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Abstract

An equitable k-partition of a graph G is a collection of induced
subgraphs (G[V1], G[V2], . . . , G[Vk]) of G such that (V1, V2, . . . , Vk) is
a partition of V (G) and −1 ≤ |Vi|− |Vj | ≤ 1 for all 1 ≤ i < j ≤ k. We
prove that every planar graph admits an equitable 2-partition into 3-
degenerate graphs, an equitable 3-partition into 2-degenerate graphs,
and an equitable 3-partition into two forests and one graph.

Keywords: induced forest; degenerate graph; equitable partition; planar
graph.

1 Introduction

All graphs in this paper are simple and finite. A k-partition of a graph
G is a collection of induced subgraphs (G[V1], G[V2], . . . , G[Vk]) such that
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(V1, V2, . . . , Vk) is a partition of V (G). Such a k-partition is equitable if

||Vi| − |Vj|| ≤ 1

for all i, j ∈ {1, 2, . . . , k}. If there is no confusion, then we use (V1, V2, . . . , Vk)
to denote a k-partition (G[V1], G[V2], . . . , G[Vk]) of G. We write ∆(G) to
denote the maximum degree of a graph G.

In 1970, Hajnal and Szemerédi [9] proved a conjecture of Erdős, stating
that every graph admits an equitable k-partition into empty subgraphs, if
k > ∆(G). In 2008, Kierstead and Kostochka [10] found a short proof. In
2010, Kierstead, Kostochka, Mydlarz, and Szemerédi [12] designed a fast
algorithm to find such an equitable k-partition. The bound on k in the
Hajnal-Szemerédi Theorem is sharp because of complete graphs for instance.
Thus, there have been many results in this field trying to obtain better
lower bounds on the number k of parts for special graph classes. Motivated
by Brooks’ theorem, Chen, Lih, and Wu [5] conjectured that a connected
graph G admits an equitable ∆(G)-partition into empty graphs if and only if
it is not K∆(G)+1, an odd cycle, or K∆(G),∆(G) (for odd ∆(G)). They proved
this conjecture for ∆(G) ≤ 3 and Kierstead and Kostochka [11] proved the
conjecture for ∆(G) = 4. For planar graphs, Zhang and Yap [20] proved this
conjecture for ∆(G) ≥ 13, and Nakprasit [15] proved it for ∆(G) ≥ 9; in other
words, he proved that every planar graph G has an equitable k-partition into
empty subgraphs if k ≥ max(∆(G), 9).

If we relax the condition on each part, then it is possible to reduce the
number of parts significantly. For instance, Williams, Vandenbussche, and
Yu [17] proved that for all k ≥ 3, every planar graph of minimum degree
at least 2 and girth at least 10 has an equitable k-partition into graphs of
maximum degree at most 1.

We will mostly focus on the degeneracy of graphs. A graph is d-degenerate
if every non-null subgraph has a vertex of degree at most d. Note that a
graph is 0-degenerate if it has no edges, and 1-degenerate if it is a forest.
Kostochka, Nakprasit, and Pemmaraju [13] studied the existence of an eq-
uitable k-partition of a d-degenerate graph into (d − 1)-degenerate graphs.

Theorem 1.1 (Kostochka, Nakprasit, and Pemmaraju [13]). For k ≥ 3 and
d ≥ 2, every d-degenerate graph has an equitable k-partition into (d − 1)-
degenerate subgraphs.

This implies that every 5-degenerate graph admits an equitable 3-partition
into 4-degenerate subgraphs, an equitable 9-partition into 3-degenerate sub-
graphs, an equitable 27-partition into 2-degenerate subgraphs, and an equi-
table 81-partition into forests.
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Now we restrict our attention to planar graphs. As planar graphs are 5-
degenerate, every planar graph admits an equitable 81-partition into forests.
How far can we reduce 81? Esperet, Lemoine, and Maffray [7] proved that
81 can be improved to 4.

Theorem 1.2 (Esperet, Lemoine, and Maffray [7]). For all k ≥ 4, every
planar graph admits an equitable k-partition into forests.

However it is not known whether 4 is tight. Indeed, Esperet, Lemoine,
and Maffray [7] proposed the following problem:

Problem 1.3 (Esperet, Lemoine, and Maffray [7]). Does every planar graph
G admit an equitable 3-partition into forests?

This problem still remains open and is known to have affirmative answers
in the following cases:

• G is 2-degenerate, by Theorem 1.1 (even if G is non-planar),

• the girth of G is at least 5, due to Wu, Zhang, and Li [18],

• no two cycles of length at most 4 share vertices in G, due to Zhang [19],

• G has no triangles, and no two cycles of length 4 are adjacent, due to
Zhang [19],

• G has an acyclic 4-coloring, due to Esperet, Lemoine, and Maffray [7].

