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Abstract

Let G be a simple finite graph and G′ be a subgraph of G. A
G′-design (X,B) of order n is said to be embedded into a G-design
(X ∪ U, C) of order n + u, if there is an injective function f : B → C
such that B is a subgraph of f(B) for every B ∈ B. The function
f is called an embedding of (X,B) into (X ∪ U, C). If u attains the
minimum possible value, then f is a minimum embedding. Here, by
means of König’s Line Coloring Theorem and edge coloring properties
a complete solution is given to the problem of determining a minimum
embedding of any K3-design (well-known as Steiner Triple System or,
shortly, STS) into a 3-sun system or, shortly, a 3SS (i.e., a G-design
where G is a graph on six vertices consisting of a triangle with three
pendant edges which form a 1-factor).
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1 Introduction

If G is a graph, then let V (G) and E(G) denote the vertex-set and edge-set
of G, respectively. Given a set Γ of pairwise non-ismorphic simple graphs, a
Γ-design of order n is a pair (X,B) where B is a collection of graphs (called
blocks) each isomorphic to some element of Γ, whose edges partition E(Kn),
where Kn is the complete graph of order n on X; if the edges of the blocks
of B partition a proper spanning subgraph of Kn, then we speak of partial
Γ-design of order n. If Γ = {G}, then we simply write G-design. Let Σ(G)
denote the set of all integers n such that there exists a G-design of order n.
A K3-design of order n is known as Steiner triple system and denoted by
STS(n); it is well-known that Σ(K3) = {n ∈ N : n ≡ 1, 3 (mod 6)}.

Let G be a simple finite graph and G′ be a subgraph of G. A G′-design
(X,B) of order n is said to be embedded into a G-design (X ∪ U, C) of
order n + u, if there is an injective function f : B → C such that B is a
subgraph of f(B) for every B ∈ B. The function f is called an embedding

of (X,B) into (X ∪U, C). If u attains the minimum possible value, then f is
a minimum embedding. Note that a special case occurs when G = G′ and
the related embedding problem is better known as Doyen-Wilson problem
(see [6, 8, 11, 12, 13]).

The embedding problems have interesting applications to networks ([5]),
that is why they have been investigated in several papers. In particular, the
minimum embedding problem of STSs into G-designs have been studied in
the case when G = K4, G = K4−e (the complete graph on four vertices with
one deleted edge), or G = K3 + e (a kite, i.e., a triangle with one pendant
edge) have been solved in [3], [4], [9], [14].

In [7] the authors embed a cyclic STS of order n ≡ 1 (mod 6) into a 3-
sun system of order 2n−1, i.e., a G-design where G is a graph on six vertices
consisting of a triangle with three pendant edges which form a 1-factor, and
as an open problem they ask whether it is possible to embed any STS into a
3-sun system. Here we give an answer to this open problem by determining
the minimum embedding for any Steiner triple system. More precisely, for
every integer n ∈ Σ(K3) detoted by umin(n) the minimum integer u such
that any STS(n) can be embedded into a 3-sun system of order n + u, as
main result we prove the following theorem.

Main Theorem

(i) If n ≡ 1, 3, 9, 19 (mod 24), then umin(n) = n−1
2 for every n 6= 3, 9,

umin(3) = 6, and umin(9) = 7.
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(ii) If n ≡ 7, 13, 15, 21 (mod 24), then umin(n) = n−1
2 + 2 for every n 6=

7, 13, umin(7) = 6, and umin(13) = 11.

To obtain our result we make use of some results on edge colorings and, in
particular, of König’s Line Coloring Theorem, which here, for convenience,
is formulated in terms of matchings (for definitions and results on edge
colorings or matchings, the reader is referred to [1]).

Theorem 1.1 (König’s Line Coloring Theorem) Let G be a bipartite multi-

graph with maximum degree ∆. Then E(G) can be partitioned into M1,M2,
. . . ,M∆ such that each Mi, 1 ≤ i ≤ ∆, is a matching in G.

2 Notation and basic results

In what follows, we will denote:

• the triangle on the vertices a, b and c by (a, b, c);

• the kite consisting of the triangle (a, b, c) and the pendant edge {c, d}
by (a, b, c; d);

• the bull graph consisting of the triangle (a, b, c) and the pendant edges
{b, d} and {c, e} by (a, b, c; d, e);

• the 3-sun consisting of the triangle (a, b, c) and the pendant edges
{a, d}, {b, e} and {c, f} by (a, b, c; d, e, f).

