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A SHUFFLING THEOREM FOR REFLECTIVELY SYMMETRIC TILINGS

TRI LAI

Abstract. In arXiv:1905.08311, the author and Rohatgi proved a shuffling theorem for doubly–dented
hexagons. In particular, we showed that shuffling removed unit triangles along a horizontal axis in a
hexagon only changes the tiling number by a simple multiplicative factor. In this paper, we consider a
similar phenomenon for a symmetry class of tilings, the reflectively symmetric tilings, of the doubly–
dented hexagons. We also prove several shuffling theorems for halved hexagons. These theorems
generalize a number of known results in the enumeration of halved hexagons.

1. Introduction

MacMahon’s classical theorem [29] on plane partitions fitting in a given box is equivalent to the
fact that the number of lozenge tilings of a centrally symmetric hexagon Hex(a, b, c) of side-lengths
a, b, c, a, b, c (in a cyclic order, from the north side) is given by the simple product:

(1.1) PP(a, b, c) :=

a
∏

i=1

b
∏

j=1

c
∏

k=1

i+ j + k − 1

i+ j + k − 2
.

The 10 symmetry classes of the plane partitions were introduced in the classical paper of R. Stanley
[33]. Each of the symmetry classes corresponds to a certain kind of symmetric lozenge tilings of a
hexagon. We refer the reader to e.g. [1,11,13,15,34] and the lists of references therein for more related
work about symmetric plane partitions .

R. Proctor [30] enumerated a certain class of staircase plane partitions that are in bijection with
the lozenge tilings of a hexagon with a maximal staircase cut off (see Figure 1.1(a)).

Theorem 1.1 (Proctor [30]). For any non-negative integers a, b, and c with a ≤ b, the number of
lozenge tiling of the centrally symmetric hexagon Hex(a, b, c), in which a maximal stair case is cut off
from the west corner, is given by

(1.2)
a
∏

i=1





b−a+1
∏

j=1

c+ i+ j − 1

i+ j − 1

b−a+i
∏

j=b−a+2

2c+ i+ j − 1

i+ j − 1



 ,

where empty products are taken to be 1.

we denote by Pa,b,c the region in the above theorem and use the notation M(R) for the number
of lozenge tilings of the region R on the triangular lattice. When a = b, the region Pa,b,c above can
be viewed as a half of a symmetric hexagon with a zigzag cut along the vertical symmetry axis. In
this point of view, we usually call the region Pa,b,c a halved hexagon (with defects). We also note that
when a = b, Proctor’s Theorem 1.1 implies an exact enumeration for one of the ten symmetry classes
of plane partitions, the transposed-complementary plane partitions.

Lozenges in a region can carry weights. In the weighted case, we use the notation M(R) for the sum
of weights of all lozenge tilings of R, where the weight of a lozenge tiling is the weight product of its
constituent lozenges. We still call M(R) the (weighted) tiling number of R. We consider the weighted
counterpart P ′

a,b,c of Pa,b,c, where all the vertical lozenges along the staircase cut are weighted by
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Figure 1.1. (a) The halved hexagon (with defects) P4,7,3. (b) The weighted halved
hexagon P ′

4,7,3. (c) and (d) The regions in Rohatgi’s paper [31].

1
2 (see the vertical lozenges with shaded cores in Figure 1.1(b)). In particular, each tiling of P ′

a,b,c

is weighted by 1
2n , where n is the number of vertical lozenges running along the staircase cut. M.

Ciucu [3] proved the following weighted version of Theorem 1.1.

Theorem 1.2 (Ciucu [3]). For any non-negative integers a, b, and c with a ≤ b

(1.3) M(P ′
a,b,c) = 2−a

∏

i=1

2c+ b− a+ i

c+ b− a+ i

a
∏

i=1





b−a+1
∏

j=1

c+ i+ j − 1

i+ j − 1

b−a+i
∏

j=b−a+2

2c+ i+ j − 1

i+ j − 1



 .

We refer the reader to [9] for a number of related tiling enumerations. It is worth noticing that R.
Rohatgi [31] generalizes the regions Pa,a,c and P ′

a,a,c to halved hexagons with a triangle removed from
the boundary. The author latter generalized the tiling enumerations of halved hexagons by Proctor
and by Rohatgi to halved hexagons in which one or two arrays of an arbitrary number of adjacent
triangles have been removed from the boundary [22–24].

MacMahon’s tiling formula (1.1) was generalized by Cohn, Larsen and Propp [8, Proposition 2.1]
when they presented a correspondence between lozenge tilings of a semihexagon with unit triangles
removed on the base and semi-strict Gelfand–Tsetlin patterns. In particular, the dented semihexagon
Ta,b(s1, s2, . . . , sa) is the region obtained from the upper half of the symmetric hexagon of side-lengths
b, a, a, b, a, a (in clockwise order, starting from the north side) by removing a unit triangles along the
base at the positions s1, s2, . . . , sa as they appear from left to right. The number of lozenge tilings of
the dented semihexagon is given by

(1.4) M(Ta,b(s1, s2, . . . , sa)) =
∏

1≤i<j≤a

sj − si
j − i

.
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Figure 1.2. The region H4,3(2, 4, 5, 8, 11; 4, 9, 11, 12; 6, 13) (left) and a lozenge tiling
of its (right). The back and shaded triangles indicate the unit triangles removed; the
bold horizontal bars indicate the barriers.

It is worth noticing that the author also proved simple product formulas for several counterparts of
Cohn–Larsen–Propp’s theorem for the so-called ‘quartered hexagons’ in [19] (see the detailed statement
in Lemma 2.3 in the next section).

Recently, the author and Rohatgi proved a ‘shuffling theorem’ for lozenge tilings of a hybrid ob-
ject between MacMahon’s hexagon and Cohn–Larsen–Propp’s, called doubly–dented hexagons in [28].
A doubly–dented hexagon is a hexagon on the triangular lattice, like the hexagon in the case of
MacMahon’s theorem, with an arbitrary set of unit triangles removed along a horizontal axis, like the
‘dents’ in Cohn–Larsen–Propp’s dented semihexagon (see Fig. 1.2). In general, the tiling numbers
of such regions are not given by simple product formula. However, we show that their tiling number
only changes by a simple multiplicative factor when shuffling the positions of up- and down-pointing
removed unit triangles. The main goal of this paper is to find a similar shuffling theorem for the
reflectively symmetric tilings (i.e. the tilings which are invariant under refections over a vertical axis)
of the double–dented hexagons.

For the completeness, we present in the next paragraph the shuffling theorem (Theorem 2.4 in [28]).

