On the Ramsey numbers of tree graphs versus certain generalised wheel graphs

Author:

Chng, Zhi Yee

Publication Date:

2024

DOI:

https://doi.org/10.26190/unsworks/25518

License:

https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/101814 in https:// unsworks.unsw.edu.au on 2024-05-20

ON THE RAMSEY NUMBERS OF TREE GRAPHS VERSUS CERTAIN GENERALISED WHEEL GRAPHS

Zhi Yee Chng
Supervisors: Dr Thomas Britz, UNSW Sydney
Dr Ta Sheng Tan, Universiti Malaya
Prof. Dr Kok Bin Wong, Universiti Malaya
School of Mathematics and Statistics
Faculty of Science, UNSW Sydney

February 2024

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

Declarations

ORIGINALITY STATEMENT

V I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.

COPYRIGHT STATEMENT

$\nabla 1$ hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. I acknowledge that I retain all intellectual property rights which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. I also retain the right to use all or part of my thesis or dissertation in future works (such as articles or books).
For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final public version of the thesis.

AUTHENTICITY STATEMENT

\boxtimes I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.

Publications Statement

UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure
Publications can be used in the candidate's thesis in lieu of a Chapter provided:

- The candidate contributed greater than 50% of the content in the publication and are the "primary author", i.e. they were responsible primarily for the planning, execution and preparation of the work for publication.
- The candidate has obtained approval to include the publication in their thesis in lieu of a Chapter from their Supervisor and Postgraduate Coordinator.
- The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis.
∇ The candidate has declared that some of the work described in their thesis has been published and has been documented in the relevant Chapters with acknowledgement.
A short statement on where this work appears in the thesis and how this work is acknowledged within chapter/s:
Chapter 3 of this thesis contains work from an article, joint work with my supervisors Dr Ta Sheng Tan and Prof. Dr Kok Bin Wong, and is published in Discrete Mathematics. Detailed explanation and acknowledgement are provided at the beginning of the Chapter 3.

Candidate's Declaration

(D) I declare that I have complied with the Thesis Examination Procedure.

Acknowledgements

First of all, I would like to deliver my highest gratitude to my supervisors, Dr Thomas Britz, Dr Ta Sheng Tan and Prof. Dr Kok Bin Wong for their valuable guidance throughout this research project. I could not even imagine how harder would the journey be without their advice and encouragement.

Next, I would also like to express my gratitude to the Public Service Department of Malaysia and UNSW Sydney for the financial assistance and support given during my PhD studies. I would also like to thank all the members of the School of Mathematics and Statistics, UNSW Sydney, who have given their support and helping hands throughout the completion of this thesis.

Last but not least, I also wish to thank my family and my friends, especially my parents, who gave me support throughout the completion of this thesis. The days of my PhD studies, especially during the pandemic, would not be any easier without their love and encouragement.

This page has been intentionally left blank.

Abstract

This thesis presents a series of Ramsey results on tree graphs versus generalised wheel graphs, with the focus on the generalised wheel graphs $W_{s, 6}$ and $W_{s, 7}$ and the wheel graph W_{8}.

This thesis consists of 7 chapters. In Chapter 1, we give a brief historical introduction to Ramsey theory and Ramsey's Theorem, as well as some brief introduction to the contents of the thesis. Then in Chapter 2, we introduce notation and definitions that will be consistently used throughout the thesis, including some basic knowledge of graph theory which is particularly useful in our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs T_{n} of order n versus the generalised wheel graphs $W_{s, 6}$ and $W_{s, 7}$. We determine the Ramsey number $R\left(T_{n}, W_{2,6}\right)$ for $n \geq 5$. Then we generalise these results to find $R\left(T_{n}, W_{s, 6}\right)$ for $s \geq 2$. After that, we also determine the Ramsey number $R\left(T_{n}, W_{s, 7}\right)$ for $n \geq 5$ and $s \geq 1$. In the last section of Chapter 3, we discuss results on the Ramsey numbers for tree graphs versus generalised wheel graphs, $R\left(T_{n}, W_{s, m}\right)$, and propose a conjecture.

Chapters 4 and 5 present the Ramsey numbers T_{n} for tree graphs of order n versus the wheel graph of order $9, W_{8}$. In Chapter 4 , we focus on the tree graphs with maximum degree of at least $n-3$. In Chapter 5 , we provide results for the tree graphs with maximum degree of $n-4$ and $n-5$.

In Chapter 6, we present the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for the tree graphs with maximum degree of at most $n-6$ where n is sufficiently large.

Chapter 7 concludes the thesis with suggestions for possible future work.

This page has been intentionally left blank.

Contents

Chapter 1 Introduction 1
Chapter 2 Graph theory 4
2.1 Graph theory 4
2.2 Auxiliary results 8
Chapter 3 Ramsey numbers for tree graphs versus certain generalised wheel graphs 10
3.1 Introduction 10
3.2 The Ramsey number $R\left(T_{n}, W_{2,6}\right)$ 11
3.3 The Ramsey number $R\left(T_{n}, W_{s, 6}\right)$ and $R\left(T_{n}, W_{s, 7}\right)$ 18
3.4 Other results and possible future work 18
Chapter 4 Ramsey numbers for tree graphs with maximum degree of $n-1$, $n-2$ and $n-3$ versus the wheel graph of order 9 22
4.1 Introduction 22
4.2 Ramsey numbers for tree graphs with maximum degree of $n-1$ and $n-2$ versus the wheel graph of order 9 22
4.3 Ramsey numbers for tree graphs with maximum degree of $n-3$ versus the wheel graph of order 9 23
Chapter 5 Ramsey numbers for tree graphs with maximum degree of $n-4$ and $n-5$ versus the wheel graph of order 9 32
5.1 Introduction 32
5.2 Ramsey numbers for tree graphs with maximum degree of $n-4$ versus the wheel graph of order 9 33
5.3 Ramsey numbers for tree graphs with maximum degree of $n-5$ versus the wheel graph of order 9 48
Chapter 6 Ramsey numbers for large tree graphs versus the wheel graphs of order 9 70
6.1 Introduction 70
6.2 Some lemmas 70
6.3 Ramsey numbers for large tree graphs with maximum degree of at most $n-6$ versus the wheel graph of order 9 79
Chapter 7 Conclusion and possible future work 81
7.1 Conclusion 81
7.2 Possible future work 82

List of Figures

2.1 A graph G 4
2.2 Complete graphs 5
$2.3 \quad H$ is a subgraph of G 5
2.4 A graph G and its complement \bar{G} 5
2.5 A connected graph G and a disconnected graph H 6
2.6 Graph addition $K_{3}+P_{2}$ 6
2.7 Generalised wheel graphs 6
2.8 Examples of $P_{n}, S_{n}, S_{n}(\ell, m), S_{n}(\ell)$ and $S_{n}[\ell]$ 7
2.9 Complete multipartite graphs 7
4.1 The graph H when $n=7$. 28
5.1 Tree graphs of order 7 32
5.2 Three tree graphs with $\Delta\left(T_{n}\right)=n-4$. 32
5.3 Tree graphs T_{n} with $\Delta\left(T_{n}\right)=n-5$. 33
$5.4 \quad S_{7}(2,1)$ and U in G. 34
$5.5 \quad B \subseteq G$ 36
$5.6 \quad S_{7}(3)$ and U in G. 39
5.7 The graphs H_{8}. 40

This page has been intentionally left blank.

Chapter 1

Introduction

Ramsey theory is a beautiful but difficult subject, proposed by the British mathematician and philosopher Frank Plumpton Ramsey [44] nearly a century ago. Generally speaking, Ramsey theory shows how, in certain orderly structure, patterns and order can never be completely eradicated by randomness or disarray; in other words, complete randomness is impossible. A typical result in Ramsey theory states that if some mathematical structure is cut into pieces, then at least one of the parts must attain a given property. Before Ramsey's death at the age of 26 in 1930, he did seminal work in this area; however, the theory was brought to public attention by the Hungarian mathematician Paul Erdős, who made a huge contribution to combinatorics and graph theory.

The archetypal Ramsey theory result is Ramsey's Theorem [44] which states that in any edge-colouring of a sufficiently large finite complete graph, one can find some monochromatic complete graph of any given order. The Ramsey number $N=R(m, n)$ is the minimum integer with the property that the complete graph on N vertices will, whenever its edges are each coloured by one of two given colours, either contain a complete subgraph on m vertices whose edges are each coloured in the first colour, or contain a complete subgraph on n vertices whose edges are each coloured in the second colour. Equivalently, $N=R(m, n)$ is the minimum integer for which each simple undirected graph with N vertices either contains a complete graph of order m or has its graph complement contain a complete graph of order n.

The first lower bound on Ramsey numbers were obtained by Paul Erdős using probabilistic methods [27]. Together with George Szekeres, Paul Erdős also found some upper bounds on these numbers [28].

Over the years, much research had been done to improve these bounds; however, little progress has been made. There are a few interesting results on the lower bound of general Ramsey numbers, which were proposed by Spencer [48] and Alon and Pudlák [2]. The best lower bound up to today was given by Bohman and Keevash [7]:

$$
R(m, n) \geq c \frac{n^{\frac{m+1}{2}}}{(\log n)^{\frac{m+1}{2}-\frac{1}{m-2}}}
$$

for some positive c. On the other hand, the best upper bound of general Ramsey numbers up to today was proposed by Ajtai, Komlós and Szemerédi [1]:

$$
R(m, n) \leq c \frac{n^{m-1}}{(\log n)^{m-2}}
$$

for some constant c.

Let consider the case where $m=3$. This is one of the popular research topics in the area since it is related to the study of triangle-free graphs. In [37], Kim had shown that $R(3, n)$ has order of magnitude $\frac{n^{2}}{\log n}$. The best-known upper-bound constant is due to Shearer [47], who had shown that

$$
R(3, n) \leq(1+o(1)) \frac{n^{2}}{\log n}
$$

On the other hand, Bohman and Keevash [8] had provided a lower bound constant and shown that

$$
R(3, n) \geq\left(\frac{1}{4}-o(1)\right) \frac{n^{2}}{\log n}
$$

A similar result was also proved by Pontiveros, Griffiths and Morris; see [42]. This lower bound is within a $4+o(1)$ factor of the upper bound by Shearer and is currently the best-known lower bound of $R(3, n)$.

Another interesting special type of Ramsey number is called the diagonal Ramsey number, denoted by $R(n, n)$, or just $R(n)$. Trivially, $R(1)=1$ and $R(2)=2$. Currently, the only known exact numbers $R(n)$ are $R(3)=6$ (the famous Party Problem) and $R(4)=18$ [32]. Even the exact result for $n=5$ is still unknown, with the currently best known bounds of $43 \leq R(5) \leq 48$; see [3, 29]. In the general case, the first lower bound on $R(n)$ was proposed by Erdős [27] in 1947:

$$
R(n)>\frac{1}{e \sqrt{2}}(1+o(n)) n 2^{\frac{n}{2}}
$$

This was only improved after 30 years by a factor of 2 by Spencer [49].
On the other hand, the first upper bound of $R(n)$ was from the proof of Erdős and Szekeres [28]:

$$
R(n) \leq\binom{ 2 n-2}{n-1} \leq 4^{n}
$$

Very little progess was made on improving this bound until the mid-1980s. Some improvements were then made by Rödl [30] and Thomason [51]. In 2009, Conlon [12] showed that

$$
R(n) \leq n^{-c \frac{\log n}{\log \log n}}\binom{2 n-2}{n-1}
$$

for some positive c. Very recently, Sah [45] improved this result to

$$
R(n) \leq e^{-c(\log n)^{2}}\binom{2 n-2}{n-1}
$$

Another very recent breakthrough result was provided by Campos, Griffiths, Morris and Sahasrabudhe [15]. They gave the first exponential improvement over the upper bound of Erdős and Szekeres and proved that there exists $\epsilon>0$ such that $R(n) \leq(4-\epsilon)^{n}$ for all sufficiently large $n\left(\epsilon=2^{-7}\right.$ in their proof $)$.

Looking away from complete graphs, a more general Ramsey number is $R(G, H)$, which is the minimum number of vertices to ensure that, in any graph with that
number of vertices, either the graph contains a subgraph G or its complement graph contains a subgraph H.

In this thesis, the Ramsey numbers $R\left(T_{n}, W_{s, m}\right)$ have been determined for certain tree graphs T_{n} and the generalised wheel graph $W_{s, m}$. In [22], Chen et al. determined the Ramsey numbers $R\left(T_{n}, W_{1,6}\right)$ and $R\left(T_{n}, W_{1,7}\right)$. We extend these results and determine the Ramsey numbers $R\left(T_{n}, W_{s, 6}\right)$ and $R\left(T_{n}, W_{s, 7}\right)$ for $s \geq 2$. Next, we proceed with a discussion on the Ramsey numbers $R\left(T_{n}, W_{1,8}\right)$. In [18], Chen, Zhang and Zhang conjectured that $R\left(T_{n}, W_{m}\right)=2 n-1$ for all tree graphs T_{n} of order $n \geq m-1$ when m is even and the maximum degree $\Delta\left(T_{n}\right)$ "is not too large"; see also [20, 21, 22]. Later in [33], Hafidh and Baskoro refined this conjecture by specifying the bound $\Delta\left(T_{n}\right) \leq n-m+2$. When n is large compared to $m, \Delta\left(T_{n}\right)$ is not required to be small; indeed, the refined conjecture implies that, for each fixed even integer m, all but a vanishing proportion of the tree graphs $\left\{T_{n}: n \geq m-1\right\}$ satisfy $R\left(T_{n}, W_{m}\right)=2 n-1$. One of the main aims of this thesis is to explore and partially verify this conjecture. Very briefly described, our main results provide strong evidence for the conjecture and also show that the conjecture is true for sufficiently large graphs.

The contents of the thesis are as follows. In Chapter 2, we introduce some necessary notation and definitions, including some fundamental graph theory, which will be particularly useful in our discussion. We also introduce some previously known theorems and lemmas which are essential to our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs T_{n} of order n versus the generalised wheel graphs $W_{s, 6}$ and $W_{s, 7}$. We determine the Ramsey number $R\left(T_{n}, W_{2,6}\right)$ for $n \geq 5$. Then we generalise these results to find $R\left(T_{n}, W_{s, 6}\right)$ for $s \geq 2$. After that, we also determine the Ramsey number $R\left(T_{n}, W_{s, 7}\right)$ for $n \geq 5$ and $s \geq 1$. In the last section of the chapter, we discuss results on the Ramsey numbers for tree graphs versus generalised wheel graphs, $R\left(T_{n}, W_{s, m}\right)$, and propose a conjecture.

Chapters 4, 5 and 6 present the Ramsey numbers for tree graphs T_{n} versus the wheel graph W_{8} of order 9 . In Chapter 4, we focus on the tree graphs with maximum degree of at least $n-3$. There are four types of such graphs, namely S_{n}, $S_{n}(1,1), S_{n}(1,2)$ and $S_{n}(3)$. In Chapter 5 , we present results for the tree graphs with maximum degree of $n-4$ and $n-5$. There are 7 types of tree graphs with maximum degree $n-4$ and 19 types of tree graphs with maximum degree of $n-5$, respectively. In Chapter 6, we discuss the analogous results for the tree graphs with maximum degree of at most $n-6$ where n is sufficiently large.

In Chapter 7, we discuss our results and partially answer our conjecture in Chapter 3. We end our discussion by proposing possible future work on the topic.

Chapter 2

Graph theory

Since graph theory contributes to a major part of our discussion, we will begin the journey with some introductory graph theory.

2.1 Graph theory

In this section, we will present some fundamental graph theory definitions which will be used throughout the thesis.
Definition 2.1.1 (Graph). A graph is a pair of sets $G=(V, E)$ where $V(G):=V$ is a finite non-empty set of elements called vertices and $E(G):=E$ is a set of unordered pairs of vertices called edges.

Figure 2.1 shows an example of a graph $G=(V, E)$. It has the vertex set $V=\{s, t, u, v, w\}$ and the edge set $E=\{\{s, t\},\{t, u\},\{t, v\},\{u, w\},\{v, w\}\}$.

Figure 2.1: A graph G

Definition 2.1.2 (Adjacency). Two vertices u and v of a graph G are said to be adjacent if $\{u, v\}$ is an edge of G. In this case, e is incident to u and v.

In Figure 2.1, vertices s and t are adjacent to each other, while vertex u is not adjacent to vertex v.

Definition 2.1.3 (Neighbourhood and degree). The neighbourhood $N_{G}(u)$ of a vertex u in graph G is the set of vertices which are adjacent to the vertex u in G. The degree of vertex u in G is the number $d_{G}(u)=\left|N_{G}(u)\right|$ of vertices adjacent to u in G. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum degree and minimum degree of the vertices in G, respectively.

In Figure 2.1, $\{s, u, v\}$ forms the neighbourhood $N_{G}(t)$ of the vertex t, and the degree of vertex t is $d_{G}(t)=3$.

Definition 2.1.4 (Chromatic number). The chromatic number $\chi(G)$ of a graph G is the smallest number of colours needed to colour the vertices of graph G so that no two adjacent vertices share the same colour.

Definition 2.1.5 (Complete graph).
A complete graph is a graph in which every two vertices are adjacent to each other. A complete graph with n vertices is denoted by K_{n}.

Figure 2.2 shows examples of complete graphs.

Figure 2.2: Complete graphs

Definition 2.1.6 (Subgraph).
A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.
Figure 2.3 shows an example of a subgraph H of a graph G.

G

H

Figure 2.3: H is a subgraph of G
Definition 2.1.7 (Complement of a graph). The complement \bar{G} of a graph G is the graph with vertices $V(\bar{G})=V(G)$ and edges $E(\bar{G})=E\left(K_{n}\right)-E(G)$.

Figure 2.4 shows a graph G and its complement \bar{G}.