If G is a kite, a bull, or a 3-sun, then its triangle will be denoted by t(G).

In this section we will give the necessary condition for embedding a
Steiner triple system into a 3-sun system and prove some useful results to
get our main result. From now on, if f is an embedding of (X,T ) into
(X ∪U,S), then f(T ) will be denoted by ST . Finally, we recall that a 3-sun
system of order n, or shortly a 3SS(n), exists if and only if n ≡ 0, 1, 4, 9
(mod 12) (see [7]).

Lemma 2.1 If there exists a 3SS(n + u) embedding an STS(n), then u ≥
n−1
2 .

Proof. Since an STS(n) has n(n−1)
6 triples, then in order to complete every

triple so to abtain a 3-sun, necessarily n · u ≥ 3n(n−1)
6 and so u ≥ n−1

2 . ✷
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In general, to construct a 3SS(m) (X∪U,S) embedding a STS(n) (X,T ),
we need to complete each triangle of T to a 3-sun by using some edges
of the complete bipartite graph Kn,m−n on X ∪ U and partition into 3-
suns the remaining edges of Kn,m−n along with those of the complete graph
Kn,m−n on U . In the following lemma a partial 3SS embedding an STS(n)
is constructed by using all the edges of the above complete bipartite graph.

Lemma 2.2 Any STS(n), n ≥ 7, can be embedded into a partial 3SS(3n−1
2 ).

Proof. Let (X,T ) be an STS(n) and consider its incidence graph I, i.e., the
bipartite graph whose vertex set is X ∪ T and whose edges are determined
by joining x ∈ X to t ∈ T if and only if x ∈ t. In the graph I every
vertex of X has degree n−1

2 and every vertex of T has degree 3. Since the
maximum degree of I is ∆ = n−1

2 , by König’s Line Coloring Theorem the
edges of I can be partitioned into ∆ matchings M1,M2, . . . ,M∆, each of
which satures the vertices of X, i.e., every vertex of X is incident to an edge
of each matching. Let S be the set of 3-suns on X ∪ {M1,M2, . . . ,M∆}
obtained by completing each triple of T to a 3-sun as follows: for every
t = (x1, x2, x3) ∈ T , consider the 3-sun (x1, x2, x3;Mi1 ,Mi2 ,Mi3), where
{xj , t} ∈ Mij for every j = 1, 2, 3. (X ∪ {M1,M2, . . . ,M∆},S) is a partial
3SS(3n−1

2 ) embedding (X,T ). ✷

The lower bound given by Lemma 2.1 is attained if n ≡ 1, 3, 9, 19
(mod 24), n 6= 3, 9, as it is established by the following proposition.

Proposition 2.1 For every n ≡ 1, 3, 9, 19 (mod 24), n ≥ 19, umin(n) =
n−1
2 .

Proof. Let (X,T ) be any STS(n) with n ≡ 1, 3, 9, 19 (mod 24), n ≥ 19. By
Lemma 2.2, it can be embedded into a partial 3SS(3n−1

2 ) (X∪{M1,M2, . . . ,Mn−1

2

},S).

Since n−1
2 ≡ 0, 1, 4, 9 (mod 12) ≥ 9, there exists a 3SS(n−1

2 ) ({M1,M2, . . . ,Mn−1

2

},S ′).

Then (X∪{M1,M2, . . . ,Mn−1

2

},S∪S ′) is a 3SS(3n−1
2 ) which embeds (X,T ).

✷

Lemma 2.3 If n = 3, 9, then umin(n) = 6, 7, respectively.

Proof. Any STS(3) can be trivially embedded into a 3SS of any admissible
order v ≥ 9 and so umin(3) = 6.

Let (X∪U,S) be a 3SS(9+u) embedding an STS(9) (X,T ). By Lemma
2.1 u ≥ 4. If u = 4, then S \ST contains only one 3-sun S such that V (S) ⊆
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U , which is impossible and so umin(9) ≥ 7. To prove that umin(9) = 7,
on Z16 we give the blocks of a 3SS embedding the unique STS(9) (whose
triangles are in bold):

