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1 Introduction

Let Fp be a finite field of size p, where p is an odd prime. An [n, k, d] linear code C over Fp is a k-dimensional

subspace of Fn
p with minimum distance d. Let Ai denote the number of codewords with Hamming weight i in C.

The weight enumerator of C is defined by 1 + A1x + A2x
2 + · · ·+ Anx

n and the sequence (1, A1, A2, · · · , An) is

called the weight distribution of C. If the number of nonzero Ai in this sequence is equal to t, then we call C a

t-weight code. The weight distribution of a code not only gives the error correcting ability of the code, but also

allows the computation of the error probability of error detection and correction [23]. So, the study of the weight

distribution of a linear code is important in both theory and applications. Linear codes with few weights attracts

many researchers’ attention due to their wide applications in secret schemes, strongly regular graphs, association

schemes and authentication codes. The recent progress on constructions of two-weight and three-weight linear

codes can be seen in [11, 16, 18–20,22, 27, 28, 33–35,38, 41, 45–47] and the references therein.

The complete weight enumerator of a code C over Fp enumerates the codewords according to the number of

symbols of each kind contained in each codeword. Denote elements in the field by Fp = {0, 1, · · · , p − 1}. The

composition of a vector v = (v0, v1, · · · , vn−1) ∈ F
n
p is defined to be comp(v) = (k0, k1, · · · , kp−1), where each

ki = ki(v) is the number of components vj(0 ≤ j ≤ n− 1) of v that are equal to i. It is clear that
∑p−1

i=0 ki = n.

For a codeword c = (c0, c1, · · · , cn−1) ∈ C, the complete weight enumerator of c is the monomial

w(c) = w
k0(c)
0 w

k1(c)
1 · · ·wkp−1(c)

p−1
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in the variables w0, w1, · · · , wp−1, where ki(c)(0 ≤ i ≤ p − 1) denotes the number of components cj of that

equals i. The complete weight enumerator of a linear code C is the homogeneous polynomial,

CWE(C) =
∑

c∈C

w
k0(c)
0 w

k1(c)
1 · · ·wkp−1(c)

p−1 =
∑

(k0,k1,··· ,kp−1)∈Bn

A(k0, k1, · · · , kp−1)w
k0
0 w

k1
1 · · ·wkp−1

p−1 ,

where Bn =
{

(k0, k1, · · · , kp−1) : 0 ≤ ki ≤ n,
∑p−1

i=0 ki = n
}

and A(k0, k1, · · · , kp−1) denotes the number of code-

words c ∈ C with comp(c) = (k0, k1, · · · , kp−1).

The complete weight enumerators of linear codes not only give the weight enumerators but also demonstrate

the frequency of each symbol appearing in each codeword. They have wide applications such as in authentication

codes [13, 14], constant composition codes [12, 15] and the computation of Walsh transform values [36]. So, it is

interesting to determine complete weight enumerators of linear codes. The complete weight enumerators of Reed-

Solomon codes were obtained by Blake and Kith [2] and Kuzmin and Nechaev [24] studied the complete weight

enumerators of the generalized Kerdock code and related linear codes over Galois rings. Recently, there are many

works on complete weight enumerators of specific linear codes. The reader is referred to [1,25,26,29,31,39,40,42,43]

and the references therein.

Let Fpm be a finite field with pm elements, where m is a positive integer. Let Tr denote the trace function

from Fpm to Fp. From a subset D = {d1, d2, . . . , dn} ⊂ Fpm , Ding et al. [10] first defined a generic class of linear

codes of length n = |D| over Fp as

CD = {(Tr(xd1),Tr(xd2), · · · ,Tr(xdn)) |x ∈ Fpm} .

Here, D is called the defining set of CD. This construction is generic in the sense that many classes of known

codes could be produced by selecting the defining set D. By application of this technique, many good linear codes

with few weights have been constructed [8–11, 16, 18–21, 27, 28, 41, 44]. Motivated by this construction, Zhu et

al. [48] studied the weight distribution of the linear code

CD =
{

c(a, b) = (Tr(ax+ by))(x,y)∈D : a, b ∈ Fpm

}

, (1)

where

D =
{

(x, y) ∈ F
2
pm \ {(0, 0)} : Tr(xp

k+1 + yp
ℓ+1) = c, c ∈ Fp

}

(2)

for m/(m, k) being odd and m/(m, ℓ) being even. Almost at the same time, Jian et al. [22] also considered the

linear code CD in (1) for the case k = 0 and c = 0.

In this paper, we first study the weight distribution of the linear code CD for any positive integers m, k and

ℓ by careful analysis of ranks of the discussed quadratic form, and generalize the results in [22, 48]. Secondly, we

determine the complete weight enumerators of the linear code CD by application of quadratic form theory over

finite fields. Moreover, the punctured code of CD is discussed and some optimal or almost optimal linear codes

with respect to the Griesmer bound are obtained.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries, which will be

used in the following sections. Section 3 investigates the weight and complete weight enumerators of the linear

code CD. In Section 4, the punctured version of CD is discussed. Section 5 concludes this paper.

2 Preliminaries

Throughout this paper, we adopt the following notation unless otherwise stated:

• Fpm is a finite field with pm elements.

• Tr(·) is the trace function from Fpm to Fp.

• v2(·) is the 2-adic order function and we denote v2(0) = ∞.

• k and ℓ are positive integers, gcd(k,m) = u and gcd(ℓ,m) = v.
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• ζp = e
2π

√−1
p is the primitive p-th root of unity.

Let ψ be a multiplicative character of F∗
pm . The Gaussian sum G(ψ) is defined by

G(ψ) =
∑

x∈F
∗
pm

ψ(x)χ(x),

where χ be the canonical additive character of Fpm . The explicit values of Gaussian sums are very difficult to

determine and are known for only a few cases. Let ηm be the quadratic multiplicative character of F∗
pm and Gm

denote the Gaussian sum G(ηm) for short. Particularly, G1 is the Gaussian sum G(η) over F
∗
p, where η is the

quadratic multiplicative character of F∗
p.

Lemma 1 [30, Theorem 5.15] Let Fpm be a finite field with pm elements and ηm be the quadratic multiplicative

character of F∗
pm . Then

Gm = (−1)m−1

√

(−1)
(p−1)m

2 pm =







(−1)m−1p
m
2 , if p ≡ 1 (mod 4),

(−1)m−1(
√
−1)mp

m
2 , if p ≡ 3 (mod 4).

In particular, G1 = (−1)
p−1
4 p

1
2 .

By identifying the finite field Fpm with an m-dimensional vector space F
m
p over Fp, a function f from Fpm

to Fp can be viewed as an m-variable polynomial over Fp. The function f(x) is called a quadratic form if it is a

homogenous polynomial of degree two as follows:

f(x1, x2, · · · , xm) =
∑

1≤i≤j≤m

aijxixj , aij ∈ Fp,

where we fix a basis of Fm
p over Fp and identify x ∈ Fpm with a vector (x1, x2, · · · , xm) ∈ F

m
p . The rank of the

quadratic form f(x) is defined as the codimension of the Fp-vector space

V =
{

x ∈ F
m
p | f(x+ z)− f(x)− f(z) = 0, for all z ∈ F

m
p

}

,

which is denoted by rank(f). Then |V | = pm−rank(f).