By relaxing the condition further, we may ask the following question.

Problem 1.4. For each i, what is the minimum integer ki such that for
all integers k ≥ ki, every planar graph admits an equitable k-partition into
i-degenerate subgraphs?

It is easy to see that k0 = ∞ by considering K1,n for large n, see
Meyer [14]. Since every planar graph is 5-degenerate, ki = 1 for all i ≥ 5.
Theorem 1.2 implies that k1 ≤ 4. Not every planar graph admits a (not neces-
sarily equitable) 2-partition into forests, shown by Chartrand and Kronk [4].
Thus, k1 ≥ 3.

Our first and second theorems prove that k3 = k4 = 2 and k2 ∈ {2, 3}.

Theorem 2.1. Every planar graph admits an equitable 2-partition into 3-
degenerate graphs.

Theorem 2.2. Every planar graph admits an equitable 3-partition into 2-
degenerate graphs.
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Our third theorem shows a weaker variant of Problem 1.3.

Theorem 3.1. Every planar graph admits an equitable 3-partition into two
forests and one graph.

The rest of this paper is organized as follows. In Section 2, we prove
Theorems 2.1 and 2.2, and moreover, show that every triangle-free planar
graph admits an equitable 2-partition into 2-degenerate graphs. In Section 3,
we prove Theorem 3.1 and illustrate some discussions towards Problem 1.3
and its relative problems.

2 Equitable partition into degenerate graphs

For a graph G and disjoint sets U , V of vertices of G, we denote by eG(U, V )
the number of edges between U and V . If U = {u} or V = {v}, then we
simply write eG(u, V ) or eG(U, v) for eG(U, V ). For a vertex set S ⊆ V (G)
and vertices v ∈ S and u /∈ V (G)− S, let us write S − v for the set S − {v}
and S + u for the set S ∪ {u}.

Our first theorem shows that k3 = k4 = 2.

Theorem 2.1. Every planar graph admits an equitable 2-partition into 3-
degenerate graphs.

Proof. Let G be an n-vertex planar graph. We proceed by induction on
|E(G)|. We may assume that G has at least one edge and n ≥ 4.

As G is planar, it has a vertex v such that 0 < deg(v) ≤ 5. Let v1

be a neighbor of v. By the induction hypothesis, there is an equitable 2-
partition (V1, V2) of G − vv1 into 3-degenerate graphs. We may assume,
without loss of generality, that v ∈ V1. If eG(v, V1 − v) ≤ 3, then (V1, V2) is
an equitable 2-partition of G into 3-degenerate graphs. So we may assume
that eG(v, V1 − v) ≥ 4, and so eG(v, V2) ≤ 1. Therefore, V2 + v induces a
3-degenerate subgraph of G.

If there is a vertex w ∈ V2 so that eG(w, V1−v) ≤ 3, then (V1−v+w, V2−
w + v) is an equitable 2-partition of G into 3-degenerate graphs. Hence we
assume that eG(w, V1 − v) ≥ 4 for every w ∈ V2, which implies that

eG(V2, V1 − v) ≥ 4|V2| ≥ 4bn/2c ≥ 2n− 2.

On the other hand, the graph induced by the edges between V1 − v and V2

is a bipartite planar graph on n− 1 vertices, and therefore eG(V2, V1 − v) ≤
2(n− 1)− 4 = 2n− 6, contradicting the other inequality.
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Now we show that 2 ≤ k2 ≤ 3.

Theorem 2.2. Every planar graph admits an equitable 3-partition into 2-
degenerate graphs.

Proof. Let G be an n-vertex planar graph. We proceed by induction on
|E(G)|. We may assume that G has at least one edge and at least 4 vertices.

Since G is planar, there is a vertex v such that 1 ≤ deg(v) ≤ 5. Let
v1 be a neighbor of v. By applying the induction hypothesis to the graph
G − vv1, we obtain an equitable 3-partition (V1, V2, V3) of G − vv1 into 2-
degenerate graphs. We may assume, without loss of generality, that v ∈ V1.
If eG(v, V1 − v) ≤ 2, then (V1, V2, V3) is also an equitable 3-partition of G
into 2-degenerate graphs. So we may assume that eG(v, V1 − v) ≥ 3, which
implies that eG(v, V2) ≤ 2 and eG(v, V3) ≤ 2. Therefore, both V2 + v and
V3 + v induce 2-degenerate subgraphs of G.