(0,1,2; 9, 10, 11), ((0,3,6; 10, 15, 9), (0,4,8; 11, 9, 13),
(0,5,7; 12, 9, 15), (1,3,8; 9, 10, 11), (1,4,7; 11, 10, 9),
(1,5,6; 12, 10, 13), (2,3,7; 9, 11, 12), (2,4,6; 10, 11, 12),
(2,5,8; 12, 13, 14), (3,4,5; 9, 12, 14), (6,7,8; 11, 10, 9),
(0, 13, 15; 14, 7, 8), (1, 14, 15; 13, 4, 9), (3, 12, 14; 13, 15, 11)
(2, 13, 14; 15, 4, 7), (5, 11, 12; 15, 7, 10), (6, 10, 14; 15, 8, 9),
(9, 12, 13; 10, 8, 11), (10, 11, 15; 13, 9, 4). ✷

Lemma 2.4 Let n ≡ 7, 13, 15, 21 (mod 24). If there exists a 3SS(n + u)
embedding an STS(n), then u ≥ n−1

2 + 2.

Proof. Let n = 24k + r, r ∈ {7, 13, 15, 21}. If (X,S) is a 3SS(n + u)
embedding an STS(n), then by Lemma 2.1 n + u ≥ 3n−1

2 = 36k + 3r−1
2 ,

where 3r−1
2 ∈ {10, 19, 22, 31}. Since n+ u ≡ 0, 1, 4, 9 (mod 12), this implies

u ≥ n−1
2 + 2 ✷

Remark 2.1 For every n ≡ 7, 13, 15, 21(mod 24), if (X ∪U,S) is a 3SS(n+
n+3
2 ) embedding an STS(n) (X,T ), then each vertex x ∈ X appears in

exactly two block of S \ ST as a pendant vertex (therefore, for every S ∈
S \ ST the vertices of t(S) are in U).

The lower bound established by Lemma 2.4 is not attained when n =
7, 13, as it is showed by the following lemma.

Lemma 2.5 If n = 7, 13, then umin(n) = 6, 11, respectively.

Proof. Let (X ∪U,S) be a 3SS(n+ u) embedding an STS(n) (X,T ), where
n = 7, 13. By Lemma 2.4, u ≥ n+3

2 .
If n = 7 and u = 5, then |S \ ST | = 4, whereas by Remark 2.1 |S \ ST | > 4,
and so umin(7) ≥ 6. To prove that umin(7) = 6, on Z13 we give the blocks
of a 3SS embedding the unique STS(7):

(0,1,2; 7, 8, 9), ((0,3,4; 8, 7, 9), (0,5,6; 9, 8, 10), (1,3,5; 9, 8, 7),
(1,4,6; 10, 7, 12), (2,3,6; 7, 9, 8), (2,4,5; 8, 11, 9),
(0, 10, 11; 12, 5, 3), (1, 7, 12; 11, 8, 5), (2, 10, 12; 11, 9, 8), (4, 8, 10; 12, 9, 3),
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(9, 11, 12; 7, 5, 3), (6, 7, 11; 9, 10, 8).

If n = 13 and u = 8, then |S \ ST | = 9. Therefore, by Remark 2.1 a partial
triple system on U with 9 triangles should be exist, which is impossible
because a maximun packing of K8 with triangles (i.e., a partial K3-design
of order 8 with the maximum number of blocks) have 8 blocks, and so
umin(13) ≥ 11. Since there are two non-isomorphic STS(13)s, in order to
prove that umin(13) = 11 we need to embed each STS(13). Firstly, we
embed the cyclic one into a 3SS on Z24 as follows:

(0,1,4; 13, 18, 14), (1,2,5; 13, 23, 14), (2,3,6; 13, 18, 14),
(3,4,7; 13, 15, 14), (4,5,8; 13, 15, 14), (5,6,9; 13, 18, 19),
(6,7,10; 13, 15, 14), (7,8,11; 13, 15, 14), (8,9,12; 13, 20, 15),
(9,10,0; 13, 15, 14), (10,11,1; 13, 16, 14), (11,12,2; 13, 16, 14),
(12,0,3; 13, 15, 23), (0,2,7; 16, 22, 21), (1,3,8; 15, 19, 16),
(2,4,9; 15, 16, 14), (3,5,10; 14, 16, 17), (4,6,11; 17, 15, 18),
(5,7,12; 17, 16, 14), (6,8,0; 16, 17, 18), (7,9,1; 17, 15, 16),
(8,10,2; 18, 16, 17), (9,11,3; 16, 15, 17), (10,12,4; 18, 17, 19),
(11,0,5; 17, 19, 18), (12,1,6; 18, 17, 19),
(0, 17, 20; 21, 6, 1), (1, 19, 21; 22, 2, 3), (2, 16, 18; 20, 3, 4),
(3, 15, 20; 22, 13, 4), (4, 21, 22; 23, 2, 0), (5, 19, 20; 21, 7, 6),
(6, 21, 23; 22, 8, 0), (7, 18, 20; 22, 9, 8), (8, 19, 22; 23, 10, 5),
(9, 17, 21; 22, 13, 10), (10, 20, 22; 23, 11, 12), (11, 19, 23; 21, 12, 1),
(12, 20, 21; 23, 13, 14), (13, 14, 16; 18, 15, 17), (13, 22, 23; 19, 11, 5),
(14, 17, 19; 18, 15, 16), (14, 20, 23; 22, 16, 7), (15, 16, 21; 19, 23, 13),
(15, 18, 22; 23, 19, 16), (17, 18, 23; 22, 21, 9).