Let x, y, z, u, d be nonnegative integers, such that u, d ≤ n. Consider a symmetric hexagon of side-
lengths1 x+ n− u, y + u, y+ d, x+ n− d, y + d, y+ u. We remove n arbitrary unit triangles along the
horizontal lattice line l that contains the west and the east vertices of the hexagon. Assume further that
there are u up-pointing removed unit triangles and d down-pointing removed unit triangles. Denote
U = {s1, s2, . . . , su} and D = {t1, t2, . . . , td} the sets of positions of the the up-pointing and down-
pointing removed unit triangles (ordered from left to right), respectively (i.e., U,D ⊆ [x + y + n] :=
{1, 2, . . . , x + y + n}, |U ∪D| = n, and U and D are not necessarily disjoint). Assume that we have
also a set of ‘barriers’ at the positions in B ⊆ [x+ y+n] \ (U ∪D). Here a barrier is a unit horizontal
lattice interval that is not allowed to be contained in a lozenge of any tilings (see the red barriers in
Fig. 1.2; B = {6, 13} in this case). It means that we do not allow the appearance of vertical lozenges
at the positions in B. Denote by Hx,y(U ;D;B) the hexagon with the above setup of removed unit
triangles and barriers. We call it a doubly–dented hexagon (with barriers). We now allow to ‘shuffle’
the positions of the up- and down-pointing unit triangles and ‘flip’ those triangles (i.e. change their
orientations from up-pointing to down-pointing, and vice versa) in the symmetric difference U∆D
to obtain new position sets U ′ and D′, respectively. The following theorem shows that shuffling and
flipping removed triangles only changes the tiling number by a simple multiplicative factor. Moreover,
the factor can be written in a similar form to Cohn–Larsen–Propp’s formula (i.e. the product on the
right-hand side of 1.4).

1From now on, we always list the side-lengths of a hexagon in the clockwise order from the north side.



4 TRI LAI

(b)

l l

(a)

x+2n-2u

y+
2u

y+
2d

x+2n-2d x+2n-2d

y+
2u

y+
2d

y+
2u

y+
2d

x+2n-2u

y+
2u

y+
2d

Figure 1.3. (a) The region RS4,2(2, 4, 5; 1, 4; 6) and (b) a reflectively symmetric
tiling of its.

Theorem 1.3 (Shuffling Theorem). For nonnegative integers x, y, u, d, u′, d′, n (u, d, u′, d′ ≤ n) and
four ordered subsets U = {s1, s2, . . . , su}, D = {t1, t2, . . . , td}, U ′ = {s′1, s

′
2, . . . , s

′
u′}, and D′ =

{t′1, t
′
2, . . . , t

′
d′} of [x + y + n], such that U ∪ D = U ′ ∪ D′ and U ∩ D = U ′ ∩ D′. Assume B ⊆

[x+ y + n] \ (U ∪D), such that |B| ≤ x. We have

(1.5)
M(Hx,y(U ;D;B))

M(Hx,y(U ′;D′;B))
=

∏

1≤i<j≤u

sj − si
j − i

∏

1≤i<j≤d

tj − ti
j − i

PP(u, d, y)

∏

1≤i<j≤u′

s′j − s′i
j − i

∏

1≤i<j≤d′

t′j − t′i
j − i

PP(u′d′, y)

.

An interesting aspect of the result is that the expression on the right-hand side does not depend on
the barrier set. Strictly speaking the above shuffling theorem only for symmetric hexagons, however,
as mentioned in [28, Remark 2.5], this theorem implies a shuffling theorem for the general hexagon
with unit triangle removed along an arbitrary horizontal axis.

We now consider a reflectively symmetric doubly–dented hexagon as follows. Let U,D,B be three

subsets of
{

1, 2, . . . ,
⌈

x+y+2n
2

⌉}

, such that B ∩ (U ∪ D) = ∅. We denote by RSx,y(U ;D;B) the

symmetric doubly–dented hexagon

Hx,y(U ∪ ((x+ y + 2n + 1) − U); D ∪ ((x+ y + 2n+ 1)−D); B ∪ ((x+ y + 2n+ 1)−B)),

where, for an index set S and a number x, we denote x− S := {x− s : s ∈ S}. See Figure 1.3 for an
example of the RS-type regions and reflectively symmetric tilings of them. It is easy to see that x has
to be even in order for the region to have reflectively symmetric tilings.

Theorem 1.4 (Shuffling Theorem for Reflectively Symmetric Tilings). For nonnegative integers
x, y, u, d, u′, d′, n (x is even, u, d, u′, d′ ≤ n) and five ordered subsets U = {s1, s2, . . . , su}, D =

{t1, t2, . . . , td}, U
′ = {s′1, s

′
2, . . . , s

′
u′}, and D′ = {t′1, t

′
2, . . . , t

′
d′}, and B = {k1, . . . , kb} of

{

1, 2, . . . ,
⌈

x+y+2n+1
2

⌉}

,

such that U ∪D = U ′ ∪D′, U ∩D = U ′ ∩D′, B ∩ (U ∪D) = ∅ and b = |B| ≤ x/2.
(a) If y is odd, then

Mr(RSx,y(U ;D;B))

Mr(RSx,y(U ′;D′;B))
=

∏

1≤i<j≤u

(s2j − s2i )
∏

1≤i<j≤d

(t2j − t2i )

∏

1≤i<j≤u′

(s′2j − s′2i )
∏

1≤i<j≤d′

(t′2j − t′2i )

H2(2u
′ + y)H2(2d

′ + y)

H2(2u+ y)H2(2d+ y)
,(1.6)
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(b) If y is even, then

Mr(RSx,y(U ;D;B))

Mr(RSx,y(U ′;D′;B))
=

∏

1≤i<j≤u

(sj − si)(sj + si − 1)

∏

1≤i<j≤u′

(s′j − s′i)(s
′
j + s′i − 1)

×

∏

1≤i<j≤d

(tj − ti)(tj + ti − 1)

∏

1≤i<j≤d′

(t′j − t′i)(t
′
j + t′i − 1)

H2(2u
′ + y)H2(2d

′ + y)

H2(2u + y)H2(2d+ y)
,(1.7)

where we use the notation Mr(R) for the number of reflectively symmetric tilings of the region R, and
where the “ skipping hyperfactorial” H2(n) is defines as H2(2k) = 0!2!4! · · · (2k−2)! and H2(2k+1) =
1!3!5! · · · (2k − 1)!.

An interesting aspect of the main result is that the tiling numbers on the left-hand side of each of
identities (1.6) and (1.7) are not given by simple product formulas in general. In other words, all large
prime factors in the prime factorizations of the tiling numbers on the left-had side cancel out.

The rest of the paper is organized as follows. In Section 2, we present several fundamental results
in enumerations of tilings and certain version of Kuo condensation [14] that will be employed in our
proofs. Section 3 is devoted to shuffling theorems of four families of halved hexagons. In Section 4,
we present several asymptotic enumerations that are implied from the shuffling theorems in Section
3. Section 4 is devoted to several other applications of the results in Section 3 in enumerating halved
hexagons with arrays of triangles removed. The proofs of our main theorems will be presented in
Section 5. We conclude the paper by a remark about the connection between to symplectic characters
and interesting geometric interpretations of our shuffling theorems in Section 6.

2. Kuo Condensation and other preliminary results

A forced lozenge in a region R is a lozenge that appears in any tilings of R. If we removed forced
lozenges l1, l2, . . . , lk from the region R and obtain a new region R′, then the tiling number is changed
by the reciprocal of weighted product of the forced lozenges, i.e.

