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Abstract

In this paper, we firstly extend a result of Bonin, Shapiro and
Simion by giving the distribution of the major index over generalized
Schröder paths. Then by providing a bijection between generalized
Schröder paths and row-increasing tableaux of skew shapes with two
rows, we obtain the distribution of the major index and the amajor
index over these tableaux, which extends a result of Du, Fan and Zhao.
We also generalize a result of Pechenik and give the distribution of the
major index over increasing tableaux of skew shapes with two rows.
Especially, a bijection from row-increasing tableaux with shape (n,m)
and maximal value n+m− k to standard Young tableaux with shape
((n− k + 1,m− k + 1, 1k)/(12)) is obtained.

Keywords: major index, generalized Schröder path, row-increasing
tableau, increasing tableau, jeu de taquin

1 Introduction

A generalized Schröder path is a lattice path with steps (1,0), (1,1) and (0,1)
that never goes above the diagonal line y = x. We use Schk(r;n,m) to
denote the set of generalized Schröder paths from (r, 0) to (n,m) with k
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(1,1) steps. We will also denote Sch0(r;n,m) as Cat(r;n,m), which is the
set of all generalized Catalan paths from (r, 0) to (n,m).

In the following, we use E(East), D(Diagonal) and N(North) to denote
the three steps (1,0), (1,1) and (0,1) respectively. In this way, we can repre-
sent a generalized Schröder path as a word over the alphabet set {E,D,N},
and define its major index as follows. Given a word P = p1p2 · · · pℓ which is
a permutation of a multiset whose elements are totally ordered, we say that
i is a descent of P if pi > pi+1. The descent set D(P ) is the collection of all
descents of P . The major index of P is defined by maj(P ) :=

∑

i∈D(P ) i.
Our first result gives the distribution of the major index over generalized

Schröder paths, which generalizes a result of Bonin, Shapiro and Simion [2,
Thm. 4.3].

Theorem 1.1. Let r, n,m and k be positive integers with Schk(r;n,m) 6= ∅.
If E > N , then we have

∑

P∈Schk(r;n,m)

qmaj(P )

=

[

n +m− r − k

k

]{[

n +m− r − 2k

n− r − k

]

−

[

n+m− r − 2k

n− k + 1

]}

;

if E < N , then we have

∑

P∈Schk(r;n,m)

qmaj(P )

=

[

n+m− r − k

k

]{[

n+m− r − 2k

n− r − k

]

− qr+1

[

n+m− r − 2k

n− k + 1

]}

.

It is obvious that the number of generalized Schröder paths from (n1, m1)
to (n2, m2) is equal to the number of those from (n1−m1, 0) to (n2−m1, m2−
m1). Therefore by setting q = 1 in the above result, we obtain a result
of Krattenthaler [8, Thm. 10.8.1] which counts the number of generalized
Schröder paths between any two given lattice points.

Generalized Schröder paths are closely related to row-increasing tableaux.
Here a row-increasing tableau is defined as the transpose of a semistandard
Young tableau such that the set of its entries is an initial segment of Z>0,
and an increasing tableau is a row-increasing tableau with its columns strictly
increasing. (Note that the present usage of row-increasing tableau follows the
definition in [5], which conflicts with earlier usage in [3].) For partitions λ and

2



µ with λ ⊇ µ, we denote by RInck(λ/µ) (resp. Inck(λ/µ)) the set of row-
increasing (resp. increasing) tableaux with shape λ/µ and maximal value
|λ/µ| − k, and denote by SYT(λ/µ) the set of standard Young tableaux of
shape λ/µ. Then we have SYT(λ/µ) = RInc0(λ/µ) = Inc0(λ/µ). Figure
1 shows a row-increasing tableau T1 ∈ RInc2((4, 3)/(1)) and an increasing
tableau T2 ∈ Inc2((4, 3)/(1)).

T1 :
2 3 4

1 2 3
T2 :

1 2 3

1 3 4

Figure 1: A row-increasing tableau T1 ∈ RInc2((4, 3)/(1)), and an increas-
ing tableau T2 ∈ Inc2((4, 3)/(1)), where descents of Ti are colored red, and
ascents of Ti are colored blue.