For a quadratic form Q(x) with m variables over Fp, there exists a symmetric matrix A such that Q(x) =

XAX ′, where X = (x1, x2, · · · , xm) ∈ F
m
p and X ′ denotes the transpose of X . The determinant det(Q) of Q(x)

is defined to be the determinant of A, and Q(x) is nondegenerate if det(Q) 6= 0. It is known that there exists a

nonsingular matrix T such that TAT ′ is a diagonal matrix [30]. Making a nonsingular linear substitution X = Y T

with Y = (y1, y2, · · · , ym), we have

Q(x) = Y TAT ′Y ′ =

r
∑

i=1

aiy
2
i , ai ∈ Fp,

where r(≤ m) is the rank of Q(x). The following lemma gives a general result on the exponential sums of a

quadratic function from Fpm to Fp. These sums are also known as Weil sums.

Lemma 2 [30, Theorems 5.15 and 5.33] Let Q(x) be a quadratic function from Fpm to Fp with rank r(r 6= 0),

and η be the quadratic multiplicative character of F∗
p. Then

∑

x∈Fpm

ζQ(x)
p =







η(∆)pm− r
2 , if p ≡ 1 (mod 4),

(−1)
r
2 η(∆)pm− r

2 , if p ≡ 3 (mod 4),

where ∆ is the determinant of Q(x). Furthermore, for any z ∈ F
∗
p,

∑

x∈Fpm

ζzQ(x)
p = ηrm(z)

∑

x∈Fpm

ζQ(x)
p ,

3



where ηm is the quadratic multiplicative character of F∗
pm .

Lemma 3 [30, Theorems 5.33] Let f(x) = a2x
2 + a1x+ a0 ∈ Fpm [x] with a2 6= 0. Then

∑

x∈Fpm

ζTr(f(x))p = ζ
Tr(a0−a2

1(4a2)
−1)

p ηm(a2)Gm,

where Gm is the Gaussian sum G(ηm).

Lemma 4 [17] Let Tr(xp
k+1) be the quadratic function from Fpm to Fp with rank r. Then

r =







m− 2u, if v2(m) > v2(k) + 1,

m, otherwises,

where u = gcd(m, k).

The weight and complete weight enumerator of the linear code CD is related to the rank of the quadratic

form Tr(xp
k+1 + yp

ℓ+1) and the following Weil sum

Sk(a, b) =
∑

x∈Fpm

χ
(

axp
k+1 + bx

)

, a ∈ F
∗
pm , b ∈ Fpm . (3)

When b = 0, the Weil sum Sk(a, 0) is as follows.

Lemma 5 [17, Corollary 7.6] Let v2(·) denote the 2-adic order function and v2(0) = ∞. Let ηm be the quadratic

multiplicative character of F∗
pm . For a ∈ F

∗
pm , the following results hold.

(i) If v2(m) ≤ v2(k), then

Sk(a, 0) = ηm(a)(−1)m−1(
√
−1)

(p−1)2m

4 p
m
2 .

(ii) If v2(m) = v2(k) + 1, then

Sk(a, 0) =











p
m+gcd(2k,m)

2 , if a
(pk−1)(pm−1)

pgcd(2k,m)−1 = −1,

−pm
2 , otherwise.

(iii) If v2(m) > v2(k) + 1, then

Sk(a, 0) =











−pm+gcd(2k,m)
2 , if a

(pk−1)(pm−1)

pgcd(2k,m)−1 = 1,

p
m
2 , otherwise.

When b 6= 0, the value of Sk(a, b) is related to the solutions of the polynomial ap
k

xp
2k

+ ax = 0. We first

recall the result on this equation.

Lemma 6 [5, Theorem 4.1] Let m, k be positive integers with u = gcd(m, k) and a ∈ F
∗
pm . The equation

ap
k

xp
2k

+ ax = 0

is solvable in F
∗
pm if and only if m

u
is even and a

pm−1
pu+1 = (−1)

m
2u . In such cases, there are p2u − 1 non-zero

solutions.

By application of this lemma, R. S. Coulter determined the possible values of the Weil sum Sk(a, b) as follows.
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Lemma 7 [6, Theorem 1] Let m, k be positive integers with u = gcd(m, k). Let a ∈ F
∗
pm and f(x) = ap

k

xp
2k

+ax

be a permutation polynomial over Fpm . Assume that x0 is the unique solution of the equation f(x) = −bpk

. The

following statements hold.

(i) If m
u

is odd, then

Sk(a, b) = (−1)m−1(
√
−1)

(p−1)2

4 3mp
m
2 ηm(a)χ(axp

k+1
0 )

=











(−1)m−1p
m
2 ηm(a)χ(axp

k+1
0 ), if p ≡ 1 (mod 4),

(−1)m−1(
√
−1)3mp

m
2 ηm(a)χ(axp

k+1
0 ), if p ≡ 3 (mod 4).

(ii) If m
u

is even, then a
pm−1
pu+1 6= (−1)

m
2u and

Sk(a, b) = (−1)
m
2u p

m
2 χ(axp

k+1
0 ),

where ηm is the quadratic multiplicative of F∗
pm and χ is the canonical additive character of Fpm .

Lemma 8 [6, Theorem 2] Let m, k be positive integers with u = gcd(m, k) and m being even. Assume that

f(x) = ap
k

xp
2k

+ax is not a permutation polynomial over Fpm , then Sk(a, b) = 0 unless the equation f(x) = −bpk

is solvable. If the equation has a solution x0, then

Sk(a, b) = −(−1)
m
2u p

m
2 +uχ(axp

k+1
0 ).

For later use, we need the following lemma.

Lemma 9 [22, Lemma 13] Let u = gcd(m, k). If m
u
≡ 0 mod 4, then

∣

∣

∣

{

c ∈ Fpm : xp
2k

+ x = cp
k

is solvable in Fpm

}∣

∣

∣ = pm−2u.

In order to obtain the multiplicity of each weight of the discussed linear codes, we need the Pless power

moment identities on linear codes. Let C be an [n, k] code over Fp, and denote its dual by C⊥. Let Ai and A
⊥
i be

the number of codewords of weight i in C and C⊥, respectively. The first two Pless power moment identities are

as follows ( [32], p. 131):

n
∑

i=0

Ai = pk;

n
∑

i=0

iAi = pk−1(pn− n−A⊥
1 ).

For the linear code CD defined in (1) with the defining set D in (2), it is easy to verify that A⊥
1 = 0 if (0, 0) 6∈ D

from the non-degenerate property of a trace function.

The following lemma on the bound of linear code is well-known.

Lemma 10 (Griesmer Bound) If an [n, k, d] p-ary code exists, then

n ≥
k−1
∑

i=0

⌈ d
pi
⌉,

where the symbol ⌈x⌉ denotes the smallest integer greater than or equal to x.
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3 Main results

In this section, we investigate the weight enumerator and complete weight enumerator of the linear code CD
defined in (1), where the defining set D is given in (2). Firstly, we determine the length of CD. Let m, k and ℓ be

integers with u = gcd(m, k) and v = gcd(m, ℓ). For convenience, we define the following symbols.

εu =







1, if v2(m) > v2(u) + 1,

0, if v2(m) ≤ v2(u) + 1,
εv =







1, if v2(m) > v2(v) + 1,

0, if v2(m) ≤ v2(v) + 1.
(4)

Proposition 11 Let CD be a linear code defined in (1) with the defining set D given in (2). Let n = |D| be the

length of CD. If c = 0, then

n =























p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1, if 2v2(m) = v2(u) + v2(v),

p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1, if 2v2(m) = v2(u) + v2(v) + 1,

p2m−1 + pm+εuu+εvv − pm+εuu+εvv−1 − 1, if 2v2(m) > v2(u) + v2(v) + 1.

If c ∈ F
∗
p, then

n =























p2m−1 − (−1)
(p−1)m

2 pm−1, if 2v2(m) = v2(u) + v2(v),

p2m−1 − (−1)
(p−1)m

4 pm−1, if 2v2(m) = v2(u) + v2(v) + 1,

p2m−1 − pm+εuu+εvv−1, if 2v2(m) > v2(u) + v2(v) + 1.