M(R′) =

(

k
∏

i=1

wt(li)

)−1

M(R),

where wt(li) denotes the weight of the lozenge li.
If a region admits a lozenge tiling, then it must have the same number of up-pointing and down-

pointing unit triangles. We call such a region a balanced region. The following lemma allows us to
decompose a big region into smaller regions when enumerating tilings.

Lemma 2.1 (Region-splitting Lemma [20, 21]). Let R be a balanced region on the triangular lattice.
Assume that a balanced sub-region Q of R satisfies the condition that the unit triangles in Q that are
adjacent to some unit triangle of R−Q have the same orientation. Then M(R) = M(Q) M(R−Q).

A perfect matching (or simply matching in this paper) of a graph is a collection of disjoint edges
that covers all vertices of the graph. A (planar) dual graph of a region R on the triangular lattice
is the graph whose vertices are unit triangles in R and whose edges connect precisely those two unit
triangles sharing an edge. In the weighted case, the edges of the dual graph inherit the weights of
the corresponding lozenges of the region. The lozenge tilings of a region R are in bijection with the
matchings of its dual graph. In the view of this, we use the notation M(G) for weighted sum of
matchings in G, where the weight of a matching of G is the product of weights of its constituent
edges. When G is unweighted, i.e. all edges of G have weight 1, then M(G) counts matchings of G.

We will employ the following version of ‘Kuo condensation’ introduced by Eric H. Kuo. We refer
the reader to [14] for the other versions of Kuo condensation.
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Figure 2.1. The quartered hexagons: (a) L6,4(3, 6, 7), (b) L5,5(4, 7, 8), (c)

L8,3(1, 3, 6, 7), and (d) L9,3(1, 2, 4, 7, 8). The figure first appeared in [22].

Lemma 2.2 (Kuo Condensation [14]). Let G = (V1, V2, E) be a (weighted) planar bipartite graph with
the two vertex classes V1 and V2 such that |V1| = |V2| + 1. Assume that u, v, w, s are four vertices
appearing in a cyclic order around a face of G such that u, v, w ∈ V1 and s ∈ V2. Then

M(G− {v})M(G− {u,w, s}) = M(G− {u})M(G− {v,w, s}) +M(G− {w})M(G− {u, v, s}).
(2.1)

We complete this section by presenting the author’s enumeration of ‘quartered hexagons’ as follows.

We start with a trapezoidal region on the triangular lattice whose northern, northeastern, and
southern have lengths n,m, n +

⌊

m+1
2

⌋

, respectively, and the western side follows the vertical zigzag

lattice path with m
2 steps (when m is odd, the western side has m−1

2 and a half ‘bumps’). Next,

we remove k =
⌊

m+1
2

⌋

up-pointing unit triangles at the positions a1, a2, . . . , ak (ordered from left to
right) from the base of the trapezoidal region and obtain the quartered hexagon Lm,n(a1, a2, . . . , ak)
(see Figure 2.1 (a) for the case of even m, and Figure 2.1(b) for the case of odd m). We also consider
the weighted version Lm,n(a1, a2, . . . , ak) of the quartered hexagon Lm,n(a1, a2, . . . , ak) by assigning to
each vertical lozenge on the western side a weight 1

2 (see Figures 2.1(c) and (d); the lozenges having

shaded cores are weighted by 1
2). The author proved simple product formulas for the above families

of quartered hexagons.

Lemma 2.3 (Lemma 3.1 in [22]). For any 1 ≤ k < n and 1 ≤ a1 < a2 < . . . < ak ≤ n

(2.2) M(L2k,n(a1, a2, . . . , ak)) =
a1a2 . . . ak
H2(2k + 1)

∏

1≤i<j≤k

(aj − ai)
∏

1≤i<j≤k

(ai + aj),

(2.3) M(L2k−1,n(a1, a2, . . . , ak)) =
1

H2(2k)

∏

1≤i<j≤k

(aj − ai)
∏

1≤i<j≤k

(ai + aj − 1),

(2.4) M(L2k,n(a1, a2, . . . , ak)) =
2−k

H2(2k + 1)

∏

1≤i<j≤k

(aj − ai)
∏

1≤i≤j≤k

(ai + aj − 1),
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(b)

x+n-u

x+n-d

2y+
2u

2y
+

2d

x+n-u

x+n-d

2y
+

2d
-1

2y+
2u-1

(a)

ll

Figure 3.1. Two halved hexagons: (a) F3,2(1, 4, 5, 8, 9; 2, 5, 8, 12; 3, 11) and (b)

F 3,2(1, 5, 8, 9, 11; 2, 5, 9, 12; 3, 7).

(2.5) M(L2k−1,n(a1, a2, . . . , ak)) =
1

H2(2k)

∏

1≤i<j≤k

(aj − ai)
∏

1≤i<j≤k

(ai + aj − 2).

We note that the regions Lm,n(a1, a2, . . . , a⌊m+1
2

⌋) and Lm,n(a1, a2, . . . , a⌊m+1
2

⌋) were first introduced

in [19] by the first author when he enumerated domino tilings of the so-called ‘quartered Aztec rectan-
gle’, a generalization of ‘quartered Aztec diamond ’ introduced by Jockusch and Propp [10]. We refer
the reader to e.g. [2, 12,16–18] for more related work.

3. Shuffling Theorem for Doubly-dented halved hexagons

This section is devoted to shuffling theorems of four families of halved hexagons. We will use these
shuffling theorems in our proof of the main theorem (Theorem 1.4).

Consider a halved hexagon whose north, northeast, southeast, and south sides have lengths x+n−
u, 2y+2u, 2y+2d, x+n− d, respectively, and the west side follows a vertical zigzag lattice path with
4y + 2u + 2d steps. Similar to the case of doubly–dented hexagons, we remove u up-pointing unit
triangles at the positions in the set U and d down-pointing unit triangles at the positions in the set D
along the horizontal lattice line l containing the east vertex of the halved hexagon, such that |U ∪D| =
n. We also place b barriers at the positions in set B ⊆ [x+ y+ n] \ (U ∪D). Denote by Fx,y(U ;D;B)

the resulting region. See Fig. 3.1(a) for an example. We also have a variation F x,y(U ;D;B) of the

region Fx,y(U ;D;B) illustrated in Fig. 3.1 (b). More precisely, the region F x,y(U ;D;B) is obtained
from the halved hexagons of side-lengths x+n−u, 2y−1+2u, 2y−1+2d, x+n−d, 4y+2u+2d−2 (in
clockwise order, from the north side) by removing along the horizontal lattice line l those up-pointing
unit triangles at the positions in U and down-pointing triangles at the positions in D, and placing
barriers at the positions in B.