A descent of a tableau T is any instance of i followed by an i+1 in a lower
row of T , and we define the descent set D(T ) to be the set of all descents
of T . The major index of T is defined by maj(T ) =

∑

i∈D(T ) i. Similarly,

an ascent of a tableau T is defined in [5] as any instance of i followed by an
i + 1 in a higher row of T , and the amajor index amaj(T ) is the sum of all
ascents of T .

Du, Fan and Zhao [5, Thm. 3 and 4] gave the distribution of the major
and amajor index over RInck((n, n)). Moreover, they noted that their results
just differ from those of Bonin, Shapiro and Simion [2, Thm. 4.3] by the
factor qk(k−1)/2, and asked whether there is some simple explanation on these
relations.

Motivated by the results of Du, Fan and Zhao, we introduce the concept
of diagonal-reverse labelling for generalized Schröder paths. By construct-
ing a bijection between RInck((n,m)/(r)) and Schk(r;n,m), we obtain the
distribution of the major and amajor index over RInck((n,m)/(r)), which
answers the question of Du, Fan and Zhao in a more generalized form.

Theorem 1.2. For positive integers r, n,m and k with RInck((n,m)/(r)) 6=
∅, we have

∑

T∈RInck((n,m)/(r))

qmaj(T )

= q
k(k−1)

2

[

n+m− r − k

k

]{[

n+m− r − 2k

n− r − k

]

−

[

n+m− r − 2k

n− k + 1

]}

,
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and
∑

T∈RInck((n,m)/(r))

qamaj(T )

= q
k(k−1)

2

[

n+m− r − k

k

]{[

n+m− r − 2k

n− r − k

]

− qr+1

[

n+m− r − 2k

n− k + 1

]}

.

With a bijection between Inck((n, n)) and SYT((n − k, n − k, 1k)) that
preserves the major index, Pechenik [11, Thm. 1.1] obtained the distribution
of the major index over Inck((n, n)) by applying the well-known q−hook
length formula [12, Cor. 7.21.5]:

∑

T∈SYT(λ)

qmaj(T ) =
qb(λ)[n]!

∏

u∈λ[h(u)]
. (1.1)

By extending the above bijection to skew shapes, we generalize Pechenik’s
results to Inck((n,m)/(r)) as follows.

Theorem 1.3. For positive integers r, n,m and k with Inck((n,m)/(r)) 6= ∅,
we have

∑

T∈Inck((n,m)/(r))

qmaj(T ) = q
k(k−1)

2

[

n+m− k − r

k

]

·

([

n+m− 2k − r

m− k

]

−
qn[k] + [n][m− r]

[n][n+ 1]

[

n+m− 2k − r

n− k

])

.

Motivated by Pechenik’s bijection, we also study connections between
row-increasing tableaux and standard Young tableaux, and we obtain the
following result.

Theorem 1.4. There is a bijection between RInck((n,m)) and SYT((n−k+
1, m− k + 1, 1k)/(12)) that preserves the major index.

This paper is organized as follows. In Section 2, we give the proof of
Theorem 1.1. In section 3, we study the connections between generalized
Schröder paths and row-increasing tableaux according to the major index,
and give the proof of Theorem 1.2. In Section 4, we give a bijection between
Inck((n,m)/(r)) and the union of SYT((n−k,m−k, 1k)/(r)) and SYT((n−
k,m − k + 1, 1k−1)/(r)), obtaining Theorem 1.3 as a corollary. We also
give a bijection between RInck((n,m)) and the union of Inck((n,m)) and
Inck−1((n,m− 1)), which yields the proof of Theorem 1.4.
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2 The major index for Schk(r;n,m)

About the q−binomial coefficients, it is well known that

[n

k

]

=

[

n− 1

k

]

+ qn−k
[

n− 1

k − 1

]

, (2.1)

n
∑

s=k

qs−k
[ s

k

]

=

[

n + 1

k + 1

]

. (2.2)

In [9, Thm. 1], Krattenthaler and Mohanty gave a formula for counting
generalized Catalan paths by major and descents, which implies the following
result as a special case.