Proof. By the orthogonal property of additive characters and Lemma 2, we have

n =
1

p

∑

(x,y)∈F
2
pm

\{(0,0)}

∑

z∈Fp

ζ
z
(

Tr(xpk+1+ypℓ+1)−c
)

p

=
1

p

∑

x,y∈Fpm

∑

z∈Fp

ζ
z
(

Tr(xpk+1+ypℓ+1)−c
)

p − 1

p

∑

z∈Fp

ζ−zc
p

= p2m−1 +
1

p

∑

z∈F∗
p

∑

x,y∈Fpm

ζ
z
(

Tr(xpk+1+ypℓ+1)−c
)

p − 1

p

∑

z∈Fp

ζ−zc
p

= p2m−1 +
1

p

∑

z∈F∗
p

ζ−zc
p

∑

x∈Fpm

ζzTr(x
pk+1)

p

∑

y∈Fpm

ζzTr(y
pℓ+1)

p − 1

p

∑

z∈Fp

ζ−zc
p

= p2m−1 +
1

p

∑

z∈F∗
p

ζ−zc
p

∑

x∈Fpm

ηr1m (z)ζTr(x
pk+1)

p

∑

y∈Fpm

ηr2m (z)ζTr(y
pℓ+1)

p − 1

p

∑

z∈Fp

ζ−zc
p

= p2m−1 +
1

p

∑

z∈F∗
p

ζ−zc
p η(r1+r2)

m (z)
∑

x∈Fpm

ζTr(x
pk+1)

p

∑

y∈Fpm

ζTr(y
pℓ+1)

p − 1

p

∑

z∈Fp

ζ−zc
p ,

where ηm is the quadratic multiplicative character of F∗
pm , and r1 and r2 are the ranks of the quadratic forms

Tr(xp
k+1) and Tr(yp

ℓ+1), respectively. By Lemma 4, it is easy to see that ηr1+r2
m (z) = 1 for any z ∈ F

∗
p since

r1 + r2 is even. Hence,

n = p2m−1 +
1

p

∑

z∈F∗
p

ζ−zc
p

∑

x∈Fpm

ζTr(x
pk+1)

p

∑

y∈Fpm

ζTr(y
pℓ+1)

p − 1

p

∑

z∈Fp

ζ−zc
p

=







p2m−1 + p−1
p

Ω− 1, if c = 0,

p2m−1 − 1
p
Ω, if c ∈ F

∗
p,

(5)
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where

Ω =
∑

x∈Fpm

ζTr(x
pk+1)

p

∑

y∈Fpm

ζTr(y
pℓ+1)

p .

The desired conclusion then follows from (5) and Lemma 5. �

For any (a, b) ∈ F
2
pm \ {(0, 0)}, a nonzero codeword in CD has the form c(a, b) = (Tr(ax+ by))(x,y)∈D, where

D is defined in (2). Let N(c, ρ) denote the number of components Tr(ax + by) of c(a, b) which are equal to ρ,

where ρ ∈ Fp, i.e.,

N(c, ρ) =
∣

∣

∣

{

(x, y) ∈ F
2
pm \ {(0, 0)} : Tr

(

xp
k+1 + yp

ℓ+1
)

= c,Tr (ax+ by) = ρ
}∣

∣

∣
.

The Hamming weight of c(a, b) is as follows:

wtH(c(a, b)) =
∑

ρ∈Fp∗

N(c, ρ) = n−N(c, 0),
(6)

where n is the length of linear code CD. Assume that ηm is the quadratic multiplicative character of F∗
pm , and r1

and r2 are the ranks of the quadratic forms of Tr(yp
k+1) and Tr(yp

ℓ+1), respectively. By Lemma 2,

N(c, ρ) =
∑

(x,y)∈F
2
pm

\{(0,0)}





1

p

∑

z1∈Fp

ζz1(Tr(x
pk+1+ypℓ+1)−c)

p









1

p

∑

z2∈Fp

ζz2(Tr(ax+by)−ρ)
p





=
∑

x,y∈Fpm





1

p

∑

z1∈Fp

ζz1(Tr(x
pk+1+ypℓ+1)−c)

p









1

p

∑

z2∈Fp

ζz2(Tr(ax+by)−ρ)
p



− 1

p2

∑

z1,z2∈Fp

ζ−(z1c+z2ρ)
p

= p2m−2 +
1

p2

(

∑

z1∈Fp∗

ζ−z1c
p

∑

x∈Fpm

ζz1Tr(x
pk+1)

p

∑

y∈Fpm

ζz1Tr(y
pℓ+1)

p +
∑

z2∈F∗
p

ζ−z2ρ
p

∑

x,y∈Fpm

ζz2Tr(ax+by)
p

+
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p

∑

x∈Fpm

ζTr(z1x
pk+1+z2ax)

p

∑

y∈Fpm

ζTr(z1y
pℓ+1+z2by)

p

)

− 1

p2

∑

z1,z2∈Fp

ζ−(z1c+z2ρ)
p

= p2m−2 +
1

p2

(

∑

z1∈Fp∗

ζ−z1c
p

∑

x∈Fpm

ηr1m (z1)ζ
Tr(xpk+1)
p

∑

y∈Fpm

ηr2m (z1)ζ
Tr(ypℓ+1)
p

+
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p

∑

x∈Fpm

ζTr(z1x
pk+1+z2ax)

p

∑

y∈Fpm

ζTr(z1y
pℓ+1+z2by)

p

)

− 1

p2

∑

z1,z2∈Fp

ζ−(z1c+z2ρ)
p

= p2m−2 +
1

p2
(Ω1 +Ω2)−

1

p2

∑

z1,z2∈Fp

ζ−(z1c+z2ρ)
p ,

(7)

where

Ω1 =
∑

z1∈F∗
p

ζ−z1c
p

∑

x∈Fpm

ηr1m (z1)ζ
Tr(xpk+1)
p

∑

y∈Fpm

ηr2m (z1)ζ
Tr(ypℓ+1)
p =

∑

z1∈F∗
p

ζ−z1c
p Sk(1, 0)Sℓ(1, 0) (8)

since r1 + r2 is always even and

Ω2 =
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p

∑

x∈Fpm

ζTr(z1x
pk+1+z2ax)

p

∑

y∈Fpm

ζTr(z1y
pℓ+1+z2by)

p

=
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p Sk(z1, z2a)Sℓ(z1, z2b).

(9)

Here, Sk(z1, z2a) and Sℓ(z1, z2b) are defined in (3). In order to determine the weight and complete weight of a

codeword in CD, we need to calculate the values of Ω1 and Ω2. In the following, we give our main results.
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Theorem 12 Let CD be a linear code defined in (1) with the defining set D given in (2). Assume that 2v2(m) =

v2(u) + v2(v), then the following statements hold.

(1) If c=0, then CD is a [p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1, 2m] two-weight linear code with weight enumerator

1+(p2m−1+(−1)
(p−1)m

2 (p−1)pm−1−1)x(p−1)p2m−2

+(p−1)(p2m−1−(−1)
(p−1)m

2 pm−1)x(p−1)(p2m−2+(−1)
(p−1)m

2 pm−1)

and its complete weight enumerator is

w
p2m−1+(−1)

(p−1)m
2 (p−1)pm−1−1

0 + (p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1)w
p2m−2+(−1)

(p−1)m
2 (p−1)pm−1−1

0

∏

ρ∈F∗
p

wp2m−2

ρ

+ (p− 1)(p2m−1 − (−1)
(p−1)m

2 pm−1)wp2m−2−1
0

∏

ρ∈F∗
p

wp2m−2+(−1)
(p−1)m

2 pm−1

ρ .