A 3SS(24) embedding the non cyclic STS(13) can be obtained from the
above one by replacing the 3-suns

(0,1,4; 13, 18, 14), (0,2,7; 16, 22, 21),
(2,4,9; 15, 16, 14), (7,9,1; 17, 15, 16),

with
(9,1,4; 14, 18, 16), (9,2,7; 15, 22, 17),
(0,2,4; 16, 15, 14), (0,1,7; 13, 16, 21), ✷

In order to prove that for every n ≡ 7, 13, 15, 21 (mod 24), n 6= 7, 13,
umin(n) equals the lower bound of Lemma 2.4, it will be useful the following
lemma.
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Lemma 2.6 ([1]) Let M and N be disjoint matchings of a graph G with

|M | > |N |. Then there are disjoint matchings M ′ and N ′ of G such that

|M ′| = |M | − 1, |N ′| = |N |+ 1 and M ′ ∪N ′ = M ∪N .

Now, we determine umin(n) for every n ≡ 7, 13, 15, 21 (mod 24) with the
exception of few small orders, which will be settled in Section 3.

In graph theory, the degree of a vertex of a graph is the number of edges
that are incident to the vertex; here, we define 2-degree of a vertex x of a
Γ-design D, and denote by d2(x), the number of blocks of D containing x
as a vertex of degree 2. The 2-degree sequence of D is the non-decreasing
sequence of its vertex 2-degrees.

In what follows, if G is a graph whose vertices belong to Zu, then we
call orbit of B under Zu the set (G) = {G + i : i ∈ Zu}, where G+ i is the
graph with V (G + i) = {a + i : a ∈ V (G)} and E(G + i) = {{a + i, b + i} :
{a, b} ∈ V (G)}.

Lemma 2.7 For any u = 12k + h, h = 5, 8, 9, 12 and k ≥ 3, there exists a

{bull, 3-sun}-design of order u whose 2-degree sequence is (2, 3, 3, 3, 3, 4, 4,
. . . , 4).

Proof. Consider the following orbits under Zu: for i = 1, 2, 3, Bi = (Bi),
where B1 = (0, 6k− 2, 4k+3; 3k, 6k− 1), B2 = (6k, 0, 4k+1; 6k+2, 6k+1),
and B3 = (0, 6k − 1, 4k + 2; 3k, 6k); for j = 0, 1, . . . , k − 4, Sj = (Sj), where
Sj = (5k + 1+ j, 5k − j, 0; 3k, k, u − 2− 2j). On Zu define the set of graphs
A = (B1 ∪ B∗