Theorem 3.1 (Shuffling Theorem for Halved Hexagons 1). Assume that x, y, u, d, n (u, d, u′, d′ ≤ n)
are nonnegative integers and that U = {s1, s2, . . . , su}, D = {t1, t2, . . . , td}, U ′ = {s′1, s

′
2, . . . , s

′
u′},

and D′ = {t′1, t
′
2, . . . , t

′
d′} are four ordered subsets of [x + y + n], such that U ∪ D = U ′ ∪ D′ and
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(b)

x+n-u

x+n-d

2y+
2u

2y
+

2d

x+n-u

x+n-d

2y
+

2d
-1

2y+
2u-1

(a)

l l

Figure 3.2. Two weighted halved hexagons: (a) W3,2(1, 4, 5, 8, 9; 2, 5, 8, 12; 3, 11)

and (b) W 3,2(1, 5, 8, 9, 11; 2, 5, 9, 12; 3, 7). The vertical lozenges with shaded cores are

weighted by 1
2 .

U ∩D = U ′ ∩D′. Assume B ⊂ [x+ y + n] \ (U ∪D), such that |B| ≤ x, we have

M(Fx,y(U ;D;B))

M(Fx,y(U ′;D′;B))
=

∏

1≤i<j≤u

(s2j − s2i )
∏

1≤i<j≤d

(t2j − t2i )

∏

1≤i<j≤u′

(s′2j − s′2i )
∏

1≤i<j≤d′

(t′2j − t′2i )

H2(2u
′ + 2y + 1)H2(2d

′ + 2y + 1)

H2(2u+ 2y + 1)H2(2d+ 2y + 1)
(3.1)

and

M(F x,y(U ;D;B))

M(F x,y(U ′;D′;B))
=

∏

1≤i<j≤u

(sj − si)(sj + si − 1)

∏

1≤i<j≤u′

(s′j − s′i)(s
′
j + s′i − 1)

×

∏

1≤i<j≤d

(tj − ti)(tj + ti − 1)

∏

1≤i<j≤d′

(t′j − t′i)(t
′
j + t′i − 1)

H2(2u
′ + 2y)H2(2d

′ + 2y)

H2(2u+ 2y)H2(2d+ 2y)
.(3.2)

Motivated by Ciucu’s weighted counterpart of the halved hexagon Pa,b,c in [3], we consider the

following weighted versions of the F - and F -type halved hexagons by assigning to each vertical lozenge
on their west sides a weight 1/2. Denote by Wx,y(U ;D;B) and W x,y(U ;D;B) the corresponding
regions (see Figure 3.2 for examples).
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Theorem 3.2 (Shuffling Theorem for Halved Hexagons 2). With the same assumptions in Theorem
3.1, we have

M(Wx,y(U,D,B))

M(Wx,y(U ′,D′, B))
=

∏

1≤i<j≤u

(sj − si)
∏

1≤i≤j≤u

(si + sj − 1)

∏

1≤i<j≤u′

(s′j − s′i)
∏

1≤i≤j≤u′

(s′i + s′j − 1)

×

∏

1≤i<j≤d

(tj − ti)
∏

1≤i≤j≤d

(ti + tj − 1)

∏

1≤i<j≤d′

(t′j − t′i)
∏

1≤i≤j≤d′

(t′i + t′j − 1)

H2(2u
′ + 2y + 1)H2(2d

′ + 2y + 1)

H2(2u + 2y + 1)H2(2d+ 2y + 1)
(3.3)

and

M(W x,y(U,D,B))

M(W x,y(U ′,D′, B))
=

∏

1≤i<j≤u

(sj − si)(sj + si − 2)

∏

1≤i<j≤u′

(s′j − s′i)(s
′
j + s′i − 2)

×

∏

1≤i<j≤d

(tj − ti)(tj + ti − 2)

∏

1≤i<j≤d′

(t′j − t′i)(t
′
j + t′i − 2)

H2(2u
′ + 2y)H2(2d

′ + 2y)

H2(2u+ 2y)H2(2d + 2y)
.(3.4)

We also note that, in general, the two tiling numbers on the left-hand side of each of the identities
(3.1), (3.2), (3.3), and (3.4) are not given by simple product formulas. In other words, all large prime
factors in the prime factorizations of these tiling numbers cancel out.

Remark 3.3. (1). One can also find similar shuffling theorems for ‘mixed-boundary halved hexagons’
investigated by the author in [24]. However, we only choose the above four families of halved hexagons
to investigate in this paper.

(2). Similar to Remark 2.5 in [28], one can obtain shuffling theorems for halved hexagons in which
the removed unit triangle are running along an arbitrary horizontal axis (not necessarily on the axis
containing the east vertex) by considering forced lozenges. The observation will not be consider in
detail in this paper and left to the reader as an exercise.

4. Asymptotic Results

We call, in general, all removed unit triangles and barriers in our regions the ‘obstacles’. We now
assume that the set of all obstacles is partitioned into k separated ‘clusters’ (i.e. chain of contiguous
unit triangles and barriers). Denote by C1, C2, . . . , Ck these clusters and the distances between two
consecutive ones are d1, d2, . . . , dk−1 (di > 0), ordered from left to right. For the sake of convenience,
we always assume that C1 is attaching to the west vertex of the hexagon and that Ck is attaching to the
east vertex of the hexagon; C1, Ck may be empty. We use the notation Fx,y(C1, . . . , Ck| d1, . . . , dk−1)

for our F -type regions in this section, and similarly for the F -, W - and W -type regions. Denote by
Ui,Di, Bi the index sets of removed up-pointing unit triangles, removed down-pointing unit triangles,
and barriers in the cluster Ci (these index sets may be empty, Ui and Di may be overlapping, and
Bi ∩ (Ui ∪Di) = ∅). We ‘shuffle’ the positions of up- and down-pointing triangles in the symmetric
difference Ui∆Di of the cluster Ci, i.e. we can change the positions of the removed unit triangles in
Ui∆Di, but keep the orientations of those unit triangles stay put. This way, we get a new cluster C ′

i

that has the same numbers of up- and down-pointing unit triangles as that in Ci. In the rest of this
section we assume that |Ci| = fi, |Ui| = ui, and |Di| = di for any i = 1, 2, . . . , k.

Motivated in part by the work of Ciucu and Krattenthaler in [4,6] and the author’s generalizations
in [25,28], we would like to investigate the behavior of the tiling number of large quartered hexagons
with fixed clusters of obstacles.
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Theorem 4.1. For nonnegative integer x, y

lim
N→∞

M(FNx,Ny(C1, . . . , Ck| Nd1, . . . , Ndk−1))

M(FNx,Ny(C
′
1, . . . , C

′
k| Nd1, . . . , Ndk−1))

=
k
∏

i=1

s+(Ci)s
−(Ci)

s+(C ′
i)s

−(C ′
i)

(4.1)

where s+(Ci) = M(L2ui,fi−ui
(Ui)) and s−(Ci) = M(L2di,fi−di(Di)) are the tiling numbers of the quar-

tered hexagons whose dents are defined by the up-pointing triangles and down-pointing triangles in
the cluster Ci, and where s+(C ′

i) = M(L2ui,fi−ui
(U ′

i)) and s−(C ′
i) = M(L2ui,fi−ui

(D′
i)) are defined

similarly w.r.t. C ′
i.