If there is a vertex w ∈ V2 so that eG(w, V1 − v) ≤ 2, then V1 − v + w
induces a 2-degenerate subgraph of G. Hence, (V1− v+w, V2−w+ v, V3) is
an equitable 3-partition of G into 2-degenerate graphs. Now we assume that
eG(w, V1 − v) ≥ 3 for every w ∈ V2, and by symmetry, we assume further
that eG(w, V1 − v) ≥ 3 for every w ∈ V3. This implies that

eG(V2 ∪ V3, V1 − v) ≥ 3|V2 ∪ V3| ≥ 3 · 2bn/3c ≥ 2(n− 2).

On the other hand, the graph induced by the edges between V2 ∪ V3 and
V1 − v is a bipartite planar graph on n− 1 vertices, and therefore

eG(V2 ∪ V3, V1 − v) ≤ 2(n− 1)− 4,

contradicting the previous inequality.

We do not know whether k2 = 2.

Problem 2.3. Does every planar graph admit an equitable 2-partition into
2-degenerate graphs?

We remark that Thomassen [16] proved that every planar graph admits
a 2-partition into a 2-degenerate graph and a forest.

The following theorem shows that a possible counterexample to Prob-
lem 2.3 shall contain triangles.

Theorem 2.4. Every triangle-free planar graph admits an equitable 2-partition
into 2-degenerate graphs.
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Proof. We first prove by using the discharging method that every triangle-
free planar graph contains a vertex of degree at most 2 or an edge with one
end having degree 3 and the other having degree at most 6.

Suppose there exists a triangle-free planar graph G not satisfying the
condition above. We assign initial charge µ(v) = deg(v) to each vertex v
of G, and let each vertex of degree at least 7 send 1/3 to each of its neighbors
of degree 3. After this discharging, the final charge µ′(v) of each vertex v
of degree 3 is exactly 3 + 3 × 1/3 = 4 since vertices of degree 3 are only
adjacent to vertices of degree at least 7. If v is a vertex of degree in {4, 5, 6},
then µ′(v) = µ(v) ≥ 4. Lastly, each vertex v of degree at least 7 has final
charge µ′(v) ≥ deg(v) − deg(v)/3 ≥ 14/3 > 4. Since G is triangle-free and
has minimum degree at least 3,

4n > 2e(G) =
∑

v∈V (G)

deg(v) =
∑

v∈V (G)

µ(v) =
∑

v∈V (G)

µ′(v) ≥ 4n,

a contradiction. Therefore, the claim holds.

Now we prove the theorem.

Let G be an n-vertex triangle-free planar graph. We proceed by induction
on n. If there is a vertex v of degree at most two, then by applying the
induction hypothesis to the graph G− v, we obtain an equitable 2-partition
(V1, V2) of G−v into 2-degenerate graphs with |V1| ≤ |V2|. Then, (V1 +v, V2)
is an equitable 2-partition of G into 2-degenerate graphs.

So we assume that every vertex of G has degree at least 3. Then, by
the claim, there is an edge uv with deg(u) = 3 and deg(v) ≤ 6. Applying
the induction hypothesis to the graph G − {u, v}, we obtain an equitable
2-partition (V1, V2) of G − {u, v} into two 2-degenerate graphs. Since v has
at most five neighbors in G−{u, v}, we may assume that V1 contains at most
two neighbors of v. Then (V1 + v, V2 + u) is an equitable 2-partition of G
into 2-degenerate graphs. This completes the proof.

3 Equitable partition into 2 forests and 1 graph

In this section, we aim to prove the following theorem.

Theorem 3.1. Every planar graph admits an equitable 3-partition into two
forests and one graph.

An acyclic k-coloring of a graph is a proper k-coloring such that there is
no cycle consisting of two colors. In other words, if a graph has an acyclic
k-coloring, then its vertex set can be partitioned into k independent sets

6



A1, A2, . . ., Ak such that Ai ∪ Aj induces a forest for all i, j ∈ {1, 2, . . . , k}.
Borodin proved the following theorem, initially conjectured by Grünbaum [8].

Theorem 3.2 (Borodin [1]). Every planar graph has an acyclic 5-coloring.

To prove Theorem 1.2, Esperet, Lemoine, and Maffray used Theorem 3.2
and try to combine two color classes in an acyclic 5-coloring of planar graphs
to produce large induced forests. We extend their idea.

3.1 Key proposition

To prove Theorem 3.1, we prove the following stronger statement.

Proposition 3.3. Let k > ` ≥ 1 be integers. Let A1, A2, . . ., Ak be sets

such that
∣∣∣⋃k

i=1Ai

∣∣∣ = n. Let

q =

⌊
2

k + `− 1

(
n+

k − `
2

)⌋
.