Theorem 2.1. Let r, n and m be positive integers with r ≤ n and m ≤ n.
If E > N , then we have

∑

P∈Cat(r;n,m)

qmaj(P ) =

[

n +m− r

n− r

]

−

[

n +m− r

n+ 1

]

;

if E < N , then we have

∑

P∈Cat(r;n,m)

qmaj(P ) =

[

n+m− r

n− r

]

− qr+1

[

n +m− r

n+ 1

]

.

Note that there is a natural bijection between RInck((n,m)/(r)) and
Schk(r;n,m): given T ∈ RInck((n,m)/(r)), read the entries of T from 1
to n + m − r − k in increasing order. Entries appearing only in the first
(resp. second) row correspond to the (1,0) (resp. (0,1)) step, and entries ap-
pearing in both rows correspond to the (1,1) step. Especially, by restricting
the above mapping to SYT((n,m)/(r)), we then obtain a bijection between
SYT((n,m)/(r)) and Cat(r;n,m).

The above bijection indicates that we can deal with enumerative problems
of lattice paths via Young tableaux, and vice versa. Here we show an example
by giving a new proof of Theorem 2.1 for the case E > N . Before that, we
need a result of Chen and Stanley, which will also be used in Section 4.

A reverse tableau of shape µ is an array of positive integers of shape µ
that is weakly decreasing in rows and strictly decreasing in columns. Let
RT(µ, n) denote the set of all reverse tableaux of shape µ whose entries
belong to {1, 2, . . . , n}. Figure 2 shows all tableaux of RT((2, 2), 3).
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1
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1

3

2

3

1

2

1

3

1

2

1

2

1

2

Figure 2: All tableaux of RT((2, 2), 3).

Chen and Stanley gave a formula for

sλ/µ(1, q, q
2, . . . )/sλ(1, q, q

2, . . . ),

which is equivalent to the following result about the distribution of the major
index over standard Young tableaux with skew shapes.

Theorem 2.2. [4, Thm. 1.2] Let λ and µ be partitions with λ ⊇ µ and
n ∈ N such that l(µ) ≤ l(λ) ≤ n. Then we have

∑

T∈SYT(λ/µ) q
maj(T )

∑

T∈SYT(λ) q
maj(T )

=
[|λ/µ|]!

[|λ|]!

∑

S∈RT(µ,n)

∏

u∈µ

q1−S(u)[λS(u) − c(u)],

where c(u) = j − i for u = (i, j), and S(u) is the entry in the square u in S.

Now we can give the proof of Theorem 2.1 for the case E > N as follows.
The proof for the case E < N can also be obtained by considering the amajor
index of standard Young tableaux.

Proof. Let ϕ denote the bijection from SYT((n,m)/(r)) to Cat(r;n,m) given
above. It is not difficult to verify that ϕ preserves the descent set for E > N .
Thus we have

∑

P∈Cat(r;n,m)

qmaj(P ) =
∑

T∈SYT((n,m)/(r))

qmaj(T ). (2.3)
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Let λ denote the partition (n,m). Then we obtain from Theorem 2.2 that
∑

T∈SYT(λ/(r)) q
maj(T )

∑

T∈SYT(λ) q
maj(T )

=
[n +m− r]!

[n +m]!

∑

S∈RT((r),2)

∏

u∈(r)

q1−S(u)[λS(u) − c(u)]

=
[n +m− r]!

[n +m]!

r
∑

i=0

q−i[m][m− 1] · · · [m− i+ 1][n− i] · · · [n− r + 1]

= q−m
[n+m− r]![m]![n−m]!

[n +m]![n− r]!

r
∑

i=0

qm−i

[

n− i

n−m

]

= q−m
[n+m− r]![m]![n−m]!

[n +m]![n− r]!