Theorem 4.2. For nonnegative integer x, y

lim
N→∞

M(FNx,Ny(C1, . . . , Ck| Nd1, . . . , Ndk−1))

M(FNx,Ny(C ′
1, . . . , C

′
k| Nd1, . . . , Ndk−1))

=

k
∏

i=1

s+(Ci)s
−(Ci)

s+(C ′
i)s

−(C ′
i)

(4.2)

where s+(Ci) = M(L2ui−1,fi−ui
(Ui)) and s−(Ci) = M(L2di−1,fi−di(Di)) are the tiling numbers of the

quartered hexagons L2k−1,n whose dents are defined by the up-pointing triangles and down-pointing
triangles in the cluster Ci, and where s+(C ′

i) = M(L2ui−1,fi−ui
(U ′

i)) and s−(C ′
i) = M(L2ui−1,fi−ui

(D′
i))

are defined similarly w.r.t. C ′
i.

Theorem 4.3. For nonnegative integer x, y

lim
N→∞

M(WNx,Ny(C1, . . . , Ck| Nd1, . . . , Ndk−1))

M(WNx,Ny(C ′
1, . . . , C

′
k| Nd1, . . . , Ndk−1))

=

k
∏

i=1

w+(Ci)w
−(Ci)

w+(C ′
i)w

−(C ′
i)

(4.3)

where w+(Ci) = M(L2ui,fi−ui
(Ui)) and w−(Ci) = M(L2di,fi−di(Di)) are the tiling numbers of the quar-

tered hexagons L2k,n whose dents are defined by the up-pointing triangles and down-pointing triangles

in the cluster Ci, and where w+(C ′
i) = M(L2ui,fi−ui

(U ′
i)) and w−(C ′

i) = M(L2ui,fi−ui
(D′

i)) are defined
similarly w.r.t. C ′

i.

Theorem 4.4. For nonnegative integer x, y

lim
N→∞

M(WNx,Ny(C1, . . . , Ck| Nd1, . . . , Ndk−1))

M(WNx,Ny(C ′
1, . . . , C

′
k| Nd1, . . . , Ndk−1))

=

k
∏

i=1

w+(Ci)w
−(Ci)

w+(C ′
i)w

−(C ′
i)

(4.4)

where w+(Ci) = M(L2ui−1,fi−ui
(Ui)) and w−(Ci) = M(L2di−1,fi−di(Di)) are the tiling numbers of the

quartered hexagons L2k−1,n whose dents are defined by the up-pointing triangles and down-pointing tri-

angles in the cluster Ci, and where w+(C ′
i) = M(L2ui−1,fi−ui

(U ′
i)) and w−(C ′

i) = M(L2ui−1,fi−ui
(D′

i))
are defined similarly w.r.t. C ′

i.

Theorem 4.1 can be visualized as in Fig. 4.1, for k = 3 (the quartered hexagons corresponding to
s+(Ci) and s−(Ci) are the upper and lower halves of the ‘numerator hexagon’ in the i-th fraction on
the right-hand side; the quartered hexagons corresponding to s+(C ′

i) and s−(C ′
i) are the upper and

lower halves of the ‘denominator hexagon’ in the i-th fraction, for i = 1, 2, 3). We note that the first
two asymptotic results of this type were introduced by Ciucu and Krattenthaler [4,6] as counterparts
of MacMahon’s classical theorem [29].

As the proof of the above four theorems are essentially the same, we only show here the proof of
Theorem 4.1.

Proof. Assume further that the clusters Ci and C ′
i both contain ui up-pointing triangles, di down-

pointing triangles, and bi barriers. Denote by Ui = {a
(i)
1 , . . . , a

(i)
ui
} the position set of up-pointing

triangles in Ci and U ′
i = {e

(i)
1 , . . . , e

(i)
ui
} the corresponding position set in C ′

i. Applying Theorem

3.1 to the regions FNx,Ny(U ;D;B) and FNx,Ny(U
′;D′;B), for U :=

⋃k
i=1 Ui, D :=

⋃k
j=1Dj , U

′ :=
⋃k

i=1 U
′
i ,D

′ :=
⋃k

j=1D
′
j , B =

⋃k
i=1 Bi, we get

(4.5)
M(FNx,Ny(U ;D;B))

M(FNx,Ny(U ′;D′;B))
=

M(FNx,Ny(F1, . . . , Fk| Nd1, . . . , Ndk−1))

M(FNx,Ny(F
′
1, . . . , F

′
k| Nd1, . . . , Ndk−1))

=
∆(U)∆(D)

∆(U ′)∆(D′)
,
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=

Figure 4.1. Illustrating Theorem 4.1.

where, for an ordered set S = {0 < s1 < s2 < · · · < sk}, the operator ∆ is defined as ∆(S) :=
∏

1≤i<j≤k(s
2
j − s2i ). We observe that ∆(S)2 =

∏

1≤i 6=j≤k |s
2
j − s2i |.

We have

∆(U)2

∆(U ′)2
=

∏

1≤i,j≤k

ui
∏

p=1

uj
∏

q=1

|(a
(i)
p )2 − (a

(j)
q )2|

|(e
(i)
p )2 − (e

(j)
q )2|

,

where p 6= q if i = j. We note that each fraction
|(a

(i)
p )2−(a

(j)
q )2|

|(e
(i)
p )2−(e

(j)
q )2|

on the right-hand side tends to 1

if i 6= j, as N tends to the infinity. Thus, if we consider the limit, only the fractions of the form
|(a

(i)
p )2−(a

(i)
q )2|

|(e
(i)
p )2−(e

(i)
q )2|

remain on the right-hand side. Thus, ∆(U)2

∆(U ′)2
tends to

k
∏

i=1

∏

1≤p 6=q≤ui

|(a
(i)
p )2 − (a

(i)
q )2|

|(e
(i)
p )2 − (e

(i)
q )2|

=

k
∏

i=1

∆(Ui)
2

∆(U ′
i)

2
=

k
∏

i=1

s+(Ci)
2

s+(C ′
i)
2
.

Thus, ∆(U)
∆(U ′) tends to

∏k
i=1

s+(Ci)
s+(C′

i
) . Similarly, ∆(D)

∆(D′) tends to
∏k

i=1
s−(Ci)
s−(C′

i
) . This finishes the proof. �

5. Applications to enumerations of halved hexagons with ferns removed

As discussed in [28], if we restrict ourself to the special case when the up-index set and down-index
set are disjoint and there is no barrier, i.e. U ∩D = ∅ and B = ∅. The our doubly-dented hexagons
are (tiling-)equinumerous with the hexagons with ferns removed. This ways, our shuffling theorems
for halved hexagons (Theorems 3.1 and 3.2) can be related to enumerations of halved hexagons with
‘ferns’ removed investigated by the author in [22–24]. A fern is a chain of equilateral triangles of
alternating orientations. We also refer the reader to e.g. [4, 7, 25,26] for further discussion of the fern
structure.

There are four families of halved hexagons, F -, F -,W and W -types, to investigate. However, we
only focus on the F -type halved hexagons in this section. The investigation of other three is left to
the reader.

