Upper bounds on the signed edge domination number of a graph

Fengming Dong ${ }^{1 *}$, Jun $\mathrm{Ge}^{2 \dagger}$, and Yan Yang ${ }^{3 \ddagger}$
${ }^{1}$ National Institute of Education, Nanyang Technological University, Singapore
${ }^{2}$ School of Mathematical Sciences, Sichuan Normal University, China
${ }^{3}$ School of Mathematics, Tianjin University, China.

Abstract

A signed edge domination function (or SEDF) of a simple graph $G=(V, E)$ is a function $f: E \rightarrow\{1,-1\}$ such that $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$ holds for each edge $e \in E$, where $N[e]$ is the set of edges in G that share at least one endpoint with e. Let $\gamma_{s}^{\prime}(G)$ denote the minimum value of $f(G)$ among all SEDFs f, where $f(G)=\sum_{e \in E} f(e)$. In 2005, Xu conjectured that $\gamma_{s}^{\prime}(G) \leq n-1$, where n is the order of G. This conjecture has been proved for the two cases $v_{\text {odd }}(G)=0$ and $v_{\text {even }}(G)=0$, where $v_{\text {odd }}(G)$ (resp. $v_{\text {even }}(G)$) is the number of odd (resp. even) vertices in G. This article proves Xu's conjecture for $v_{\text {even }}(G) \in\{1,2\}$. We also show that for any simple graph G of order $n, \gamma_{s}^{\prime}(G) \leq n+v_{\text {odd }}(G) / 2$ and $\gamma_{s}^{\prime}(G) \leq n-2+v_{\text {even }}(G)$ when $v_{\text {even }}(G)>0$, and thus $\gamma_{s}^{\prime}(G) \leq(4 n-2) / 3$. Our result improves the best current upper bound of $\gamma_{s}^{\prime}(G) \leq\lceil 3 n / 2\rceil$.

Keywords: signed edge domination function, signed edge domination number, trail decomposition

1 Introduction

This article considers simple and undirected graphs only. For a graph G, let $V(G)$ and $E(G)$ denote its vertex set and edge set, respectively. For any $v \in V(G)$, let $E_{G}(v)$ be the set of edges in G incident to v, let $N_{G}(v)$ be the set of vertices in G adjacent to v, and let $N_{G}[v]=N_{G}(v) \cup\{v\} . E_{G}(v), N_{G}(v)$ and $N_{G}[v]$ are simply written as $E(v), N(v)$ and $N[v]$, respectively, when there is no confusion. For any $v \in V(G)$, we use $d_{G}(v)$ (or simply $d(v)$ when there is no confusion) to denote the degree of v in G.

[^0]For a graph $G=(V, E)$, a signed domination function of G is a function $f: V \rightarrow\{1,-1\}$ with the property that $f(N[v]) \geq 1$ holds for every $v \in V$, where $f(S)=\sum_{v \in S} f(v)$ for each $S \subseteq V$. The signed domination number of G, denoted by $\gamma_{s}(G)$, is defined to be the minimum value of $f(V)$ over all signed domination functions f of G. The parameter $\gamma_{s}(G)$ was introduced by Dunbar, Hedetniemi, Henning, and Slater [4] and has been studied by many authors, e.g., [3, 5-7, 10, 15].

In 2001, Xu [11] introduced signed edge domination functions. For a graph $G=(V, E)$, a function $f: E \rightarrow\{1,-1\}$ is called a signed edge domination function (SEDF) of G if $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$ holds for every $e \in E$, where $e=u v$ and $N[e]=E_{G}(u) \cup E_{G}(v)$. Let $\mathcal{F}_{\text {sed }}(G)$ denote the set of SEDFs of G. The signed edge domination number of G, denoted by $\gamma_{s}^{\prime}(G)$, is defined to be the minimum value of $f(G)$ over all $f \in \mathcal{F}_{\text {sed }}(G)$, where $f(G)=\sum_{e \in E} f(e)$.

Observe that the parameter $\gamma_{s}^{\prime}(G)$ is an extension of $\gamma_{s}(G)$, as each member f in $\mathcal{F}_{\text {sed }}(G)$ is actually a signed domination function of the line graph $L(G)$, thus implying that $\gamma_{s}^{\prime}(G)=$ $\gamma_{s}(L(G))$. The parameter $\gamma_{s}^{\prime}(G)$ has been studied by many authors, e.g., [1, 2, 8, 11, 14]. The following are some known results on $\gamma_{s}^{\prime}(G)$ for a graph G of order n and size m :
(i). $\gamma_{s}^{\prime}(G) \geq \frac{-n^{2}}{16}[1]$;
(ii). for any positive integer r, there exists an r-connected graph H such that $\gamma_{s}^{\prime}(H) \leq$ $-\frac{r}{6}|V(H)|$ [1];
(iii). $\gamma_{s}^{\prime}(G) \geq \frac{2 \alpha^{\prime}(G)-m}{3}$, where $\alpha^{\prime}(G)$ is the size of a largest matching of $G[2]$;
(iv). $\gamma_{s}^{\prime}(G) \geq n-m$ for $n \geq 4$ [12];
(v). $\gamma_{s}^{\prime}(G) \leq \frac{11 n}{6}-1$ [13];
(vi). $\gamma_{s}^{\prime}(G) \leq\left\lceil\frac{3 n}{2}\right\rceil$ [8].

In this article, we will improve the upper bounds of $\gamma_{s}^{\prime}(G)$ by establishing the following result. A vertex in a graph G is called an odd vertex (resp. even vertex) if it is of odd degree (resp. even degree) in G. Let $v_{\text {odd }}(G)$ (resp. $v_{\text {even }}(G)$) denote the number of odd (resp. even) vertices in G. Clearly, $v_{o d d}(G)$ is even.

Theorem 1 For any graph G of order n,
(a) $\gamma_{s}^{\prime}(G) \leq n+v_{\text {odd }}(G) / 2$;
(b) $\gamma_{s}^{\prime}(G) \leq n-2+v_{\text {even }}(G)$ when $v_{\text {even }}(G)>0$;
and hence $\gamma_{s}^{\prime}(G) \leq(4 n-2) / 3$.

The most challenging and interesting problem on $\gamma_{s}^{\prime}(G)$ may be the following conjecture proposed by $\mathrm{Xu}[12]$ in 2005.

Conjecture 1 ([12]) For any simple graph G of order $n, \gamma_{s}^{\prime}(G) \leq n-1$ holds.

As far as we know, Conjecture has been only proved for a few cases. Karami, Khodkar, and Sheikholeslami [8] showed that Conjecture 1 holds when $v_{o d d}(G) \in\{0, n\}$. In the case $v_{o d d}(G)=n$, Akbari, Esfandiari, Barzegary, and Seddighin [2] strengthened the result to $\gamma_{s}^{\prime}(G) \leq n-\frac{2 \alpha^{\prime}(G)}{3}$, where $\alpha^{\prime}(G)$ is the size of a maximum matching in G. In this paper, we prove that $\gamma_{s}^{\prime}(G) \leq n-1$ if $v_{\text {even }}(G) \in\{1,2\}$.

Theorem 2 Conjecture $\mathbb{\square}$ holds for any simple graph G with $v_{\text {even }}(G) \in\{1,2\}$.