([

n + 1

n−m+ 1

]

−

[

n− r

n−m+ 1

])

,

(2.4)

where the last equality is derived from Equation (2.2).
Equation (1.1) implies that

∑

T∈SYT((n,m))

qmaj(T ) =
qm[n−m+ 1]

[n+ 1]

[

n +m

n

]

. (2.5)

Combining Equation (2.3)∼(2.5) together, we then obtain Theorem 2.1 for
the case E > N .

Let M = {an1
1 , a

n2
2 , . . . , a

nm

m } be a multiset containing ni copies of ai,
where a1 < a2 < · · · < am and n = n1 + n2 + · · · + nm. We denote by
σM the set of all permutations of M . Let {σ1, σ2, . . . , σk} be a collection
of complementary permutations of subsets of M , i.e., they are disjoint as
subsets and their union equals to M . A permutation σ ∈ σM is called a
shuffle of {σ1, σ2, . . . , σk} if it contains σi (1 ≤ i ≤ k) as a subword. We
denote by F(σ1, σ2, . . . , σk) the set of all shuffles of {σ1, σ2, . . . , σk}.

For the distribution of the major index over shuffles of permutations of
normal sets, Garsia and Gessel gave the following remarkable result, which
extended a classical result of MacMahon [10] and Foata [6].

Theorem 2.3. [7, Thm. 3.1] Let {σ1, σ2, . . . , σk} be a collection of comple-
mentary permutations of subsets of {1, 2, . . . , n}. Then we have

∑

σ∈F(σ1,σ2,...,σk)

qmaj(σ) =

[

n

µ1, µ2, . . . , µk

]

qmaj(σ1)+···+maj(σk),

7



where µi is the cardinality of σi.

It is easy to see that the above result holds for complementary permuta-
tions of subsets of a multiset by standardizing the words.

Example 2.4. For M = {12, 23, 32, 4}, let σ1 = 1313 and σ2 = 2242 be
complementary permutations of subsets of M . Let σ = 12321423 be a shuffle
of σ1 and σ2. Let f(σ) = 13642857 be the standardization of σ. Then f(σ)
is a shuffle of σ̃1 = 1627 and σ̃2 = 3485, and we have D(f(σ)) = D(σ) =
{3, 4, 6}.

Proof of Theorem 1.1. It is obvious that each generalized Schröder path of
Schk(r;n,m) can be viewed as a shuffle of a generalized Catalan path of
Cat(r;n − k,m − k) and Dk. Thus Theorem 1.1 is obtained by combining
Theorem 2.1 and 2.3 together.

3 The major index and the amajor index for

RInck((n,m)/(r))

For a generalized Schröder path P = p1p2 · · · pn and a given linear ordering
of {E,D,N}, let w be a bijection from the set of steps of P to {1, 2, . . . , n},
such that

w(pi) > w(pj) ⇔ pi > pj , or pi = pj = D and i < j.

We then call the word w(P ) = w(p1)w(p2) · · ·w(pn) a diagonal-reverse la-
belling of P .

Lemma 3.1. Let r, n,m and k be positive integers with Schk(r;n,m) 6= ∅.
For a given linear ordering of {E,D,N} and P ∈ Schk(r;n,m), let w(P )
denote a diagonal-reverse labelling of P . If E > D > N , then we have

∑

P∈Schk(r;n,m)

qmaj(w(P ))

= q
k(k−1)

2

[

n+m− r − k

k

]{[

n+m− r − 2k

n− r − k

]

−

[

n+m− r − 2k

n− k + 1

]}

;

if E < D < N , then we have
∑

P∈Schk(r;n,m)

qmaj(w(P ))

= q
k(k−1)

2

[

n+m− r − k

k

]{[

n+m− r − 2k

n− r − k

]

− qr+1

[

n+m− r − 2k

n− k + 1

]}

.
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Proof. We just give the proof for E > D > N , while the proof for E < D < N
is almost the same. Let W = DkDk−1 · · ·D1 be a word with E < D1 < D2 <
· · · < Dk < N . We denote by F(Cat(r;n,m),W ) the set of all shuffles of W
with lattice paths in Cat(r;n,m).