Assume that the set of removed unit triangles in the region Fx,y(U ;D; ∅) is partitioned into k
clusters C1, C2, . . . , Ck, in which the distances between two consecutive ones are d1, d2, . . . , dk−1 from
left to right. Similar to the previous section, we use the notation Fx,y(C1, . . . , Ck| d1, . . . , dk−1) for
our region, the only difference is that Ci now contains no barrier and Ui ∩Di = ∅, for i = 1, 2, . . . , k.
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l

Figure 5.1. Obtaining a halved hexagon with ferns removed
Qx,y(F1, . . . , Fk| d1, . . . , dk−1) from the region Fx,y(C1, . . . , Ck| d1, . . . , dk−1).

Since U ∩ D = ∅, each cluster Ci is partitioned further to maximal intervals of unit triangles of
the same orientation. We call these interval up-intervals or down-intervals based on the orientation
of their unit triangles. By removing forced lozenges along each up- and down-interval in the cluster
Ci if it contains at least 2 triangles, we get a fern Fi. Denote by Qx,y(F1, . . . , Fk| d1, . . . , dk−1) the
resulting hexagon with ferns removed (see Figure 5.1; the forced lozenges are the vertical white ones
and the Q-type region is the shaded one).

In the view of this, one can view Theorem 3.1 as a common generalization of main results in
[22–24,31] as follows.

We will show that one can use Theorem 3.1 to obtain known enumerations of halved hexagons
with ferns removed. The idea is picking suitable index sets U,D,U ′,D′ such that the regions in the
numerator on the left-hand side of (3.1) is what we want to enumerate, and that the region in the
denominator becomes a known region after removing certain forced lozenges.

Let us show in detail the implication to the main result in [24] (Theorem 2.4). We now pick the
index sets U,D,U ′,D′ such that:

(1) k = 2,
(2) the fern F1 corresponding to the cluster C1 contains m triangles of side-lengths a1, a2, . . . , am

from left to right, starting by an up-pointing triangles,
(3) the fern F2 corresponding to the cluster C2 contains n+1 triangles of side-length z, b1, b2, . . . , bn

from right to left, starting by a down-pointing triangles,
(4) the fern F ′

1 corresponding to C ′
1 consists of a single up-pointing triangle,

(5) the fern F ′
2 corresponding to C ′

2 consists of all a single down-pointing triangle.

This way, after removing forced lozenges, the region Fx,y(U ;D; ∅) = Fx,y(C1, C2| x + y) becomes

the halved hexagon with two ferns removed H
(1)
x,y,z(a1, a2, . . . , am; b1, b2, . . . , bn) in [24, Theorem 2.4];

while the region Fx,y(U
′;D′; ∅) = Fx,y(C

′
1, C

′
2| x+ y) becomes a halved hexagon with a semi-triangle
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(b)(a)

l l

z

x + a1 + a3 + b1

2
y
+
z
+
b 1
+
b 2

z

b1

b2

a3

a2

a1

x + a2 + b2

2y
+
2a

1
+
2a

3
+
2b

1

2
y
+
z
+
2
a 2
+
2
b 2

x + a1 + a3 + b1

z

z + b1 + b2

a1 + a2 + a3

x + a2 + b2

2y
+
2a

1
+
2a

3
+
2b

1

Figure 5.2. (a) Obtaining a H(1)-type region in [24, Theorem 2.4] by removing forced
lozenges. (b) Obtaining a halved hexagon with a semi-triangle removed in [3, Proposi-
tion 2.1] by removing forced lozenges.

removed from the west side, that is previously enumerated in [3, Proposition 2.1] (see illustration in
Figure 5.2; the ferns are indicated by chains of triangles with bold boundaries; the regions in [24,
Theorem 2.4] and in [3, Proposition 2.1] are illustrated by the shaded ones in figures (a) and (b),
respectively). Thus, our Theorem 3.1 gives a simple product formula for the number of tilings of

H
(1)
x,y,z(a1, a2, . . . , am; b1, b2, . . . , bn) and implies Theorem 2.4 in [24].
If we specialize further by setting either F1 = F ′

1 = ∅ or F ′
2 = F2 consisting of a single down-pointing

triangle of side-length z, we get back the main results in [22] and [23], respectively. Moreover, if we
specialize even further by setting F1 = F ′

1 = ∅ and F2 consists of only two triangles, then we get the
main result in Rohatgi’s paper [31].

6. Proofs of the main theorems

Proof of Theorem 3.1. We prove first the identity (3.1) for the halved hexagon Fx,y(U ;D;B). We
prove by induction on x+ y with the base cases are x = b and y = 0.

If y = 0, then we apply Region–splitting Lemma 2.1 to the region R = Fx,0(U ;D;B) in which
the subregion Q is its portion above the horizontal axis l. The subregion Q is congruent with the
quartered hexagon L2u,x+n−u(U) , and its complement R−Q, after reflected over the horizontal axis
l, is congruent with L2u,b+n−d(D) (see Figure 6.1(a)). In particular, we have

M(Fx,0(U ;D;B)) = M(L2u,x+n−u(U))M(L2u,b+n−d(D)).

Similarly, we also get

M(Fx,0(U
′;D′;B)) = M(L2u′,x+n−u′(U ′))M(L2u′,b+n−d′(D

′)).

Then (3.1) follows directly from Lemma 2.3.
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(b)
(a)

b+n-u

b+n-d

2y+
2u

2y
+

2d

x+n-u

x+n-d

2u

2d

Figure 6.1. Base cases: (a) y = 0 and (b) x = 2b

x+n-u-1

x+n-d

2y+
2u+

2

2y
+

2d

x+n-u-1

x+n-d

2y
+

2d
-1

2y+
2u+

1

A
B

w

s
s

w lu

v
v

u l

Figure 6.2. How to apply Kuo condensation to a halved hexagon.

If x = b, we apply Region–splitting Lemma 2.1, to the region R = Fb,y(U ;D;B) in which the
subregion Q is the portion above the horizontal axis l with the unit triangles at the positions in
(B ∪ U ∪ D)c removed (we use the notation Sc for the complement [x + y + n] \ S of the index set
S ⊆ [x+y+n]). Q is congruent with the quartered hexagon L2y+2u,b+n−u((B∪U∪D)c∪U), and R−Q,
after removing forced lozenges and reflected over l, is congruent with L2y+2u,b+n−d((B ∪ U ∪D)c ∪D
(see Figure 6.1(b)). More precisely, we have

M(Fb,y(U ;D;B)) = M(L2y+2u,b+n−u((B ∪ U ∪D)c ∪ U))M(L2y+2u,b+n−d((B ∪ U ∪D)c ∪D)).
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(f)

x+n-d

2y+
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+
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+
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+
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+

2d

x+n-u-1

x+n-d

2y+
2u+

2

2y
+

2d

x+n-u-1

(a) (b)

(c) (d)

(e)

w u

lw

luw

s

s

v

v

l

s

u

ll

l

v

Figure 6.3. Obtaining the recurrence for halved hexagons.
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Process similarly for the region R′ = Fb,y(U
′;D′;B), we get

M(Fb,y(U
′;D′;B)) = M(L2y+2u,b+n−u((B ∪ U ′ ∪D′)c ∪ U ′))M(L2y+2u,b+n−d((B ∪ U ′ ∪D′)c ∪D′)),

and (3.1) follows again from Lemma 2.3, after performing a straight forward simplification.