G

\bar{G}

Figure 2.4: A graph G and its complement \bar{G}
Definition 2.1.8 (Walk, path and cycle). A walk in a graph G is an alternating sequence of vertices and edges $v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{k} v_{k}$ in which the ends of each edge e_{i} are v_{i-1} and v_{i} for $i \in[k]$. It is closed if $v_{0}=v_{k}$ and is open otherwise. A walk in which all vertices $v_{0}, v_{1}, \ldots, v_{k}$ are distinct is called a path. A cycle is a closed walk in which all vertices $v_{0}, v_{1}, \ldots, v_{k}$ are distinct except for $v_{0}=v_{k}$. The cycle graph C_{n} is the graph consisting of a cycle of order n.

Definition 2.1.9 (Connected graph). A graph G is connected if there exists a walk between each pair of vertices in G. If G is not connected, then it is disconnected.

Figure 2.5 shows a connected graph G and a disconnected graph H.

Figure 2.5: A connected graph G and a disconnected graph H

Definition 2.1.10 (Addition of two graphs). The addition of graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph obtained by adding to the disjoint union of G_{1} and G_{2} edges between each vertex of G_{1} and each vertex of G_{2}.

Figure 2.6 shows an example of a graph addition.

Figure 2.6: Graph addition $K_{3}+P_{2}$

Definition 2.1.11 (Generalised wheel). The generalised wheel graph $W_{s, m}$ is the graph $K_{s}+C_{m}$ obtained by adding the graphs K_{s} and C_{m} as defined in Definition 2.1.10. If $s=1$, then $W_{s, m}$ is a wheel graph which we also denote by W_{m}.

Figure 2.7 shows examples of generalised wheel graphs.

Figure 2.7: Generalised wheel graphs

Definition 2.1.12 (Tree). A tree is a connected graph which has no cycle subgraph. In this thesis, trees with n vertices are denoted by T_{n}.

Here, we introduce some of the tree graphs used in our discussions. Let P_{n} be the path graph consisting of a path of order n, and let S_{n} be the star graph of order n consisting of one vertex that is adjacent to $n-1$ vertices which are non-adjacent to each other. Let $S_{n}(\ell, m)$ be the tree of order n obtained from the star graph $S_{n-\ell \times m}$ by subdividing each of ℓ chosen edges m times. $S_{n}(\ell)$ is the tree graph of order n obtained by adding an edge joining the centres of two star graphs S_{ℓ} and $S_{n-\ell}$. $S_{n}[\ell]$ is the tree graph of order n obtained by adding an edge joining the centre of $S_{n-\ell}$ to a degree-one vertex of S_{ℓ}.

Figure 2.8 shows examples of these trees. Other tree graphs will be introduced throughout the thesis.

Figure 2.8: Examples of $P_{n}, S_{n}, S_{n}(\ell, m), S_{n}(\ell)$ and $S_{n}[\ell]$

Definition 2.1.13 (Multipartite graph). A k-partite graph is a connected graph whose vertex set can be partition into k disjoint subsets containing no edges as subsets; that is, each edge contains a vertex from one subset and a vertex from another subset. A k-partite graph is complete if each vertex from one subset is adjacent to every vertex from every other subset. A complete k-partite graph is denoted by $K_{n_{1}, \ldots, n_{k}}$ where n_{1}, \ldots, n_{k} are the numbers of vertices in each subset, respectively. The graph is bipartite if $k=2$ and tripartite if $k=3$.

Figure 2.9 shows examples of complete multipartite graphs.

A complete bipartite graph, $K_{3,4}$

A complete tripartite graph, $K_{2,2,2}$

Figure 2.9: Complete multipartite graphs

2.2 Auxiliary results

In this section, we will introduce some previously known results and lemmas which will be particularly useful in our discussions. We do not provide the proofs for these; interested readers are directed to the respective references.

First, we will introduce some known Ramsey theory results relating to the Ramsey numbers of tree graphs versus generalised wheel graphs. These results motivated us into conducting this research work.

In [54], Wang and Chen determined the Ramsey number for tree graphs versus generalised wheel graphs $W_{s, 4}$ and $W_{s, 5}$. Inspired by their work, we have studied the Ramsey numbers for tree graphs versus generalised wheel graphs $W_{s, 6}$ and $W_{s, 7}$. We will discuss these numbers in Chapter 3.
Theorem 2.2.1. [54] If $n \geq 3$ and $s \geq 2$, then $R\left(T_{n}, W_{s, 4}\right)=(n-1)(s+1)+1$. Furthermore, if $n \geq 3$ and $s \geq 1$, then $R\left(T_{n}, W_{s, 5}\right)=(n-1)(s+2)+1$.

Now, we introduce some known Ramsey theory results concerning the Ramsey numbers of tree graphs versus the wheel graphs W_{m}. In [22], Chen, Zhang and Zhang determined the Ramsey numbers $R\left(T_{n}, W_{6}\right)$ and $R\left(T_{n}, W_{7}\right)$.
Theorem 2.2.2. [22] $R\left(T_{n}, W_{6}\right)=2 n-1+\mu$ for $n \geq 5$, where
(a) $\mu=2$, if $T_{n}=S_{n}$;
(b) $\mu=1$, if $T_{n}=S_{n}(1,1)$ or $T_{n}=S_{n}(1,2)$ and $n \equiv 0(\bmod 3)$;
(c) $\mu=0$, otherwise.

Theorem 2.2.3. [22] $R\left(T_{n}, W_{7}\right)=3 n-2$ for $n \geq 6$.
Next, we introduce results for path and star graphs. Chen, Zhang and Zhang [19] and Zhang [55] determined the Ramsey numbers $R\left(P_{n}, W_{m}\right)$ for $3 \leq m \leq n+1$ and $n+2 \leq m \leq 2 n$, respectively. Combining these results, we have the following theorem.
Theorem 2.2.4. [19, 55] For $3 \leq m \leq 2 n$, we have

$$
R\left(P_{n}, W_{m}\right)= \begin{cases}3 n-2, & \text { if } m \text { is odd } \\ 2 n-1, & \text { if } m \text { is even and } 3 \leq m \leq n+1 \\ m+n-2, & \text { if } m \text { is even and } n+2 \leq m \leq 2 n\end{cases}
$$

For star graphs, Chen, Zhang and Zhang [17] proved the following result.
Theorem 2.2.5. [17] $R\left(S_{n}, W_{m}\right)=3 n-2$ for m odd and $n \geq m-1 \geq 2$.
The exact Ramsey numbers $R\left(S_{n}, W_{8}\right)$ were determined together in three papers.
Theorem 2.2.6. [56, 57, 58] For $n \geq 5$, we have

$$
R\left(S_{n}, W_{8}\right)= \begin{cases}2 n+1, & \text { if } n \text { is odd } \\ 2 n+2, & \text { if } n \text { is even }\end{cases}
$$

In [11], Burr found an interesting lower bound for the Ramsey number $R(G, H)$ for any pair of graphs G and H, in terms of $|V(G)|, \chi(H)$ and $t(H)$.

Theorem 2.2.7. [11] Let G be a connected graph of order n, and let H be a graph with parameters $\chi(H)$ and $t(H)$, where $t(H)$ is the minimum number of vertices in any colour class of any vertex-colouring of H with $\chi(H)$ colours and $n \geq t(H)$. Then $R(G, H) \geq(n-1)(\chi(H)-1)+t(H)$.

Now, we introduce two lemmas that are useful in our discussion.
Lemma 2.2.8 (Handshaking Lemma). The sum of vertex degrees of a graph G is equal to twice the number of edges in G.

Lemma 2.2.9. [16] Let G be a graph with $\delta(G) \geq n-1$. Then G contains all tree graphs of order n.

Since we are studying the wheel graph, which contains a cycle graph, the following lemmas are particularly useful.
Lemma 2.2.10. [9] Let G be a graph of order n. If $\delta(G) \geq \frac{n}{2}$, then either G contains C_{ℓ} for all $3 \leq \ell \leq n$, or n is even and $G=K_{\frac{n}{2}, \frac{n}{2}}$.

Lemma 2.2.11. [36] Let $G(u, v, k)$ be a simple bipartite graph with bipartition U and V, where $|U|=u \geq 2$ and $|V|=v \geq k$, and each vertex of U has degree at least k. If $G(u, v, k)$ satisfies $u \leq k$ and $v \leq 2 k-2$, then it contains a cycle of length $2 u$.

Chapter 3

Ramsey numbers for tree graphs versus certain generalised wheel graphs

In this chapter, we look at the Ramsey numbers for tree graphs versus the generalised wheel graphs $W_{s, 6}$ and $W_{s, 7}$. The results in this chapter have been published in [23] during my PhD candidature and are joint work with Dr Ta Sheng Tan and Prof. Dr Kok Bin Wong. In this article, I am the main author, in charge of developing and writing the proof of the results, especially those have been incorporated in the chapter. Similar results were also obtained independently by Wang [53].

3.1 Introduction

In [54], Wang and Chen determined the Ramsey numbers for the tree graphs versus $W_{s, 4}$ and $W_{s, 5}$. This inspires us to study the Ramsey numbers of tree graphs versus generalised wheel graphs beyond $W_{s, 4}$ and $W_{s, 5}$. We will focus on the results for $W_{s, 6}$ and $W_{s, 7}$.

Note that $\chi\left(W_{s, 6}\right)=s+2$ and $t\left(W_{s, 6}\right)=1$. By Theorem 2.2.7, we therefore have $R\left(T_{n}, W_{s, 6}\right) \geq(s+1)(n-1)+1$. Now, we need to determine the upper bound of $R\left(T_{n}, W_{s, 6}\right)$ for various types of trees. We will do so in the next few sections. But before that, we want to introduce a useful lemma.

In the paper [11], Burr also established the following definition. Under the condition of Theorem 2.2.7, the graph G is said to be H-good if

$$
R(G, H)=(n-1)(\chi(H)-1)+t(H)
$$

Lin, Li and Dong [41] proved that, for a tree graph T and a graph G with $t(G)=1$, if T is G-good, then T is $\left(K_{1}+G\right)$-good. This leads us to the following lemma whose proof follows that of [41].
Lemma 3.1.1. Let G be a finite simple graph and T_{n} be any fixed tree graph of order n. Then $R\left(T_{n}, K_{1}+G\right) \leq R\left(T_{n}, G\right)+n-1$.

Proof. Let $N=R\left(T_{n}, G\right)+n-1$. Consider any graph H of order N. Suppose that H does not contain T_{n} as a subgraph. Let T^{\prime} be a maximal subtree of H that is (isomorphic to) a subgraph of T_{n}. Here, the term 'maximal' is in the sense that if a vertex $x \in X:=V(H)-V\left(T^{\prime}\right)$ and an edge $x u \in E(H)$ for some $u \in V\left(T^{\prime}\right)$ are added to T^{\prime}, then the resulting tree is not a subgraph of T_{n}.

Note that $T^{\prime} \neq T_{n}$. This implies that there is a vertex $u \in V\left(T^{\prime}\right)$ and a vertex $w \in V\left(T_{n}\right)-V\left(T^{\prime}\right)$ such that $u w \in E\left(T_{n}\right)$. So, if u is adjacent to a vertex $x \in X$ in H, then the graph obtained by adding the vertex x and the edge $u x$ to T^{\prime} is a
subtree of H and it also forms a subgraph of T_{n}. By the maximality of T^{\prime}, this is impossible. Hence, u is not adjacent in H to any vertex $x \in X$.

Since $T^{\prime} \neq T_{n}$, the order of T^{\prime} is at most $n-1$. Therefore, $|X| \geq R\left(T_{n}, G\right)$. Note that $\bar{H}[X]$ must contain G as $H[X]$ does not contain T_{n}. From the preceding paragraph, $u x \notin E(H)$ for all $x \in X$. This implies that $u x \in E(\bar{H})$ for all $x \in X$. In particular, u is adjacent to all $y \in V(G)$ in \bar{H}. Hence, \bar{H} contains $K_{1}+G$, and so $R\left(T_{n}, K_{1}+G\right) \leq R\left(T_{n}, G\right)+n-1$.

Theorem 3.1.2. Let T_{n} be any fixed tree graph of order n and $W_{s, m}=K_{s}+C_{m}$ be a generalised wheel graph. Then $R\left(T_{n}, W_{s, m}\right) \leq R\left(T_{n}, W_{m}\right)+(s-1)(n-1)$.

Proof. Note that $W_{1, m}=W_{m}$ and for $s \geq 2$, the generalised wheel graph $W_{s, m}$ is $K_{1}+W_{s-1, m}$. Hence, by Lemma 3.1.1, it follows that

$$
\begin{aligned}
R\left(T_{n}, W_{s, m}\right) & \leq R\left(T_{n}, W_{s-1, m}\right)+n-1 \\
& \leq R\left(T_{n}, W_{s-2, m}\right)+2(n-1) \\
& \vdots \\
& \leq R\left(T_{n}, W_{1, m}\right)+(s-1)(n-1) .
\end{aligned}
$$

3.2 The Ramsey number $R\left(T_{n}, W_{2,6}\right)$

In this section, we investigate the Ramsey numbers $R\left(T_{n}, W_{2,6}\right)$ for tree graphs T_{n} of order n versus the generalised wheel graph $W_{2,6}$. As the very first step, we determine the Ramsey number $R\left(S_{n}, W_{2,6}\right)$ for the star graph S_{n}. To do so, we prove the following lemma.
Lemma 3.2.1. Let G be a graph of order $3 n-2$ and $\delta(G) \geq 2 n-1$ where $n \geq 5$. Then G contains $W_{2,6}$ as a subgraph.

Proof. The condition $\delta(G) \geq 2 n-1$ implies that \bar{G} does not contain S_{n}. Let $\omega(G)$ be the number of vertices in a maximum clique of G. By [25], it is known that $R\left(S_{n}, K_{4}\right)=3 n-2$, so we have $\omega(G) \geq 4$. If $\omega(G) \geq 8$, then G must contain every subgraph of order 8 , including $W_{2,6}$. So, we only need to consider the four cases $4 \leq \omega(G) \leq 7$.

Let $\omega=\omega(G)$ and $K=K_{\omega} \subseteq G$, and define the set $U=V(G)-V(K)$. Then $|U|=3 n-2-\omega$. Since $\delta(G) \geq 2 n-1$, every vertex in K is adjacent to at least $2 n-\omega$ vertices in U. This implies that there are at least $\omega(2 n-\omega)$ edges connecting K and U. Now, let

$$
\begin{aligned}
& X=\left\{u \in U:\left|N_{G}(u) \cap V(K)\right| \leq 3\right\} ; \\
& Y=\left\{u \in U:\left|N_{G}(u) \cap V(K)\right| \geq 4\right\} .
\end{aligned}
$$

Then $U=X \cup Y$ and $|X|+|Y|=|U|=3 n-2-\omega$. Since $K_{\omega+1}$ is not contained in G, each vertex in U is adjacent to at most $\omega-1$ vertices in K, so we have

$$
\begin{equation*}
\omega(2 n-\omega) \leq 3|X|+(w-1)|Y| . \tag{3.2.1}
\end{equation*}
$$

Case 1: $\omega(G)=7$.

By substituting $|X|=3 n-9-|Y|$ into Equation (3.2.1), we get $3|Y| \geq 5 n-22$. For $n \geq 5$, we have $|Y| \geq 1$. Hence, there must be a vertex in U, say u, that is adjacent to at least 4 vertices in K. Therefore, $G[V(K) \cup\{u\}]$ must contain $W_{2,6}$. Case 2: $\omega(G)=6$.

By substituting $|X|=3 n-8-|Y|$ into Equation (3.2.1) and noting that $n \geq 5$, we obtained the inequality $|Y| \geq \frac{3 n}{2}-6 \geq 2$.

Suppose there is a vertex in U, say u_{1}, that is adjacent to 5 vertices in K. Since $|Y| \geq 2$, there must be another vertex in U, say u_{2}, that is adjacent to at least 4 vertices in K. As there are only 6 vertices in K, u_{1} and u_{2} must be adjacent to at least 3 common vertices in K, say k_{1}, k_{2}, k_{3}. Now let $k_{4} \in V(K) \cap$ $N_{G}\left(u_{2}\right) \backslash\left\{k_{1}, k_{2}, k_{3}\right\}, k_{5} \in V(K) \cap N_{G}\left(u_{1}\right) \backslash\left\{k_{1}, \ldots, k_{4}\right\}$ and $k_{6} \in V(K) \backslash\left\{k_{1}, \ldots, k_{5}\right\}$. We see that $G\left[V(K) \cup\left\{u_{1}, u_{2}\right\}\right]$ contains $W_{2,6}$ with k_{1} and k_{2} in the centre and $k_{5} u_{1} k_{3} u_{2} k_{4} k_{5} k_{6}$ as C_{6}.

We may therefore assume that every vertex in U is adjacent to at most 4 vertices in K. In this case, we have

$$
6(2 n-6) \leq 3|X|+4|Y|=3|U|+|Y|=3(3 n-8)+|Y|
$$

implying that $|Y| \geq 3 n-12$ and $|X| \leq 4$. Since $n \geq 5$ and $\delta(G) \geq 2 n-1 \geq 9$, we deduce that $G[Y]$ has no isolated vertex.

Let u_{1} and u_{2} be two adjacent vertices in Y, and note that at least two vertices $k_{1}, k_{2} \in K$ are each adjacent to both u_{1} and u_{2}. Now, let

$$
\begin{aligned}
k_{3} & \in V(K) \cap N_{G}\left(u_{1}\right) \backslash\left\{k_{1}, k_{2}\right\}, \\
k_{4} & \in V(K) \\
\text { and } \quad\left\{N_{5}\left(u_{5}\right) \backslash\left\{k_{1}, k_{2}, k_{3}\right\}\right. & =V(K) \backslash\left\{k_{1}, \ldots, k_{4}\right\} .
\end{aligned}
$$

We again see that $G\left[V(K) \cup\left\{u_{1}, u_{2}\right\}\right]$ contains $W_{2,6}$ with k_{1} and k_{2} in the centre and $k_{3} u_{1} u_{2} k_{4} k_{5} k_{6} k_{3}$ as C_{6}.
Case 3: $\omega(G)=5$.
By substituting $|X|=3 n-7-|Y|$ into Equation (3.2.1), we obtain $|Y| \geq n-4$. We note here that if $|Y|=n-4$, then every vertex in X is adjacent to exactly 3 vertices in K.