Given P ∈ Schk(r;n,m), let ψ(P ) denote the word obtained from P by
replacing the i−th D with Dk−i+1 for 1 ≤ i ≤ k. It is not difficult to see
that ψ gives a bijection from Schk(r;n,m) to F(Cat(r, n − k,m − k),W ).
Moreover, the bijection ψ satisfies D(w(P )) = D(ψ(P )). Thus we obtain
from Theorem 2.1 and 2.3 that

∑

P∈Schk(r;n,m)

qmaj(w(P ))

=
∑

ψ(P )∈F(Cat(r,n−k,m−k),W )

qmaj(ψ(P ))

= q
k(k−1)

2

[

n +m− r − k

k

]{[

n +m− r − 2k

n− r − k

]

−

[

n+m− r − 2k

n− k + 1

]}

.

Proof of Theorem 1.2. Let ϕ denote the bijection from RInck((n,m)/(r)) to
Schk(r;n,m) given in Section 2. For a given linear ordering of {E,D,N} and
P ∈ Schk(r;n,m), let w(P ) denote a diagonal-reverse labelling of P . Then
for any T ∈ RInck((n,m)/(r)), we have

maj(w(ϕ(T ))) = maj(T ), if E > D > N,

and
maj(w(ϕ(T ))) = amaj(T ), if E < D < N.

In fact, if ϕ(T ) = p1p2 · · · pn+m−r−k, then for E > D > N , we have i a descent
of w(ϕ(T )) if and only if the pair (pi, pi+1) equals to (D,N), (E,N), (E,D)
or (D,D). In all cases, i is a descent of T . The discussion for E < D < N is
similar. Thus Theorem 1.2 is derived from Lemma 3.1.

Note that equations of Theorem 1.1 differ from equations of Theorem
1.2 by the factor qk(k−1)/2. The above proof shows that the factor qk(k−1)/2

arises from diagonal-reverse labelling of Schröder paths, and thus gives an
explanation for the question of Du, Fan and Zhao.
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4 The major index for Inck((n,m)/(r))

We firstly extend a bijection of Pechenik [11, Prop. 2.1] as follows.

Lemma 4.1. There is an explicit bijection between Inck((n,m)/(r)) and the
union of SYT((n− k,m− k, 1k)/(r)) and SYT((n− k,m− k + 1, 1k−1)/(r))
that preserves the major index.

Proof. Given T ∈ Inck((n,m)/(r)), let A be the set of numbers that appear
twice in T . Let B be the set of numbers that appear in the second row
immediately right of an element of A. Then χ(T ) is a Young tableau produced
by the following algorithm. We firstly delete all elements of A from the first
row of T and all elements of B from the second row, and obtain χ(T ) by
appending B to the first column. Then χ(T ) ∈ SYT((n − k,m − k, 1k)) if
T (2, m) appears only in the second row, and χ(T ) ∈ SYT((n − k,m − k +
1, 1k−1)) otherwise. See Figure 3 for an example of χ.

T1 :
1 2 4

2 3 4 5

χ
χ(T1) :

5

3

2 4

1

T2 :
1 2 5

2 3 4 5

χ
χ(T2) :

3

2 4 5

1

Figure 3: An example of χ with T1, T2 ∈ Inc2((5, 4)/(2)). The entries ap-
pearing twice are colored red, and the entries appearing in the second row
immediately right of a red number are colored blue.

It is not hard to see that χ preserves the descent set and the major index.
Thus we just need to show that χ is reversible. For any S in the union of
SYT((n−k,m−k, 1k)/(r)) and SYT((n−k,m−k+1, 1k−1)/(r)), let B be the
set of entries below the second row. By deleting entries below the second row
and inserting B into the second row of S while maintaining increasingness,
we obtain a tableau T1. Let A be the set of numbers immediately left of an
element of B in the second row of T1. If S ∈ SYT((n−k,m−k, 1k)/(r)), then
χ−1(S) is obtained by inserting A into the first row of T1 while maintaining

10



increasingness. If S ∈ SYT((n − k,m − k + 1, 1k−1)/(r)), then χ−1(S) is
obtained by inserting A and T1(2, m) into the first row of T1 while maintaining
increasingness.