2 ∪ B∗
3 ∪ B) ∪ [(∪k−4

j=0Sj) ∪ S∗ ∪ S], where B∗
2 = B2 \ {B2},

B∗
3 = B3 \ {B3 + i : i = 0, 4k + 1, 6k, 6k + 1, 6k + 2}, S∗ = {(6k − 1, 4k +

2, 0; 3k, 6k, 4k + 1), (10k, 8k + 3, 4k + 1; 7k + 1, 10k + 1, 6k), (12k − 1, 10k +
2, 6k; 9k, 12k, 0), (12k, 10k +3, 6k+1; 9k+1, 12k+1, 4k+1), (12k+1, 10k+
4, 6k + 2; 9k + 2, 12k + 2, 0)}, while B and S depend on h.
a) h = 5: B is the orbit of (6k + 1, 0, 3k; 3k + 2, 6k + 3) under Zu; S = ∅.
b) h = 8: B = {(6k+3+ i, i, 3k+ i; 6k+4+ i, 9k+1+ i), (9k+5+ i, 3k+2+
i, 6k + 2 + i; 6k + 4 + i, 12k + 3+ i) : i = 0, 1, . . . , 3k + 1, i ∈ Zu} ∪ {(12k +
7+ i, 6k+4+ i, 9k+4+ i; 9k+5+ i, 3k−3+ i) : i = 0, 1, . . . , 6k+3, i ∈ Zu};
S = {(i, 3k + 2 + i, 9k + 6 + i; 3k + 1 + i, 6k + 3 + i, 6k + 4 + i)) : i =
0, 1, . . . , 3k + 1, i ∈ Zu}.
c) h = 9: B is the orbit of (6k + 1, 0, 3k; 3k + 3, 9k + 3) under Zu; S =
{(3i, 3k + 2 + 3i, 6k + 4 + 3i; 6k + 5 + 3i, 9k + 7 + 3i, 9k + 6 + 3i)) : i =
0, 1, . . . , 4k + 2, i ∈ Zu}.
d) h = 12: B = {(6k+1+ i, i, 3k+ i; 6k+6+ i, 9k+5+ i), (9k+4+ i, 3k+
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3+ i, 6k+3+ i; 6k+6+ i, 12k+8+ i) : i = 0, 1, . . . , 3k+2, i ∈ Zu}∪{(12k+
7+i, 6k+6+i, 9k+6+i; 12k+9+i, 3k−1+i) : i = 0, 1, . . . , 6k+5, i ∈ Zu};
S = {(i, 3k+3+i, 9k+9+i; 6k+3+i, 9k+6+i, 6k+6+i)) : i = 0, 1, . . . , 3k+
2, i ∈ Zu}∪{(3i, 3k+2+3i, 6k+4+3i; 6k+8+3i, 9k+10+3i, 9k+6+3i)) :
i = 0, 1, . . . , 4k + 3, i ∈ Zu}.
(Zu,A) is the required design, where d2(6k) = 2, the vertices d2(0) = d2(4k+
1) = d2(6k + 1) = d2(6k + 2) = 3, and the remaining vertices have 2-degree
4. ✷

Proposition 2.2 For every n ≡ 7, 13, 15, 21 (mod 24), n ≥ 79, umin(n) =
n+3
2 .

Proof. Let (X,T ) be an STS(n), n ≡ 7, 13, 15, 21 (mod 24), n ≥ 79, and
I be its incidence graph. E(I) can be partitioned into ∆ = n−1

2 match-
ings M1,M2, . . . ,M∆ (see proof of Lemma 2.2). By applying Lemma 2.6
and by using similar arguments as the proof of Theorem 6.3 in [1], it is
possible to partition E(I) into ∆ + 2 matchings M ′

1,M
′
2, . . . ,M

′
∆+2, such

that M ′
i covers the vertices of X \ Xi, where |X1| = 2, |Xi| = 3 for

i = 2, 3, 4, 5, and |Xi| = 4 for i = 6, 7, . . . ,∆+ 2 (note that each vertex
of X is missing in exctaly two matchings). If S denotes the set of 3-suns
on X ∪ {M ′

1,M
′
2, . . . ,M

′
∆+2} obtained by completing each triple of T as in

the proof of Lemma 2.2, the pair (X ∪ {M ′
1,M

′
2, . . . ,M

′
∆+2},S) is a partial

3SS(3(n+1)
2 ) embedding (X,T ). In order to complete the proof it will be

sufficient to decompose the graph K∆+2 ∪ M into 3-suns, where K∆+2 is
the complete graph based on {M ′

1,M
′
2, . . . ,M

′
∆+2} and M is the bipartite

graph on X ∪ {M ′
1,M

′
2, . . . ,M

′
∆+2} such that {x,M ′

i} ∈ E(M) if and only
if x ∈ X is missing in M ′

i . By using Lemma 2.7, the complete graph K∆+2

can be decomposed into bulls or 3-suns so that d2(M
′
1) = 2, d2(M

′
i) = 3 for

i = 2, 3, 4, 5, and d2(M
′
i) = 4 for i = 6, 7, . . . ,∆+ 2. To obtain the required

decompostion it is sufficient to complete each bull to a 3-sun using the edges
of M. ✷

3 Cases left

To determine umin(n) for the remaining orders n ∈ {15, 21, 31, 37, 39, 45, 55,
61, 63, 69}, we will start from an STS(n) (X,T ), with X = {x1, x2, . . . , xn},
and prove that (X,T ) can be embedded in a 3-sun system (X ∪Zn+3

2

,S) by

taking the following steps.
Step 1. Partition the edges of the complete graph on Zn+3