Write $V(K)=\left\{k_{1}, \ldots, k_{5}\right\}$. We can partition Y into five sets A_{1}, \ldots, A_{5} where

$$
A_{i}=\left\{y \in Y: y \text { is not adjacent to } k_{i}\right\} .
$$

Since each vertex in Y is adjacent to exactly 4 vertices in K, we see that each vertex in A_{i} is adjacent to k_{j} for $j \in\{1, \ldots, 5\}-\{i\}$.

Note that A_{i} is an independent set, for we could otherwise find two vertices in A_{i}, say a_{1} and a_{2}, such that a_{1} is adjacent to a_{2}. Now, $G[S]=K_{6}$ where $S=\left\{a_{1}, a_{2}, k_{j}: j \in\{1, \ldots, 5\}-\{i\}\right\}$, a contradiction since $\omega(G)=5$.

Next, note that if any three of the five sets are non-empty, then we have $W_{2,6}$ in G. For illustration purposes, suppose that $A_{i} \neq \emptyset$ for $i=1,2,3$. Let $a_{i} \in A_{i}$. Then $G\left[V(K) \cup\left\{a_{1}, a_{2}, a_{3}\right\}\right]$ contains $W_{2,6}$ with k_{4} and k_{5} in the centre and $k_{1} a_{3} k_{2} a_{1} k_{3} a_{2} k_{1}$ as C_{6}. Hence, we may assume that $A_{i}=\emptyset$ for $i=3,4,5$. So, $Y=A_{1} \cup A_{2}$. We also may assume that $\left|A_{1}\right| \geq\left|A_{2}\right|$. Since $|Y| \geq n-4$ and $n \geq 5$, we have $\left|A_{1}\right| \geq 1$.

Case 3.1: Suppose that $\left|A_{1}\right| \geq 2$.
Let $x_{1}, x_{2} \in A_{1}$ and set $U^{\prime}=U-\left\{x_{1}, x_{2}\right\}$. Then $\left|U^{\prime}\right|=3 n-7-2=3 n-9$. Also, let

$$
\begin{aligned}
X^{\prime} & =\left\{u \in U^{\prime}:\left|N_{G}(u) \cap V(K)\right| \leq 2\right\} ; \\
Y^{\prime} & =\left\{u \in U^{\prime}:\left|N_{G}(u) \cap V(K)\right| \geq 3\right\} .
\end{aligned}
$$

Since each x_{i} is adjacent to 4 vertices in K and $\left|E_{G}(U, V(K))\right| \geq 5(2 n-5)$, we have

$$
5(2 n-5)-2 \times 4 \leq 2\left|X^{\prime}\right|+4\left|Y^{\prime}\right|=2\left|U^{\prime}\right|+2\left|Y^{\prime}\right|=2(3 n-9)+2\left|Y^{\prime}\right|
$$

implying that $\left|Y^{\prime}\right| \geq 2 n-7$ and $\left|X^{\prime}\right| \leq n-2$. Let

$$
\begin{aligned}
& X_{1}=\left\{u \in U^{\prime}: u \text { is adjacent to } x_{1}\right\} ; \\
& X_{2}=\left\{u \in U^{\prime}: u \text { is adjacent to } x_{2}\right\} .
\end{aligned}
$$

Since x_{i} is adjacent to 4 vertices in K and x_{1} and x_{2} are not adjacent to each other, we have $\left|X_{i}\right| \geq 2 n-5$. Therefore, $\left|X_{1} \cap X_{2}\right|=\left|X_{1}\right|+\left|X_{2}\right|-\left|X_{1} \cup X_{2}\right| \geq$ $2(2 n-5)-(3 n-9)=n-1>\left|X^{\prime}\right|$, and we deduce that $Y^{\prime} \cap X_{1} \cap X_{2} \neq \emptyset$.

Let $u^{\prime} \in X_{1} \cap X_{2} \cap Y^{\prime}$. Note that u^{\prime} is adjacent to x_{1} and x_{2}, and u^{\prime} is also adjacent to at least three vertices in K. Therefore, u^{\prime} must be adjacent to at least two of k_{1}, \ldots, k_{5}, without loss of generality say k_{2} and k_{3}. Then $G\left[V(K) \cup\left\{x_{1}, x_{2}, u^{\prime}\right\}\right]$ contains $W_{2,6}$ with k_{2} and k_{3} in the centre and $x_{1} u^{\prime} x_{2} k_{4} k_{1} k_{5} x_{1}$ as C_{6}.
Case 3.2: Suppose that $\left|A_{1}\right|=1$.
Since $n-4 \leq|Y|=\left|A_{1} \cup A_{2}\right| \leq 2$, we must have $|Y|=2$ with $5 \leq n \leq 6$, or $|Y|=1$ with $n=5$.
Case 3.2.1: Suppose that $|Y|=2$; that is, $\left|A_{1}\right|=\left|A_{2}\right|=1$.
Let $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$. Recall that every vertex in X is adjacent to at most three vertices in K. If $u \in X$ is adjacent to 3 vertices in K and also adjacent to a vertex in Y, then we may assume $\left|N_{G}(u) \cap\left\{k_{3}, k_{4}, k_{5}\right\}\right|=1$. Suppose otherwise; then without loss of generality, u is adjacent to x_{1}, k_{3}, k_{4}, and another vertex in K. It is then straightforward to check that G contains $W_{2,6}$ with k_{3} and k_{4} in the centre and C_{6} in $G\left[\left\{k_{1}, k_{2}, k_{5}, u, x_{1}, x_{2}\right\}\right]$.

Now if $n=6$, then we have equality in Equation (3.2.1), implying that every vertex in X is adjacent to exactly 3 vertices in K. Since $\delta(G) \geq 2 n-1=11$, we must have x_{1} adjacent to at least 6 vertices in X. Let A be a subset of $N_{G}\left(x_{1}\right) \cap X$ with $|A|=6$. We see that every vertex in A is adjacent to both k_{1} and k_{2}. It is straightforward to deduce from the degree conditions that $\delta(G[A]) \geq 3$, implying that $G[A]$ contains C_{6} by Lemma 2.2.10. Therefore, G contains $W_{2,6}$.

For the case when $n=5$, we have $|G|=13, \delta(G) \geq 9$ and $|X|=6$. By the degree conditions, every vertex in X is adjacent to some vertex in Y. A more refined analysis similar to those used in obtaining Equation (3.2.1) implies that 5 vertices in X are each adjacent to 3 vertices in K, while the remaining vertex $v \in X$ is adjacent to either 2 or 3 vertices in K. Note that every vertex in $X-\{v\}$ is adjacent to both k_{1} and k_{2}.

Suppose that v is adjacent to k_{j} for some $j \in\{1,2\}$. Then $\left|N_{G}\left(k_{j}\right)\right|=11$. Since \bar{G} does not contain S_{5}, and $R\left(W_{6}, S_{5}\right)=11$ by Theorem 2.2.2, we deduce that $G\left[N_{G}\left(k_{j}\right)\right]$ contains W_{6} which, together with k_{j}, forms $W_{2,6}$ in G.

The remaining case is, without loss of generality, when $N_{G}(v) \cap V(K)=\left\{k_{3}, k_{4}\right\}$. Since $\delta(G) \geq 9, v$ is adjacent to both x_{1} and x_{2}. Therefore, $G\left[V(K) \cup\left\{v, x_{1}, x_{2}\right\}\right]$ contains $W_{2,6}$ with k_{3} and k_{4} in the centre and $k_{1} x_{2} v x_{1} k_{2} k_{5} k_{1}$ as C_{6}.
Case 3.2.2: Suppose that $|Y|=1$.
Since $|Y| \geq n-4$, we must have $n=5$ and equality in (3.2.1). So in this case, the graph G is of order 13 with $\delta(G) \geq 9$ such that, whenever G contains K_{5}, the following property P on G holds:
there is exactly one vertex in $V(G)-V\left(K_{5}\right)$ that is adjacent to exactly 4 vertices in K_{5} while the remaining vertices are each adjacent to exactly 3 vertices in K_{5}; and every vertex in $V\left(K_{5}\right)$ has degree exactly 9 in G.
Now let $x \in Y$; then x is adjacent to all vertices except the vertex k_{1} in K. Observe that $G\left[V(K) \cup\{x\}-\left\{k_{1}\right\}\right]$ is another K_{5} in G. Therefore, by property P, x has degree exactly 9 in G. Setting $A=V(G)-(V(K) \cup\{x\})$, we shall now show that there is another K_{5} in $G[A]$.

From the above discussion together with property P, it is straightforward to check that $G[V(K) \cup\{x\}]$ has exactly 14 edges, and the number of edges in G from $V(K) \cup\{x\}$ to A is exactly 26 , implying that $G[A]$ has at least 19 edges. Since $G[A]$ is a graph of order 7 with at least 19 edges, it is easy to see that $G[A]$ contains K_{5}, either by deducing from Turan's Theorem [52], or by observing that $G[A]$ can be obtained by deleting at most two edges from K_{7}.

Suppose that K^{\prime} is a K_{5} subgraph of $G[A]$. From the remaining three vertices in $V(G)-\left(V(K) \cup V\left(K^{\prime}\right)\right)$, property P implies that there must be a vertex, say y, that is adjacent to exactly three vertices in K and exactly 3 vertices in K^{\prime}. This implies that y has degree at most 8 , which is a contradiction.
Case 4: $\omega(G)=4$.
Recall that K is a K_{4} subgraph of G and that $U=V(G)-V(K)$. Since $\omega(G)=4$, we must have $Y=\emptyset$; that is, each vertex in U is adjacent to at most 3 vertices in K. Partition $U=X^{\prime} \cup Y^{\prime}$ as follows:

$$
\begin{aligned}
& X^{\prime}=\left\{u \in U:\left|N_{G}(u) \cap V(K)\right| \leq 2\right\} ; \\
& Y^{\prime}=\left\{u \in U:\left|N_{G}(u) \cap V(K)\right|=3\right\} .
\end{aligned}
$$

Since $\delta(G) \geq 2 n-1$ and $|U|=3 n-6$, we have

$$
4(2 n-4) \leq 2\left|X^{\prime}\right|+3\left|Y^{\prime}\right|=2|U|+\left|Y^{\prime}\right|=2(3 n-6)+\left|Y^{\prime}\right|,
$$

implying that $\left|Y^{\prime}\right| \geq 2 n-4$ and $\left|X^{\prime}\right| \leq n-2$. We note here that if $\left|Y^{\prime}\right|=2 n-4$, then every vertex in X^{\prime} must be adjacent to exactly 2 vertices in K.

Let $V(K)=\left\{k_{1}, \ldots, k_{4}\right\}$. We can further partition Y^{\prime} into four sets A_{1}, \ldots, A_{4} where

$$
A_{i}=\left\{y \in Y: y \text { is not adjacent to } k_{i}\right\} .
$$

Since each vertex in Y is adjacent to exactly 3 vertices in K, we see that each vertex in A_{i} is adjacent to k_{j} for $j \in\{1,2,3,4\}-\{i\}$. Furthermore, each A_{i} is an independent set since $\omega(G)=4$.

Without loss of generality, assume that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq\left|A_{3}\right| \geq\left|A_{4}\right|$. Since $\left|Y^{\prime}\right| \geq 2 n-4 \geq 6$, we have $\left|A_{1}\right| \geq 2$.
Case 4.1: Suppose that $\left|A_{2}\right| \leq 1$.
Then $\left|A_{4}\right| \leq\left|A_{3}\right| \leq 1$. This implies that $\left|A_{1}\right| \geq 2 n-4-3=2 n-7$. Now, k_{1} is not adjacent to any of the vertices in A_{1}, so k_{1} is adjacent to at most

$$
(|V(G)|-1)-\left|A_{1}\right| \leq((3 n-2)-1)-(2 n-7)=n+4
$$

vertices. Thus, $2 n-1 \leq\left|N_{G}\left(k_{1}\right)\right| \leq n+4$ which implies that $n \leq 5$. In this scenario, we must have $n=5,|V(G)|=13,\left|A_{1}\right|=3$, and $\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=1$; also, k_{1} is adjacent to all vertices in $\left(V(G)-\left\{k_{1}\right\}\right)-A_{1}$. Let $A_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$, $A_{2}=\left\{x_{4}\right\}, A_{3}=\left\{x_{5}\right\}$ and $A_{4}=\left\{x_{6}\right\}$. Since A_{1} is independent, x_{1} is not adjacent to x_{2} or x_{3}. Now, x_{1} is also not adjacent to k_{1}, so x_{1} must be adjacent to all vertices in $V(G)-\left\{x_{2}, x_{3}, k_{1}\right\}$, since $\delta(G) \geq 9$. Similarly, x_{2} and x_{3} are adjacent to all vertices in $V(G)-\left(A_{1} \cup\left\{k_{1}\right\}\right)$. Thus, $\left|N_{G}\left(k_{1}\right)\right|=\left|N_{G}(a)\right|=9$ for all $a \in A_{1}$.

Since $|V(G)|=13$, the Handshaking Lemma implies that one of the vertices in $V(G)-\left(A_{1} \cup\left\{k_{1}\right\}\right)$ must be of degree at least 10. Let $y \in V(G)-\left(A_{1} \cup\left\{k_{1}\right\}\right)$ and $\left|N_{G}(y)\right| \geq 10$. If $\left|N_{G}(y)\right| \geq 11$, Then by Theorem 2.2 .2 , either $\bar{G}\left[N_{G}(y)\right]$ contains S_{5} or $G\left[N_{G}(y)\right]$ contains W_{6}. If the former holds, then \bar{G} contains S_{5}, and this contradicts that $\delta(G) \geq 9$. Hence, the latter must hold; that is, $G\left[N_{G}(y)\right]$ contains W_{6}. Since y is adjacent to all vertices in $W_{6}, G\left[V\left(W_{6}\right) \cup\{y\}\right]$ contains $W_{2,6}$. So, we may assume that $\left|N_{G}(y)\right|=10$. Then $\left|N_{G}(y) \cap\left(V(G)-\left(A_{1} \cup\left\{k_{1}\right\}\right)\right)\right|=6$, since y is adjacent to all vertices in $A_{1} \cup\left\{k_{1}\right\}$.

Let $Z=N_{G}(y) \cap\left(V(G)-\left(A_{1} \cup\left\{k_{1}\right\}\right)\right)$. Then there are only two vertices in $V(G)-\left(Z \cup A_{1} \cup\left\{y, k_{1}\right\}\right)$, say u_{1} and u_{2}. Suppose there is a vertex $z_{0} \in Z$ with $\left|N_{G}\left(z_{0}\right) \cap Z\right| \geq 3$. We may assume that z_{0} is adjacent to $z_{1}, z_{2}, z_{3} \in Z$. Then $G\left[\left\{k_{1}, x_{1}, x_{2}, z_{1}, z_{2}, z_{3}, z_{0}, y\right\}\right]$ contains $W_{2,6}$ with $k_{1} z_{1} x_{1} z_{2} x_{2} z_{3} k_{1}$ as C_{6} and the vertices y and z_{0} in the centre.

Suppose that $\left|N_{G}(z) \cap Z\right| \leq 2$ for all $z \in Z$. Let $z_{1} \in Z$; then z_{1} is adjacent to all vertices in $A_{1} \cup\left\{k_{1}, y\right\}$. Since $\delta(G) \geq 9, z_{1}$ must be adjacent to u_{1} and u_{2}. In fact, for each $z \in Z, z$ is adjacent to u_{1} and u_{2}. Note that Z cannot be an independent set, so let $z_{1}, z_{2} \in Z$ be adjacent to each other. Then $G\left[\left\{k_{1}, x_{1}, x_{2}, z_{1}, z_{2}, u_{1}, u_{2}, y\right\}\right]$ contains $W_{2,6}$ with z_{1} and z_{2} in the centre and $k_{1} y x_{1} u_{1} x_{2} u_{2} k_{1}$ as C_{6}.
Case 4.2: Suppose that $\left|A_{2}\right| \geq 2$.
We first claim that we may assume that there are no two independent edges connecting A_{i} and A_{j} for any $i \neq j$. Indeed, if $x_{1} y_{1}$ and $x_{2} y_{2}$ are two independent edges with $x_{1}, x_{2} \in A_{i}$ and $y_{1}, y_{2} \in A_{j}$, then we see that G contains $W_{2,6}$ with $V(K)-\left\{k_{i}, k_{j}\right\}$ in the centre and $k_{j} x_{1} y_{1} k_{i} y_{2} x_{2} k_{j}$ as C_{6}.

Since A_{1} and A_{2} are independent sets, each of size at least 2, and there are no two independent edges connecting A_{1} and A_{2}, there is an isolated vertex $a \in G\left[A_{1} \cup A_{2}\right]$. We consider the case when $a \in A_{1}$. The other case when $a \in A_{2}$ is similar.

Recall that $N_{G}(a) \cap V(K)=\left\{k_{2}, k_{3}, k_{4}\right\}$. We have

$$
(2 n-1)-3 \leq\left|N_{G}(a) \cap U\right| \leq 3 n-6-\left(\left|A_{1}\right|+\left|A_{2}\right|\right),
$$

so $\left|A_{1}\right|+\left|A_{2}\right| \leq n-2$. Since $\left|Y^{\prime}\right| \geq 2 n-4$ and $\left|A_{1}\right| \geq\left|A_{2}\right| \geq\left|A_{3}\right| \geq\left|A_{4}\right|$, this can only happen when $\left|A_{i}\right|=\frac{n}{2}-1$ for all $1 \leq i \leq 4$ and n is even.