In Section 2, we introduce a subfamily $\mathcal{F}_{\text {sed }}^{0}(G)$ of $\mathcal{F}_{\text {sed }}(G)$ and establish some basic results for proving the main results in the following sections. Theorem 1 (a) and (b) are proved in Sections 3 and 4 , respectively. By Theorem (b), Conjecture 1 holds for $v_{\text {even }}(G)=1$. In Section 号, we show that Conjecture 1 holds for $v_{\text {even }}(G)=2$, and thus Theorem 2 follows. In Section 6, we propose a conjecture to replace Conjecture [1, as we think there exists a member f in $\mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G) \leq n-1$ for any graph G of order n. We also propose a conjecture for the lower bound of $\gamma_{s}^{\prime}(G)$ when G is 2-connected.

2 A subset $\mathcal{F}_{\text {sed }}^{0}(G)$ of $\mathcal{F}_{\text {sed }}(G)$

Let G be a simple graph. For any $f: E(G) \rightarrow\{1,-1\}$ and $v \in V(G)$, let $f(v)=$ $\sum_{e \in E_{G}(v)} f(e)$ and let $f(S)=\sum_{e \in S} f(e)$, where $S \subseteq E(G)$. Let $\mathcal{F}_{\text {sed }}^{0}(G)$ denote the set of functions $f: E(G) \rightarrow\{1,-1\}$ satisfying the two conditions below:
(a) $f(v) \geq 0$ for all $v \in V(G)$; and
(b) $f(u)+f(v) \geq 2$ for each $e=u v \in E(G)$ with $f(e)=1$.

Lemma $1 \quad \mathcal{F}_{\text {sed }}^{0}(G) \subseteq \mathcal{F}_{\text {sed }}(G)$.

Proof. Let f be any member in $\mathcal{F}_{\text {sed }}^{0}(G)$ and let $e=v_{1} v_{2} \in E(G)$. It follows from the definition of $\mathcal{F}_{\text {sed }}^{0}(G)$ that $f\left(v_{i}\right) \geq 0$ for $i=1,2$ and $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 2$ holds whenever $f(e)=1$, thus implying $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 1+f(e)$. Consequently,

$$
f(N[e])=f\left(v_{1}\right)+f\left(v_{2}\right)-f(e) \geq 1+f(e)-f(e)=1 .
$$

Hence $f \in \mathcal{F}_{\text {sed }}(G)$ and the result holds.

For $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S. If E_{1} and E_{2} form a partition of $E(G)$ and $f_{i}: E_{i} \rightarrow\{1,-1\}$, let $f_{1} * f_{2}$ be the function $f: E(G) \rightarrow\{1,-1\}$ defined by $f(e)=f_{i}(e)$ whenever $e \in E_{i}$.

Lemma 2 Let G be a separable graph with $V(G)=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\left\{v_{0}\right\}$ and $E(G)=$ $E\left(G\left[V_{1}\right]\right) \cup E\left(G\left[V_{2}\right]\right)$. If $f_{i} \in \mathcal{F}_{\text {sed }}^{0}\left(G\left[V_{i}\right]\right)$ for $i=1,2$, then $f=f_{1} * f_{2} \in \mathcal{F}_{\text {sed }}^{0}(G)$ with

$$
f(G)=f_{1}\left(G\left[V_{1}\right]\right)+f_{2}\left(G\left[V_{2}\right]\right)
$$

Proof. Note that $E\left(G\left[V_{1}\right]\right)$ and $E\left(G\left[V_{2}\right]\right)$ form a partition of $E(G)$ and thus $f_{1} * f_{2}$ is well defined. By the definition of f, it is obvious that $f(G)=f_{1}\left(G\left[V_{1}\right]\right)+f_{2}\left(G\left[V_{2}\right]\right)$. Next, by the definition of f, for any $v \in V(G)$,

$$
f(v)= \begin{cases}f_{1}\left(v_{0}\right)+f_{2}\left(v_{0}\right), & \text { if } v=v_{0} \tag{1}\\ f_{i}(v), & \text { if } v \in V_{i}-\left\{v_{0}\right\}, i=1,2\end{cases}
$$

As $f_{i} \in \mathcal{F}_{\text {sed }}^{0}\left(G\left[V_{i}\right]\right)$ for $i=1,2$, we have $f(v) \geq 0$ for each $v \in V(G)$ by (11). Now, let e be any edge in $E(G)$ with $f(e)=1$. We may assume that $e=v_{1} v_{2} \in E\left(G\left[V_{1}\right]\right)$, and thus $f_{1}(e)=f(e)=1$. As $f_{1} \in \mathcal{F}_{\text {sed }}^{0}\left(G\left[V_{1}\right]\right), f_{1}\left(v_{1}\right)+f_{1}\left(v_{2}\right) \geq 2$. By (11) and the assumption that $f_{2} \in \mathcal{F}_{\text {sed }}^{0}\left(G\left[V_{2}\right]\right)$, we have

$$
f\left(v_{1}\right)+f\left(v_{2}\right) \geq f_{1}\left(v_{1}\right)+f_{1}\left(v_{2}\right) \geq 2
$$

Hence $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ as required.
In the following, we assume that v_{0} is a vertex in a 2 -connected graph G with $d_{G}\left(v_{0}\right)=2$.

Lemma 3 Let G be a simple graph, and let $v_{0} \in V(G)$ with $N_{G}\left(v_{0}\right)=\left\{u_{1}, u_{2}\right\}$.
(i). For $u_{1} u_{2} \in E(G)$ and $g \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime}\right)$, where $G^{\prime}=G-u_{1} u_{2}-v_{0}$, as shown in Figure $1(b)$, let $f: E(G) \rightarrow\{1,-1\}$ be defined below:

$$
f(e)= \begin{cases}g(e), & \text { if } e \in E\left(G^{\prime}\right) \\ 1, & \text { if } e=v_{0} u_{i}, \quad i=1,2 \\ -1, & \text { if } e=u_{1} u_{2}\end{cases}
$$

Then, $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G)=g\left(G^{\prime}\right)+1$.
(ii). For $u_{1} u_{2} \notin E(G)$ and $g \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime}\right)$, where $G^{\prime}=G+u_{1} u_{2}-v_{0}$, as shown in Figure $2(b)$, let $f: E(G) \rightarrow\{1,-1\}$ be defined below:

$$
f(e)= \begin{cases}g(e), & \text { if } e \in\left(E\left(G^{\prime}\right)-\left\{u_{1} u_{2}\right\}\right) \\ 1, & \text { if } e=u_{1} v_{0} \\ g\left(u_{1} u_{2}\right), & \text { if } e=u_{2} v_{0}\end{cases}
$$

Then, $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G)=g\left(G^{\prime}\right)+1$.

Figure 1: Graphs G and $G^{\prime}\left(=G-u_{1} u_{2}-v_{0}\right)$.

Figure 2: Graphs G and $G^{\prime}\left(=G+u_{1} u_{2}-v_{0}\right)$.
Proof. (i). By the definition of f, for any $v \in V(G)$, we have

$$
f(v)= \begin{cases}g(v), & \text { if } v \in V(G)-\left\{v_{0}\right\} ; \\ 2, & \text { if } v=v_{0}\end{cases}
$$

For any $u v \in E(G)-\left\{v_{0} u_{1}, v_{0} u_{2}, u_{1} u_{2}\right\}$ such that $f(u v)=1$, we have $f(u)+f(v)=$ $g(u)+g(v) \geq 2$. For $v_{0} u_{i}, i \in\{1,2\}$, we have $f\left(v_{0}\right)+f\left(u_{i}\right)=2+g\left(u_{i}\right) \geq 2$. Thus, $g \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime}\right)$ implies $f \in \mathcal{F}_{\text {sed }}^{0}(G)$.
(ii). If $g\left(u_{1} u_{2}\right)=1$, then by the definition of f, we have

$$
f(v)= \begin{cases}g(v), & \text { if } v \in V(G)-\left\{v_{0}\right\} ; \\ 2, & \text { if } v=v_{0} .\end{cases}
$$

For any $u v \in E(G)-\left\{v_{0} u_{1}, v_{0} u_{2}\right\}$ such that $f(u v)=1$, we have $f(u)+f(v)=g(u)+g(v) \geq$ 2. For $v_{0} u_{i}, i \in\{1,2\}$, we have $f\left(v_{0}\right)+f\left(u_{i}\right)=2+g\left(u_{i}\right) \geq 2$. Thus, $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ in this case.