The following result gives the distribution of the major index over stan-
dard Young tableaux with shape (n,m, 1k)/(r).

Lemma 4.2. For positive integers r, n,m and k with SYT((n,m, 1k)/(r)) 6=
∅, we have

∑

T∈SYT((n,m,1k)/(r))

qmaj(T ) = q
k(k+1)

2

[

n+m+ k − r

k

]

·

(

[m]

[m+ k]

[

n+m− r

m

]

−
[n + 1]

[n + k + 1]

[

n+m− r

n + 1

])

.

Proof. Let λ denote the partition (n,m, 1k). By Theorem 2.2, we have
∑

T∈SYT(λ/(r)) q
maj(T )

∑

T∈SYT(λ) q
maj(T )

=
[n+m+ k − r]!

[n+m+ k]!

·

∑

S∈RT((r),k+2)

∏

u∈(r)

q1−S(u)[λS(u) − c(u)].
(4.1)

Given S ∈ RT((r), k + 2), if λS(u0) < c(u0) for some u0 ∈ (r), then by [4,
Equation 2.19], we have

∏

u∈(r)

q1−S(u)[λS(u) − c(u)] = 0.

Thus we can assume S(1, i) ≤ 2 for 2 ≤ i ≤ r, and divide the sum of the
right-hand side of Equation (4.1) into two parts:

∑

S(1,1)=1

∏

u∈(r)

q1−S(u)[λS(u) − c(u)] =
[n]!

[n− r]!
, (4.2)

and
∑

S(1,1)≥2

∏

u∈(r)

q1−S(u)[λ1S(u) − c(u)]

=
( [m]

q
+

k+1
∑

i=2

1

qi
)

·

{

[m− 1]![n−m]!

qm−1[n− r]!

r−1
∑

i=0

[

n− i− 1

n−m

]

qm−i−1

}

=
[m+ k][m− 1]![n−m]!

qm+k[n− r]!

([

n

n−m+ 1

]

−

[

n− r

n−m+ 1

])

,

(4.3)
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where the last identity is derived from Equation (2.2).
Equation (1.1) implies that

∑

T∈SYT((n,m,1k))

qmaj(T ) = qm+
k(k+3)

2
[n−m+ 1]

[n+ k + 1]

[

m+ k − 1

k

] [

n+m+ k

n

]

. (4.4)

Combining Equation (4.1) ∼ (4.4) together, we then obtain Lemma 4.2.

Combining Lemma 4.1 and 4.2, we then obtain Theorem 1.3. As an
application, we can give another proof of Theorem 1.2 for the special case
when r = 0 by generalizing a bijection given in [5, Thm. 6] as follows.

Lemma 4.3. There is an explicit bijection between RInck((n,m)) and the
union of Inck((n,m)) and Inck−1((n,m− 1)) that preserves the major index.

Proof. Given T ∈ RInck((n,m)), we obtain the tableau ρ(T ) by the following
algorithm. If T ∈ Inck((n,m)), then ρ(T ) = T . Otherwise, let i be the
minimal integer such that T (1, i) = T (2, i).Then ρ(T ) is produced by firstly
deleting T (2, i) and then moving T (2, j) one box to the left for i < j ≤ m.
For the later case, since i is minimal, T (2, i)− 1 appears only in the second
row of T or i = 1, which implies that T (2, i) − 1 is not a descent of T and
ρ(T ). Thus the operation ρ preserves the descent set and the major index
(see Fig. 4).

T :
1 2 4 5 6

2 3 4 6

ρ
ρ(T ) :

1 2 4 5 6

2 3 6

Figure 4: An example of ρ with T ∈ RInc3((5, 4))\Inc3((5, 4)).

It is not hard to see that

ρ(T ) ∈ Inck((n,m)) ∪ Inck−1((n,m− 1)).