Note that we now have $\left|V(G)-\left(\left\{k_{1}\right\} \cup A_{1} \cup A_{2}\right)\right|=2 n-1$, and so by the minimum degree condition, a must be adjacent to all vertices in $V(G)-\left(\left\{k_{1}\right\} \cup A_{1} \cup A_{2}\right)$ and, in particular, to all vertices in $A_{3} \cup A_{4}$. Pick a vertex $b \in A_{1}-\{a\}$; then b must be adjacent to at least one vertex in $A_{3} \cup A_{4}$, as we otherwise would have

$$
2 n-1 \leq\left|N_{G}(b)\right| \leq(3 n-2)-\left|\left\{k_{1}\right\} \cup A_{1} \cup A_{3} \cup A_{4}\right|=\frac{3 n}{2},
$$

giving $n \leq 2$, which is a contradiction.
Finally, assume without loss of generality that b is adjacent to a vertex in A_{3}. Then as $\left|A_{3}\right| \geq 2$ and a is adjacent to all vertices in A_{3}, we have two independent edges connecting A_{1} and A_{3}. This contradicts the assumption that there are no two independent edges connecting A_{i} and A_{j} for any $i \neq j$.

This completes the proof of the lemma.
Now, we can determine the Ramsey numbers for star graphs versus the generalised wheel graph $W_{2,6}$.
Theorem 3.2.2. If $n \geq 5$, then $R\left(S_{n}, W_{2,6}\right)=3 n-2$.
Proof. From Theorem 2.2.7, we know that $R\left(S_{n}, W_{2,6}\right) \geq(2+1)(n-1)+1=3 n-2$. From Lemma 3.2.1, we have $R\left(S_{n}, W_{2,6}\right) \leq 3 n-2$ for $n \geq 5$. We therefore conclude that $R\left(S_{n}, W_{2,6}\right)=3 n-2$.

Now, we will look at a similar result for two tree graphs, namely $S_{n}(1,1)$ and $S_{n}(1,2)$, versus the generalised wheel graph $W_{2,6}$.
Theorem 3.2.3. If $n \geq 5$, then $R\left(T_{n}, W_{2,6}\right)=3 n-2$ for $T_{n} \in\left\{S_{n}(1,1), S_{n}(1,2)\right\}$.
Proof. From Theorem 2.2.7, we know that $R\left(T_{n}, W_{2,6}\right) \geq(2+1)(n-1)+1=3 n-2$. We therefore only need to look at the upper bound.
Case 1: Suppose that $T_{n}=S_{n}(1,1)$.
Let G be a graph of order $3 n-2$ such that \bar{G} does not contain $W_{2,6}$. Then since $R\left(S_{n}, W_{2,6}\right) \leq 3 n-2, G$ must contain S_{n}. Let T be a S_{n} subgraph of G, let its centre be v_{0}, and define $L=N_{T}\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n-1}\right\}$. Set $U=V(G)-V(T)$; then $|U|=2(n-1)$. If G does not contain $S_{n}(1,1)$, then L must be an independent set and $E(L, U)=\emptyset$.

If $n \geq 6$, then any 3 vertices from L and 3 vertices from U form C_{6} in \bar{G} and, with another 2 vertices from L as the centre, give $W_{2,6}$ in \bar{G}, a contradiction.

Suppose that $n=5$. Then G is of order 13 and $|U|=8$. If $\delta(\bar{G}[U]) \geq 4$, then $\bar{G}[U]$ contains C_{6} by Lemma 2.2.10. So, together with any two vertices in L as the centre, we have $W_{2,6}$ in \bar{G}, a contradiction. If $\delta(\bar{G}[U]) \leq 3$, then $\Delta(G[U]) \geq 4$ and $G[U]$ contains another S_{5} disjoint from T, say $T^{\prime}=S_{n}$. Let the centre of T^{\prime} be u_{0} and define $L^{\prime}=N_{T^{\prime}}\left(u_{0}\right)=\left\{u_{1}, \ldots, u_{4}\right\}$. If G does not contain $S_{5}(1,1)$, then L^{\prime} is an independent set and $E\left(L, L^{\prime}\right)=\emptyset$. Then any 8 vertices from $L \cup L^{\prime}$ form $W_{2,6}$ in \bar{G}, a contradiction.

Thus, $R\left(S_{n}(1,1), W_{2,6}\right) \leq 3 n-2$.
Case 2: Suppose that $T_{n}=S_{n}(1,2)$.

If $n \equiv 1,2(\bmod 3)$, then $R\left(S_{n}(1,2), W_{6}\right)=2 n-1$ by Theorem 2.2.2. It follows from Theorem 3.1.2 that $R\left(S_{n}(1,2), W_{2,6}\right) \leq 3 n-2$.

Suppose that $n \equiv 0(\bmod 3)$. Then $n \geq 6$. Let G be a graph of order $3 n-2$ such that \bar{G} does not contain $W_{2,6}$. By Case $1, G$ contains a subgraph $T=S_{n}(1,1)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-2}\right\} \cup\left\{v_{1} v_{n-1}\right\}$, and define $U=V(G)-V(T)$; then $|U|=2(n-1)$. If G does not contain $S_{n}(1,2)$, then neither v_{1} nor v_{n-1} are adjacent to any of v_{2}, \ldots, v_{n-2}, and v_{n-1} is not adjacent to any vertex in U. Now, we consider the following two cases.
Case 2.1: $N_{G}\left(v_{2}\right) \cap U=\emptyset$.
If $\delta\left(\bar{G}[U] \geq n-1\right.$, then by Lemma 2.2.10, $\bar{G}[U]$ contains C_{6}. This C_{6} together with v_{2} and v_{n-1} as the centre gives $W_{2,6}$ in \bar{G}, a contradiction. If $\delta(\bar{G}[U]) \leq n-2$, then $\Delta(G[U]) \geq n-1$, so $G[U]$ contains a subgraph $T=S_{n}$. Let u_{0} be the centre of T and define $L^{\prime}=N_{T^{\prime}}\left(u_{0}\right)=\left\{u_{1}, \ldots, u_{n-1}\right\}$. Suppose that G does not contain $S_{n}(1,2)$. Then none of v_{1}, \ldots, v_{n-1} is adjacent to any vertex in L^{\prime} in G. If L^{\prime} is an independent set, then \bar{G} contains $W_{2,6}$ with u_{1} and u_{5} in the centre and $v_{2} u_{2} v_{3} u_{3} v_{4} u_{4} v_{2}$ as C_{6}.

Suppose that L^{\prime} is not an independent set. We may assume that u_{1} and u_{2} are adjacent to each other. Then u_{1} is not adjacent to u_{3}, \ldots, u_{n-1} since G does not contain $S_{n}(1,2)$. Furthermore, u_{3} is adjacent to at most one vertex in $\left\{u_{4}, \ldots, u_{n-1}\right\}$. We may assume that u_{3} is not adjacent to u_{4}. Then \bar{G} contains $W_{2,6}$ with u_{1} and u_{3} in the centre and $v_{1} v_{2} v_{n-1} v_{3} u_{4} v_{4} v_{1}$ as C_{6}.
Case 2.2: v_{2} is adjacent to a vertex in U, say b.
Set $U^{\prime}=V(G)-(V(T) \cup\{b\})$; then $\left|U^{\prime}\right|=2 n-3$. Suppose that G does not contain $S_{n}(1,2)$. Then neither v_{2} nor b are adjacent to any of $v_{1}, v_{3}, v_{4}, \ldots, v_{n-1}$, and b is not adjacent to any vertex in U^{\prime}. If $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq n-1$, then by Lemma 2.2.10, $\bar{G}\left[U^{\prime}\right]$ contains C_{6} which, together with v_{n-1} and b as the centre, gives $W_{2,6}$ in \bar{G}, a contradiction. If $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq n-2$, then $\Delta\left(G\left[U^{\prime}\right]\right) \geq n-2$, so $G\left[U^{\prime}\right]$ contains a subgraph $T=S_{n-1}$. Let u_{0} be the centre of T^{\prime} and define $L^{\prime}=N_{T^{\prime}}\left(u_{0}\right)=$ $\left\{u_{1}, \ldots, u_{n-2}\right\}$. Since G does not contain $S_{n}(1,2)$, none of v_{1}, \ldots, v_{n-1} is adjacent to any vertex in L^{\prime} in G. If L^{\prime} is an independent set, then \bar{G} contains $W_{2,6}$ with u_{1} and u_{4} in the centre and $v_{2} u_{2} v_{3} b v_{4} u_{3} v_{2}$ as C_{6}.

Suppose that L^{\prime} is not an independent set. We may assume that u_{1} and u_{2} are adjacent to each other. Then neither u_{1} nor u_{2} is adjacent to any other vertices in $V\left(U^{\prime}\right)-V\left(T^{\prime}\right)$ in G. Let $w \in V\left(U^{\prime}\right)-V\left(T^{\prime}\right)$. Then \bar{G} contain a $W_{2,6}$ with b and v_{n-1} in the centre and $u_{1} w u_{2} v_{3} u_{3} v_{4} u_{1}$ as C_{6}.

Thus, $R\left(S_{n}(1,2), W_{2,6}\right) \leq 3 n-2$ which completes the proof.
Next, we will determine the Ramsey numbers $R\left(T_{n}, W_{2,6}\right)$ for all other tree graphs T_{n} versus the generalised wheel graph $W_{2,6}$.
Theorem 3.2.4. If $n \geq 5$, then $R\left(T_{n}, W_{2,6}\right)=3 n-2$ where T_{n} is any tree graph of order n apart from $S_{n}, S_{n}(1,1)$ and $S_{n}(1,2)$.

Proof. Let T_{n} be any tree graph of order n apart from $S_{n}, S_{n}(1,1)$ and $S_{n}(1,2)$. By Theorem 2.2.7, $R\left(T_{n}, W_{2,6}\right) \geq(2+1)(n-1)+1=3 n-2$. Also, by Theorems 2.2.2 and 3.1.2, $R\left(T_{n}, W_{2,6}\right) \leq R\left(T_{n}, W_{6}\right)+(2-1)(n-1)=(2 n-1)+(n-1)=3 n-2$.

We conclude that $R\left(T_{n}, W_{2,6}\right)=3 n-2$.

By Theorems 3.2.2, 3.2.3 and 3.2.4, we conclude that $R\left(T_{n}, W_{2,6}\right)=3 n-2$ for each tree graph T_{n} of order n. We can now consider the more general Ramsey numbers for the generalised wheel graphs $W_{s, m}$.

3.3 The Ramsey number $R\left(T_{n}, W_{s, 6}\right)$ and $R\left(T_{n}, W_{s, 7}\right)$

In this section, we investigate the Ramsey numbers for tree graphs T_{n} of order n versus the generalised wheel graph $W_{s, 6}$ and $W_{s, 7}$. We start by considering $W_{s, 6}$.
Theorem 3.3.1. Let $n \geq 5$ and $s \geq 2$. Then $R\left(T_{n}, W_{s, 6}\right)=(s+1)(n-1)+1$.
Proof. By Theorem 3.2.4, $R\left(T_{n}, W_{2,6}\right)=3 n-2$. By applying Lemma 3.1.1 repeatedly, we see that $R\left(T_{n}, W_{s, 6}\right) \leq(s+1)(n-1)+1$. Furthermore, since $\chi\left(W_{s, 6}\right)=s+2$ and $t\left(W_{s, 6}\right)=1$, Theorem 2.2.7 implies that $R\left(T_{n}, W_{s, 6}\right) \geq(s+1)(n-1)+1$. Hence, $R\left(T_{n}, W_{s, 6}\right)=(s+1)(n-1)+1$.

Next, we consider $W_{s, 7}$.
Theorem 3.3.2. Let $n \geq 5$ and $s \geq 1$. Then $R\left(T_{n}, W_{s, 7}\right)=(s+2)(n-1)+1$.
Proof. Note that $\chi\left(W_{s, 7}\right)=s+3$ and $t\left(W_{s, 7}\right)=1$. Therefore, Theorem 2.2.7 implies that $R\left(T_{n}, W_{s, 7}\right) \geq(s+2)(n-1)+1$ for each tree graph T_{n} of order n. Also, since $W_{s, 7}$ is a subgraph of $W_{s+1,6}, R\left(T_{n}, W_{s, 7}\right) \leq R\left(T_{n}, W_{s+1,6}\right)=(s+2)(n-1)+1$ by Theorem 3.3.1. Hence, $R\left(T_{n}, W_{s, 7}\right)=(s+2)(n-1)+1$.

3.4 Other results and possible future work

In this section, we state a conjecture.
Conjecture 3.4.1. Suppose that $m \geq 3$ and $s \geq 2$. Then for sufficiently large n,

$$
R\left(T_{n}, W_{s, m}\right)= \begin{cases}(s+1)(n-1)+1, & \text { if } m \text { is even } \\ (s+2)(n-1)+1, & \text { if } m \text { is odd }\end{cases}
$$

Brennan [10] determined the Ramsey numbers of large trees versus odd cycles.
Theorem 3.4.2. [10] For all odd $m \geq 3$ and $n \geq 25 m, R\left(T_{n}, C_{m}\right)=2 n-1$.
Lemma 3.4.3. Suppose that $\ell \geq 2, n \geq\left\lfloor\frac{m}{2}\right\rfloor+1$ and

$$
r(m)= \begin{cases}2 & , \text { if } m \text { is odd } \\ 1 & , \text { if } m \text { is even }\end{cases}
$$

If $R\left(T_{n}, W_{s, m}\right) \leq(s+r(m))(n-1)+\ell$, then

$$
R\left(T_{n}, W_{s+2, m}\right) \leq(s+2+r(m))(n-1)+\ell-1
$$

Proof. Let G be a graph of order $(s+2+r)(n-1)+\ell-1$ where $r=r(m)$. Suppose that G does not contain T_{n}.
Case 1: Suppose that G has a vertex of degree at most $n-3$, say v_{0}.

Let $U_{1}=\left\{v_{0}\right\} \cup N_{G}\left(v_{0}\right)$; then $\left|U_{1}\right| \leq n-2$. Let $Y_{1}=V(G)-U_{1}$ and consider the graph $G\left[Y_{1}\right]$. Note that $G\left[Y_{1}\right]$ is of order at least

$$
|V(G)|-\left|U_{1}\right| \geq((s+2+r)(n-1)+\ell-1)-(n-2)=(s+1+r)(n-1)+\ell
$$

Since the generalised wheel graph $W_{s+1, m}$ is $K_{1}+W_{s, m}$, Lemma 3.1.1 implies that

$$
R\left(T_{n}, W_{s+1, m}\right) \leq R\left(T_{n}, W_{s, m}\right)+n-1 \leq(s+r+1)(n-1)+\ell .
$$

Therefore, $\bar{G}\left[Y_{1}\right]$ contains $W_{s+1, m}$. Note that v_{0} is adjacent to every vertex of Y_{1} in \bar{G}. In particular, v_{0} is adjacent to every vertex of this $W_{s+1, m}$ in \bar{G}. Hence, \bar{G} contains $W_{s+2, m}$.
Case 2: Suppose that each vertex of G has degree at least $n-2$.
Subcase 2.1: Suppose that each component of G is of order at most $n-1$.
Then every component of G is K_{n-1}. This implies that \bar{G} contains a complete $(s+3+r)$-partite graph, where each part has exactly $n-1 \geq\left\lfloor\frac{m}{2}\right\rfloor$ vertices. It is straightforward to see that this complete $(s+3+r)$-partite graph contains $W_{s+2, m}$. Indeed, C_{m} is a subgraph of the induced subgraph on $r+1$ of the vertex classes, and K_{s+2} is a subgraph of the induced subgraph on the remaining $s+2$ vertex classes.
Subcase 2.2: Suppose that G has a component, say H_{0}, of order at least n.
Claim: There are two vertices $u, v \in V\left(H_{0}\right)$ such that
(i) u is not adjacent to v in G, and
(ii) $\left|N_{G}(u) \cup N_{G}(v)\right| \leq 2 n-5$.

Proof. Suppose that $T_{n}=S_{n}$. Then every vertex is of degree $n-2$ in G. Let $u \in V\left(H_{0}\right)$ and consider the graph $G\left[\{u\} \cup N_{G}(u)\right]$. Note that it is of order $n-1$ and that it is a subgraph of H_{0}. Since H_{0} is connected, there is a vertex $v \in$ $V\left(H_{0}\right)-\left(\{u\} \cup N_{G}(u)\right)$ that is adjacent to some vertex in $N_{G}(u)$. Note that u is not adjacent to v and $N_{G}(u) \cap N_{G}(v) \neq \emptyset$. Therefore,

$$
\begin{aligned}
\left|N_{G}(u) \cup N_{G}(v)\right| & =\left|N_{G}(u)\right|+\left|N_{G}(v)\right|-\left|N_{G}(u) \cap N_{G}(v)\right| \\
& =(n-2)+(n-2)-\left|N_{G}(u) \cap N_{G}(v)\right| \leq 2 n-4-1=2 n-5 .
\end{aligned}
$$

Suppose that $T_{n} \neq S_{n}$. Then T_{n} can be drawn as a rooted tree with one vertex at level 1. Let L_{i} denote all the vertices at level i. Note that
(i) each vertex at level L_{i} is adjacent to a unique vertex at level L_{i-1}; and
(ii) no two vertices at level L_{i} are adjacent to each other.

Since $T_{n} \neq S_{n}, T_{n}$ has at least three levels. Since every vertex in H_{0} has degree at least $n-2, H_{0}$ has a subgraph T of order $n-1$, and it is also a subgraph of T_{n}. Let ℓ be the total levels of T_{n}. Then $\ell \geq 3$ and there is a vertex in T, say u_{0} at level $\ell-1$ such that if a vertex $x \in X=V\left(H_{0}\right)-V(T)$ and an edge $x u_{0} \in E\left(H_{0}\right)$ are added to T, then the resulting tree is T_{n}. This implies that u_{0} is not adjacent to any vertex in X. Since u_{0} has degree at least $n-2$, it must be of degree exactly $n-2$ and it is adjacent to every vertex in $V(T)-\left\{u_{0}\right\}$ in H_{0}.

Since H_{0} is connected and of order at least n, there is a vertex in X that is adjacent to a vertex in $V(T)$. Let Q be the set of all vertices at level ℓ in T that are adjacent to u_{0}. Consider the tree $T-Q$. Either there is an edge connecting
a vertex in X with a vertex in $T-Q$ or there is no edge connecting a vertex in X with a vertex in $T-Q$. Suppose that the latter holds and let b be a vertex in $T-Q$. Since b has degree at least $n-2$ and is not adjacent to any vertex in X, it must be of degree exactly $n-2$ and is adjacent to every vertex in $V(T)-\{b\}$. This means that $H_{0}[V(T)-Q]$ is a complete graph and every vertex in Q is adjacent to every vertex in $T-Q$.