(2) Let c ∈ F
∗
p and g be a generator of F∗

p, then CD is a [p2m−1− (−1)
(p−1)m

2 pm−1, 2m] two-weight linear code with

weight enumerator

1+(
p+ 1

2
p2m−1+

p− 1

2
(−1)

(p−1)m
2 pm−1−1)x(p−1)p2m−2

+
p− 1

2
(p2m−1−(−1)

(p−1)m
2 pm−1)x(p−1)p2m−2−(−1)

(p−1)m
2 2pm−1

and its complete weight enumerator is

w
p2m−1−(−1)

(p−1)m
2 pm−1

0 + (p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1)w
p2m−2−(−1)

(p−1)m
2 pm−1

0

∏

ρ∈F∗
p

wp2m−2

ρ +

(p2m−1 − (−1)
(p−1)m

2 pm−1)

( (p−1)
2
∑

j=1

w
p2m−2+(−1)

(p−1)(m+1)
2 pm−1

0 wp2m−2

2gj wp2m−2

p−2gj

∏

ρ ∈ F
∗
p

ρ 6= ±2gj

wp2m−2+(−1)
(p−1)m

2 pm−1η(ρ2−4g2j)
ρ

+

(p−1)
2
∑

j=1

w
p2m−2−(−1)

(p−1)(m+1)
2 pm−1

0

∏

ρ∈F∗
p

wp2m−2+(−1)
(p−1)m

2 pm−1η(ρ2−4g2j+1)
ρ

)

.

Proof. We first determine the possible values of Ω1 and Ω2 which are defined in (8) and (9), respectively. By

Proposition 11, in the case of 2v2(m) = v2(u) + v2(v), the length of the linear code CD is

n =











p2m−1 − (−1)
(p−1)m

2 pm−1, if c ∈ F
∗
p,

p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1, if c = 0.

Recall that u = gcd(m, k) and v = gcd(m, ℓ). Since 2v2(m) = v2(u) + v2(v), we know that v2(m) = v2(u) =

v2(v). By Lemmas 4 and 5 we have

Ω1 =
∑

z1∈F∗
p

ζ−z1c
p Sk(1, 0)Sℓ(1, 0) =







−(−1)
(p−1)m

2 pm, if c ∈ F
∗
p,

(−1)
(p−1)m

2 (p− 1)pm, if c = 0.

(10)

In the following, we determine the possible values of Ω2. As m
u

and m
v

are odd, we verify that fk(x) =

zp
k

1 xp
2k

+ z1x and fℓ(x) = zp
ℓ

1 x
p2ℓ

+ z1x are permutations over Fpm for any z1 ∈ F
∗
p. Assume that γa and γb are

the solutions of the equations xp
2k

+ x = −apk

and xp
2ℓ

+ x = −bpℓ

, respectively. Then z−1
1 γaz2 and z−1

1 γbz2 are

8



the solutions of fk(x) = −(z2a)
pk

and fℓ(x) = −(z2b)
pℓ

for any z2 ∈ F
∗
p, respectively. By Lemma 7 we have

Ω2 =
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p Sk(z1, z2a)Sℓ(z1, z2b)

= (−1)
(p−1)m

2 pm
∑

z1,z2∈F∗
p

ζ−z1c−z2ρ
p ηm(z1)χ(z1(z

−1
1 γaz2)p

k+1)ηm(z1)χ(z1(z
−1
1 γbz2)p

ℓ+1)

= (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p χ

(

−z−1
1 z22

(

γp
k+1

a + γp
ℓ+1

b

))

= (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr

(

γpk+1
a +γ

pℓ+1
b

)

−z2ρ

p ,

where i =
√
−1. If Tr

(

γp
k+1

a + γp
ℓ+1

b

)

= 0, then

Ω2(c, ρ) = (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p . (11)

If Trm1 (γp
k+1

a + γp
ℓ+1

b ) 6= 0, c = 0 and ρ = 0, then

Ω2(0, 0) = (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr(γpk+1
a +γ

pℓ+1
b

)
p = −(−1)

(p−1)m
2 (p− 1)pm. (12)

If Trm1 (γp
k+1

a + γp
ℓ+1

b ) 6= 0, c = 0 and ρ ∈ F
∗
p, then

Ω2(0, ρ) = (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr(γpk+1
a +γ

pℓ+1
b

)−z2ρ

p = (−1)
(p−1)m

2 pm. (13)

If Trm1 (γp
k+1

a + γp
ℓ+1

b ) 6= 0, c ∈ F
∗
p and ρ = 0, from Lemma 3 we have that

Ω2(c, 0) = (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr(γpk+1
a +γ

pℓ+1
b

)
p

= (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p η

(

−z−1
1 Tr(γp

k+1
a + γp

ℓ+1
b )

)

G1 + (−1)
(p−1)m

2 pm

= (−1)
(p−1)m

2 pmη
(

cTr(γp
k+1

a + γp
ℓ+1

b )
)

G2
1 + (−1)

(p−1)m
2 pm

= (−1)
(p−1)m

2 pm+1η
(

−cTr(γpk+1
a + γp

ℓ+1
b )

)

+ (−1)
(p−1)m

2 pm.

(14)

If Trm1 (γp
k+1

a + γp
ℓ+1

b ) 6= 0, c ∈ F
∗
p and ρ ∈ F

∗
p, from Lemma 3 we have that

Ω2(c, ρ) = (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr(γpk+1
a +γ

pℓ+1
b

)−z2ρ

p

= (−1)
(p−1)m

2 pm
∑

z1∈F∗
p

ζ−z1c
p





∑

z2∈Fp

ζ
−

z22
z1

Tr(γpk+1
a +γ

pℓ+1
b

)−z2ρ

p − 1





= (−1)
(p−1)m

2 pm






η
(

−Tr(γp
k+1

a + γp
ℓ+1

b )
)

G1

∑

z1∈F∗
p

ζ

(

ρ2

4Tr(γ
pk+1
a +γ

pℓ+1
b

)

−c

)

z1

p η(z1) + 1







=











(−1)
(p−1)m

2 pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) = ρ2/4c,

(−1)
(p−1)m

2 pm
(

pη
(

ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )
)

+ 1
)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= ρ2/4c.

(15)
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Let ρ ∈ F
∗
p. From (7), (10) and (11)-(15), we obtain the following results.

(I) If c = 0, then

N(0, 0) =







p2m−2 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(0, ρ) =







p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + (−1)
(p−1)m

2 pm−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0.

(16)

(II) If c ∈ F
∗
p, then

N(c, 0) =











p2m−2 − (−1)
(p−1)m

2 pm−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + (−1)
(p−1)m

2 pm−1η
(

−cTr(γpk+1
a + γp

ℓ+1
b )

)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(c, ρ) =







p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0 or ρ2/4c,

p2m−2 + (−1)
(p−1)m

2 pm−1η(ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )), if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0 and ρ2/4c.

(17)

In the case of c = 0, from (6) and (16), we know that for any (a, b) 6= (0, 0), the possible weight of c(a, b) is

w1 = (p− 1)p2m−2 or w2 = (p− 1)(p2m−2 + (−1)
(p−1)m

2 pm−1). This means that the dimension of CD is 2m. It is

easy to verify that the minimum distance of the dual of CD is greater than or equal to 2 from the non-degenerate

property of the trace function if (0, 0) 6∈ D. Let Ai denote the number of codewords of weight i in C. From the

first two Pless power moments identities we have







Aw1 = (p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1),

Aw2 = (p− 1)(p2m−1 − (−1)
(p−1)m

2 pm−1).