2

into a set A of
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triangles, kites, bulls or 3-suns so that |A| = |S\T | = (n2 + 20n + 3)/48 and
∑(n+1)/2

i=0 d2(i) = 2n. For later convenience (see Step 4.), give A partitioned
into suitable subsets Aj , j ∈ J , such that for every j ∈ J and for every
vertex i ∈ Zn+3

2

, the number of blocks of Aj containing i as a vertex of

degree 2 is at most 1.
Step 2. Partition the edge-set of the incidence graph I of (X,T ) into n+3

2
matchings M0,M1, . . . ,Mn+1

2

such that, denoted by Xi the set of vertices of

X not satured by Mi, |Xi| = d2(i) for each i = 0, 1, . . . , n+1
2 .

Step 3. Complete each triple of T as in the proof of Lemma 2.2 and obtain
a partial 3-sun system (X ∪ {M0,M1, . . . ,Mn+1

2

},S) embedding (X,T ).

Step 4. Call missing graph the bipartite graph M on X ∪ {M0,M1, . . . ,
Mn+1

2

} consisting of all the edges {x,Mi} such that x ∈ Xi and, for the sake

of simplicity, for every i = 0, 1, . . . , n+1
2 identify Mi with i ∈ Zn+3

2

.

Step 5. Partition the edges of the missing graph into suitable matchings M ′
j ,

j ∈ J , such that for every j ∈ J the edges of M ′
j can be used to complete the

blocks of Aj so to obtain a 3-sun system of order 3(n+1)
2 embedding (X,T ).

To begin with, we give an alternative solution for n ≡ 15 (mod 24)
(which settles the orders v = 15, 39, 63 as well) by means of a technique
used in [7] and involving the concepts of parallel classes and resolution of
an STS.

A parallel class of an STS(n) is a set of n
3 triples such that no two

triples in the set share an element; a partition of all triples of an STS(n)
into parallel classes is a resolution and the STS is said to be resolvable. An
STS(n) together with a resolution of its triples is a Kirkman triple system,
KTS(n), and exists if and only if n ≡ 3 (mod 6)(see [2]).

Proposition 3.1 For every n ≡ 15 (mod 24), umin(n) =
n+3
2 .

Proof. Let (X,T ) be an STS(n), n = 24k+15, k ≥ 0. Consider a resolution
Pi, i = 1, 2, . . . , 6k+4 of a KTS on Zn+3

2

. Without loss of generality, assume

that P1 contains the triangle t = (0, 1, 2). Construct a set K of kites obtained
by attaching the edges of t to the triangles t1, t2, t3 of P2 containing 0, 1, 2,
respectively, and the set A0 of 3-suns obtained from the parallel classes Pi,
i = 5, 6, . . . , 6k + 4 by using the technique in Lemma 3.8 of [7]. The set
A = ∪4

j=0Aj, where A1 = P1 \ {t}, A2 = (P2 \ {t1, t2, t3}) ∪ K and Aj = Pj

for j = 3, 4, is a partition of E(Kn+3

2

) such that
∑(n+1)/2

i=0 d2(i) = 2n. After

applying Step 2. , Step 3. and Step 4. proceed as follows. It is easy to
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see that the missing graph admits two matchings M ′
1 and M ′

2 both saturing
the vertices 3, 4, . . . , n+1

2 ; while, the edges of M not in M ′
1 and M ′

2 form
a subgraph with maximun degree 2 and so can be partitioned into two
matchings M ′

3 and M ′
4 both saturing all the vertices of Zn+3

2

. For every

j = 1, 2, 3, 4, complete the blocks of Aj by using the edges of M ′
j . ✷

Proposition 3.2 For every n ∈ {21, 31, 37, 45, 55, 61, 69}, umin(n) =
n+3
2 .

Proof. Let (X,T ) be an STS(n).
For n = 21, partition the edges of the complete graph on Z12 into the

following set A:

A1 = {(1, 2, 0; 11), (3, 7, 2; 5), (0, 4, 3; 9)}}
A2 = {(0, 5, 6), (1, 8, 11), (7, 4, 10), (2, 9, 8; 10), (3, 1, 5; 10, 8)}
A3 = {(0, 9, 10), (3, 6, 8), (5, 7, 11), (2, 4, 11; 6), (1, 7, 9; 6, 11)}
A4 = {(0, 7, 8), (3, 10, 11), (5, 9, 4; 8), (1, 4, 6; 9), (2, 6, 10; 5)}

where d2(i) = 3 for i ∈ {5, 6, 8, 9, 10, 11} and d2(i) = 4 for i ∈ {0, 1, 2, 3, 4, 7}.
After applying Step 2. , Step 3. and Step 4. proceed as follows. SinceM has
maximun degree 4, it is easy to see that M admits a matching M ′