Since H_{0} is connected, we can find a vertex a in X and a vertex q in Q such that $a q$ is an edge in H_{0}. Let c be the unique vertex at level $\ell-2$ that is adjacent to u_{0}. Now, we interchange the nodes c and q in T and consider the resulting graph T^{\prime}. We can do this because q is adjacent to every vertex in $T-Q$. Note that $V(T)=V\left(T^{\prime}\right)$. Let Q^{\prime} be the set of all the vertices at level ℓ in T^{\prime} that are adjacent to u_{0}. Then $a q$ is the edge connecting the vertex a in X with the vertex q in $T^{\prime}-Q^{\prime}$. Hence, we may assume from the beginning that there is an edge connecting a vertex in X, say z, with a vertex u in $T-Q$.

Let $u_{0} u_{1} \ldots u_{t}=u$ be the unique path in T connecting u_{0} to u_{t}. Note that u_{1} is the unique vertex at level $\ell-2$ that is adjacent to u_{0}. Since u_{0} is not adjacent to z, we have $t \geq 1$. We may assume that t is the smallest positive integer such that $N_{G}\left(u_{t}\right) \cap X \neq \emptyset$ and $N_{G}\left(u_{i}\right) \cap X=\emptyset$ for $0 \leq i \leq t-1$. This implies that each u_{0}, \ldots, u_{t-1} has degree $n-2$ in H_{0} and each u_{i} is adjacent to every vertex in $V(T)-\left\{u_{i}\right\}$ in H_{0}.

Suppose that z has degree at least $n-1$ in H_{0}. Then $N_{G}(z)=N_{H_{0}}(z) \geq n-1$. Now, we are going to form a new tree T^{*} which is a subgraph of H_{0}. Suppose that $t=1$. First, we remove u_{0} and all the vertices that are adjacent to u_{0} at level ℓ from T. Second, we add the vertex z at level $\ell-1$ and an edge connecting z to u_{1}. Let the resulting graph be T^{*}. Note that the graph T^{*} is of order $|V(T)|-\left|N_{T}\left(u_{0}\right)\right|+1=$ $n-\left|N_{G}\left(u_{0}\right)\right|$. So, $\left|V\left(T^{*}\right)-\{z\}\right|=n-\left|N_{T}\left(u_{0}\right)\right|-1$. Now, z has degree at least $n-1$ implies that we can find $\left|N_{T}\left(u_{0}\right)\right|$ vertices in $N_{G}(z)-\left(V\left(T^{*}\right)-\{z\}\right)$. By adding these vertices to level ℓ in T^{*} and edges connecting these vertices to z, the resulting tree is T_{n}, a contradiction.

Suppose that $t \geq 2$. First, we remove all the vertices that are adjacent to u_{0} at level ℓ from T. Note that $\left|N_{T}\left(u_{0}\right)\right|-1$ vertices are removed from T. Let the resulting graph be S. Second, we interchange the node u_{t} and u_{0} in S. This can be done as u_{0} is adjacent to every vertex in $V(T)-\left\{u_{0}\right\}$ in H_{0} and u_{1} is adjacent to u_{t} (recall that each u_{0}, \ldots, u_{t-1} has degree $n-2$ and is adjacent to every vertex in $\left.V(T)-\left\{u_{i}\right\}\right)$. Let the resulting graph be S^{\prime}. If u_{t} has degree at least $n-1$ in H_{0}, Then following the argument from the previous paragraph, adding some vertices in $N_{G}\left(u_{t}\right)$ and edges connecting them to u_{t} into the graph S^{\prime}, we obtain the tree T_{n}, a contradiction.

So, we may assume that u_{t} has degree $n-2$. Note also that if u_{t} is not adjacent to one of the vertices in $V(S)-\left\{u_{t}\right\}$ in H_{0}, then following the argument as in the previous paragraph, by adding some vertices in $N_{G}\left(u_{t}\right)$ and edges connecting them to u_{t} into the graph S^{\prime}, we obtain the tree T_{n}. So, we may assume that u_{t} is adjacent to every vertex in $V(S)-\left\{u_{t}\right\}$ in H_{0}. In this scenario, let's consider the graph T. We interchange the node u_{t} and u_{1} in T. This can be done because u_{t} is adjacent to all vertices that are adjacent to u_{1} in T. Now, we are in the situation as in the previous paragraph with $t=1$. Hence, we may assume that z has degree $n-2$.

Now, let $u=u_{t-1}$ and $v=z$. Then u and v are not adjacent in G and $u_{t} \in N_{G}(u) \cap N_{G}(v)$, which means that $\left|N_{G}(u) \cap N_{G}(v)\right| \geq 1$. Since u and v are of degree $n-2$, we have $\left|N_{G}(u) \cup N_{G}(v)\right| \leq 2 n-5$.

This completes the proof of the claim.
Let $u, v \in V\left(H_{0}\right)$ be two vertices satisfying the conditions in the Claim and let $Y_{0}=\{u, v\} \cup N_{G}(u) \cup N_{G}(v)$. Then

$$
\left|Y_{0}\right| \leq|\{u, v\}|+\left|N_{G}(u) \cup N_{G}(v)\right| \leq 2 n-3 .
$$

Let $Y_{1}=V(G)-Y_{0}$. Note that u and v are not adjacent to any vertices in Y_{1}. Consider the graph $G\left[Y_{1}\right]$. Note that $G\left[Y_{1}\right]$ is of order at least

$$
\begin{aligned}
|V(G)|-\left|Y_{0}\right| \geq((s+2+r)(n-1)+\ell-1)-(2 n-3) & =(s+r)(n-1)+\ell \\
& \geq R\left(T_{n}, W_{s, m}\right) .
\end{aligned}
$$

Thus, $\bar{G}\left[Y_{1}\right]$ contains $W_{s, m}$. Now, u and v are adjacent to each other and to each vertex in Y_{1} in \bar{G}. So, by adding u and v to the hub of $W_{s, m}$, we obtain $W_{s+2, m}$.

This completes the proof of the lemma.
Theorem 3.4.4. Let $m \geq 3$. Then
(a) If m is odd and $n \geq 25 m$, then $R\left(T_{n}, W_{s, m}\right)=(s+2)(n-1)+1$.
(b) If m is even, $n \geq 25(m-1)$ and $s \geq 4 n-3$, then $R\left(T_{n}, W_{s, m}\right)=(s+1)(n-1)+1$.

Proof. (a) For all odd $m \geq 3, \chi\left(W_{s, m}\right)=s+3$ and $t\left(W_{s, m}\right)=1$. By Theorem 2.2.7, we have $R\left(T_{n}, W_{s, m}\right) \geq(s+2)(n-1)+1$ for any tree of order n.

For the upper bound, recall that the wheel graph W_{m} is the graph $K_{1}+C_{m}$. Therefore, $R\left(T_{n}, W_{m}\right) \leq R\left(T_{n}, C_{m}\right)+(n-1)=3(n-1)+1$ by Theorem 3.4.2 and Lemma 3.1.1. Therefore, $R\left(T_{n}, W_{s, m}\right) \leq R\left(T_{n}, W_{m}\right)+(s-1)(n-1) \leq(s+2)(n-1)+1$ by Theorem 3.1.2. Hence, $R\left(T_{n}, W_{s, m}\right)=(s+2)(n-1)+1$.
(b) Now, m is even implies that $m-1$ is odd and $m-1 \geq 3$. Let G be a graph of order $3 n-2$. Suppose that G does not contain T_{n}. Then G contains a subtree T^{\prime} that is also a subtree of T_{n} and is maximal in the sense that it cannot be extended to a larger tree in T_{n}. Note that $T^{\prime} \neq T_{n}$. Thus, T^{\prime} is at most of order $n-1$. This implies that there is a vertex $u \in V\left(T^{\prime}\right)$ such that if a new vertex z^{\prime} and a new edge $u z^{\prime}$ are added to T^{\prime}, then it is a larger subtree of T_{n}. Thus, u is not adjacent to any vertex in $X=V(G)-V\left(T^{\prime}\right)$ in G.

We now consider the graph $G[X]$. It is of order at least $3 n-2-(n-1)=2 n-1$. By Theorem 3.4.2, $\bar{G}[X]$ contains C_{m-1}, say $a_{1} a_{2} \ldots a_{m-1} a_{1}$. Since u is adjacent to every vertex of X in $\bar{G}, a_{1} a_{2} \ldots a_{m-1} u a_{1}$ forms C_{m} in \bar{G}. Thus, $R\left(T_{n}, C_{m}\right) \leq 3 n-2$. By Lemma 3.1.1, $R\left(T_{n}, W_{m}\right) \leq R\left(T_{n}, C_{m}\right)+(n-1) \leq 2(n-1)+2 n-1$. By Lemma 3.4.3, $R\left(T_{n}, W_{3, m}\right) \leq 4(n-1)+2 n-2$ and then $R\left(T_{n}, W_{5, m}\right) \leq 6(n-1)+2 n-3$. Continuing this way, we see that $R\left(T_{n}, W_{2(2 n-1)-1, m}\right) \leq((2(2 n-1)-1)+1)(n-1)+1$. So, $R\left(T_{n}, W_{s, m}\right) \leq(s+1)(n-1)+1$ for all $s \geq 2(2 n-1)-1=4 n-3$ by Lemma 3.1.1 and induction.

For the lower bound, $\chi\left(W_{s, m}\right)=s+2$ and $t\left(W_{s, m}\right)=1$. By Theorem 2.2.7, $R\left(T_{n}, W_{s, m}\right) \geq(s+1)(n-1)+1$, so $R\left(T_{n}, W_{s, m}\right)=(s+1)(n-1)+1$.

Chapter 4

Ramsey numbers for tree graphs with maximum degree of

 $n-1, n-2$ and $n-3$ versus the wheel graph of order 9In this chapter, we will look at the Ramsey numbers for tree graphs T_{n} of order n versus the wheel graph W_{8} of order 9 , focusing on tree graphs with maximum degree of at least $n-3$. Similar results have been determined independently by Hafidh and Baskoro [33].

4.1 Introduction

In 2006, Chen, Zhang and Zhang [22] determined $R\left(T_{n}, W_{6}\right)$ and showed that this number is not generally $2 n-1$, especially when T_{n} is one of the graphs $S_{n}, S_{n}(1,1)$ or $S_{n}(1,2)$. So as the first step to analyse the Ramsey numbers for tree graphs of order n versus the wheel graphs W_{8} of order 9 , we first look at these trees. So, in this chapter, we will present results for tree graphs T_{n} with maximum degree of $n-1, n-2$ and $n-3$ or, more specifically, on $S_{n}, S_{n}(1,1), S_{n}(1,2)$ and $S_{n}(3)$.
4.2 Ramsey numbers for tree graphs with maximum degree of $n-1$ and $n-2$ versus the wheel graph of order 9
In this section, we investigate the Ramsey numbers for tree graphs with maximum degree of $n-1$ and $n-2$ versus the wheel graph of order 9 . There are only two types of graph need to be studied, namely S_{n} and $S_{n}(1,1)$. In a series of papers [56, 57, 58], Zhang et al. determined the Ramsey numbers $R\left(S_{n}, W_{8}\right)$ for the star graph S_{n} versus the wheel graph W_{8}, as stated in Theorem 2.2.6. Now, we only need to consider $S_{n}(1,1)$.
Theorem 4.2.1. For $n \geq 5$,

$$
R\left(S_{n}(1,1), W_{8}\right)= \begin{cases}2 n+1 & \text { if } n \text { is odd } \\ 2 n & \text { if } n \text { is even } .\end{cases}
$$

Proof. Consider the graph $G=K_{n-1} \cup H$ where

$$
\bar{H}= \begin{cases}\frac{n-5}{4} K_{4} \cup K_{3,3} & \text { if } n \equiv 1 \quad(\bmod 4) ; \\ \frac{n+1}{4} K_{4} & \text { if } n \equiv 3 \quad(\bmod 4) ; \\ 2 K_{4} & \text { if } n=8 ; \\ C_{n} & \text { if } n \text { is even and } n \neq 8\end{cases}
$$

Note that G is a graph of order $2 n$ when n is odd and of order $2 n-1$ when n is even. Also, G does not contain $S_{n}(1,1)$ since K_{n-1} does not contain $S_{n}(1,1)$ and since H
is $(n-3)$-regular when $n \neq 8$ and 4 -regular when $n=8$. Assume that \bar{G} contains W_{8} with hub x. Then $x \notin V\left(K_{n-1}\right)$ as \bar{H} does not contain C_{8}, and so $x \in V(H)$. Since x is adjacent to at most 3 vertices in \bar{H}, at least 5 vertices in $V\left(\overline{K_{n-1}}\right)$ are vertices of a cycle C_{8} in \bar{G}, a contradiction since $\overline{K_{n-1}}$ has no edges. Therefore, \bar{G} does not contain W_{8}, so $R\left(S_{n}(1,1), W_{8}\right) \geq|V(G)|+1=2 n+(n \bmod 2)$.

Now let G be a graph that does not contain $S_{n}(1,1)$ and assume that \bar{G} does not contain W_{8}. Let $n \geq 5$ be odd and suppose that G has order $2 n+1$. By Theorem 2.2.6, $R\left(S_{n}, W_{8}\right)=2 n+1$, so G contains S_{n}. Let v be a vertex in G that is adjacent to all vertices in a set L of $n-1 \geq 4$ vertices. Since G does not contain $S_{n}(1,1), L$ must be an independent set and no vertex in L is adjacent to any vertex in $U=V(G)-(\{v\} \cup L)$. Now $|U|=n+1$ and $G[U]$ does not contain $S_{n}(1,1)$, so, by Lemma 2.2.9, some vertex u_{1} in U is not adjacent to at least two other vertices in U, say u_{0} and u_{2}. Let u_{3} and u_{4} be two other vertices in U and consider any vertices $v_{1}, \ldots, v_{4} \in L$. Then $L \cup\left\{u_{0}, \ldots, u_{4}\right\}$ spans W_{8} in \bar{G} with hub v_{1} and rim $v_{2} u_{0} u_{1} u_{2} v_{3} u_{3} v_{4} u_{4} v_{2}$, a contradiction. Therefore, $R\left(S_{n}(1,1), W_{8}\right) \leq 2 n+1$.

For even $n \geq 6$, suppose that G has order $2 n$. If G has a vertex v that is adjacent to all vertices in a set L of $n-1 \geq 5$ vertices, Then as above, \bar{G} must contain W_{8}, a contradiction. Therefore, $\Delta(G) \leq n-2$. By Theorem 2.2.6, $R\left(S_{n-1}, W_{8}\right)=2 n-1$, so G contains a vertex-disjoint star S_{n-1}. Let u be its centre vertex. Since $G-\{u\}$ is of order $2 n-1$, it must contain another star S_{n-1}. These two stars are vertexdisjoint since $\Delta(G) \leq n-2$ and G does not contain $S_{n}(1,1)$. Let X_{1} and X_{2} be the vertex sets of these two stars. Then for each $i \in\{1,2\}$, no vertex of X_{i} is adjacent to any vertex outside X_{i}. Therefore, \bar{G} contains W_{8} with a vertex $x \in V(G)-\left(X_{1} \cup X_{2}\right)$ as hub and its C_{8} rim spanned by $X_{1} \cup X_{2}$, a contradiction. Therefore, $R\left(S_{n}(1,1), W_{8}\right) \leq 2 n$.

4.3 Ramsey numbers for tree graphs with maximum degree of $n-3$ versus the wheel graph of order 9

In this section, we study the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for tree graphs T_{n} with maximum degree of $n-3$ versus the wheel graph W_{8} of order 9 . There are three types of graph to be studied, namely $S_{n}(1,2)$ and $S_{n}(3)$ and $S_{n}(2,1)$. Before we continue, there are several observations and lemmas have to be introduced.

First note two very simple observations for the existence of $S_{n}(1,2)$ in a graph and the existence of W_{8} in the complement of a graph. These observations will be used repeatedly in deriving the exact Ramsey numbers for $S_{n}(1,2)$ versus W_{8}.
Observation 4.3.1. If a graph G contains S_{n-1} and there is a vertex $v \in V(G)-$ $V\left(S_{n-1}\right)$ such that v is adjacent to at least two leaves of S_{n-1}, then G contains $S_{n}(1,2)$.
Observation 4.3.2. If $G=H_{1} \cup H_{2}$ is the disjoint union of graphs H_{1} and H_{2}, where $\overline{H_{1}}$ contains S_{5} and H_{2} is a graph of order at least 4 , then \bar{G} contains W_{8}.
Lemma 4.3.3. Let $n \geq 6$. If H is a graph of order $n+1$ with $\delta(H) \geq n-3$, then either H contains $S_{n}(1,2)$, or $n \equiv 3(\bmod 4)$ and \bar{H} is the disjoint union of $\frac{n+1}{4}$ copies of K_{4}; i.e., $\bar{H}=\frac{n+1}{4} K_{4}$.

Proof. Suppose that some vertex in H has degree at least $n-2$; then H contains S_{n-1}. Since $\delta(H) \geq n-3 \geq 3$, the two vertices in $V(H)-V\left(S_{n-1}\right)$ are either
adjacent and must each be adjacent to at least one leaf of S_{n-1}, or they are not adjacent and must each be adjacent to at least two leaves of S_{n-1}. In either case, H contains $S_{n}(1,2)$.

Now suppose that H is $(n-3)$-regular and let v_{0} be any vertex of H. The set $U=V(H)-N_{H}\left(v_{0}\right)$ has exactly 3 vertices, each with degree $n-3 \geq 3$ and each therefore adjacent to at least one vertex in $N_{H}\left(v_{0}\right)$. If $H[U]$ has an edge, then H contains $S_{n}(1,2)$; otherwise, U is an independent set, and so $\left\{v_{0}\right\} \cup U$ is an independent set of size 4. Furthermore, $N_{H}(u)=N_{H}\left(v_{0}\right)$ for all $u \in U$, as every vertex has degree $n-3$. Hence, $\bar{H}\left[\left\{v_{0}\right\} \cup U\right]=K_{4}$ and is a component in \bar{H}. Applying the above arguments to each vertex $v_{0} \in V(H)$ shows that either that H contains $S_{n}(1,2)$ or that \bar{H} is the disjoint union of $\frac{n+1}{4}$ copies of K_{4}, in which case $n \equiv 3(\bmod 4)$.