So, from (16) we obtain the weight and complete weight enumerators of CD.

In the case of c ∈ F
∗
p, from (6) and (17) we know that for any (a, b) 6= (0, 0), the possible weight of c(a, b) is

w1 = (p− 1)p2m−2 or w2 = (p− 1)p2m−2 − (−1)
(p−1)m

2 2pm−1. Analysis similar to that in the case of c = 0 shows

that






Aw1 = (p+1
2 p2m−1 + p−1

2 (−1)
(p−1)m

2 pm−1 − 1),

Aw2 = p−1
2 (p2m−1 − (−1)

(p−1)m
2 pm−1).

(18)

From (6) and (17) we have

Aw1 =
∣

∣

∣

{

(x, y) ∈ F
2
pm \ {(0, 0)} : Tr(γp

k+1
a + γp

ℓ+1
b ) = 0 or − cTr(γp

k+1
a + γp

ℓ+1
b ) ∈ NSQ

}∣

∣

∣ (19)

and

Aw2 =
∣

∣

∣

{

(x, y) ∈ F
2
pm \ {(0, 0)} : −cTr(γpk+1

a + γp
ℓ+1

b ) ∈ SQ
}∣

∣

∣ , (20)

where SQ and NSQ denote the sets of all square and non-square elements in F
∗
p, respectively.

It is known that fk(x) = zp
k

1 xp
2k

+z1x and fℓ(x) = zp
ℓ

1 x
p2ℓ

+z1x are permutations over Fpm for any z1 ∈ F
∗
pm .

Then the solutions γa of xp
2k

+x = −apk

and γb of x
p2ℓ

+x = −bpℓ

run through Fpm as a and b run through Fpm ,

respectively. From calculations of the code length in (5), we know that the nonzero values of Tr(γp
k+1

a + γp
ℓ+1

b )

are uniformly distributed in F
∗
p when γa, γb run through Fpm . For any t ∈ F

∗
p, from (18)-(20) we see

∣

∣

∣

{

(x, y) ∈ F
2
pm \ {(0, 0)} : Tr(γp

k+1
a + γp

ℓ+1
b ) = t

}∣

∣

∣ = p2m−1 − (−1)
(p−1)m

2 pm−1
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and
∣

∣

∣

{

(x, y) ∈ F
2
pm \ {(0, 0)} : Tr(γp

k+1
a + γp

ℓ+1
b ) = 0

}∣

∣

∣ = p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1.

Let g be a generator of F∗
p. Assume that cTr(γp

k+1
a + γp

ℓ+1
b ) is a square element in F

∗
p with the form g2j for

some j. If Tr(γp
k+1

a + γp
ℓ+1

b ) = ρ2/(4c), then ρ = ±2gj. So, from (17) we obtain the weight and complete weight

enumerators of CD. �

Example 13 Let m = 2, p = 3, k = 0, ℓ = 0.

(1) If c ∈ F
∗
p, then CD has parameters [24, 4, 12] with weight enumerator 1 + 24x12 + 56x18 and complete weight

enumerator w24
0 + 24w12

0 w
6
1w

6
2 + 56w6

0w
9
1w

9
2 .

(2) If c = 0. then CD has parameters [32, 4, 18] with weight enumerator 1 + 32x18 + 48x24 and complete weight

enumerator w32
0 + 32w14

0 w
9
1w

9
2 + 48w8

0w
12
1 w

12
2 .

Let m = 3, p = 3, k = 1, ℓ = 2.

(3) If c ∈ F
∗
p, then CD has parameters [252, 6, 162] with weight enumerator 1 + 476x162 + 252x180 and complete

weight enumerator w252
0 + 476w90

0 w
81
1 w

81
2 + 252w72

0 w
90
1 w

90
2 .

(4) If c = 0, then CD has parameters [224, 6, 144] with weight enumerator 1 + 504x144 + 224x162 and complete

weight enumerator w224
0 + 504w80

0 w
72
1 w

72
2 + 224w62

0 w
81
1 w

81
2 .

These results have been verified by Magma programs.

Theorem 14 Let CD be a linear code defined in (1) with the defining set D given in (2). Assume that 2v2(m) =

v2(u) + v2(v) + 1, then the following statements hold.

(1) If c=0, then CD is a [p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1, 2m] two-weight linear code with weight enumerator

1+(p2m−1+(−1)
(p−1)m

4 (p−1)pm−1−1)x(p−1)p2m−2

+(p−1)(p2m−1−(−1)
(p−1)m

4 pm−1)x(p−1)(p2m−2+(−1)
(p−1)m

4 pm−1)

and its complete weight enumerator is

w
p2m−1+(−1)

(p−1)m
4 (p−1)pm−1−1

0 + (p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1)w
p2m−2+(−1)

(p−1)m
4 (p−1)pm−1−1

0

∏

ρ∈F∗
p

wp2m−2

ρ

+ (p− 1)(p2m−1 − (−1)
(p−1)m

4 pm−1)wp2m−2−1
0

∏

ρ∈F∗
p

wp2m−2+(−1)
(p−1)m

4 pm−1

ρ .

(2) Let c ∈ F
∗
p and g be a generator of F∗

p, then CD is a [p2m−1− (−1)
(p−1)m

4 pm−1, 2m] two-weight linear code with

weight enumerator

1+(
p+ 1

2
p2m−1+

p− 1

2
(−1)

(p−1)m
4 pm−1−1)x(p−1)p2m−2

+
p− 1

2
(p2m−1−(−1)

(p−1)m
4 pm−1)x(p−1)p2m−2−(−1)

(p−1)m
4 2pm−1

and its complete weight enumerator is

w
p2m−1−(−1)

(p−1)m
4 pm−1

0 + (p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1)w
p2m−2−(−1)

(p−1)m
4 pm−1

0

∏

ρ∈F∗
p

wp2m−2

ρ +

(p2m−1 − (−1)
(p−1)m

4 pm−1)

( (p−1)
2
∑

j=1

w
p2m−2+(−1)

(p−1)(m+2)
4 pm−1

0 wp2m−2

2gj wp2m−2

p−2gj

∏

ρ ∈ F
∗
p

ρ 6= ±2gj

wp2m−2+(−1)
(p−1)m

4 pm−1η(ρ2−4g2j)
ρ

+

(p−1)
2
∑

j=1

w
p2m−2−(−1)

(p−1)(m+2)
4 pm−1

0

∏

ρ∈F∗
p

wp2m−2+(−1)
(p−1)m

4 pm−1η(ρ2−4g2j+1)
ρ

)

.
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Proof. Recall that u = gcd(m, k) and v = gcd(m, ℓ). When 2v2(m) = v2(u) + v2(v) + 1, then m is even and

there are two cases:






v2(m) = v2(u) and v2(m) = v2(v) + 1,

v2(m) = v2(v) and v2(m) = v2(u) + 1.

In the following, we only prove the case v2(m) = v2(u) and v2(m) = v2(v) + 1. The other cases can be shown

similarly.

Since 2v2(m) = v2(u) + v2(v) + 1, Proposition 11 shows that the length of the code CD is

n =











p2m−1 − (−1)
(p−1)m

4 pm−1, if c ∈ F
∗
p,

p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1, if c = 0.

In order to determine the weight enumerator and complete weight enumerator of CD, as is shown in Theo-

rem 12, we first compute the possible values of Ω1 and Ω2, which are given in (8) and (9), respectively. When

v2(m) = v2(u) and v2(m) = v2(v) + 1, we have that v2(m) ≤ v2(k) and v2(m) = v2(ℓ) + 1. By Lemmas 4 and 5

we have

Ω1 =
∑

z1∈F∗
p

ζ−z1c
p Sk(1, 0)Sℓ(1, 0) =







−(−1)
(p−1)m

4 pm, if c ∈ F
∗
p,

(−1)
(p−1)m

4 (p− 1)pm, if c = 0.