1 saturing
{0, 1, 2, 3, 4, 7}. Use M ′

1 to complete the kites in A1. The graph obtained
from M by deleting the edges of M ′

1 is a bipartite graph such that all the
vertices in Z12 has degree 3 and so its edges can be partitioned into three
matchings M ′

2, M
′
3 and M ′

4, each of which satures the vertices of Z12. For
every j = 2, 3, 4, use the edges of M ′

j to complete the blocks of Aj.
For n = 31, partition the edges of the complete graph on Z17 into the

following set A:

A1 = {(0, 4, 1; 7) + i : i = 2, 3, 4, 5, 11, 12, 13, 14, i ∈ Z17}∪
{(10, 12, 0; 3, 7)}

A2 = {(0, 4, 1; 7) + i : i = 0, 1, 6, 7, 8, 9, 15, 16, i ∈ Z17} ∪ {(14, 7, 9; 2, 0)}
A3 = {(0, 7, 2; 10) + i : i = 1, 4, 13, 15, 16, i ∈ Z17} ∪ {(10, 14, 11; 0),

(9, 4, 2; 12, 0), (12, 2, 14; 10, 5)}
A4 = {(0, 7, 2; 10) + i : i = 3, 5, 6, 8, 9, 11, 14, i ∈ Z17}

where d2(i) = 2 for i ∈ {0, 2, 7} and d2(i) = 4 for i ∈ Z17 \ {0, 2, 7}. After
applying Step 2. , Step 3. and Step 4. proceed as follows. Consider a
subgraph M′ of the missing graph such that each vertex in Z17 has degree
2. Partition the edges of M′ into two matchings M ′

1 and M ′
2 and use them

to complete the kites in A1 and A2, respectively. After deleting the edges of
M ′

1 and M ′
2 the remaining edges of M can be partitioned into two matchings
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M ′
3 and M ′

4, each of which satures the vertices in Z17 \ {0, 2, 7} and can be
used to complete the kites in A3 and A4, respectively.

By similar arguments it is possible to settle the remaining cases n =
37, 45, 55, 61, 69, for which we refer to Appendix where we give the sets Ajs,
which automatically determine the matchings M ′

js. ✷

4 Main result and conclusion

Combining Lemmas 2.1, 2.4, and Propositions 2.1, 2.2, 3.1, 3.2 gives our
main result.

Main Theorem

(i) If n ≡ 1, 3, 9, 19 (mod 24), then umin(n) = n−1
2 for every n 6= 3, 9,

umin(3) = 6, and umin(9) = 7.

(ii) If n ≡ 7, 13, 15, 21 (mod 24), then umin(n) = n−1
2 + 2 for every n 6=

7, 13, umin(7) = 6, and umin(13) = 11.

In [13] a complete solution to the Doyen-Wilson problem for 3-sun sys-
tems is given and it is proved that any 3SS(n) can be embedded in a 3SS(m)
if and only if m ≥ 7

5n + 1 or m = n. For every integer v ∈ Σ(K3), com-
bining Main Theorem with the above result gives an integer mv such that
any STS(v) can be embedded in a 3SS(m) for every admissible m ≥ mv. A
question to be asked is the following.

Open Problem Can one embed any STS(v) in a 3SS(m) for every admis-
sible m such that v + umin(v) < m < mv?

Appendix

n = 37:

A1 = {(4, 11, 0; 8) + 2i : i = 0, 1, . . . , 9, i ∈ Z20}
A2 = {(5, 12, 1; 9) + 2i : i = 0, 1, . . . , 9, i ∈ Z20}
A3 = {(14, 16, 13; 2, 19), (4, 6, 3; 16, 9)}
A4 = {(1, 3, 0; 6) + i : i = 0, 12, 17, i ∈ Z20}∪

{(7, 12, 2; 17), (16, 17, 19; 14), (5, 7, 4; 17, 10), (6, 8, 5; 18, 11),
(8, 10, 7; 15, 13), (11, 9, 8; 4, 14), (10, 12, 9; 17, 15), (2, 4, 1; 14, 16)}

