> δ

,
where x, y, z are some column matrices, D = diag(σ, 0, . . . , 0), t> = [τ 0 · · · 0], and α, β, γ, δ, σ, τ ∈ F.
We know that rank(B) = r − 3 and

rank


α x> 0 0
x C 0 0
0 0 D t
0 0 t> δ

 = rank
Ä

A
Ä

T ↑A
ää

= r − 2.

This yields that δσ = τ2. Now, it is straightforward to check that

rank

 γ z> 0
z D t
0 t> δ

 = 3.

As we have assumed the equality in (4), all the vertices in T

�

A are Parter vertices of A. So, v is a Parter
vertex of A and, as z has at least two nonzero entries,

r − 2 = rank
(
A(v)

)
= rank


C y 0 0
0 γ z> 0
0 z D t
0 0 t> δ

 = rank(C) + 3

and thus rank(B(v)) = rank(C) = r−5. This means that v is a Parter vertex of B, proving that p(B) = r−3.
Using Theorem 6 (i), we conclude that T is of the form indicated in Figure 2 (b), as required.

In order to end the proof, let T be a tree of one of the forms illustrated in Figure 2 for some trees
T1, . . . ,Tk. Let ni = |V(Ti)| for any i ∈ {1, . . . , k} and let m = n1 + · · · + nk. In what follows, we will
construct a singular matrix A ∈ SF(T ) achieving the equality in (3).

First, assume that T is of the form depicted in Figure 2 (a) for some trees T1, . . . ,Tk obtained from
P2 by a sequence of adding pendant P2 operations. By Theorem 6 (i), for any i ∈ {1, . . . , k}, there is a
nonsingular matrix Ai in SF(Ti) such that p(Ai) = ni. Let A ∈ SF(T ) be the matrix obtained fromA(T )
by replacing the submatricesA(T1), . . . ,A(Tk) with A1, . . . , Ak, respectively. It is easy to check that A is
a singular matrix with p(A) = rank(A)− 1 = m + 1. Actually, the set of Parter vertices of A is equal to S a.

Next, assume that T is of the form depicted in Figure 2 (a) for some trees T1, . . . ,Tk, where one
of them is obtained from a star with an odd number of vertices by a sequence of adding pendant P2
operations and the rest are obtained from P2 by a sequence of adding pendant P2 operations. Without
loss of generality, suppose that T1 is obtained from a star with an odd number of vertices by a sequence
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of adding pendant P2 operations. By Theorem 6, there is a nonsingular matrix A1 in SF(T1) such that
p(A1) = n1 − 1 and, for any i ∈ {2, . . . , k}, there is a nonsingular matrix Ai in SF(Ti) such that p(Ai) = ni.
Let A ∈ SF(T ) be the matrix obtained from A(T ) by replacing the submatrices A(T1), . . . ,A(Tk) with
A1, . . . , Ak, respectively. It is easy to check that A is a singular matrix with p(A) = rank(A) − 2 = m.
Actually, the set of Parter vertices of A is equal to S a. Note that in this case m is odd which implies that
rank(A) is odd.

Finally, assume that T is of the form depicted in Figure 2 (b) for some trees T1, . . . ,Tk obtained from
P2 by a sequence of adding pendant P2 operations. By Theorem 6 (i), for any i ∈ {1, . . . , k}, there is a
nonsingular matrix Ai in SF(Ti) such that p(Ai) = ni. Let A ∈ SF(T ) be the matrix obtained fromA(T )
by replacing the submatrices A(T1), . . . ,A(Tk) with A1, . . . , Ak, respectively, and by replacing 0 with 1
on the positions (w,w) and (w′,w′), where w and w′ are introduced in Figure 2 (b). It is straightforward
to check that A is a singular matrix with p(A) = rank(A) − 2 = m + 1. Actually, the set of Parter vertices
of A is equal to S b. Note that in this case m is even which implies that rank(A) is odd. �

3. Concluding remarks

In this paper, we showed for every tree T and singular matrix A ∈ SF(T ) that p(A) 6 2b rank(A)
2 c − 1

provided rank(A) > 2 and we determined all trees for which there exists a singular matrix attaining the
upper bound. More precisely, we characterized the trees T for which there is a singular matrix A ∈ SF(T )
with p(A) = rank(A) − 1, and moreover, we characterized the trees T for which there is a singular matrix
A ∈ SF(T ) having odd rank and satisfying p(A) = rank(A) − 2. It is worth to mention that our results
do not depend on the ground field F. Naturally, one may consider a more general problem: For a given
integer ` > 2, find all trees T for which there exists a singular matrix A ∈ SF(T ) with p(A) = rank(A)−`.
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