If $g\left(u_{1} u_{2}\right)=-1$, then, by the definition of f, we obtain

$$
f(v)= \begin{cases}g(v), & \text { if } v \in V(G)-\left\{u_{1}, v_{0}\right\} ; \\ g\left(u_{1}\right)+2, & \text { if } v=u_{1} ; \\ 0, & \text { if } v=v_{0}\end{cases}
$$

For any $u v \in E(G)-\left\{v_{0} u_{1}, v_{0} u_{2}\right\}$ such that $f(u v)=1$, we have $f(u)+f(v) \geq g(u)+g(v) \geq$ 2. For the positive edge $v_{0} u_{1}$, we have $f\left(v_{0}\right)+f\left(u_{1}\right)=0+g\left(u_{1}\right)+2 \geq 2$. Thus, $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ in this case.
$3 \quad \gamma_{s}^{\prime}(G) \leq n+v_{\text {odd }}(G) / 2$

For any graph G and $f: E(G) \rightarrow\{1,-1\}$, let $I_{f}(G)=\{v \in V(G): f(v)=0\}$. We will prove the main result in this section by applying the following result due to Karami, Khodkar, and Sheikholeslami [8].

Theorem 3 ([8]) For any simple graph G of order n with $v_{\text {odd }}(G)=0$, there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $I_{f}(G) \neq \emptyset$ and $f(u) \in\{0,2\}$ for all $u \in V(G)$.

Proposition 1 For any simple graph G of order n, there is $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G) \leq$ $n+v_{\text {odd }}(G) / 2$.

Proof. It is sufficient to prove for the case when G is connected. It can be easily verified that the result holds whenever $n \leq 3$. Now assume that $n \geq 4$ and the result holds for any connected graph of order at most $n-1$.

If G is not 2-connected, by assumption, the result holds for each block of G. Assume that G has k blocks, then by using Lemma $2 k-1$ times, we will see the result holds for G. If G is 2 -connected and $\delta(G)=2$, then the result also holds by assumption and Lemma 3.

If $v_{\text {odd }}(G)=0$, then the result follows from Theorem 3. In the following, we assume that G is 2-connected with $\delta(G) \geq 3$ and $v_{\text {odd }}(G)>0$.

For convenience, let $k=v_{\text {odd }}(G) / 2$ in the proof, where $k \geq 1$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{2 k}\right\}$ be the set of odd vertices in G, and let G^{\prime} be the graph obtained from G by adding a new vertex w and $2 k$ new edges joining w to all vertices in U. Clearly, $v_{\text {odd }}\left(G^{\prime}\right)=0$ and $E\left(G^{\prime}\right)=E(G) \cup\left\{w u_{i}: 1 \leq i \leq 2 k\right\}$.

By Theorem 3, there exists $g \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime}\right)$ with $I_{g}\left(G^{\prime}\right) \neq \emptyset$ and $g(u) \in\{0,2\}$ for all $u \in V\left(G^{\prime}\right)$. Thus $g(w) \in\{0,2\}$. As $E\left(G^{\prime}\right)=E(G) \cup E_{G^{\prime}}(w), g\left(G^{\prime}\right)=g(w)+g(E(G))$ holds. Thus, we have the following conclusion.

Claim 1: $g(E(G))=g\left(G^{\prime}\right)-g(w)$.
Let U_{1} be the set of vertices $u_{i} \in U$ with $g\left(w u_{i}\right)=+1$ and $U_{2}=U-U_{1}$. As $g(w)=$ $\left|U_{1}\right|-\left|U_{2}\right|$ and $\left|U_{1}\right|+\left|U_{2}\right|=d_{G^{\prime}}(w)=2 k$, the following conclusion holds.

Claim 2: $\left|U_{1}\right|=k+g(w) / 2$.
U_{1} is then partitioned into A and B, where A is the set of $u_{i} \in U_{1}$ with $g\left(u_{i}\right)=2$. Let C be the set of vertices $v \in V(G)-U$ with $g(v)=0$ as shown in Figure 3. Then $B \cup C \subseteq I_{g}\left(G^{\prime}\right)$. Note that $w \in I_{g}\left(G^{\prime}\right)$ if and only if $g(w)=0$. Thus the following claim holds.

Figure 3: $G=G^{\prime}-w, N_{G^{\prime}}(w)=A \cup B \cup U_{2}$ and $B \cup C \subseteq I_{g}\left(G^{\prime}\right)$.
Claim 3: $\left|I_{g}\left(G^{\prime}\right)\right| \geq|B|+|C|+1-g(w) / 2$.
By Theorem 3, we have $g\left(G^{\prime}\right)=\frac{1}{2} \sum_{u \in V\left(G^{\prime}\right)} g(u)=(n+1)-\left|I_{g}\left(G^{\prime}\right)\right|$. Thus, the following conclusions follows from Claims 1 and 3.

Claim 4: $g(E(G)) \leq n-(|B|+|C|+g(w) / 2)$.
Let v be any vertex in $V(G)$. As $\delta(G) \geq 3, d_{G^{\prime}}(v) \geq 4$ holds. Since $g(v) \in\{0,2\}, v$ is incident with some edge $e \in E(G)$ with $g(e)=-1$. Thus, there exists a subset E_{1} of $E(G)$ with $g(e)=-1$ for all $e \in E_{1}$ such that each $v \in A \cup B$ is incident with some edge in E_{1} (recall that $g(u w)=1$ for $u \in A \cup B=U_{1}$). Let E_{1} be a minimal one of such sets; note that $\left|E_{1}\right| \leq|A|+|B|$.

Let $f: E(G) \rightarrow\{+1,-1\}$ be the function defined by $f(e)=+1$ for all $e \in E_{1}$ and $f(e)=g(e)$ for all $e \in E(G)-E_{1}$. It can be easily verified that $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ holds by the following facts:
(i). For each $u_{i} \in A \cup B$, we have $f\left(u_{i}\right) \geq g\left(u_{i}\right)-g\left(w u_{i}\right)+2=g\left(u_{i}\right)+1 \geq 1$.
(ii). For each $u_{i} \in U_{2}$, we have $f\left(u_{i}\right) \geq g\left(u_{i}\right)-g\left(w u_{i}\right)=g\left(u_{i}\right)+1 \geq 1$.
(iii). For each $v \in V(G)-U$, we have $f(v) \geq g(v) \geq 0$.
(iv). For each $e=v_{1} v_{2} \in E(G)$ with $f(e)=+1$, if $e \in E_{1}$, then $f\left(v_{1}\right)+f\left(v_{2}\right) \geq$ $g\left(v_{1}\right)+g\left(v_{2}\right)+2 \geq 2$; if $e \in E(G)-E_{1}$, then $f\left(v_{1}\right)+f\left(v_{2}\right) \geq g\left(v_{1}\right)+g\left(v_{2}\right) \geq 2$.