(21)

Next, we determine the possible values of Ω2. Since v2(m) = v2(u) and v2(m) = v2(v) + 1, it follows that m
u

and m
2v are odd. By Lemma 6, fk(x) = zp

k

1 xp
2k

+z1x and fℓ(x) = zp
ℓ

1 x
p2ℓ

+z1x are permutations over Fpm for any

z1 ∈ F
∗
p. Let γa and γb be the solutions of the equations xp

2k

+x = −apk

and xp
2ℓ

+x = −bpℓ

, respectively. Then

z−1
1 γaz2 and z−1

1 γbz2 are the solutions of fk(x) = −(z2a)
pk

and fℓ(x) = −(z2b)
pℓ

for any z2 ∈ F
∗
p, respectively.

By Lemma 7,

Ω2 =
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p Sk(z1, z2a)Sℓ(z1, z2b)

=
∑

z1,z2∈F∗
p

ζ−z1c−z2ρ
p

(

(−1)m−1(
√
−1)

(p−1)23m
4 p

m
2 ηm(z1)χ(z1(z

−1
1 γaz2)p

k+1)

)

(

(−1)
m
2v p

m
2 χ(z1(z

−1
1 γbz2)p

ℓ+1)
)

= (−1)
(p−1)m

4 pm
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr

(

γpk+1
a +γ

pℓ+1
b

)

−z2ρ

p .

The last equality follows from the facts that m is even and m
2v is odd. Let ρ ∈ F

∗
p. By a similar analysis to

(11)-(15), we have the following results.

(I) If c = 0, then

Ω2(0, 0) =







(−1)
(p−1)m

4 (p− 1)2pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

−(−1)
(p−1)m

4 (p− 1)pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

Ω2(0, ρ) =







−(−1)
(p−1)m

4 (p− 1)pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

(−1)
(p−1)m

4 pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0.

(22)
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(II) If c ∈ F
∗
p, then

Ω2(c, 0) =











−(−1)
(p−1)m

4 (p− 1)pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

(−1)
(p−1)m

4 pm
(

pη(−cTr(γpk+1
a + γp

ℓ+1
b )) + 1

)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

Ω2(c, ρ) =











(−1)
(p−1)m

4 pm, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0 or ρ2/4c,

(−1)
(p−1)m

4 pm
(

pη(ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )) + 1
)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0 and ρ2/4c.

(23)

From (7) and (21)-(23), we have the following results.

(I) If c = 0, then

N(0, 0) =







p2m−2 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(0, ρ) =







p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + (−1)
(p−1)m

4 pm−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0.

(24)

(II) If c ∈ F
∗
p, then

N(c, 0) =











p2m−2 − (−1)
(p−1)m

4 pm−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + (−1)
(p−1)m

4 pm−1η
(

−cTr(γpk+1
a + γp

ℓ+1
b )

)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(c, ρ) =







p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0 or ρ2/4c,

p2m−2 + (−1)
(p−1)m

4 pm−1η(ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )), if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0 and ρ2/4c.

(25)

As is shown in Theorem 12, from (24) and (25) we can obtain the weight and complete weight enumerators

of CD. �

Remark 15 When v2(m) = v2(u) and v2(m) = v2(v) + 1, the weight enumerator in (1) and (2) of Theorem 14

is exact Table 1 and Table 3 in [48], respectively.

Example 16 Let m = 4, p = 3, k = 0, ℓ = 2.

(1) If c ∈ F
∗
p, then CD has parameters [2160, 8, 1404] with weight enumerator 1 + 2160x1404 + 4400x1458 and

complete weight enumerator w2160
0 + 2160w756

0 w702
1 w702

2 + 4400w702
0 w729

1 w729
2 .

(2) If c = 0, then CD has parameters [2240, 8, 1458] with weight enumerator 1 + 2240x1458 + 4320x1512 and

complete weight enumerator w2240
0 + 2240w782

0 w729
1 w729

2 + 4320w728
0 w756

1 w756
2 .

Let m = 2, p = 3, k = 1, ℓ = 0.

(1) If c ∈ F
∗
p, then CD has parameters [30, 4, 18] with weight enumerator 1 + 50x18 + 30x24 and complete weight

enumerator w30
0 + 50w12

0 w
9
1w

9
2 + 30w6

0w
12
1 w

12
2 .

(2) If c = 0, then CD has parameters [20, 4, 12] with weight enumerator 1 + 60x12 + 20x18 and complete weight

enumerator w20
0 + 60w8

0w
6
1w

6
2 + 20w2

0w
9
1w

9
2.
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These results have been verified by Magma programs. The code CD with parameters [20, 4, 12] is optimal with

respect to the tables of best codes known maintained at http://www.codetables.de.

Theorem 17 Let εu and εv be symbols defined in (4) and CD be a linear code defined in (1) with the defining set

D given in (2). Assume that 2v2(m) > v2(u) + v2(v) + 1, then the following statements hold.

(1) If c=0, then CD is a [p2m−1 + pm+εuu+εvv − pm+εuu+εvv−1 − 1, 2m] three-weight linear code with weight

enumerator

1 + (p2m − p2m−2εuu−2εvv)x(p−1)(p2m−2+pm+εuu+εvv−1−pm+εuu+εvv−2) + (pm−εuu−εvv − 1)(pm−εuu−εvv−1 + 1)x(p−1)p2m−2

+ (p− 1)(p2m−2εuu−2εvv−1 − pm−εuu−εvv−1)x(p−1)(p2m−2+pm+εuu+εvv−1)

and its complete weight enumerator is

wp2m−1+pm+εuu+εvv−pm+εuu+εvv−1−1
0 + (p2m − p2m−2εuu−2εvv)w

p2m−2+(p−1)pm+εuu+εvv−2−1
0

∏

ρ∈F∗
p

wp2m−2+(p−1)pm+εuu+εvv−2

ρ

+ (pm−εuu−εvv − 1)(pm−εuu−εvv−1 + 1)w
p2m−2+(p−1)pm+εuu+εvv−1−1
0

∏

ρ∈F∗
p

wp2m−2

ρ

+ (p− 1)(p2m−2εuu−2εvv−1 − pm−εuu−εvv−1)wp2m−2−1
0

∏

ρ∈F∗
p

wp2m−2+pm+εuu+εvv−1

ρ .

(2) Let c ∈ F
∗
p and g be a generator of F∗

p, then CD is a [p2m−1 − pm+εuu+εvv−1, 2m] three-weight linear code with

weight enumerator

1 + (p2m − p2m−2εuu−2εvv)x(p−1)(p2m−2−pm+εuu+εvv−2) + (
p+ 1

2
p2m−2εuu−2εvv−1 +

p− 1

2
pm−εuu−εvv−1 − 1)x(p−1)p2m−2

+
p− 1

2
(p2m−2εuu−2εvv−1 − pm−εuu−εvv−1)x(p−1)p2m−2−2pm+εuu+εvv−1

and its complete weight enumerator is

wp2m−1−pm+εuu+εvv−1

0 + (p2m − p2m−2εuu−2εvv)wp2m−2−pm+εuu+εvv−2

0

∏

ρ∈F∗
p

wp2m−2−pm+εuu+εvv−2

ρ +

(p2m−2εuu−2εvv−1 + (p− 1)pm−εuu−εvv−1 − 1)wp2m−2−pm+εuu+εvv−1

0

∏

ρ∈F∗
p

wp2m−2

ρ + (p2m−2εuu−2εvv−1 − pm−εuu−εvv−1)·

( (p−1)
2
∑

j=1

w
p2m−2+(−1)

p−1
2 pm+εuu+εvv−1

0 wp2m−2

2gj wp2m−2

p−2gj

∏

ρ ∈ F
∗
p

ρ 6= ±2gj

wp2m−2+pm+εuu+εvv−1η(ρ2−4g2j)
ρ

+

(p−1)
2
∑

j=1

w
p2m−2−(−1)

p−1
2 pm+εuu+εvv−1

0

∏

ρ∈F∗
p

wp2m−2+pm+εuu+εvv−1η(ρ2−4g2j+1)
ρ

)

.