Then there exists a partition (B0, B1, . . . , B`) of
⋃k

i=1Ai into `+ 1 sets, pos-
sibly empty, such that

(i) for each 1 ≤ i ≤ `, Bi is a subset of the union of two members of
{A1, A2, . . . , Ak},

(ii) |Bi| ≥ q + 1 if 1 ≤ i ≤ dn− k+`−1
2

qe,

(iii) |Bi| ≥ q if dn− k+`−1
2

qe < i ≤ `,

(iv) there exists I ⊆ {1, 2, . . . , k} with |I| = k−`−1 such that B0 ⊆
⋃

i∈I Ai.

Let us first see why Proposition 3.3 together with Theorem 3.2 implies
Theorem 3.1

Proof of Theorem 3.1. Let G be a planar graph with n vertices. Then G has
an acyclic 5-coloring by Theorem 3.2 and so there exist sets A1, A2, . . ., A5

such that A1 ∪A2 ∪A3 ∪A4 ∪A5 = V (G) and Ai ∪Aj induces a forest for all
1 ≤ i < j ≤ 5. By applying Proposition 3.3 with k := 5 and ` := 2, we have
a partition (B0, B1, B2) of V (G) such that |B1| , |B2| ≥ q and both G[B1] and
G[B2] are forests, where q = b2

6
(n+ 3

2
)c = bn+1

3
c. If n 6≡ 2 (mod 3), then we

take B′1 ⊆ B1 and B′2 ⊆ B2 such that |B′1| = |B′2| = bn/3c. If n ≡ 2 (mod 3),
then we take B′1 ⊆ B1 and B′2 ⊆ B2 such that |B′1| = |B′2| = bn/3c + 1.
Let B′0 = V (G) \ (B′1 ∪ B′2). Then (B′0, B

′
1, B

′
2) is a desired equitable 3-

partition.
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Here is a key lemma to prove Proposition 3.3 inductively.

Lemma 3.4. Let 2 ≤ ` < k and n be positive integers and let q = b2n+k−`
k+`−1

c
and n′ = n− q. Then⌊

2n′ + k − `
k + `− 3

⌋
=

{
q + 1 if dn− k+`−1

2
qe ≥ `− 1,

q otherwise,

and

n− k + `− 1

2
q = n′ − k + `− 3

2
q.

Proof. Let m := k+`−1, and let r be the integer such that 2n+k−` = mq+r
and 0 ≤ r < m. Then⌊

2n′ + k − `
k + `− 3

⌋
=

⌊
2(n− q) + k − `

m− 2

⌋
=

⌊
(m− 2)q + r

m− 2

⌋
= q +

⌊
r

m− 2

⌋
.

Note that dn −mq/2e ≥ ` − 1 if and only if r ≥ k + ` − 3 = m − 2. Thus
the first equation holds. The second equation is trivial. This completes the
proof.

Proof of Proposition 3.3. We first observe that dn− k+`−1
2

qe ≤ `− 1, since

2n− 2`+ 2

k + `− 1
≤
⌊

(2n− 2`+ 2) + (k + `− 2)

k + `− 1

⌋
=

⌊
2n+ k − `
k + `− 1

⌋
= q.

We may assume that Ai ∩ Aj = ∅ for all i 6= j. We proceed by induction
on `. Let ai = |Ai| for all 1 ≤ i ≤ k.

If ` = 1, then by the pigeonhole principle, there exist 1 ≤ i < j ≤ k such
that ai + aj ≥ d2n

k
e. Observe that

q =

⌊
2

k

(
n+

k − 1

2

)⌋
=

⌊
2n

k
+
k − 1

k

⌋
=

⌈
2n

k

⌉
and therefore we take a set B1 = Ai∪Aj. Then |B1| ≥ q and B0 is the union
of the k − 2 members of {A1, A2, . . . , Ak} \ {Ai, Aj}. Now we may assume
that ` > 1.

Suppose that there exist i 6= j such that ai ≤ q ≤ ai + aj. Without loss
of generality, let us assume i = 1 and j = 2. Then there exists B` such that
A1 ⊆ B` ⊆ A1 ∪ A2 and |B`| = q. Let

n′ = n− q and q′ =

⌊
2

k + `− 3

(
n′ +

k − `
2

)⌋
.
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By applying the induction hypothesis to the k−1 sets A2−B`, A3, A4, . . . , Ak,
we obtain a partition (B0, B1, B2, . . . , B`−1) of

⋃k
i=2Ai − B`, such that for

1 ≤ i ≤ ` − 1, the set Bi is a subset of the union of two members of
{A2, A3, . . . , Ak} and B0 is a subset of the union of k − ` − 1 members of
{A2, A3, . . . , Ak}. If dn − k+`−1

2
qe = ` − 1, then by Lemma 3.4, q′ = q + 1

and therefore the induction hypothesis provides that |Bi| ≥ q + 1 for all
1 ≤ i ≤ ` − 1. If dn − k+`−1

2
qe < ` − 1, then again by Lemma 3.4, q′ = q

and n − k+`−1
2

q = n′ − k+`−3
2

q′ and therefore we deduce (ii) and (iii) by the
induction hypothesis.