By the definition of f and Claim 4, we have

$$
\begin{aligned}
f(G) & =g(E(G))+2\left|E_{1}\right| \\
& \leq n-(|B|+|C|+g(w) / 2)+2(|A|+|B|) \\
& =n+2|A|+|B|-|C|-g(w) / 2 .
\end{aligned}
$$

Thus, the following conclusion holds.
Claim 5: $\gamma_{s}^{\prime}(G) \leq n+2|A|+|B|-|C|-g(w) / 2$.
Similarly, there exists a subset E_{2} of $E(G)$ with $g(e)=-1$ for all $e \in E_{2}$ such that each $v \in B \cup C$ is incident with some edge in E_{2}. Let E_{2} be a minimal one of such sets; note that $\left|E_{2}\right| \leq|B|+|C|$.

Let $f^{\prime}: E(G) \rightarrow\{+1,-1\}$ be the function defined by $f^{\prime}(e)=+1$ for all $e \in E_{2}$ and $f^{\prime}(e)=g(e)$ for all $e \in E(G)-E_{2}$. Again, it can be verified easily that $f^{\prime} \in \mathcal{F}_{\text {sed }}^{0}(G)$ holds by the following facts:
(i). For each $u \in A$, we have $f^{\prime}(u) \geq g(u)-1=2-1=1$.
(ii). For each $u \in B$, we have $f^{\prime}(u) \geq g(u)-1+2=0-1+2=1$.
(iii). For each $u \in U_{2}$, we have $f^{\prime}(u) \geq g(u)+1 \geq 0+1=1$.
(iv). For each $u \in C$, we have $f^{\prime}(u) \geq g(u)+2=0+2 \geq 2$.
(v). For each $u \in V(G)-U-C$, we have $f^{\prime}(u) \geq g(u)=2$.
(vi). For each $e=v_{1} v_{2} \in E(G)$ with $f^{\prime}(e)=+1$, we have $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 1+1=2$.

By the definition of f^{\prime} and Claim 4, we have

$$
\begin{aligned}
f^{\prime}(G) & =g(E(G))+2\left|E_{2}\right| \\
& \leq n-(|B|+|C|+g(w) / 2)+2(|B|+|C|) \\
& =n+|B|+|C|-g(w) / 2
\end{aligned}
$$

Thus, the following conclusion holds.
Claim 6: $\gamma_{s}^{\prime}(G) \leq n+|B|+|C|-g(w) / 2$.
By Claims 5 and $6, \gamma_{s}^{\prime}(G) \leq n+|A|+|B|-g(w) / 2=n+\left|U_{1}\right|-g(w) / 2$ holds. By Claim 2, we have $\gamma_{s}^{\prime}(G) \leq n+k=n+v_{\text {odd }}(G) / 2$.

4
 $$
\gamma_{s}^{\prime}(G) \leq n-2+v_{\text {even }}(G) \text { when } v_{\text {even }}(G)>0
$$

In this section, the following exact values of $\gamma_{s}^{\prime}\left(K_{m, n}\right)$ will be used.

Theorem 4 ([1]) Let m and n be two positive integers, where $m \leq n$. Then:
(i). If m and n are even, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min \{2 m, n\}$.
(ii). If m and n are odd, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min \{2 m-1, n\}$.
(iii). If m is even and n is odd, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min \{3 m, \max \{2 m, n+1\}\}$.
(iv). If m is odd and n is even, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min \{3 m-1, \max \{2 m, n\}\}$.

In the proof of the part (b) of Theorem 1. we shall need the parts (i) and (iii) of Theorem 4. In these two cases, actually Akbari et al. proved that there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f\left(K_{m, n}\right)=\gamma_{s}^{\prime}\left(K_{m, n}\right)$.

Proposition 2 For any simple graph G of order n, if $v_{\text {even }}(G)>0$, then there is an $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G) \leq n-2+v_{\text {even }}(G)$, and thus $\gamma_{s}^{\prime}(G) \leq n-2+v_{\text {even }}(G)$.

Proof. When $v_{\text {even }}(G)=0$, by Theorem 7 in [8], there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G) \leq$ $|V(G)|-1$. So it is sufficient to prove the case when G is connected. It can be easily verified that the result holds whenever $n \leq 3$. Now assume that $n \geq 4$ and the result holds for any graph of order at most $n-1$. By Lemma 2, we only need to prove the result for 2 -connected graphs. Let $v_{\text {even }}(G)=t \geq 1$, and let $W=\left\{w_{1}, w_{2}, \ldots w_{t}\right\}$ be the set of all even vertices.

Claim 1: If W is an independent set, then there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G) \leq$ $n-2+v_{\text {even }}(G)$.

Assume that w_{1} has the minimum degree among all elements in W. Let $d_{G}\left(w_{1}\right)=2 s$, $s \geq 1$, and assume that $N_{G}\left(w_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{2 s}\right\}$. Consider $G^{\prime}=G-w_{1}$. Since G has no cut vertex, G^{\prime} is connected. Clearly, $\left|V\left(G^{\prime}\right)\right|=n-1$ and $v_{\text {odd }}\left(G^{\prime}\right)=n-t-2 s$.

Case 1.1. $n-t-2 s \geq 2$, i.e., G^{\prime} is not an Eulerian graph.
In this case, G^{\prime} can be decomposed into $(n-t-2 s) / 2$ trails $T_{1}, \ldots, T_{(n-t-2 s) / 2}$, and the endpoints of these $(n-t-2 s) / 2$ trails correspond to all odd vertices of G^{\prime}. Now, we define the function $f_{1}: E(G) \rightarrow\{1,-1\}$ as follows:
(i). for each $T_{i}, 1 \leq i \leq(n-t-2 s) / 2$, starting with +1 , we assign +1 and -1 to the edges of T_{i} alternatively. When the trail has even number of edges, we change the value of the last edge to +1 ;
(ii). for each edge $w_{1} u_{i}, 1 \leq i \leq 2 s$, we set $f_{1}\left(w_{1} u_{i}\right)=+1$; and
(iii). for any $w_{i}, 2 \leq w_{i} \leq t$, if the weight of w_{i} till now is 0 , then we choose any negative edge incident to w_{i} and change it to a positive one.

It follows from the construction that

$$
f_{1}(G) \leq 2 \cdot \frac{n-t-2 s}{2}+2 s+2(t-1)=n-2+t=n-2+v_{\text {even }}(G)
$$

Next, after Step (i), the weight of any vertex in $V(G)-W-N_{G}\left(w_{1}\right)$ is at least 1, and the weight of vertices in $\left(W-\left\{w_{1}\right\}\right) \cup N_{G}\left(w_{1}\right)$ is 0 or at least 2. After Step (ii), $f\left(w_{1}\right)$ is $2 s$; the weight of vertices in $N_{G}\left(w_{1}\right)$ has increased by 1 , and others remain unchanged. Finally, after Step (iii), all the vertices in $W-\left\{w_{1}\right\}$ are of the weight at least 2.