Proof. Recall that u = gcd(m, k) and v = gcd(m, ℓ). When 2v2(m) > v2(u) + v2(v) + 1, then m is even and

there are six cases:


































v2(m) = v2(u) and v2(m) > v2(v) + 1,

v2(m) = v2(v) and v2(m) > v2(u) + 1,

v2(m) = v2(u) + 1 and v2(m) = v2(v) + 1,

v2(m) = v2(u) + 1 and v2(m) > v2(v) + 1,

v2(m) > v2(u) + 1 and v2(m) = v2(v) + 1,

v2(m) > v2(u) + 1 and v2(m) > v2(v) + 1.

In the following, we only prove the case v2(m) > v2(u) + 1 and v2(m) > v2(v) + 1. The other cases can be shown

similarly.
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If v2(m) > v2(u) + 1 and v2(m) > v2(v) + 1, then εu = 1 and εv = 1 from (4). By Proposition 11, the length

of the code CD is

n =











p2m−1 − pm+u+v−1, if c ∈ F
∗
p,

p2m−1 + pm+u+v − pm+u+v−1 − 1, if c = 0.

We first determine the possible values of Ω1 and Ω2, which are given in (8) and (9), respectively.

If v2(m) > v2(u) + 1 and v2(m) > v2(v) + 1, then v2(m) > v2(k) + 1 and v2(m) > v2(ℓ) + 1. By Lemmas 4

and 5, we have

Ω1 =
∑

z1∈F∗
p

ζ−z1c
p Sk(1, 0)Sℓ(1, 0) =







−pm+u+v, if c ∈ F
∗
p,

(p− 1)pm+u+v, if c = 0.
(26)

In the following, we determine the possible values of Ω2. As v2(m) > v2(u) + 1 and v2(m) > v2(v) + 1, by

Lemma 6, then fk(x) = zp
k

1 xp
2k

+ z1x and fℓ(x) = zp
ℓ

1 x
p2ℓ

+ z1x are not permutations over Fpm for any z1 ∈ F
∗
p.

If fk(x) = −(z2a)
pk

has no solution in Fpm or fℓ(x) = −(z2b)
pℓ

has no solution in Fpm , then by Lemma 8, it is

easy to see that

Ω2 = 0. (27)

Otherwise, assume that γa and γb are the solutions of the equations xp
2k

+ x = −apk

and xp
2ℓ

+ x = −bpℓ

,

respectively. Then z−1
1 γaz2 and z−1

1 γbz2 are the solutions of fk(x) = −(z2a)
pk

and fℓ(x) = −(z2b)
pℓ

for any

z2 ∈ F
∗
p, respectively. By Lemma 8, we have

Ω2 =
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ−z2ρ
p

(

−(−1)
m
2u p

m
2 +uχ(z1(z

−1
1 γaz2)p

k+1)
)(

−(−1)
m
2v p

m
2 +vχ(z1(z

−1
1 γbz2)p

ℓ+1)
)

= pm+u+v
∑

z1∈F∗
p

ζ−z1c
p

∑

z2∈F∗
p

ζ
−

z22
z1

Tr

(

γpk+1
a +γ

pℓ+1
b

)

−z2ρ

p .

Let ρ ∈ F
∗
p. By a similar analysis in (11)-(15), we have the following results.

(I) If c = 0, then

Ω2(0, 0) =







(p− 1)2pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

−(p− 1)pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

Ω2(0, ρ) =







−(p− 1)pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0.

(28)

(II) If c ∈ F
∗
p, then

Ω2(c, 0) =











−(p− 1)pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

pm+u+v
(

pη(−cTr(γpk+1
a + γp

ℓ+1
b )) + 1

)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

Ω2(c, ρ) =











pm+u+v, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0 or ρ2/4c,

pm+u+v
(

pη(ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )) + 1
)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0 and ρ2/4c.

(29)
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From (7) and (26)-(29) we have the following results.

(I) If c = 0 and one of fk(x) = −(z2a)
pk

and fℓ(x) = −(z2b)
pℓ

has no solution in Fpm , then

N(0, 0) = p2m−2 + (p− 1)pm+u+v−2 − 1, N(0, ρ) = p2m−2 + (p− 1)pm+u+v−2. (30)

(II) If c = 0 and fk(x) = −(z2a)
pk

and fℓ(x) = −(z2b)
pℓ

has solutions in Fpm , which are denoted by z−1
1 γbz2 and

z−1
1 γaz2, respectively, then

N(0, 0) =







p2m−2 + (p− 1)pm+u+v−1 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 − 1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(0, ρ) =







p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + pm+u+v−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0.

(31)

(III) If c ∈ F
∗
p and one of fk(x) = −(z2a)

pk

and fℓ(x) = −(z2b)
pℓ

has no solution in Fpm , then

N(c, 0) = p2m−2 − pm+u+v−2, N(c, ρ) = p2m−2 − pm+u+v−2. (32)

(IV) If c ∈ F
∗
p and fk(x) = −(z2a)

pk

and fℓ(x) = −(z2b)
pℓ

has solutions in Fpm , which are denoted by z−1
1 γaz2

and z−1
1 γbz2, respectively, then

N(c, 0) =











p2m−2 − pm+u+v−1, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0,

p2m−2 + pm+u+v−1η
(

−cTr(γpk+1
a + γp

ℓ+1
b )

)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0,

N(c, ρ) =











p2m−2, if Tr(γp
k+1

a + γp
ℓ+1

b ) = 0 or ρ2/4c,

p2m−2 + pm+u+v−1η
(

ρ2 − 4cTr(γp
k+1

a + γp
ℓ+1

b )
)

, if Tr(γp
k+1

a + γp
ℓ+1

b ) 6= 0 and ρ2/4c.

(33)

In the case of c = 0, from (6), (30) and (31) we known that the possible weight of c(a, b) is w1 = (p −
1)(p2m−2+pm+u+v−1−pm+u+v−2), w2 = (p− 1)p2m−2 or w3 = (p− 1)(p2m−2+pm+u+v−1). This means that the

dimension of CD is 2m. Let Ai denote the number of codewords of weight i in CD. To determine the multiplicity

of each weight, we first investigate the multiplicity Aw1 of the weight w1. From above analysis, we know that

Ω2 = 0 if and only if fk(x) = −(z2a)
pk

or fℓ(x) = −(z2b)
pℓ

has no solution in Fpm , which is equivalent to that

xp
2k

+ x = −apk

or xp
2ℓ

+ x = −bpℓ

has no solution in Fpm since z1 ∈ F
∗
p. So, by Lemma 9 we have

Aw1 =
∣

∣

∣

{

(a, b) ∈ F
2
pm \ {(0, 0)} : xp

2k

+ x = −apk

and xp
2ℓ

+ x = −bpℓ

has no solution in Fpm

}∣

∣

∣

+
∣

∣

∣

{

(a, b) ∈ F
2
pm \ {(0, 0)} : xp

2k

+ x = −apk

has solutions in Fpm and xp
2ℓ

+ x = −bpℓ

has no solution in Fpm

}∣

∣

∣

+
∣

∣

∣

{

(a, b) ∈ F
2
pm \ {(0, 0)} : xp

2k

+ x = −apk

has no solution in Fpm and xp
2ℓ

+ x = −bpℓ

has solutions in Fpm

}∣

∣

∣

= (pm − pm−2u)(pm − pm−2v) + (pm − pm−2v)pm−2u + (pm − pm−2u)pm−2v

= p2m − p2(m−u−v).