A5 = {(1, 3, 0; 6) + i : i = 14, 15, i ∈ Z20}∪
{(5, 10, 0; 15), (8, 13, 3; 18), (0, 2, 19; 4), (3, 5, 2; 15, 8), (7, 9, 6; 19, 12),
(11, 13, 10; 18, 16), (12, 14, 11; 19, 17), (1, 18, 19; 4, 5), (6, 11, 1; 16, 7)}
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n = 45:

A1 = {(1, 13, 7; 19) + i : i = 0, 1, 2, 3, 4, i ∈ Z24}∪
{(8, 16, 0; 22, 12), (9, 17, 1; 23, 19), (10, 18, 2; 6, 20), (19, 11, 3; 0, 21),
(20, 12, 4; 6, 22), (21, 13, 5; 19, 23), (22, 14, 6; 20, 0), (7, 15, 23; 21, 12)}

A2 = {(0, 1, 5) + 3i : i = 0, 1, . . . , 7, i ∈ Z24}
A3 = {(1, 2, 6) + 3i : i = 0, 1, . . . , 7, i ∈ Z24}
A4 = {(2, 3, 7) + 3i : i = 0, 1, . . . , 7, i ∈ Z24}
A5 = {(1, 3, 10; 12, 6, 20) + i : i ∈ Z24 \ {11, 23}} ∪ {(0, 2, 9; 18, 5, 19),

(12, 14, 21; 18, 17, 7)}

n = 55:

A1 = {(13, 27, 0; 25) + i : i = 3, 4, . . . , 13, i ∈ Z29}∪
{(15, 0, 2; 25, 27), (12, 14, 27; 10, 13), (28, 13, 15; 0, 11), (14, 0, 16; 27, 12),

A2 = {(13, 27, 0; 25) + i : i = 1, 17, 18, . . . , 28, i ∈ Z29}
A3 = {(0, 10, 11; 2, 6) + i : i ∈ Z29}
A4 = {(0, 9, 12; 2, 6) + i : i ∈ Z29}

n = 61:

A1 = {(0, 10, 29; 9) + i : i = 0, 1, 2, 3, 6, 17, 18, 19, 20, i ∈ Z32}∪
{(14, 22, 6; 30)} ∪ {(23, 10, 13; 22, 29) + i : i = 0, 1, 2, i ∈ Z32}∪
{(4, 23, 26; 3, 18) + i : i = 0, 1, 3, 4, 5, i ∈ Z32} ∪ {(26, 13, 16; 25, 24),
(21, 18, 31; 30, 7)}

A2 = {(8, 16, 0; 24) + i : i = 0, 1, . . . , 5, i ∈ Z32} ∪ {(4, 14, 1; 13),
(0, 22, 19; 31), (2, 24, 21; 1)}∪
{(1, 20, 23; 0, 15) + i : i = 0, 2, 5, i ∈ Z32} ∪ {(5, 2, 15; 14, 7)}

A3 = {(17, 4, 7; 16, 23) + i : i = 0, 1, 2, 3, 4, 5, i ∈ Z32}
A4 = {(9, 0, 2; 11, 17) + i : i ∈ Z32}
A5 = {(5, 0, 1; 6, 15) + i : i ∈ Z32}

n = 69:

A1 = {(4, 2, 0; 6, 34) + 3i : i = 5, 6, 7, 8, 9, 10, i ∈ Z36}
A2 = {(4, 2, 0; 6, 34) + 3i : i = 0, 1, 2, 3, 4, 11, i ∈ Z36}∪

{(24, 12, 0; 30, 18) + i, (30, 18, 6; 24) + i : i = 0, 1, 2, 3, 4, 5, i ∈ Z36}
A3 = {(0, 7, 15; 1) + 2i : i = 0, 1, . . . , 17, i ∈ Z36}
A4 = {(1, 8, 16; 2) + 2i : i = 0, 1, . . . , 17, i ∈ Z36}
A5 = {(9, 20, 0; 3, 13) + i : i ∈ Z36}
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A6 = {(0, 6, 1; 10, 32, 11) + 9i, (1, 7, 2; 5, 11, 12) + 9i, (2, 8, 3; 5, 9, 13) + 9i,
(3, 9, 4; 6, 14, 8) + 9i, (4, 10, 5; 1, 7, 8) + 9i, (5, 11, 6; 35, 8, 9) + 9i,
(6, 12, 7; 16, 9, 17) + 9i, (7, 13, 8; 4, 23, 18) + 9i : i = 0, 1, 2, 3, i ∈ Z36}
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