Hence $f_{1} \in \mathcal{F}_{\text {sed }}^{0}(G)$, and $\gamma_{s}^{\prime}(G) \leq f_{1}(G) \leq n-2+v_{\text {even }}(G)$.
Case 1.2. $n-t-2 s=0$, i.e., G^{\prime} is an Eulerian graph, and $2 s \geq 4$.
Because G^{\prime} is an Eulerian graph, so it has an Eulerian circuit. Now we define the function $f_{2}: E(G) \rightarrow\{1,-1\}$ as follows:
(i). for a fixed Eulerian circuit of G^{\prime}, starting from the vertex u_{1}, walking along the Eulerian circuit, we assign +1 and -1 alternatively starting with +1 ;
(ii). we set $f_{2}\left(w_{1} u_{i}\right)=1,1 \leq i \leq 2 s$ if $\left|E\left(G^{\prime}\right)\right|$ is even; otherwise, if $\left|E\left(G^{\prime}\right)\right|$ is odd, we set $f_{2}\left(w_{1} u_{1}\right)=-1$ and $f_{2}\left(w_{1} u_{i}\right)=1,2 \leq i \leq 2 s$; and
(iii). for any $w_{i}, 2 \leq w_{i} \leq t$, choose any negative edge incident to w_{i} and change it to a positive one.

After Step (i), if G^{\prime} has an even number of edges, then each vertex in G^{\prime} has weight 0 ; if G^{\prime} has an odd number of edges, then $f_{2}\left(u_{1}\right)=2$, and all other vertices have weight 0 . Next, after Step (ii), all vertices in $N_{G}\left(w_{1}\right)$ have weight 1 , and $f_{2}\left(w_{1}\right) \geq 2 s-2 \geq 2$, and all vertices in $W-\left\{w_{1}\right\}$ have weight 0 . Finally, after Step (iii), all vertices in $W-\left\{w_{1}\right\}$ have weight 2 , and others do not decrease.

Hence $f_{2} \in \mathcal{F}_{\text {sed }}^{0}(G)$. Recall that in this case $n-t-2 s=0$, we have

$$
\gamma_{s}^{\prime}(G) \leq f_{2}(G)=0+2 s+2(t-1)=2 s+2 t-2=n+t-2=n-2+v_{\text {even }}(G)
$$

when $\left|E\left(G^{\prime}\right)\right|$ is even, and

$$
\gamma_{s}^{\prime}(G) \leq f_{2}(G)=1+(2 s-2)+2(t-1)=2 s+2 t-3=n+t-3=n-3+v_{\text {even }}(G)
$$

when $\left|E\left(G^{\prime}\right)\right|$ is odd.
Case 1.3. $n-t-2 s=0$ and $2 s=2$.
In this case, if n is odd, then $G=K_{2, n-2}$. Then, if $n \geq 5$, there exists $f_{3} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f_{3}(G)=\gamma_{s}^{\prime}(G)=\gamma_{s}^{\prime}\left(K_{2, n-2}\right)=\min \{6, \max \{4, n-1\}\}$. Hence there exists $f_{3} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that

$$
\gamma_{s}^{\prime}(G)=f_{3}(G)= \begin{cases}2, & \text { if } n=3 \\ 4, & \text { if } n=5 \\ 6, & \text { if } n \geq 7\end{cases}
$$

Therefore $\gamma_{s}^{\prime}(G)=f_{3}(G) \leq n-2+v_{\text {even }}(G)$ holds.

If n is even, then $G=K_{2, n-2}+u_{1} u_{2}$. There exists $f \in \mathcal{F}_{\text {sed }}^{0}\left(K_{2, n-2}\right)$ such that $f\left(K_{2, n-2}\right)=$ $\gamma_{s}^{\prime}\left(K_{2, n-2}\right)=\min \{4, n-2\}, n \geq 4$. Now we extend f by assigning +1 to $u_{1} u_{2}$, thus obtain $f_{4} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f_{4}(G)=\gamma_{s}^{\prime}\left(K_{2, n-2}\right)+1=\min \{4, n-2\}+1$. That is, there exists $f_{4} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that

$$
\gamma_{s}^{\prime}(G) \leq f_{4}(G)= \begin{cases}3, & \text { if } n=4 \\ 5, & \text { if } n \geq 6\end{cases}
$$

Therefore $\gamma_{s}^{\prime}(G) \leq f_{4}(G) \leq n-2+v_{\text {even }}(G)$ holds.
Claim 2: If W is not an independent set, then there is an $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G) \leq n-2+v_{\text {even }}(G)$.

In this case, we find a maximal matching M in $G[W]$. Assume that $|M|=p$ and consider the graph $G^{\prime \prime}=G-M$, with n vertices and $v_{\text {even }}\left(G^{\prime \prime}\right)=t-2 p$.

Case 2.1. $t-2 p \geq 1$.
Since M is maximal in $G[W]$, the $t-2 p$ even vertices in $G^{\prime \prime}$ form an independent set. By Claim 1, there is an $f_{5} \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime \prime}\right)$ such that $f_{5}\left(G^{\prime \prime}\right) \leq n-2+v_{\text {even }}\left(G^{\prime \prime}\right)$. We now extend f_{5} by adding M to $G^{\prime \prime}$ and letting each edge in M be a positive edge. Thus we obtain $f_{5}^{\prime} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $\gamma_{s}^{\prime}(G) \leq f_{5}^{\prime}(G)=f_{5}\left(G^{\prime \prime}\right)+p \leq n-2+t-2 p+p=n-2+t-p<$ $n-2+v_{\text {even }}(G)$.

Case 2.2. $t-2 p=0$, i.e., M is a perfect matching of $G[W]$.
In this subcase, $v_{\text {odd }}\left(G^{\prime \prime}\right)=n$. Karami et al. [8] proved that for a graph G with n vertices in which each vertex is of odd degree, there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $\gamma_{s}^{\prime}(G) \leq n-1$. So there is $f_{6} \in \mathcal{F}_{\text {sed }}^{0}\left(G^{\prime \prime}\right)$ such that $f_{6}\left(G^{\prime \prime}\right) \leq n-1$. We now extend f_{6} by adding M to $G^{\prime \prime}$ and letting each edge in M be a positive edge. Thus we obtain $f_{6}^{\prime} \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $\gamma_{s}^{\prime}(G) \leq f_{6}^{\prime}(G)=f_{6}\left(G^{\prime \prime}\right)+p \leq n-1+p=n-1+\frac{v_{\text {even }}(G)}{2} \leq n-2+v_{\text {even }}(G)$.

Thus, Claim 2 holds and the proof is complete.

Corollary 1 Conjecture 1 holds for the case $v_{\text {even }}(G)=1$.

Now we prove Theorem 1
Proof of Theorem 1. From Propositions 1 and2, we can see that $\gamma_{s}^{\prime}(G) \leq n+v_{o d d}(G) / 2$, and $\gamma_{s}^{\prime}(G) \leq n-2+v_{\text {even }}(G)$ when $v_{\text {even }}(G)>0$.

So when $v_{\text {even }}(G)>0$, we have
$3 \gamma_{s}^{\prime}(G) \leq 2\left(n+v_{\text {odd }}(G) / 2\right)+\left(n-2+v_{\text {even }}(G)\right)=3 n+v_{\text {odd }}(G)+v_{\text {even }}(G)-2=4 n-2$, and hence $\gamma_{s}^{\prime}(G) \leq(4 n-2) / 3$.

When $v_{\text {even }}(G)=0$, i.e., $v_{\text {odd }}(G)=n$, it was proved in [8] that $\gamma_{s}^{\prime}(G) \leq n-1$. Hence $\gamma_{s}^{\prime}(G) \leq(4 n-2) / 3$ also holds.

5 Conjecture 1 for $v_{\text {even }}(G)=2$

Proposition 3 For any simple graph G of order n, if $v_{\text {even }}(G)=2$, then there is an $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G) \leq n-1$, and thus $\gamma_{s}^{\prime}(G) \leq n-1$.