It is easy to verify that the minimum distance of the dual of CD is greater than or equal to 2 if (0, 0) 6∈ D. From

the first two Pless power moments identities we have







Aw1 = (p2m − p2m−2u−2v),

Aw2 = (pm−u−v − 1)(pm−u−v−1 + 1),

Aw3 = (p− 1)(p2m−2u−2v−1 − pm−u−v−1).
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So, from (30) and (31) we obtain the weight and complete weight enumerators of CD.

In the case of c ∈ F
∗
p, as is shown in Theorem 12 and combining (32) and (33), we obtain the weight and

complete weight enumerators of CD. �

Remark 18 When v2(m) = v2(u) and v2(m) > v2(v) + 1, the weight enumerator in (1) and (2) of Theorem 17

is exact Table 2 and Table 4 in [48], respectively.

Example 19 Let m = 4, p = 3.

(1) If k = 3, ℓ = 1 and c ∈ F
∗
p, then εu = εv = 1 and CD has parameters [1944, 8, 972] with weight enumerator 1+

24x972+6480x1296+56x1458 and complete weight enumerator w1944
0 +24w972

0 w486
1 w486

2 +6480w648
0 w648

1 w648
2 +

56w486
0 w729

1 w729
2 .

(2) If k = 1, ℓ = 2 and c = 0, then εu = 1, εv = 0 and CD has parameters [2348, 8, 1458] with weight

enumerator 1+260x1458+5832x1566+468x1620 and complete weight enumerator w2348
0 +260w890

0 w729
1 w729

2 +

5832w782
0 w783

1 w783
2 + 468w728

0 w810
1 w810

2 .

(3) If k = 2, ℓ = 3 and c ∈ F
∗
p, then εu = 0, εv = 1 and CD has parameters [2106, 8, 1296] with weight

enumerator 1+234x1296+5832x1404+494x1458 and complete weight enumerator w2160
0 +234w810

0 w648
1 w648

2 +

5832w702
0 w702

1 w702
2 + 494w648

0 w729
1 w729

2 .

(4) If k = 2, ℓ = 2 and c = 0, then εu = εv = 0 and CD has parameters [2240, 8, 1458] with weight enumerator

1+2240x1458+4320x1512 and complete weight enumerator w2240
0 +2240w782

0 w729
1 w729

2 +4320w728
0 w756

1 w756
2 .

These results have been verified by Magma programs.

4 Punctured codes of CD
In this section, we investigate the punctured code CD̄, which is derived from CD by deleting some coordinates of

codewords in CD. Some new two-weight and three-weight linear codes are obtained.

From Theorem 12, Theorem 14 and Theorem 17, it is observed that the Hamming weight of each codeword

in CD has a common divisor p− 1 for c = 0. This indicates that CD may be punctured into a shorter one whose

weight distribution is derived from that of the original code. To this end, we define an equivalence relation in the

set D as follows. For (β, γ), (δ, η) ∈ D, we say that (β, γ) is equivalent to (δ, η) if and only if there exists a ∈ F
∗
p

such that (δ, η) = a(β, γ). The elements chosen from each equivalent class in D consist of a set D̄. It is clear that

D = F
∗
pD̄ =

{

z(x, y) = (zx, zy) : z ∈ F
∗
p, (x, y) ∈ D̄

}

. (34)

Then the linear code CD̄ defined in (1) with the defining set D̄ is a punctured version of CD, whose parameters

are given in the following theorem.

Theorem 20 Let CD̄ be the linear code defined as above, where D̄ is defined in (34). Then the following state-

ments hold.

(1) If 2v2(m) = v2(u) + v2(v), then CD̄ is a
[

p2m−1−1
p−1 + (−1)

(p−1)m
2 pm−1, 2m

]

two-weight linear code with the

weight distribution given in Table 1.

(2) If 2v2(m) = v2(u) + v2(v) + 1, then CD̄ is a
[

p2m−1−1
p−1 + (−1)

(p−1)m
4 pm−1, 2m

]

two-weight linear code with

the weight distribution given in Table 2.

(3) If 2v2(m) > v2(u) + v2(v) + 1, then CD̄ is a
[

p2m−1−1
p−1 + pm+εuu+εvv−1, 2m

]

three-weight linear code with the

weight distribution given in Table 3.

Remark 21 Assume that m = 2, v2(u) + v2(v) = 1 and p ≡ 3 (mod 4). From Table 2, it is easy to see that

CD̄ is a
[

p2 + 1, 4, p2 − p
]

code. From Chapter 13 in [7], this code is called an ovoid code, which is optimal with

respect to the Griesmer bound.
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Table 1: The weight distribution of CD̄ for 2v2(m) = v2(u) + v2(v)

Weight Multiplicity

0 1

p2m−2 p2m−1 + (−1)
(p−1)m

2 (p− 1)pm−1 − 1

p2m−2 + (−1)
(p−1)m

2 pm−1 (p− 1)
(

p2m−1 − (−1)
(p−1)m

2 pm−1
)

Table 2: The weight distribution of CD̄ for 2v2(m) = v2(u) + v2(v) + 1

Weight Multiplicity

0 1

p2m−2 p2m−1 + (−1)
(p−1)m

4 (p− 1)pm−1 − 1

p2m−2 + (−1)
(p−1)m

4 pm−1 (p− 1)
(

p2m−1 − (−1)
(p−1)m

4 pm−1
)

Example 22 Let m = 2 and p = 3.

(1) If k = 0 and ℓ = 0, or k = 1 and ℓ = 1, then CD̄ has parameters [16, 4, 9] and weight enumerator 1 + 32x9 +

48x12.

(2) If k = 0 and ℓ = 1, or k = 1 and ℓ = 0, then CD̄ has parameters [10, 4, 6] and weight enumerator 1 + 60x6 +

20x9.

These results have been verified by Magma programs. All of these codes are optimal with respect to the tables of

best codes known maintained at http://www.codetables.de.

5 Conclusions

This paper further studied a class of linear codes CD proposed by Zhu and Xu [48], and determined their weight

enumerators for all non-negative integers m, k and ℓ, and generalized some results in [22, 48]. Moreover, we

obtained the complete weight enumerators of CD and the weight distribution of the punctured linear code CD̄
which is derived from CD by deleting some coordinates. Some optimal and almost optimal linear codes are

obtained . These new two-weight and three-weight linear codes CD may be applied to construct strongly regular

graphs [4] and association schemes [3] with new parameters, respectively. Furthermore, if m is properly chosen,

one easily check that
wmin

wmax

>
p− 1

p

for the linear codes CD, where wmin and wmax denote the minimum and maximum nonzero weights of CD,

respectively. Then the new codes may be used to construct secret sharing schemes with nice access structures [16].

Table 3: The weight distribution of CD̄ for 2v2(m) > v2(u) + v2(v) + 1

Weight Multiplicity

0 1

p2m−2 + pm+εuu+εvv−1 − pm+εuu+εvv−2 p2m − p2m−2εuu−2εvv

p2m−2 (pm−εuu−εvv − 1)(pm−εuu−εvv−1 + 1)

p2m−2 + pm+εuu+εvv−1 (p− 1)
(

p2m−2εuu−2εvv−1 − pm−εuu−εvv−1
)

18
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