For the induction step, we assume that x > b, y > 0 and that (3.1) holds for any F -type regions
whose sum of x- and y-parameters is strictly less than x + y. We will use Kuo condensation in
Theorem 2.2 to obtain a recurrence for the left-hand side of (3.1) and we show that the expression on
the right-hand side satisfies the same recurrence, and then (3.1) follows from the induction principle.

We first apply Kuo condensation in Theorem 2.2 to the dual graph G of the region R obtained from
Fx,y(U ;D;B) by adding to its top two layers of unit triangles as in Figure 6.2(a) (the region restricted
by the bold contour indicate the region Fx,y(U ;D;B)). The choice of the four vertices u, v, w, s is
shown by the corresponding unit triangles (i.e. the one with the same label) in the region R. In
particular, we the v- and s-triangles are respectively the up-pointing and down-pointing shaded unit
triangles on the upper-right and lower-right corners of the region. The u- and w-triangles are placed
on the horizontal axis l at the first and the last positions in (U ∪D ∪B)c. Assume, in the rest of this
proof, these two positions are α and β (α < β).

Let us consider the region corresponding with the graph G − {v}. The removal of the v-triangle
yields several forced lozenges on the top two layers of unit triangles. After removing these forced
lozenges, we get back the region Fx,y(U ;D;B) (see Figure 6.3(a)). We note that in the unweighted
case (as in the case of the region Fx,y(U ;D;B)), the removal of forced lozenges dow not change the
tiling number of the region. This means that we have

(6.1) M(G− {v}) = M(Fx,y(U ;D;B)).

Considering forced lozenges as in Figures 6.3(b)–(f), we get five more identities

(6.2) M(G− {v}) = M(Fx−1,y−1(αβU ;D)),

(6.3) M(G− {v}) = M(Fx−1,y(βU ;D)),

(6.4) M(G− {v}) = M(Fx,y−1(αU ;D)),

(6.5) M(G− {v}) = M(Fx−1,y(αU ;D)),

(6.6) M(G− {v}) = M(Fx,y−1(βU ;D)).

Here, for an index set S, we use the shorthand notations αS, βS, αβS for the unions {α} ∪ S, {β} ∪
S, {α, β} ∪ S, respectively. Plugging (6.1)–(6.6) in the equation of Theorem 2.2, we get a recurrence
for the tiling number on the right-hand side of (3.1):

M(Fx,y(U ;D);B)M(Fx−1,y−1(αβU ;D;B)) = M(Fx−1,y(βU ;D))M(Fx,y−1(αU ;D;B))

+M(Fx−1,y(αU ;D;B))M(Fx,y−1(βU ;D;B))(6.7)
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To complete the proof we will show that the expression on the right-hand side of (3.1) also satisfies
recurrence 6.7). Equivalently, we need to verify that

∆(U)∆(D)

∆(U ′)∆(D′)

H2(2u
′ + 2y + 1)H2(2d

′ + 2y + 1)

H2(2u+ 2y + 1)H2(2d+ 2y + 1)
M(Fx,y(U

′;D′;B))

×
∆(αβU)∆(D)

∆(αβU ′)∆(D′)

H2(2u
′ + 2y + 3)H2(2d

′ + 2y − 1)

H2(2u+ 2y + 3)H2(2d+ 2y − 1)
M(Fx−1,y−1(αβU

′;D′;B))

=
∆(βU)∆(D)

∆(βU ′)∆(D′)

H2(2u
′ + 2y + 3)H2(2d

′ + 2y + 1)

H2(2u+ 2y + 3)H2(2d + 2y + 1)
M(Fx−1,y(βU

′;D′;B))

×
∆(αU)∆(D)

∆(αU ′)∆(D′)

H2(2u
′ + 2y + 1)H2(2d

′ + 2y − 1)

H2(2u+ 2y + 1)H2(2d + 2y − 1)
M(Fx,y−1(αU

′;D′;B))

+
∆(αU)∆(D)

∆(αU ′)∆(D′)

H2(2u
′ + 2y + 3)H2(2d

′ + 2y + 1)

H2(2u+ 2y + 3)H2(2d + 2y + 1)
M(Fx−1,y(αU

′;D′;B))

×
∆(βU)∆(D)

∆(βU ′)∆(D′)

H2(2u
′ + 2y + 1)H2(2d

′ + 2y − 1)

H2(2u+ 2y + 1)H2(2d+ 2y − 1)
M(Fx,y−1(βU

′;D′;B)).(6.8)

Recall that, for an ordered set S = {s1 < s2 < · · · < sk}, we define ∆(S) :=
∏

1≤i<j≤k(s
2
j − s2i ).

Dividing both sides by ∆(D)
∆(D′)

H2(2u′+2y+1)H2(2d′+2y+1)
H2(2u+2y+1)H2(2d+2y+1) , we simplify the above equation to

∆(U)

∆(U ′)
M(Fx,y(U

′;D′;B))
∆(αβU)

∆(αβU ′)
M(Fx−1,y−1(αβU

′;D′;B))

=
∆(βU)

∆(βU ′)
M(Fx−1,y(βU

′;D′;B))
∆(αU)

∆(αU ′)
M(Fx,y−1(αU

′;D′;B))

+
∆(αU)

∆(αU ′)
M(Fx−1,y(αU

′;D′;B))
∆(βU)

∆(βU ′)
M(Fx,y−1(βU

′;D′;B)).(6.9)

Next, we divide both sides of (6.9) by ∆(U)∆(αβU)
∆(U ′)∆(αβU ′) and get

M(Fx,y(U
′;D′;B))M(Fx−1,y−1(αβU

′;D′;B))

=
∆(βU)∆(αU)

∆(U)∆(αβU)

∆(U ′)∆(αβU ′)

∆(βU ′)∆(αU ′)
M(Fx−1,y(βU

′;D′;B))M(Fx,y−1(αU
′;D′;B))

+
∆(αU)∆(βU)

∆(U)∆(αβU)

∆(U ′)∆(αβU ′)

∆(αU ′)∆(βU ′)
M(Fx−1,y(αU

′;D′;B))M(Fx,y−1(βU
′;D′;B)).(6.10)

We claim that

Claim 6.1.

(6.11)
∆(βU)∆(αU)

∆(U)∆(αβU)

∆(U ′)∆(αβU ′)

∆(βU ′)∆(αU ′)
= 1

and

(6.12)
∆(αU)∆(βU)

∆(U)∆(αβU)

∆(U ′)∆(αβU ′)

∆(αU ′)∆(βU ′)
= 1.