Proof. It can be easily verified that the result holds whenever $n \leq 3$. So assume that $n \geq 4$ and the result holds for any graph of order at most $n-1$.

Let G be a simple graph of order n with $v_{\text {even }}(G)=2$, and let w_{1}, w_{2} be the two vertices of even degree.

Claim 1: Proposition 3 holds for G when it is disconnected.
Assume that $G_{1}, G_{2}, \ldots, G_{k}$ are the components of G, where $k \geq 2$. Then $v_{\text {even }}\left(G_{i}\right) \leq 2$ and $\left|V\left(G_{i}\right)\right| \leq n-1$ for all $i=1,2, \ldots, k$. For any G_{i}, where $1 \leq i \leq k$, if $v_{\text {even }}\left(G_{i}\right)=0$, by the proof in [8], there exists $f_{i} \in \mathcal{F}_{\text {sed }}^{0}\left(G_{i}\right)$ with $f_{i}\left(G_{i}\right) \leq\left|V\left(G_{i}\right)\right|-1$; otherwise, by the assumption above and Proposition 2, there exists $f_{i} \in \mathcal{F}_{\text {sed }}^{0}\left(G_{i}\right)$ such that $f_{i}\left(G_{i}\right) \leq$ $\left|V\left(G_{i}\right)\right|-1$.
Let f be the mapping $E(G) \rightarrow\{1,-1\}$ defined by $\left.f\right|_{E\left(G_{i}\right)}=f_{i}$ for all $1 \leq i \leq k$. It is easy to see that $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with

$$
f(G)=\sum_{i=1}^{k} f\left(G_{i}\right) \leq \sum_{i=1}^{k}\left(\left|V\left(G_{i}\right)\right|-1\right)=n-k \leq n-2 .
$$

Thus, Claim 1 holds.
Claim 2: Proposition 3 holds for G when $d\left(w_{i}\right)=2$ for some $i \in\{1,2\}$.
Assume that $d\left(w_{1}\right)=2$. Let $N\left(w_{1}\right)=\left\{u_{1}, u_{2}\right\}$.
If $u_{1} u_{2} \in E(G)$, then consider the graph $G-u_{1} u_{2}-w_{1} . G-u_{1} u_{2}-w_{1}$ is a simple graph of order $n-1$ and $v_{\text {even }}\left(G-u_{1} u_{2}-w_{1}\right)=1$. By Proposition 2, there exists $g \in \mathcal{F}_{\text {sed }}^{0}\left(G-u_{1} u_{2}-w_{1}\right)$ such that $g\left(G-u_{1} u_{2}-w_{1}\right) \leq(n-1)-2+1=n-2$. Then, by Lemma 3 (i), there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ such that $f(G)=g\left(G-u_{1} u_{2}-w_{1}\right)+1 \leq n-1$. If $u_{1} u_{2} \notin E(G)$, then similarly, by applying Proposition 2 and Lemma 3 (ii), we can show that there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G) \leq n-1$.

Thus, Claim 2 holds.
According to Claims 1 and 2, in the following, we may assume that G is connected and $d\left(w_{i}\right) \geq 4$ for $i=1,2$.

Let $N_{0}=N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right), N_{1}=N_{G}\left(w_{1}\right)-N_{G}\left(w_{2}\right)-\left\{w_{2}\right\}, N_{2}=N_{G}\left(w_{2}\right)-N_{G}\left(w_{1}\right)-$ $\left\{w_{1}\right\}$, and $N_{3}=V(G)-\left(N_{0} \cup N_{1} \cup N_{2} \cup\left\{w_{1}, w_{2}\right\}\right)$. Set $n_{i}=\left|N_{i}\right|$ for $0 \leq i \leq 3$. Then $n_{0}+n_{1}+n_{2}+n_{3}=v_{\text {odd }}(G)=n-2$.

Case 1. $w_{1} w_{2} \notin E(G)$.
We divide this case into two subcases, depending on whether w_{1} and w_{2} share a neighbour or not, i.e., $n_{0} \geq 1$ or $n_{0}=0$.

Case 1.1. $w_{1} w_{2} \notin E(G)$ and $n_{0} \geq 1$.
Consider the graph $G^{\prime}=G-w_{1}$. Note that $v_{o d d}\left(G^{\prime}\right)=n_{2}+n_{3}$, and so G^{\prime} can be decomposed into $\left(n_{2}+n_{3}\right) / 2$ trails $\left\{T_{1}, T_{2}, \ldots, T_{\left(n_{2}+n_{3}\right) / 2}\right\}$, whose endpoints corresponds to all odd vertices of G^{\prime}.

If T_{i} has odd length, we assign +1 and -1 alternatively to the edges of T_{i}, starting and ending with +1 ; this weight assignment in an odd trail is called a proper assignment. When T_{i} has even length t, there are exactly $\frac{t}{2}$ vertices on T_{i}, each of which can naturally divide T_{i} into two subtrails with odd length. We call these $\frac{t}{2}$ vertices good. For each T_{i} with even length, choose a good vertex u_{i} of T_{i}. We can assign +1 and -1 alternatively to edges in the two subtrails of T_{i} divided by u_{i} such that both starting and ending edges in each subtrail are assigned +1 . This weight assignment of edges in an even trail T_{i} is called a proper assignment with respect to u_{i}. Let $\mathbb{T}_{1}=\left\{T_{1}, T_{2}, \ldots, T_{\left(n_{2}+n_{3}\right) / 2}\right\}$.

Claim 3: In Case 1.1, Proposition 3 holds for G when there is at least one trail of odd length in \mathbb{T}_{1}.

Assume that there is at least one trail of odd length in \mathbb{T}_{1}. For each $T_{i} \in \mathbb{T}_{1}$ with even length, let u_{i} be a good vertex of T_{i}. We define a function $f_{1}: E(G) \rightarrow\{1,-1\}$ as follows: each odd trial $T_{i} \in \mathbb{T}_{1}$ is equipped with a proper assignment, and each even trail $T_{i} \in \mathbb{T}_{1}$ is equipped with a proper assignment with respect to u_{i}. Then we assign +1 to each edge incident to w_{1}. If the weight of w_{2} till now is 0 , we choose any negative edge incident to w_{2} and change it to a positive one.

Now we have $f_{1}\left(w_{1}\right)=d\left(w_{1}\right) \geq 4, f_{1}\left(w_{2}\right) \geq 2$, and $f_{1}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. So $f_{1} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq f_{1}(G) \leq 1+2\left(\frac{n_{2}+n_{3}}{2}-1\right)+n_{1}+n_{0}+2=n-1$. Thus Claim 3 holds.

Claim 4: In Case 1.1, if all trails in \mathbb{T}_{1} have even length, then either w_{2} or some vertex $x \in N_{0}$ is a good vertex of some trail $T_{j} \in \mathbb{T}_{1}$.

Assume that all trails in \mathbb{T}_{1} have even length. Then, some edge $w_{2} x$, where $x \in N_{0}$, must be in some $T_{j} \in \mathbb{T}_{1}$. Obviously, either w_{2} or x is a good vertex in T_{j}. Thus Claim 4 holds.

Claim 5: In Case 1.1, Proposition 3 holds for G when all trails in \mathbb{T}_{1} have even length.
Assume that all trails in \mathbb{T}_{1} have even length. By Claim 4, either w_{2} or some vertex $x \in N_{0}$ is a good vertex of some trail $T_{j} \in \mathbb{T}_{1}$.