Lemma 4.3.4. Let H_{1} be a graph whose complement $\overline{H_{1}}$ contains S_{4}, and let H_{2} be a graph of order $m \geq 5$. If $G=H_{1} \cup H_{2}$, then either \bar{G} contains W_{8}, or H_{2} is K_{m} or $K_{m}-e$, where e is an edge in K_{m}.

Proof. If $\overline{H_{2}}$ has at most one edge, then H_{2} is the complete graph K_{m} or the graph $K_{m}-e$ obtained from removing an edge e from K_{m}. Suppose now that $\overline{H_{2}}$ has at least two edges. Consider a star S_{4} in $\overline{H_{1}}$ and let v_{0} be its centre and v_{1}, v_{2}, v_{3} its leaves. Note that each v_{i} is adjacent to each $a \in V\left(H_{2}\right)$ in \bar{G}. Choose 5 vertices $a, b, c, d, e \in V\left(H_{2}\right)$ such that either $a b$ and $c d$ are independent edges, or $a b c$ is a path, in $\overline{H_{2}}$. In both cases, \bar{G} contains W_{8} with hub v_{0}. In the former case, $v_{1} a b v_{2} c d v_{3} e v_{1}$ forms the $C_{8} \mathrm{rim}$; in the latter, $v_{1} a b c v_{2} d v_{3} e v_{1}$ forms the C_{8} rim.

The following lemmas provides sufficient conditions for a graph or its complement to contain C_{8}.
Lemma 4.3.5. Suppose that $U=\left\{u_{1}, \ldots, u_{4}\right\}$ and $V=\left\{v_{1}, \ldots, v_{4}\right\}$ are two disjoint subsets of vertices of a graph G for which $\left|N_{G[V]}(u)\right| \leq 1$ for each $u \in U$ and $\left|N_{G[U]}(v)\right| \leq 2$ for each $v \in V$. Then $\bar{G}[U \cup V]$ contains C_{8}.

Proof. Suppose that $N_{G[U]}(v) \leq 1$ for each $v \in V$. Then $\bar{G}[U \cup V]$ contains a subgraph obtained by removing a matching from $K_{4,4}$ and therefore contains C_{8}. Suppose now that $N_{G[U]}\left(v_{1}\right)=\left\{u_{1}, u_{2}\right\}$, and assume without loss of generality that $v_{3} \notin N_{G[V]}\left(u_{3}\right)$ and $v_{4} \notin N_{G[V]}\left(u_{4}\right)$. Neither u_{1} nor u_{2} is adjacent to v_{2}, v_{3} or v_{4}, so $v_{1} u_{3} v_{3} u_{1} v_{2} u_{2} v_{4} u_{4} v_{1}$ forms C_{8} in $\bar{G}[U \cup V]$.

Lemma 4.3.6. Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V=\{a, b, c, d, e, f\}$ be disjoint sets of vertices of a graph G. Suppose that, for each $v \in V$, either v is adjacent to all vertices in U, or v is adjacent to exactly two vertices in U and every vertex in $V-\{v\}$. If $G[V]$ has at least two edges, then $G[U \cup V]$ contains C_{8}.

Proof. Consider the set $X=\{v \in V: v$ is not adjacent to some vertex in $U\}$.
Case 1: Suppose that $|X|=0$. The graph $G[V]$ contains either a path of length two, say $a b c$, or two disjoint edges, say $a b$ and $c d$. Then either $e u_{1} a b c u_{2} d u_{3} e$ or $e u_{1} a b u_{2} c d u_{3} e$ forms C_{8} in G.
Case 2: Suppose that $1 \leq|X| \leq 4$. Without loss of generality, assume that $e, f \in V-X$ and $a \in X$. Then a is adjacent to each vertex in $V-\{a\}$. Now, b is
adjacent to some vertex in U, say u_{1}, and c is adjacent to at least one other vertex in U, say u_{2}. Then $u_{1} b a c u_{2} e u_{3} f u_{1}$ forms C_{8}.
Case 3: Suppose that $|X|=5$. Then $V-X$ contains a single vertex, say f, and $G[V-\{f\}]=K_{5}$. Without loss of generality, a is adjacent to u_{1} and e is adjacent to u_{2}. Then $u_{1} a b c d e u_{2} f u_{1}$ forms C_{8}.
Case 4: Suppose that $|X|=6$. Then $G[V]=K_{6}$. Each vertex in V is adjacent to 2 vertices in U, so 12 edges connect the 3 vertices in U with the 6 vertices in V. Thus, some vertex u_{i} is adjacent to at least 4 vertices in V and some other vertex u_{j} is adjacent to at least 3 vertices in V. Suppose that u_{i} is adjacent to a and b, and that u_{j} is adjacent to c and d. Then $a u_{i} b c u_{j} d e f a$ forms C_{8}.

In each case, $G[U \cup V]$ contains C_{8}.
The next two lemmas consider a graph of order $2 n$ obtained from the disjoint union of two graphs whose orders differ by at most two.
Lemma 4.3.7. Let $G=H_{1} \cup H_{2}$, where H_{1} and H_{2} are graphs of order $n \geq 6$. Then either G contains $S_{n}(1,2)$ or \bar{G} contains W_{8}.

Proof. Suppose that G does not contain $S_{n}(1,2)$. Then neither H_{1} nor H_{2} is K_{n} or $K_{n}-e$, where e is an edge in K_{n}. By Lemma 4.3.4, neither $\bar{G}\left[H_{1}\right]$ nor $\bar{G}\left[H_{2}\right]$ contains S_{4}, so each vertex in \bar{G} has degree at most two; hence, each vertex in G has degree at least $n-3$. If some vertex in G has degree at least $n-2$, then H_{1} or H_{2} contains $S_{n}(1,2)$, a contradiction.

Therefore, G is $(n-3)$-regular. Then $\bar{G}\left[H_{1}\right]$ and $\bar{G}\left[H_{2}\right]$ are 2-regular graphs and must each be a union of cycles. Since $\left|V\left(H_{1}\right)\right|=\left|V\left(H_{2}\right)\right|=n \geq 6$, there are vertex-disjoint paths of length two in $\bar{G}\left[H_{1}\right]$, say $a b c$ and def, and a path $x y z$ in $\bar{G}\left[H_{2}\right]$. Now, as every vertex in $V\left(H_{2}\right)$ is adjacent to every vertex in $V\left(H_{1}\right)$ in \bar{G}, the graph \bar{G} contains W_{8} with hub y and rim xabczdefx.

Lemma 4.3.8. For $n \geq 6$, let $G=H_{1} \cup H_{2}$, where H_{1} and H_{2} are graphs of order $n-1$ and $n+1$, respectively. If G does not contain $S_{n}(1,2)$ and \bar{G} does not contain W_{8}, then $n \equiv 3(\bmod 4)$ and $H_{1}=K_{n-1}$ or $H_{1}=K_{n-1}-e$ where e is an edge in K_{n-1}, while $\bar{H}_{2}=\frac{n+1}{4} K_{4}$.

Proof. The graph $\overline{H_{2}}$ does not contain S_{5} since \bar{G} would otherwise contain W_{8}. Each vertex of H_{2} therefore has degree at least $n-3$ in H_{2} (and in G). By Lemma 4.3.3, $n \equiv 3(\bmod 4)$ and $\overline{H_{2}}$ is the disjoint union of $\frac{n+1}{4}$ copies of K_{4}. Therefore, $\overline{H_{2}}$ contains S_{4}, and since H_{1} has order $n-1 \geq 5$, Lemma 4.3.4 implies that $H_{1}=K_{n-1}$ or $K_{n-1}-e$ where e is an edge in K_{n-1}.

The following theorem implies that, for most graphs G of order $2 n$, either G contains $S_{n}(1,2)$ or \bar{G} contains W_{8}.
Theorem 4.3.9. For $n \geq 6$, let G be a graph of order $2 n$. Suppose that G does not contain $S_{n}(1,2)$ and \bar{G} does not contain W_{8}. Then $n \equiv 3(\bmod 4)$ and $G=H_{1} \cup H_{2}$ where $H_{1}=K_{n-1}$ or $H_{1}=K_{n-1}-e$ where e is an edge in K_{n-1}, and $\bar{H}_{2}=\frac{n+1}{4} K_{4}$.

Proof. Since $n-1 \geq 5, G$ has a subgraph $T=S_{n-1}(1,1)$ by Theorem 4.2.1. Let $V(T)=\left\{a, v_{0}, \ldots, v_{n-3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{1} a\right\}$.

Assume that v_{0} is adjacent to a vertex v_{n-2} in $V(G)-V(T)$. Then the graph $T_{1}=S_{n}(1,1)$ is obtained from T by adding the vertex v_{n-2} and the edge $v_{0} v_{n-2}$. Since G does not contain $S_{n}(1,2), a$ is not adjacent to any vertex in $V(G)-\left\{v_{0}, v_{1}\right\}$. Let $U=V(G)-V\left(T_{1}\right)$ and note that $|U|=n \geq 6$. If each vertex of U has degree at least $n-2$ in $G[U]$, then $G[U]$ contains $S_{n}(1,2)$, a contradiction. There is then a vertex of U with degree at most $n-3$ in $G[U]$, so $\bar{G}[U]$ contains a path of length two. Since G does not contain $S_{n}(1,2)$, each vertex $u \in U$ is adjacent to at most one vertex in $\left\{v_{1}, \ldots, v_{n-2}\right\}$ and if u is adjacent to one of these vertices, then u is not adjacent to any vertex in U. Let $Y_{1}=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $Y_{2} \subset U$ be a set of six vertices such that $\bar{G}\left[Y_{2}\right]$ contains a path of length two. Then the graph $\bar{G}\left[Y_{1} \cup Y_{2}\right]$ satisfies the conditions in Lemma 4.3.6 and therefore contains C_{8} which, with a as hub, forms W_{8}, a contradiction.

Hence, v_{0} is not adjacent to any vertex in $V(G)-V(T)$. Let $G=H_{1} \cup H_{2}$, where H_{1} is the component of G containing T and where $V\left(H_{2}\right)$ may be empty. Set $U=V\left(H_{1}\right)-V(T)$ and note that a is not adjacent to any vertex in U since G does not contain $S_{n}(1,2)$. If $G[U]$ contains an edge $u v$, then since H_{1} is connected, either u or v is adjacent to v_{i} for some $1 \leq i \leq n-3$, and G contains $S_{n}(1,2)$, a contradiction. Therefore, U is independent; indeed, $\left\{v_{0}\right\} \cup U$ and $\{a\} \cup U$ are two independent sets in G. Assume that $|U| \geq 3$. Since $\left|U \cup V\left(H_{2}\right)\right|=n+1 \geq 7$, there are at least 3 vertices $b, c, d \in U$ and 4 vertices $x, y, z, w \in U \cup V\left(H_{2}\right)-\{b, c, d\}$. Together with v_{0} and a, these vertices span W_{8} in G with hub b and rim $a x v_{0} y c z d w a$, a contradiction. Therefore, $|U| \leq 2$, so the orders of H_{1} and H_{2} differ by at most two, and the theorem follows from Lemmas 4.3.7 and 4.3.8.

We are now ready to determine the exact Ramsey number for $S_{n}(1,2)$ versus W_{8}. Theorem 4.3.10. For $n \geq 6$,

$$
R\left(S_{n}(1,2), W_{8}\right)= \begin{cases}2 n+1 & \text { if } n \equiv 3 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. For the upper bound, Theorem 4.3.9 implies that $R\left(S_{n}(1,2), W_{8}\right) \leq 2 n$ unless $n \equiv 3(\bmod 4)$. Suppose that $n \equiv 3(\bmod 4)$, and let G be a graph of order $2 n+1$ such that \bar{G} does not contain W_{8}. Then G contains S_{n} by Theorem 2.2.6. For any vertex $a \notin V\left(S_{n}\right)$, the graph $G_{1}=G-\{a\}$ has order $2 n$ and contains a vertex of degree at least $n-1$, so G_{1} cannot equal $H_{1} \cup H_{2}$ for $H_{1}=K_{n-1}$ or $H_{1}=K_{n-1}-e$ and $H_{2}=\overline{\frac{n+1}{4} K_{4}}$. By Theorem 4.3.9, G_{1} and thus G contains $S_{n}(1,2)$.

For the lower bound, let m and ℓ be any non-negative integers with $4 m+3 \ell=n$; such integers exist since $n \geq 6$. Consider the graph $G=K_{n-1} \cup H$, where $\bar{H}=$ $\frac{n+1}{4} K_{4}$ if $n \equiv 3(\bmod 4)$ and $\bar{H}=m K_{4} \cup \ell K_{3}$ otherwise. Now, K_{n-1} does not contain $S_{n}(1,2)$; nor does H, since each vertex v of H has degree at most $n-3$ and the set of vertices in H that are not adjacent to v is an independent set in G. Thus, G does not contain $S_{n}(1,2)$. Assume that \bar{G} contains W_{8} with hub x. Then $x \notin V\left(K_{n-1}\right)$ since \bar{H} does not contain C_{8}, so $x \in V(H)$. Since x is adjacent to at most 3 vertices in $\bar{G}[V(H)]$, at least 5 vertices in $V\left(K_{n-1}\right)$ are vertices of C_{8} subgraph of \bar{G}, a contradiction since $\overline{K_{n-1}}$ has no edges. Therefore, \bar{G} does not contain W_{8}, completing the proof of the theorem.

Theorem 4.3.11. If $n \geq 6$, then

$$
R\left(S_{n}(3), W_{8}\right)= \begin{cases}2 n-1 & , \text { for odd } n \geq 9 \\ 2 n & , \text { otherwise }\end{cases}
$$

Proof. First, consider the case where $n \geq 9$ is odd. The graph $2 K_{n-1}$ does not contain $S_{n}(3)$ and its complement does not contain W_{8}, so $R\left(S_{n}(3), W_{8}\right) \geq 2 n-1$. To prove that $R\left(S_{n}(3), W_{8}\right) \leq 2 n-1$, let G be any graph of order $2 n-1$ and assume that G does not contain $S_{n}(3)$ and that \bar{G} does not contain W_{8}. By Theorem 2.2.6, G contains S_{n-2}. Let v_{0} be the centre of S_{n-2} and let $L=\left\{v_{1}, \ldots, v_{n-3}\right\}$ be its leaves. Set $U=V(G)-V\left(S_{n-2}\right)$; then $|U|=n+1$. Since G does not contain $S_{n}(3)$, v_{1}, \ldots, v_{n-3} are each adjacent to at most one vertex in U.
Claim 1: If some vertex in U is adjacent in G to at least 4 vertices in L, then \bar{G} contains W_{8}.

Proof of Claim 1. Let v_{1}, v_{2}, v_{3} and v_{4} be vertices in L that are adjacent in G to some vertex $u \in U$. Set $U^{\prime}=U-\{u\}$ and write $U^{\prime}=\left\{u_{1}, \ldots, u_{n}\right\}$. Then v_{1}, v_{2}, v_{3} and v_{4} are not adjacent in G to any vertex of U^{\prime}. Assume that $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq 3$; then $\delta\left(G\left[U^{\prime}\right]\right) \geq n-4$. Since n is odd, the Handshaking Lemma implies that $\Delta\left(G\left[U^{\prime}\right]\right) \geq n-3$, so some vertex of U^{\prime}, say u_{1}, must be adjacent in G to at least other $n-3$ vertices of U, say u_{2}, \ldots, u_{n-2}. Note that u_{n-1} and u_{n} are both adjacent to at least $n-6$ vertices of $\left\{u_{2}, \ldots, u_{n-2}\right\}$ in G. If $n \geq 11$, then at least one of u_{2}, \ldots, u_{n-2} is adjacent to both u_{n-1} and u_{n}, forming $S_{n}(3)$, a contradiction. Suppose that $n=9$. The vertices u_{8} and u_{9} cannot both be adjacent in G to some vertex in $\left\{u_{2}, \ldots, u_{7}\right\}$ since that would form $S_{n}(3)$; therefore, u_{8} and u_{9} are adjacent to each other as well as to u_{1}; also, u_{8} is adjacent to three of the vertices u_{2}, \ldots, u_{7} and u_{9} is adjacent to other the three, again forming $S_{9}(3)$ in G, a contradiction.

Therefore, $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq 4$ and, by Observation 4.3.2, \bar{G} contains W_{8}.
Claim 2: If each vertex in U is non-adjacent in G to at least 5 vertices of L, then \bar{G} contains W_{8}.

Proof of Claim 2. Assume that $\Delta(\bar{G}[U]) \leq 3$. Then $\delta(G[U]) \geq n-3$. Write $U=$ $\left\{u_{1}, \ldots, u_{n+1}\right\}$. Without loss of generality, u_{1} is adjacent in G to every vertex of $U^{\prime}=\left\{u_{2}, \ldots, u_{n-2}\right\}$. Now, u_{n-1}, u_{n} and u_{n+1} are each adjacent to at least $n-6$ vertices of U^{\prime}. Since $n \geq 9$, at least two of u_{n-1}, u_{n} and u_{n+1} are adjacent to some vertex in U^{\prime}, forming $S_{n}(3)$ in G, a contradiction.

Therefore, $\Delta(\bar{G}[U]) \geq 4$. Then some vertex $u \in U$ is adjacent in \bar{G} to at least 4 other vertices of U, say u_{1}, \ldots, u_{4}. Let v_{1}, \ldots, v_{5} be 5 vertices of L that are not adjacent to u in G. If any of u_{1}, \ldots, u_{4} is adjacent in G to 4 vertices from $\left\{v_{1}, \ldots, v_{5}\right\}$, then \bar{G} contains W_{8} by Claim 1. Otherwise, u_{1}, \ldots, u_{4} are each adjacent in \bar{G} to at least two of v_{1}, \ldots, v_{5}. Since each vertex v_{i} is adjacent to at most one vertex in U, it is adjacent in \bar{G} to at least 3 vertices from $\left\{u_{1}, \ldots, u_{4}\right\}$. Then 4 vertices v_{i} together with u_{1}, \ldots, u_{4} form C_{8} in \bar{G}, and thus W_{8} with vertex u as hub, a contradiction.