Therefore we just need to show that ρ is reversible. If T ∈ Inck((n,m)), we
have ρ−1(T ) = T . If T ∈ Inck−1((n,m − 1)), let i be the maximal integer
such that T (2, i) = T (1, i + 1) − 1, where we assume T (2, 0) = 0. Then
ρ−1(T ) is obtained from T by firstly moving T (2, j) one box to the right for
i < j ≤ m− 1, and then setting T (2, i+ 1) = T (1, i+ 1).

Applying the bijection in Lemma 4.3 to Theorem 1.3, we then obtain an
alternate proof of Theorem 1.2 for the special case when r = 0.
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Corollary 4.4. For positive integers n,m and k with RInck((n,m)) 6= ∅, we
have

∑

T∈RInck((n,m))

qmaj(T ) = qm+
k(k−3)

2
[n−m+ 1]

[n− k + 1]

[

n+m− k

k

] [

n+m− 2k

m− k

]

.

Jeu de taquin (jdt) is a well-known transformation among skew Young
tableaux. Readers can see [12, Ch. 7, App. I] for the detailed definition. We
show an example of the jdt transformation in Figure 5, where bold numbers
denote the entries moved during the transformation.

T =

a 1 3 8

2 4 7

5 6 b

jdta(T ) =

1 3 7 8

2 4

5 6

jdtb(T ) =

1 3 8

2 4

5 6 7

Figure 5: An example of the jdt transformation.

In [1, Lem. 2.2], the jdt transformation is used to give a bijection between

SYT((n− k +m, k)/(m)) and the union
⊔min{k,n−k}
d=k−m SYT(n− d, d). Here we

can apply the jdt transformation to SYT((n− k + 1, m− k + 1, 1k)/(12)) in
a similar way, and obtain Theorem 1.4 as a corollary.

Proof of Theorem 1.4. We firstly give a bijection from SYT((n− k + 1, m−
k+1, 1k)/(12)) to the union of SYT((n−k,m−k, 1k)), SYT((n−k,m−k+
1, 1k−1)), SYT((n−k+1, m−k, 1k−1)) and SYT((n−k+1, m−k+1, 1k−2)).
Given T ∈ SYT((n− k + 1, m− k + 1, 1k)/(12)), let a = (1, 1) and b = (2, 1)
denote the two boxes beside the northwest corner of T . Then the tableau
g(T ) is defined to be jdta(jdtb(T )). If T1 = jdtb(T ) ∈ SYT((n − k + 1, m −
k, 1k)/(1)), then we have T1(2, i) > T1(1, i + 1) for 1 ≤ i ≤ m − k, which
implies that g(T ) ∈ SYT((n− k,m− k, 1k)). Otherwise, g(T ) belongs to the
union of SYT((n − k,m − k + 1, 1k−1)), SYT((n − k + 1, m − k, 1k−1)) and
SYT((n− k + 1, m− k + 1, 1k−2)). See Figure 6 for an example of g.

By the definition of jdt, it is easy to check that g preserves the major
index. We now construct the reverse of g as follows. Given S ∈ SYT((n −

13



T :

6

2

b 3 7

a 1 4 5
jdtb

6

2 3 7

a 1 4 5
jdta

g(T ) :

6

2 7

1 3 4 5

Figure 6: An example of g with T ∈ SYT((4, 3, 12)/(12)).

k,m − k, 1k)), let a = (1, n− k + 1) and b = (2, m − k + 1). Then we have
g−1(S) = jdtb(jdta(S)). The construction of g−1 for other cases is similar.

Combining Lemma 4.1 and 4.3 together, we know that χ◦ρ is a bijection
from RInck((n,m)) to the union of SYT((n−k,m−k, 1k)), SYT((n−k,m−
k + 1, 1k−1)), SYT((n − k + 1, m − k, 1k−1)) and SYT((n − k + 1, m − k +
1, 1k−2)). Thus g−1 ◦χ ◦ ρ gives the required bijection from RInck((n,m)) to
SYT((n− k + 1, m− k + 1, 1k)/(12)) that preserves the major index.
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