If w_{2} is good, we define a function $f_{2}: E(G) \rightarrow\{1,-1\}$ as follows. We equip T_{j} with the
proper assignment with respect to w_{2}, and for each $T_{i} \in \mathbb{T}_{1}-\left\{T_{j}\right\}$, we equip T_{i} with a proper assignment (with respect to any good vertex). Then we assign +1 to each edge incident to w_{1}.

Now we have $f_{2}\left(w_{1}\right)=d\left(w_{1}\right) \geq 4, f_{2}\left(w_{2}\right) \geq 2$, and $f_{2}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. So $f_{2} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq f_{2}(G)=2 \cdot \frac{n_{2}+n_{3}}{2}+n_{1}+n_{0}=n-2$.

If x is good, we define a function $f_{3}: E(G) \rightarrow\{1,-1\}$ as follows. We equip T_{j} with the proper assignment with respect to x, and for each $T_{i} \in \mathbb{T}_{1}-\left\{T_{j}\right\}$, we equip T_{i} with a proper assignment (with respect to any good vertex). Then we assign -1 to $w_{1} x$ and +1 to any other edge incident to w_{1}. If the weight of w_{2} till now is 0 , we choose any negative edge incident to w_{2} and change it to a positive one.

Now we have $f_{3}\left(w_{1}\right)=d\left(w_{1}\right)-2 \geq 2, f_{3}\left(w_{2}\right) \geq 2, f_{3}(x) \geq 2-1=1$, and $f_{3}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}, x\right\}$. So $f_{3} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq f_{3}(G) \leq 2 \cdot \frac{n_{2}+n_{3}}{2}+$ $\left(n_{1}+n_{0}-2\right)+2=n-2$. Thus Claim 5 holds.

By Claims 3 and 5, Proposition 3 holds for G in Case 1.1.
Case 1.2. $w_{1} w_{2} \notin E(G)$ and $n_{0}=0$.
Claim 6: Proposition 3 holds for G in Case 1.2.
Choose edges e_{1}, e_{2} incident to w_{1} and edges e_{3}, e_{4} incident to w_{2}.

Figure 4: Case 1.2.
As $n_{0}=0, N_{0}=N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$. Thus, by the condition that $d\left(w_{i}\right) \geq 4$ for both $i=1,2$, we have $n \geq 2+4 \cdot 2=10$. Let $G^{\prime \prime}$ denote the graph $G-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Observe that $v_{\text {odd }}\left(G^{\prime \prime}\right)=v_{\text {odd }}(G)-4=n-6>0$. Thus $E\left(G^{\prime \prime}\right)$ can be decomposed into $t=(n-6) / 2$ trails, say $T_{1}, T_{2}, \ldots, T_{t}$. We now define the function $f_{4}: E(G) \rightarrow\{1,-1\}$ as follows:

- $f_{4}\left(e_{i}\right)=1$ for $i=1,2,3,4$; and
- each odd trial T_{i} is equipped with a proper assignment, and each even trail T_{i} is
equipped with a proper assignment with respect to some good vertex.

Observe that $f_{4}\left(w_{i}\right) \geq 2$ for $i=1,2$ and $f_{4}(u) \geq 1$ for all $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. Thus $f_{4} \in \mathcal{F}_{\text {sed }}^{0}(G)$. Also note that $f_{4}(G) \leq 2 t+4=2(n-6) / 2+4=n-2$. So Claim 6 holds.

Case 2. $w_{1} w_{2} \in E(G)$.
Similarly as in Case 1, we divide this case into two subcases, depending on whether w_{1} and w_{2} share a neighbour or not.

Case 2.1. $w_{1} w_{2} \in E(G)$ and $n_{0} \geq 1$.
Claim 7: Proposition 3 holds for G in Case 2.1.
Consider the graph $G^{\prime}=G-w_{1}$. Note that $v_{o d d}\left(G^{\prime}\right)=n_{2}+n_{3}+1$, and so G^{\prime} can be decomposed into $\left(n_{2}+n_{3}+1\right) / 2$ trails $\left\{T_{1}, T_{2}, \ldots, T_{\left(n_{2}+n_{3}+1\right) / 2}\right\}$ whose endpoints correspond to all odd vertices of G^{\prime}. Let $\mathbb{T}_{2}=\left\{T_{1}, T_{2}, \ldots, T_{\left(n_{2}+n_{3}+1\right) / 2}\right\}$.

Case 2.1 is now divided into two subcases.
Case 2.1.1. Some trail in \mathbb{T}_{2} has an odd length.
We define a function $g_{1}: E(G) \rightarrow\{1,-1\}$ as follows. Each trail $T_{i} \in \mathbb{T}_{2}$ of odd length is equipped with a proper assignment, and each trail $T_{i} \in \mathbb{T}_{2}$ of even length is equipped with a proper assignment with respect to some good vertex of T_{i}. Then we assign +1 to each edge incident to w_{1}.

Now we have $g_{1}\left(w_{1}\right)=d\left(w_{1}\right) \geq 4, g_{1}\left(w_{2}\right) \geq 2$, and $g_{1}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. So $g_{1} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq g_{1}(G) \leq 1+2\left(\frac{n_{2}+n_{3}+1}{2}-1\right)+n_{1}+n_{0}+1=n-1$.

Case 2.1.2. All trails in \mathbb{T}_{2} have even length.
Choose any $x \in N_{0}$ and assume that $w_{2} x$ is an edge in T_{1}. Then, either w_{2} or x is good in T_{1}. Let $u_{1}=w_{2}$ if w_{2} is good in T_{1}, and $u_{1}=x$ otherwise. For any $i=$ $2,3, \ldots,\left(n_{2}+n_{3}+1\right) / 2$, let u_{i} be any good vertex of T_{i}.

We define a function $g_{2}: E(G) \rightarrow\{1,-1\}$ as follows. We first equip each T_{i} with a proper assignment with respect to u_{i}. Then, we assign -1 to $w_{1} u_{1}$, and finally, we assign +1 to any other edge incident with w_{1}.

If $u_{1}=w_{1}$, then $g_{2}\left(w_{1}\right)=d\left(w_{1}\right)-2 \geq 2, g_{2}\left(w_{2}\right) \geq 2-1=1$, and $g_{2}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. So $g_{2} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq g_{2}(G) \leq 2 \cdot \frac{n_{2}+n_{3}+1}{2}+n_{1}+n_{0}-1=$ $n-2$.

If $u_{1}=x$, then $g_{2}\left(w_{1}\right)=d\left(w_{1}\right)-2 \geq 2, g_{2}\left(w_{2}\right) \geq 1, g_{2}(x) \geq 2-1=1$, and $g_{2}(u) \geq 1$ for each $u \in V(G)-\left\{w_{1}, w_{2}, x\right\}$. So $g_{2} \in \mathcal{F}_{\text {sed }}^{0}(G)$ and hence $\gamma_{s}^{\prime}(G) \leq g_{2}(G) \leq 2 \cdot \frac{n_{2}+n_{3}+1}{2}+$ $\left(n_{1}+n_{0}-2+1\right)=n-2$.

Hence Claim 7 holds.
Case 2.2. $w_{1} w_{2} \in E(G)$ and $n_{0}=0$.
Claim 8: Proposition 3 holds for G in Case 2.2.
Choose $x_{1} \in N_{1}$ and $x_{2} \in N_{2}$ and consider the graph $G^{\prime \prime \prime}=G-\left\{e_{0}, e_{1}, e_{2}\right\}$, where $e_{0}=w_{1} w_{2}, e_{1}=w_{1} x_{1}$, and $e_{2}=w_{2} x_{2}$.