Proof of Theorem 4.3.11 (continued). For $n \geq 11,|L| \geq 8$. By Claim 1, each vertex in U is adjacent in G to at most 3 vertices of L. Then by Claim 2, \bar{G} contains W_{8}, a contradiction.

Suppose that $n=9$; then $|L|=6$. By Claim 1, each vertex in U is adjacent in G to at most 3 vertices in L. Therefore, by Claim 2, at least one vertex $u \in U$ must be adjacent in G to either 2 or 3 vertices of L. Assume that u is adjacent in G to exactly 3 vertices of L, say v, v^{\prime} and $v^{\prime \prime}$. Set $U^{\prime}=U-\{u\}$ and note that no vertex in U^{\prime} is adjacent in G to v, v^{\prime} or $v^{\prime \prime}$. If each vertex in U^{\prime} is adjacent to at most two vertices in L, then every vertex in U^{\prime} is non-adjacent to at least 4 vertices in L. If $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq 4$, then some vertex $u^{\prime} \in U^{\prime}$ is non-adjacent to at least 4 vertices of L and 4 vertices of U^{\prime} in G. Since 3 of the vertices in L are non-adjacent to each vertex in U^{\prime} and $d_{U^{\prime}}(v) \leq 1$ for all $v \in L$, these 8 vertices form C_{8} in \bar{G} which, with u^{\prime} as hub, forms W_{8} in \bar{G}, a contradiction. If $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq 3$, then $\delta\left(G\left[U^{\prime}\right]\right) \geq 5$. By a similar argument to that in the proof of Claim $1, G$ contains $S_{9}(3)$, a contradiction. Therefore, suppose that some vertex in U^{\prime} is non-adjacent to exactly 3 vertices of L in G. Let u^{\prime} and $u^{\prime \prime}$ be the two vertices that are adjacent to exactly 3 vertices of L in G. Note that no vertex of L is adjacent in G to the vertices in $U-\left\{u^{\prime}, u^{\prime \prime}\right\}$. If $\Delta(\bar{G}[L]) \geq 4$, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Therefore, $\Delta\left(\bar{G}[L] \leq 3\right.$ and so $\delta(G[L]) \geq 2$. Since $S_{9}(3) \nsubseteq G, v_{0}$ is not adjacent in G to any vertex of U. Now, if $\delta(G[U]) \geq 6$, by the similar argument to that in the proof of Claim 2, G contains $S_{9}(3)$, a contradiction. On the other hand, suppose that $\delta(G[U]) \leq 5$. Then $\Delta(\bar{G}[U]) \geq 4$, so some vertex $u \in U$ is adjacent in \bar{G} to at least 4 other vertices of U. Together with v_{0} and 3 other vertices from L, these 5 vertices from U form W_{8} in \bar{G} with u as hub, a contradiction.

Now, consider the case where $u \in U$ is adjacent in G to exactly two vertices of L, say v and v^{\prime}. Set $U^{\prime}=U-\{u\}$ and note that every vertex in U is adjacent in G to at most two vertices of L; for otherwise, relabel the vertex u and apply the previous case. If u is non-adjacent to at least 4 vertices in U^{\prime}, then since $d_{G\left[U^{\prime}\right]}(w) \leq 1$ for all $w \in L$, these 4 vertices and the remaining 4 vertices of L form C_{8} in \bar{G} by Lemma 4.3.5 and, with u as hub, form W_{8}, a contradiction. Therefore, u is adjacent to at least 6 vertices of U^{\prime} in G. Then neither v and v^{\prime} are adjacent to the remaining 4 vertices in L, since G does not contain $S_{9}(3)$. Then 4 vertices of U^{\prime} and the 4 vertices of L form C_{8} in \bar{G} by Lemma 4.3.5 and, with v as hub, form W_{8}, a contradiction.

Hence, $R\left(S_{n}(3), W_{8}\right) \leq 2 n-1$, so $R\left(S_{n}(3), W_{8}\right)=2 n-1$ for all odd $n \geq 9$.
Now, consider the cases in which $n=7$ and $n \geq 6$ is even. Define the graph $G=K_{n-1} \cup \underline{H}$, where H is as shown in Figure 4.1 if $n=7 ; \bar{H}=\frac{n}{4} K_{4}$ if $n \equiv 0$ $(\bmod 4)$; and $\bar{H}=\frac{n-6}{4} K_{4} \cup 2 K_{3}$ if $n \equiv 2(\bmod 4)$. Since G has no $S_{n}(3)$ subgraph and \bar{G} does not contain $W_{8}, R\left(S_{n}(3), W_{8}\right) \geq 2 n$.

Figure 4.1: The graph H when $n=7$.

For the upper bound, let G be any graph of order $2 n$. Suppose to the contrary that G does not contain $S_{n}(3)$ and \bar{G} does not contain W_{8}. By Theorem 2.2.6, G has a subgraph $T=S_{n-1}$. Let v_{0} be the centre of T and $L=N_{T}\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n-2}\right\}$. Set $U=V(G)-V(T)$; then $|U|=n+1$.
Case 1: $E_{G}(L, U) \neq \emptyset$.
Without loss of generality, assume that v_{1} is adjacent to $u \in U$, and set $U^{\prime}=$ $U-\{u\}$. Since G does not contain $S_{n}(3), N_{G}\left(v_{1}\right)=\left\{v_{0}, u\right\}$ and $d_{U^{\prime}}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq n-2$. Then for $n \geq 7$, there are 4 vertices from $L-\left\{v_{1}\right\}$ and 4 vertices from U^{\prime} that together form C_{8} in \bar{G} and, with v_{1} as hub, form W_{8} in \bar{G}, a contradiction.

Suppose that $n=6$. If $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq 3$, then some vertex $u^{\prime} \in U^{\prime}$ is adjacent in \bar{G} to at least 3 other vertices of U^{\prime}, say u_{1}, u_{2}, u_{3}. Since $d_{U^{\prime}}\left(v_{i}\right) \leq 1$ for $2 \leq i \leq n-2$, each v_{i} is adjacent in \bar{G} to at least two of u_{1}, u_{2}, u_{3}, and so \bar{G} contains W_{8}. To illustrate this, suppose that v_{2} is adjacent to u_{1}. Since v_{3} is adjacent to two of u_{1}, u_{2}, u_{3} in \bar{G}, v_{3} must be adjacent to another vertex other than u_{1}, say u_{2}, in \bar{G}. Let u_{4} and u_{5} be the two remaining vertices of U^{\prime}. Then $v_{2} u_{1} u^{\prime} u_{2} v_{3} u_{4} v_{4} u_{5} v_{2}$ and $v_{1} W_{8}$ in \bar{G}, a contradiction. Therefore, $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq 2$, and $\delta\left(G\left[U^{\prime}\right]\right) \geq 3$. Let $U^{\prime}=\left\{u_{1}, \ldots, u_{6}\right\}$. Suppose that U^{\prime} has a vertex, say u_{1}, that is adjacent in G to at least 4 other vertices, say $u_{2}, u_{3}, u_{4}, u_{5}$. Then u_{6} is adjacent to u_{i} and u_{i} is adjacent to u_{j} for some $2 \leq i \neq j \leq 5$, so $G\left[U^{\prime}\right]$ contains $S_{6}(3)$, a contradiction. Therefore, $G\left[U^{\prime}\right]$ is 3 -regular. Suppose that u_{1} is adjacent to u_{2}, u_{3} and u_{4}. Since u_{5} and u_{6} are adjacent to at least two of $u_{2}, u_{3}, u_{4}, u_{i}$ is adjacent to u_{5} and u_{6} for some $2 \leq i \leq 4$. Then $G\left[U^{\prime}\right]$ contains $S_{6}(3)$, a contradiction.
Case 2: $E_{G}(L, U)=\emptyset$.
If n is even, then $R\left(S_{n}(1,1), W_{8}\right)=2 n$ by Theorem 4.2.1, and Case 1 applies. Hence, it suffices to consider $n=7$. If $\Delta(\bar{G}[U]) \geq 4$, then some vertex $u \in U$ is adjacent in \bar{G} to at least 4 vertices of U. Together with any 4 vertices from L, these vertices form W_{8}, with u as hub, in \bar{G}, a contradiction. Suppose that $\Delta(\bar{G}[U]) \leq 3$. Then $\delta(G[U]) \geq 4$. Write $U=\left\{u_{1}, \ldots, u_{8}\right\}$ where u_{1} is adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$. Since $\delta(G[U]) \geq 4$, each of the vertices u_{6}, u_{7}, u_{8} is adjacent to at least one of u_{2}, \ldots, u_{5}. If u_{1} is not adjacent in G to u_{6}, u_{7} or u_{8} in G, then one of u_{2}, \ldots, u_{5} is adjacent to at least two of these 3 vertices and G therefore contains $S_{7}(3)$, a contradiction. Now, suppose that u_{1} is adjacent to one of u_{6}, u_{7}, u_{8}, say u_{6}. Since $\delta(G[U]) \geq 4, u_{7}$ is adjacent to at least two vertices of u_{2}, \ldots, u_{6}, say u_{2} and u_{3}. Since $\delta(G[U]) \geq 4, u_{2}$ is adjacent to another vertex from u_{3}, \ldots, u_{6}. Then G therefore contains $S_{7}(3)$, a contradiction.

In either case, $R\left(S_{n}(3), W_{8}\right) \leq 2 n$ for $n=7$ and even $n \geq 6$.
Theorem 4.3.12. If $n \geq 6$, then

$$
R\left(S_{n}(2,1), W_{8}\right)= \begin{cases}2 n-1 & , \text { if } n \text { is odd } \\ 2 n & , \text { otherwise }\end{cases}
$$

Proof. When n is odd, note that $G=2 K_{n-1}$ has no $S_{n}(2,1)$ subgraph and \bar{G} does not contain W_{8}. Hence, $R\left(S_{n}(2,1), W_{8}\right) \geq 2 n-1$. When n is even, define $H=\frac{\bar{n}}{4} K_{4}$ if $n \equiv 0(\bmod 4)$ and $H=\frac{\overline{n-6}}{4} K_{4} \cup 2 K_{3}$ if $n \equiv 2(\bmod 4)$; then $G=K_{n-1} \cup H$ does not contain $S_{n}(2,1)$ and \bar{G} does not contain W_{8}. Hence, $R\left(S_{n}(2,1), W_{8}\right) \geq 2 n$.

Now let G be a graph of order $n+2\lfloor n / 2\rfloor$ and assume that G does not contain $S_{n}(2,1)$ and that \bar{G} does not contain W_{8}. Suppose that $n \geq 8$. Then by Theorem 4.3.11, G has a subgraph $T=S_{n}(3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{1} v_{n-2}, v_{1} v_{n-1}\right\}$. Set $U=V(G)-V(T)$ and $U^{\prime}=$ $\left\{v_{n-2}, v_{n-1}\right\} \cup U$; then $|U|=2\lfloor n / 2\rfloor$. Since $S_{n}(2,1) \nsubseteq G$, none of v_{2}, \ldots, v_{n-3} is adjacent to any vertex in U^{\prime}. Then $\Delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq 3$ by Observation 4.3.2. This implies that $\delta\left(G\left[U^{\prime}\right]\right) \geq\left|U^{\prime}\right|-4 \geq n-3$. Choose a $S_{\left|U^{\prime}\right|-3}$ subgraph in $G\left[U^{\prime}\right]$ and note that each of the remaining 3 vertices in U^{\prime} must be adjacent to at least two leaves of this $S_{\left|U^{\prime}\right|-3}$, forming $S_{n}(2,1)$, a contradiction.

Suppose now that $n=7$. Then G is a graph of order 13. Two cases are now considered.
Case 1a: Suppose that $\Delta(G) \geq 5$.
Let T be an S_{6} subgraph in G with centre v_{0} and leaves $L=\left\{v_{1}, \ldots, v_{5}\right\}$. Set $U=V(G)-V(T)$. Since $G[U]$ does not contain $S_{7}(2,1)$, it is straightforward to verify that $\delta(G[U]) \leq 2$. Therefore, $\Delta(\bar{G}[U]) \geq 4$. If at least 4 vertices in L are not adjacent to any vertex in U, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Since G does not contain $S_{7}(2,1)$, the only possible case avoiding the above scenario is when two of the vertices in L, say v_{1} and v_{2}, are adjacent to a common vertex $u \in U$. Again as G does not contain $S_{7}(2,1), v_{5}$ is not adjacent to any vertex in $L-\left\{v_{5}\right\}$, and no vertex in L is adjacent to any vertex in $U-\{u\}$. Then \bar{G} contains W_{8} with hub v_{5} and C_{8} formed by $L-\left\{v_{5}\right\}$ and any 4 vertices in $U-\{u\}$, a contradiction.
Case 1b: Suppose that $\Delta(G) \leq 4$.
By Theorem 4.2.1, G has a subgraph $T=S_{6}(1,1)$. Let $V(T)=\left\{v_{0}, \ldots, v_{5}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{4}, v_{1} v_{5}\right\}$. Set $U=V(G)-V(T)$. As in Case 1a, $\Delta(\bar{G}[U]) \geq 4$. Since $\Delta(G) \leq 4, v_{0}$ is not adjacent to any vertex in U, and none of the vertices v_{2}, v_{3}, v_{4} is adjacent to any vertex in U since G does not contain $S_{7}(2,1)$. Again, \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

In either case, $R\left(S_{n}(2,1), W_{8}\right) \leq 2 n-1$. Hence, $R\left(S_{n}(2,1), W_{8}\right)=2 n-1$ for all odd $n \geq 7$.

Suppose that $n=6$. If some vertex $u \in U$ is adjacent to v_{1} in G, then since G does not contain $S_{6}(2,1)$, neither v_{5} nor u is adjacent to v_{2}, v_{3}, v_{4} or any vertex in U. Then v_{3}, v_{4}, v_{5}, u and any other 4 vertices of U form C_{8} in \bar{G} which, with v_{2} as hub, forms W_{8}, a contradiction.

Suppose then that v_{1} is not adjacent in G to any vertex of U. Consider the following two cases.
Case 2a: Suppose that v_{1} is not adjacent to v_{2}, v_{3} or v_{4}.
Let $U=\left\{u_{1}, \ldots, u_{6}\right\}$. If $\Delta(\bar{G}[U]) \geq 2$, then some vertex in U, say u_{1}, is adjacent to another two vertices in U, say u_{2} and u_{3}, in \bar{G}. Then $u_{2} u_{1} u_{3} v_{1} u_{4} v_{2} u_{5} v_{3} u_{2}$ and v_{4} form W_{8} in \bar{G}, a contradiction. If $\Delta(\bar{G}[U]) \leq 1$, then $\delta(G[U]) \geq 4$. Suppose that u_{1} is adjacent to u_{2}, \ldots, u_{5} in G. Since u_{5} and u_{6} are each adjacent to at least two vertices of $\left\{u_{2}, u_{3}, u_{4}\right\}, G[U]$ contains $S_{n}(2,1)$, a contradiction.
Case 2b: v_{1} is adjacent to another vertex of T other than v_{0} and v_{5} in G.
Without loss of generality, suppose that v_{1} is adjacent to v_{2} in G. Since G does not contain $S_{6}(2,1), v_{5}$ is not adjacent to v_{3}, v_{4} or any vertex in U. Let $U=\left\{u_{1}, \ldots, u_{6}\right\}$. If $\Delta(\bar{G}[U]) \geq 2$, then some vertex in U, say u_{1}, is adjacent in \bar{G}
to another two vertices in U, say u_{2} and u_{3}, so $u_{2} u_{1} u_{3} v_{5} u_{4} v_{2} u_{5} v_{3} u_{2}$ and v_{4} form W_{8} in \bar{G}, a contradiction. Thus, $\Delta(\bar{G}[U]) \leq 1$, and $\delta(G[U]) \geq 4$. As in Case $1, G[U]$ must contain $S_{n}(2,1)$, a contradiction.

In either case, $R\left(S_{n}(2,1), W_{8}\right) \leq 2 n$. Thus, $R\left(S_{n}(2,1), W_{8}\right)=2 n$ for all even $n \geq 6$.

Chapter 5

Ramsey numbers for tree graphs with maximum degree of $n-4$ and $n-5$ versus the wheel graph of order 9

In this chapter, we will continue to look at the Ramsey numbers for tree graphs of order n versus the wheel graph W_{8} of order 9 , focusing on tree graphs T_{n} with maximum degree $n-4$ and $n-5$.

5.1 Introduction

Before we start to look into the Ramsey results, in this section, we introduce the trees that will appear in our discussion. First, we introduce all tree graphs T_{n} of order $n \geq 6$ with $\Delta\left(T_{n}\right)=n-4$. For $n=6$, there is just one such graph, namely the path graph $T_{6}=P_{6}$. Theorem 2.2.4 provides the Ramsey number $R\left(P_{6}, W_{8}\right)=12$. For $n=7$, there are 5 tree graphs with $\Delta\left(T_{7}\right)=7-4=3$, which are A, B, C, D and E shown in Figure 5.1.

Figure 5.1: Tree graphs of order 7
For $n \geq 8$, there are 7 tree graphs T_{n} of order n with $\Delta\left(T_{n}\right)=n-4$, namely $S_{n}(4), S_{n}[4], S_{n}(1,3), S_{n}(3,1)$ as defined in Definition 2.1.12, as well as $T_{A}(n)$, $T_{B}(n)$ and $T_{C}(n)$ shown in 5.2.

S_{n-5}
$T_{B}(n)$

Figure 5.2: Three tree graphs with $\Delta\left(T_{n}\right)=n-4$.
Next, we introduce all the tree graphs T_{n} of order $n \geq 7$ with maximum degree of $n-5$. For $n=7$, there is just one such graph, namely the path graph $T_{7}=P_{7}$.