Thus, we may assume that for all i 6= j, ai > q or ai + aj < q. Note that
if ai > q, then ai + aj > q and therefore aj > q. Thus we deduce that either

(I) ai > q for all 1 ≤ i ≤ k, or

(II) ai + aj < q for all i 6= j.

By the pigeonhole principle there exist 1 ≤ i < j ≤ k such that ai+aj ≥ d2n
k
e.

Since ⌈
2n

k

⌉
=

⌊
2

k

(
n+

k − 1

2

)⌋
≥
⌊

2

k + `− 1

(
n+

k − `
2

)⌋
= q,

(II) does not hold and so (I) holds. Then we take Bi = Ai for i = 1, 2, . . . , `−
1, B` = A` ∪ A`+1, and B0 =

⋃k
i=`+2Ai.

Proposition 3.3 is best possible in the sense that we cannot increase q;
consider the case that A1, A2, . . . , Ak are disjoint sets with |A1| = `a, |A2| =
|A3| = · · · = |Ak| = a for some positive integer a. There are no ` disjoint
sets of size at least 2a + 1, each contained in the union of two members of
{A1, . . . , Ak}, so we cannot increase q from 2a to 2a+ 1.

When ` = k−1, then we obtain the following from Proposition 3.3, which
is due to Esperet, Lemoine, and Maffray [7].

Corollary 3.5 (Esperet, Lemoine, and Maffray [7]). Let k > 1 be an integer.

Let A1, A2, . . ., Ak be sets such that
∣∣∣⋃k

i=1Ai

∣∣∣ = n. Then there exists a

partition (B1, . . . , Bk−1) of
⋃k

i=1Ai into k− 1 sets such that for each 1 ≤ i ≤
k − 1, Bi is a subset of the union of two members of {A1, A2, . . . , Ak}, and
|Bi| = d n

k−1
e or |Bi| = b n

k−1
c

Proof. We apply Proposition 3.3 with ` = k−1 to obtain (B0, B1, . . . , Bk−1).
Then q = b 1

k−1
(n + 1

2
)c = b n

k−1
c. As B0 is a subset of the union of 0 sets,

B0 = ∅. And, dn − k+`−1
2

qe = n − (k − 1)q is exactly the remainder when

9



dividing n by k − 1 and therefore |Bi| = q + 1 for all 1 ≤ i ≤ dn − k+`−1
2

qe
and |Bi| = q for all dn − k+`−1

2
qe < i ≤ k − 1. Thus (B1, B2, . . . , Bk−1) is a

desired partition.

3.2 Discussions

Borodin and Ivanova [2] and Chen and Raspaud [6] independently showed
that every planar graph without cycles of length 4 or 5 has an acyclic 4-
coloring. By Corollary 3.5, if a planar graph has no cycle of length 4 or 5,
then it admits an equitable 3-partition into forests. By Proposition 3.3, we
have the following variation of Problem 1.3.

Corollary 3.6. If a planar graph has no cycle of length 4 or 5, then it admits
a partition of its vertex set into three sets A1, A2, A3 such that

(i) both A1 and A2 induce forests and |A1| , |A2| ≥ b2
5
(n+ 1)c,

(ii) A3 is independent.

By the four color theorem, Corollary 3.5 implies that every planar graph
admits an equitable 3-partition into bipartite graphs. We also deduce the
following variant.

Corollary 3.7. Every n-vertex planar graph admits a partition of its vertex
set into three sets A1, A2, A3 such that

(i) both A1 and A2 induce bipartite subgraphs and |A1| , |A2| ≥ b2
5
(n+ 1)c,

(ii) A3 is independent.

A linear forest is a forest of maximum degree at most 2. Cai, Xie, and
Yang [3] showed that for every planar graph G, its vertices can be colored by
∆(G) + 7 colors such that the union of any two color classes induces a linear
forest. Combined with Proposition 3.3 and Corollary 3.5, we deduce that
every planar graph G admits an equitable (∆(G) + 6)-partition into linear
forests.
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