Figure 5: Case 2.2.
As $n_{0}=0, N_{0}=N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$. Thus, by the condition that $d\left(w_{i}\right) \geq 4$ for both $i=1,2$, we have $n \geq 2+3 \cdot 2=8$. Observe that $v_{\text {odd }}\left(G^{\prime \prime \prime}\right)=v_{\text {odd }}(G)-2=n-4>0$. Thus $E\left(G^{\prime \prime \prime}\right)$ can be decomposed into $t=(n-4) / 2$ trails, say $T_{1}, T_{2}, \ldots, T_{t}$. We now define a function $g_{3}: E(G) \rightarrow\{1,-1\}$ as follows:

- $g_{3}\left(e_{i}\right)=1$ for $i=0,1,2$; and
- each odd trial T_{i} is equipped with a proper assignment and each even trail T_{i} is equipped with a proper assignment with respect to some good vertex.

Observe that $g_{3}\left(w_{i}\right) \geq 2$ for $i=1,2$, and $g_{3}(u) \geq 1$ for all $u \in V(G)-\left\{w_{1}, w_{2}\right\}$. Thus $g_{3} \in \mathcal{F}_{\text {sed }}^{0}(G)$. Also note that $g_{3}(G) \leq 2 t+3=2(n-4) / 2+3=n-1$, and so Claim 8 holds, which eventually finishes the proof.

Note that Theorem 2 follows directly from Proposition 2 for the case $v_{\text {even }}(G)=1$ and from Proposition 3 for the case $v_{\text {even }}(G)=2$.

6 Concluding remarks

Karami et al. [8] proved Conjecture 1 for the two cases $v_{\text {odd }}(G)=0$ or n by showing the existence of $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G) \leq n-1$. In the proof of Propositions 1, 2 and 3, all defined members in $\mathcal{F}_{\text {sed }}(G)$ also belong to $\mathcal{F}_{\text {sed }}^{0}(G)$. Therefore, we believe Conjecture $\mathbb{1}$ can be strengthened to the following one.

Conjecture 2 For any simple graph G of order n, there exists $f \in \mathcal{F}_{\text {sed }}^{0}(G)$ with $f(G) \leq$ $n-1$.

In 2005, $\mathrm{Xu}[12]$ proved the following sharp lower bound of $\gamma_{s}^{\prime}(G)$.

Theorem 5 ([12]) Let G be a graph with n vertices, m edges and $\delta(G) \geq 1$. Then $\gamma_{s}^{\prime}(G) \geq n-m$.

Then Karami et al. [9] characterized all simple connected graphs G for which $\gamma_{s}^{\prime}(G)=$ $n-m$. These graphs all have many vertices of degree 1 . If we restrict graphs to have higher connectivity or larger minimum degree, a better lower bound can be expected. So we raise the following conjecture.

Conjecture 3 Let G be a 2-connected graph with n vertices and m edges, and without two adjacent degree 2 vertices. Then $\gamma_{s}^{\prime}(G) \geq 2 n-m$.

If the conjecture above is correct, then the lower bound is also sharp. For example, $\gamma_{s}^{\prime}\left(K_{4}-e\right)=3=2 n-m$.

Now we show more examples that the bound in Conjecture 3 is reachable. Let G be a 2-connected Hamiltonian graph with $\delta(G) \geq 3, V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and size m. Suppose C is one of its Hamiltonian cycles.

The triangulation of a graph H, denoted by $T(H)$, is the graph obtained from H by changing each edge $u v$ of H into a triangle $u w v$, where w is a new vertex associated with uv. Let $G^{\prime}=T(G-E(C))+E(C)$, that is, the graph obtained from $T(G-E(C))$ by adding all the edges in the Hamiltonian cycle C. Then the order of G^{\prime} is m and the size of G^{\prime} is $3 m-2 n$.

Observe that G^{\prime} is 2 -connected and does not have two adjacent degree 2 vertices. Consider a function $f: E\left(G^{\prime}\right) \rightarrow\{1,-1\}$, where $f(e)=1$ if $e \in E(G)$, and $f(e)=-1$ otherwise. Then

$$
f\left(G^{\prime}\right)=|E(G)|-\left|E\left(G^{\prime}\right)-E(G)\right|=m-2(m-n)=2 n-m=2\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right| .
$$

By the definition of $f, f_{G^{\prime}}\left(v_{i}\right)=2$ for each $i=1,2, \ldots, n$ whereas $f(u)=-2$ for each $u \in V\left(G^{\prime}\right)-V(G)$. Thus, for each $e=u v \in E(G)$, we have $f(e)=1$ and $f(u)=f(v)=2$, whereas for each $e=u v \in E\left(G^{\prime}\right)-E(G)$, we have $f(e)=-1$ and $f(u)+f(v)=0$. Thus $f \in \mathcal{F}_{\text {sed }}(G)$. The graph shown in Figure 6 is an example of G^{\prime} when $G=K_{5}$ (edges without a sign in the figure receive sign +1).

Figure 6: $G^{\prime}=T(G-E(C))+E(C)$, where $G=K_{5}$.

Acknowledgements

This paper is supported by NSFC (Nos. 11701401 and 11971346). The authors would like to thank two anonymous referees for their very helpful comments. This research was conducted during the second and third authors' visit at National Institute of Education, Nanyang Technological University, Singapore. They are grateful to staff in NIE/NTU for their help during their visits.

References

[1] S. Akbari, S. Bolouki, P. Hatami, and M. Siami, On the signed edge domination number of graphs, Discrete Math. 309(3) (2009) 587-594.
[2] S. Akbari, H. Esfandiari, E. Barzegary, and S. Seddighin, Some bounds for the signed edge domination number of a graph, Australas. J. Combin. 58 (2014) 60-66.
[3] W. Chen and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308(10) (2008) 1837-1846.
[4] J. Dunbar, S. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination in graphs, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Vol. 1, John Wiley \& Sons, Inc., New York, 1995, pp. 311-322.
[5] O. Favaron, Signed domination in regular graphs, Discrete Math. 158(1-3) (1996) 287-293.
[6] Z. Füredi and D. Mubayi, Signed domination in regular graphs and set systems, J. Combin. Theory Ser. B 76(2) (1999) 223-239.
[7] M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 29 (1999) 3-16.
[8] H. Karami, A. Khodkar, and S.M. Sheikholeslami, An improved upper bound for signed edge domination numbers in graphs, Util. Math. 78 (2009) 121-128.
[9] H. Karami, S. M. Sheikholeslami, and A. Khodkar, Some notes on signed edge domination in graphs, Graphs Combin. 24(1) (2008) 29-35.
[10] J. Matoušek, On the signed domination in graphs, Combinatorica 20(1) (2000) 103108.
[11] B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239(1-3) (2001) 179-189.
[12] B. Xu, On edge domination numbers of graphs, Discrete Math. 294(3) (2005) 311-316.
[13] B. Xu, Two classes of edge domination in graphs, Discrete Appl. Math. 154(10) (2006) 1541-1546.
[14] B. Xu, On signed cycle domination in graphs, Discrete Math. 309(4) (2009) 10071012.
[15] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158(1-3) (1996) 249-255.

[^0]: *Email: fengming.dong@nie.edu.sg and donggraph@163.com.
 ${ }^{\dagger}$ Corresponding author. Email: mathsgejun@163.com.
 ${ }^{\ddagger}$ Email: yanyang@tju.edu.cn.