Proof of the claim. Let us prove first (6.11). Simplifying the first fraction on the left-hand side by
canceling out the common terms in the ∆-products, we get

∆(βU)∆(αU)

∆(U)∆(αβU)
=

∏i
i=1 |β − si|

|β − α|
∏u

i=1 |β − si|

=
1

β − α
.(6.13)

Similarly, the second fraction can be simplified to just (β − α), and (6.11) follows.
By interchanging the roles of α and β in (6.11), one obtain (6.12). This finishes the proof of the

claim. �
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By the claim, (6.9) now becomes

M(Fx,y(U
′;D′;B))M(Fx−1,y−1(αβU

′;D′;B)) = M(Fx−1,y(βU
′;D′;B))M(Fx,y−1(αU

′;D′;B))

+M(Fx−1,y(αU
′;D′;B))M(Fx,y−1(βU

′;D′;B)).(6.14)

However, this follows directly from the application of recurrence (6.7) to the region Fx,y(U
′;D′;B).

This finishes the proof of (3.1).

The proof of (3.2) is similar to that of (3.1). We also prove by induction on x + y, with the base
cases are still the situations when x = b and y = 0.

If y = 0, we get from Region-splitting Lemma 2.1 by diving the regions along the horizontal axis l
into two quartered hexagons:

M(F x,0(U ;D;B)) = M(L2u−1,x+n−u(U))M(L2u−1,x+n−d(D))

and

M(F x,0(U
′;D′;B)) = M(L2u′−1,x+n−u′(U ′))M(L2u′−1,x+n−d′(D

′)).

Then (3.2) follows from Lemma 2.3.
For the case x = b, we also have from Region-splitting Lemma 2.1:

M(F b,y(U ;D;B)) = M(L2y+2u−1,b+n−u((B ∪ U ∪D)c ∪ U))M(L2y+2u−1,b+n−d((B ∪ U ∪D)c ∪D)

and

M(F b,y(U
′;D′;B)) = M(L2y+2u−1,b+n−u((B∪U ′∪D′)c∪U ′))M(L2y+2u−1,b+n−d((B∪U ′∪D′)c∪D′)).

Again, (3.2) follows from Lemma 2.3.
The induction step is completely analogous to that in the proof of (3.1), we now use Kuo conden-

sation as in Figure 6.2(b) to get the recurrence for the left-hand side of (3.2):

M(F x,y(U ;D;B))M(F x−1,y−1(αβU ;D;B)) = M(F x−1,y(βU ;D;B))M(F x,y−1(αU ;D;B))

+M(F x−1,y(αU ;D;B))M(F x,y−1(βU ;D;B)).(6.15)

Working similarly to the proof of (3.1) above, one can verify that the expression on the right-hand
side of (3.2) also satisfies recurrence (6.15). Then (3.2) follows by the induction principle, and this
finishes the proof for (3.2). �

The proof for Theorem 3.2 is essentially the same as that of Theorem 3.1 above. We apply Kuo
condensation exactly the same as in Figure 6.2 to obtain same recurrences as that in the proof of
Theorem 3.1. We note that, even though, lozenges of the W - and W -type regions may carry weights,
our forced lozenges all have weight 1. This means that our arguments in the proof of Theorem 3.1
still work well in proving Theorem 3.2. We omit this proof here.

We now are ready to proof Theorem 1.4.

Proof of Theorem 1.4. One readily see that, any reflectively symmetric tiling of the region RSx,y(U ;D;B)
must contain all vertical lozenges along the vertical symmetry axis. The removal of these lozenges
divides the region into two congruent regions that are images of each other through the reflective
symmetry (see Figure 6.4). This means that reflectively symmetric tilings of RSx,y(U ;D;B) are in
bijection with the tilings of each of these two regions. Remove forced lozenges from the top and bottom
of each of these regions, we get back exactly the halved hexagon F x,

y

2
(U ;D;B) when y is even and

the halved hexagon F
x,

y−1
2
(U ;D;B) when y is odd. Then our theorem follows from Theorem 3.1. �
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(b)

l

(a)

l
y+

2u

y+
2d

y+
2u

x+2n-2u

y+
2u

x+2n-2d

y+
2d

x+2n-2u

y+
2u

y+
2d

y+
2d

Figure 6.4. Illustrating the proof of Theorem 1.4 in the case (a) y is even and (b) y is odd.

7. Concluding Remarks

One readily sees that the number of tilings of L2k,n(a1, . . . , ak) can be written in terms of symplectic
characters (irreducible characters of symplectic group Sp2n(C): spλ(1, 1, . . . , 1), where λ is the partition
(ak−k, ak−1−k+1, . . . , a1−1) (see, e.g. [2]). One can also write the number of tilings of Fx,y(U ;D;B)
as the sum

M(Fx,y(U ;D;B)) =
∑

|S|=y

spλ(U∪S)(1
u+y)spλ(D∪S)(1

d+y),

where the sum is taken over all y-subsets of the complement of U ∪D∪B. Indeed, each lozenge tiling
of Fx,y(U ;D;B) contain exactly y vertical lozenges at the positions in the complement of U ∪D ∪ B
along the horizontal axis. Removing these y vertical lozenges, we partition the tiling into tilings of
two disjoint quartered hexagons of type L2k,n. This way, the specialization of identity (3.1), when
|U | = |U ′| and |D| = |D′|, can be rewritten as:

(7.1)

∑

|S|=y spλ(U∪S)(1
u+y)spλ(D∪S)(1

d+y)
∑

|S|=y spλ(U ′∪S)(1u+y)spλ(D′∪S)(1d+y)
=

spλ(U)(1
u)spλ(D)(1

d)

spλ(U ′)(1u)spλ(D′)(1d)
.

It would be interesting to see if there exists an identity of symplectic characters behind this.
We consider the special case of Theorem 3.1 when |U | = |U ′| and |D| = |D′|. The identity 3.1 can

be simplified as

M(Fx,y(U ;D;B))

M(Fx,y(U ;D;B))
=

∏

1≤i<j≤u

(s2j − s2i )
∏

1≤i<j≤d

(t2j − t2i )

∏

1≤i<j≤u

(s′2j − s′2i )
∏

1≤i<j≤d

(t′2j − t′2i )
.(7.2)

Comparing with Lemma 2.3, we can rewrite the above identity in terms of tilings numbers of halved
hexagons and quartered hexagons

M(Fx,y(U ;D;B))

M(Fx,y(U ;D;B))
=

M(L2u,x+y+n−u(U))M(L2d,x+y+n−d(D))

M(L2u,x+y+n−u(U ′))M(L2d,x+y+n−d(D′))
.(7.3)

It is interesting to find a combinatorial explanation for this geometric interpretation.
Moreover, by Region-Splitting Lemma 2.1, we can show that

(7.4) M(Fx+y,0(U ;D;B)) = M(L2u,x+y+n−u(U)M(L2d,x+y+n−d(D))

and

(7.5) M(Fx+y,0(U
′;D′;B)) = M(L2u,x+y+n−u(U

′)M(L2d,x+y+n−d(D
′)).
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Then (7.3) can be written as

M(Fx,y(U ;D;B))M(Fx+y,0(U
′;D′;B)) = M(Fx,y(U ;D;B))M(Fx+y,0(U ;D;B)).(7.6)

The both sides of the above identity count pairs of tilings of certain halved hexagons. It would be
interesting to find a bijective proof for identity (7.6).
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