Theorem 2.2.4 provides the Ramsey number $R\left(P_{7}, W_{8}\right)=13$. For $n \geq 8$, there are 19 tree graphs T_{n} of order n with $\Delta\left(T_{n}\right)=n-5$, namely $S_{n}(1,4), S_{n}(5), S_{n}[5]$, $S_{n}(2,2), S_{n}(4,1)$ and the tree graphs shown in Figure 5.3.

$$
\begin{aligned}
& S_{n-4} \\
& \quad T_{D}(n)
\end{aligned}
$$

$$
\begin{aligned}
& S_{n-7} \\
& \quad T_{E}(n)
\end{aligned}
$$

$$
\begin{aligned}
& S_{n-6} \\
& \quad T_{F}(n)
\end{aligned}
$$

S_{n-6} $T_{J}(n)$

S_{n-4}
$T_{M}(n)$

Figure 5.3: Tree graphs T_{n} with $\Delta\left(T_{n}\right)=n-5$.
5.2 Ramsey numbers for tree graphs with maximum degree of $n-4$ versus the wheel graph of order 9
In this section, we discuss the Ramsey numbers for tree graphs with maximum degree of $n-4$ versus the wheel graph of order 9 . We will start by looking at the results for tree graph of order 7 . As mentioned in previous section, there will be 5 tree graphs to be discussed, which are A, B, C, D and E as shown in Figure 5.1.
Theorem 5.2.1. $R\left(T, W_{8}\right)=13$ for $T \in\{A, B, C\}$.

Proof. Note that $G=2 K_{6}$ does not contain A, B or C and that \bar{G} does not contain W_{8}. Therefore, $R\left(T, W_{8}\right) \geq 13$ for $T=A, B, C$.

Let G be a graph of order 13 whose complement \bar{G} does not contain W_{8}. By Theorem 4.3.12, G has a subgraph $T=S_{7}(2,1)$. Label $V(T)$ as in Figure 5.4. Set $U=V(G)-V(T)$; then $|U|=6$.

First suppose that $A \nsubseteq G$. Then v_{1} is not adjacent to v_{2} or v_{6}, and v_{2} and v_{5} are not adjacent.

Figure 5.4: $S_{7}(2,1)$ and U in G.
Case 1a: There is a vertex in U, say u, that is adjacent to v_{1}.
Since A is not contained in G, v_{1} is not adjacent to v_{3}, v_{4} or any vertex of U other than u. Let $W=\left\{v_{2}, v_{3}, v_{4}, v_{6}, u_{1}, \ldots, u_{4}\right\}$ for any 4 vertices u_{1}, \ldots, u_{4} in U other than u. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 and, together with v_{1} as hub, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. Note that $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{i}\right\}\right]}\left(v_{i}\right)\right| \leq 1$ for $i=2,3,4,6$ since G does not contain A. It is now straightforward to check that v_{2}, v_{3}, v_{4} and v_{6} cannot be the vertex with degree at least 4 . Without loss of generality, assume that u_{1} has degree at least 4 in $G[W]$. Then u_{1} is adjacent to at least one of $v_{2}, v_{3}, v_{4}, v_{6}$, so G contains A, a contradiction.
Case 1b: v_{1} is not adjacent to any vertex in U.
By arguments similar to those in Case 1a, v_{2} is not adjacent to any vertex in U. Let $W=\left\{v_{2}, v_{6}\right\} \cup U$. If $\delta(\bar{G}[W]) \geqq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which, with v_{1} as hub, forms W_{8} in $\bar{G}[W]$, a contradiction. Thus, $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. Since v_{2} is not adjacent to any vertex in U, there are only three subcases to be considered.
Subcase 1b.1: $d_{G[W]}\left(v_{6}\right) \geq 4$.
Label $U=\left\{u_{1}, \ldots, u_{6}\right\}$ so that v_{6} is adjacent to u_{1}, u_{2} and u_{3} in $G[W]$. Since G does not contain A, vertices $u_{1}, u_{2}, u_{3}, v_{2}$ are not adjacent to v_{3} or v_{4} in G. Note that by arguments as in Case 1a, u_{1}, u_{2} and u_{3} are isolated vertices in $G[U]$. Then $v_{1} u_{4} u_{2} v_{3} v_{2} u_{5} u_{3} u_{6} v_{1}$ and u_{1} form W_{8} in \bar{G}, a contradiction.
Subcase 1b.2: $d_{G[W]}\left(v_{6}\right) \leq 3$ and v_{6} is adjacent to some $u \in U$ with $d_{G[W]}(u) \geq 4$.
The graph G contains A, with u as the vertex of degree 3 in A, a contradiction.
Subcase 1b.3: $d_{G[W]}\left(v_{6}\right) \leq 3$ and v_{6} is not adjacent to any vertex $u \in U$ with $d_{G[W]}(u) \geq 4$.

Label $V(U)=\left\{u_{1}, \ldots, u_{6}\right\}$ so that u_{6} is adjacent to u_{2}, u_{3}, u_{4} and u_{5} in G. Since $A \nsubseteq G$, none of v_{1}, \ldots, v_{7} is adjacent in G to any of u_{2}, \ldots, u_{5}. If v_{1} is not adjacent in G to any two of the vertices v_{3}, v_{4}, v_{7}, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Therefore, $N_{G\left[v_{3}, v_{4}, v_{7}\right]}\left(v_{1}\right) \geq 2$ and, similarly, $N_{G\left[v_{3}, v_{4}, v_{7}\right]}\left(v_{2}\right) \geq 2$. Hence, one of v_{3}, v_{4}, v_{7} is adjacent in G to both v_{1} and v_{2}. If v_{3} or v_{4} is adjacent to both v_{1} and v_{2}, then G contains A, with v_{7} as vertex of degree 3 , a contradiction.

Finally, if both v_{1} and v_{2} are adjacent in G to v_{7} and each of them is adjacent to a different vertex in v_{3} and v_{4}, then G also contains A, where either v_{1} or v_{2} is the vertex of degree 3 , a contradiction.

Therefore, $R\left(A, W_{8}\right) \leq 13$, so $R\left(A, W_{8}\right)=13$.
Now, suppose that $B \nsubseteq G$. Then $v_{1}, v_{2}, v_{5}, v_{6}$ are not adjacent to v_{3} or v_{4} in G, and v_{1} and v_{2} are not adjacent to U in G. Label the vertices $U=\left\{u_{1}, \ldots, u_{6}\right\}$ and let $W=\left\{v_{3}, v_{4}\right\} \cup U$. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which, with v_{1} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. If v_{3} or v_{4} is adjacent to the vertex of degree at least 4 in $G[W]$, then B is contained in G, with v_{7} as the vertex of degree 3 . Hence, only two cases need to be considered.
Case 2a: v_{3} or v_{4} is the vertex of degree at least 4 in $G[W]$.
Without loss of generality, assume that v_{3} is the vertex of degree at least 4 in $G[W]$. As previously shown, v_{3} is not adjacent to v_{4}. Therefore, it may be assumed that v_{3} is adjacent to u_{1}, u_{2}, u_{3} and u_{4} in G. Since $B \nsubseteq G, u_{1}, \ldots, u_{4}$ are independent in G and are not adjacent to $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$. Also, v_{1} is not adjacent to v_{6} and v_{2} is not adjacent to v_{5}. Then $v_{1} v_{6} u_{2} v_{2} v_{5} u_{3} v_{4} u_{4} v_{1}$ and u_{1} form W_{8} in \bar{G}, a contradiction.
Case 2b: One of the vertices in U, say u_{1}, is the vertex of degree at least 4 in $G[W]$.

As above, u_{1} is not adjacent to v_{3} or v_{4} in G. It may then be assumed that u_{1} is adjacent to u_{2}, u_{3}, u_{4} and u_{5}. Since $B \nsubseteq G, v_{1}, \ldots, v_{7}$ are not adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$. Note that v_{3} is not adjacent to $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$. By Observation 4.3.2, \bar{G} contains W_{8}, a contradiction.

Therefore, $R\left(B, W_{8}\right) \leq 13$.
Lastly, suppose that $C \nsubseteq G$. Then v_{5} and v_{6} are not adjacent in G to each other or to v_{3}, v_{4} or U. Furthermore, v_{5} is not adjacent to v_{2} and v_{6} is not adjacent to v_{1}. Label the vertices $U=\left\{u_{1}, \ldots, u_{6}\right\}$ and let $W=\left\{v_{3}, v_{4}, v_{6}, u_{1}, \ldots, u_{5}\right\}$. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2 .10 which, with v_{5} as hub, forms W_{8}, a contradiction. Then $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. Since v_{6} is not adjacent to v_{3}, v_{4} or U, v_{6} is not the vertex of degree at least 4 in $G[W]$ and is not adjacent to that vertex. Note that if v_{3} or v_{4} is the vertex of degree 4 , then G contains C, with v_{3} or v_{4} and v_{7} as the vertices of degree 3 . Thus, one of the vertices in U, say u_{1}, is the vertex of degree at least 4 in $G[W]$. Now, consider the following three cases.
Case 3a: Both v_{3} and v_{4} are adjacent to u_{1} in $G[W]$.
Suppose that u_{1} is also adjacent to u_{2} and u_{3} in $G[W]$. Since $C \nsubseteq G, v_{3}$ is not adjacent in G to v_{4} and neither v_{3} nor v_{4} is adjacent to $\left\{v_{1}, v_{2}, v_{5}, v_{6}, u_{2}, \ldots, u_{6}\right\}$. Note that $\left|N_{G\left[\left\{v_{1}, v_{2}, u_{i}\right\}\right]}\left(u_{i}\right)\right| \leq 1$ for $i=2,3$ since $C \nsubseteq G$. If v_{1} is adjacent to u_{2} and u_{3} in \bar{G}, then $v_{1} u_{2} v_{5} u_{4} v_{3} u_{5} v_{6} u_{3} v_{1}$ and v_{4} form W_{8} in \bar{G}, a contradiction. Therefore, v_{1} is adjacent in G to at least one of u_{2} and u_{3}. Similarly, v_{2} is adjacent to at least one of u_{2} and u_{3}. Since $\left|N_{G\left[\left\{v_{1}, v_{2}, u_{i}\right\}\right]}\left(u_{i}\right)\right| \leq 1$ for $i=2,3, v_{1}$ is adjacent to u_{2} and v_{2} is adjacent to u_{3}, or vice versa. Then neither u_{2} nor u_{3} is adjacent in G to u_{4}, u_{5}, u_{6}, since $C \nsubseteq G$. Therefore, $v_{1} v_{3} v_{2} v_{5} u_{2} u_{4} u_{3} v_{6} v_{1}$ and v_{4} form W_{8} in \bar{G}, a contradiction. Case 3b: One of v_{3} and v_{4}, say v_{3}, is adjacent to u_{1} in $G[W]$.

Suppose that u_{1} is adjacent to u_{2}, u_{3} and u_{4} in $G[W]$. Then v_{3} is not adjacent to $v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, u_{2}, u_{3}, u_{4}$ in G and $\left|N_{G\left[\left\{v_{4}, u_{2}, u_{3}, u_{4}\right\}\right]}\left(v_{4}\right)\right| \leq 1$. Without loss of generality, assume that v_{4} is not adjacent to u_{2} or u_{3} in G. Now, suppose that v_{4} is adjacent to u_{4} in G. Since $C \nsubseteq G, u_{4}$ is not adjacent to v_{1} or v_{2} in G. Then $v_{1} u_{4} v_{2} v_{5} u_{2} v_{4} u_{3} v_{6} v_{1}$ and v_{3} form W_{8} in \bar{G}, a contradiction. Otherwise, suppose that v_{4} is not adjacent to u_{4} in G. Then $\left|N_{G\left[\left\{u_{i}, v_{1}, v_{2}\right\}\right\}}\left(u_{i}\right)\right| \leq 1$ for $i=2,3,4$ and at least two of u_{2}, u_{3} and u_{4} are not adjacent to v_{1} or v_{2} in G. Without loss of generality, assume that u_{2} and u_{3} are not adjacent to v_{1} in G. In this case, $v_{1} u_{2} v_{4} u_{4} v_{5} u_{5} v_{6} u_{3} v_{1}$ and v_{3} form W_{8} in \bar{G}, again a contradiction.
Case 3c: v_{3} and v_{4} are both non-adjacent in $G[W]$ to u_{1}.
Assume that u_{1} is adjacent to each of u_{2}, \ldots, u_{5} in $G[W]$. Since $C \nsubseteq G$, $\left|N_{G\left[\left\{v_{1}, \ldots, v_{7}, u_{i}\right\}\right]}\left(u_{i}\right)\right| \leq 1$ for $i=2, \ldots, 5$, and $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, v_{j}\right\}\right]}\left(v_{j}\right)\right| \leq 1$ for $j=3,4$. Since $\left|N_{G\left[\left\{v_{1}, v_{2}, u_{i}\right\}\right]}\left(u_{i}\right)\right| \leq 1$ for $i=2, \ldots, 5$, one of v_{1} and v_{2}, say v_{1}, satisfies $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, v_{1}\right\}\right]}\left(v_{1}\right)\right| \leq 2$. By Lemma 4.3.5, $\bar{G}\left[v_{1}, v_{3}, v_{4}, v_{5}, u_{2}, \ldots, u_{5}\right]$ contains C_{8} which, with hub v_{6}, forms W_{8} in \bar{G}.

Therefore, $R\left(C, W_{8}\right) \leq 13$. This completes the proof of the theorem.
Theorem 5.2.2. $R\left(D, W_{8}\right)=14$.
Proof. Let $G=K_{6} \cup H$ where H is the graph shown in Figure 4.1 in the proof of Theorem 4.3.11. Since G does not contain D and \bar{G} does not contain W_{8}, $R\left(D, W_{8}\right) \geq 14$.

Now, let G be any graph of order 14. Suppose neither G contains D as a subgraph, nor \bar{G} contains W_{8} as a subgraph. By Theorem 5.2.1, $B \subseteq G$. Label the vertices of B as shown in Figure 5.5 and set $U=\left\{u_{1}, \ldots, u_{7}\right\}=V(G)-V(B)$. Since $D \nsubseteq G, v_{7}$ is non-adjacent to v_{6} and U, and v_{4} is non-adjacent to v_{1} and v_{2}.

Figure 5.5: $B \subseteq G$
Let $W=\left\{v_{6}\right\} \cup U$. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which, with v_{7} as hub, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. Three cases will now be considered.
Case 1: v_{6} is the vertex of degree at least 4 in $G[W]$.
Assume that v_{6} is adjacent to u_{1}, u_{2}, u_{3} and u_{4} in $G[W]$. Then v_{5} is adjacent to v_{1} and v_{2} in \bar{G} and v_{3} is adjacent in \bar{G} to $v_{6}, u_{1}, u_{2}, u_{3}$ and u_{4}.
Subcase 1.1: $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right) \neq \emptyset$.
Without loss of generality, assume that u_{1} is adjacent to u_{5} in G. Since $D \nsubseteq G$, $\left\{u_{2}, u_{3}, u_{4}\right\}$ is independent in G and is adjacent to v_{1}, v_{2}, u_{6} and u_{7} in $\bar{G} ; v_{6}$ is adjacent in \bar{G} to v_{1} and $v_{2} ; v_{4}$ and v_{5} are adjacent in \bar{G} to u_{1} and u_{5}; and v_{3} is adjacent in \bar{G} to u_{5}. If v_{4} is adjacent to u_{2} in G, then v_{5} is adjacent in \bar{G} to u_{3} and u_{4}, so $v_{1} v_{5} v_{2} u_{2} u_{6} v_{7} u_{7} u_{3} v_{1}$ and u_{4} form W_{8} in \bar{G}, a contradiction. Thus, v_{4} is adjacent to u_{2} in \bar{G}, and $v_{1} v_{4} v_{2} u_{4} u_{6} v_{7} u_{7} u_{3} v_{1}$ and u_{2} form W_{8} in \bar{G}, again a contradiction.

Subcase 1.2: $\left\{u_{1}, \ldots, u_{4}\right\}$ is not adjacent to $\left\{u_{5}, u_{6}, u_{7}\right\}$ in $G[W]$.
Suppose that v_{5} is adjacent in G to v_{7}; then v_{7} is not adjacent to v_{1} or v_{2}. If $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{2}\right\}\right]}\left(v_{2}\right)\right| \leq 2$, then $\bar{G}\left[u_{1}, \ldots, u_{7}, v_{2}\right]$ contains C_{8} by Lemma 4.3 .5 which with v_{7} forms W_{8} in \bar{G}, a contradiction. Thus, $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{2}\right\}\right]}\left(v_{2}\right)\right| \geq 3$, so v_{1} is not adjacent to u_{1}, \ldots, u_{4} in G. By Lemma 4.3.5, $\bar{G}\left[u_{1}, \ldots, u_{7}, v_{1}, v_{7}\right]$ contains W_{8}, a contradiction.

Hence, v_{5} is not adjacent to v_{7} in G. Now, if $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{5}\right\}\right]}\left(v_{5}\right)\right| \leq 2$, then $\bar{G}\left[u_{1}, \ldots, u_{7}, v_{5}\right]$ contains C_{8} by Lemma 4.3 .5 which with v_{7} forms W_{8} in \bar{G}, a contradiction. Thus $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{5}\right\}\right]}\left(v_{5}\right)\right| \geq 3$, so v_{4} is not adjacent to $\left\{u_{1}, \ldots, u_{4}\right\}$ in G, or else G will contain D with v_{4} be the vertex of degree 3. By Lemma 4.3.5, $\bar{G}\left[u_{1}, \ldots, u_{7}, v_{1}\right]$ contains C_{8}. If v_{4} is not adjacent to v_{7} in G, then \bar{G} contains W_{8}, a contradiction. Thus, v_{4} is adjacent to v_{7}, and since $D \nsubseteq G, v_{1}$ is not adjacent to v_{7}. If $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{1}\right\}\right]}\left(v_{1}\right)\right| \leq 2$, then $\bar{G}\left[u_{1}, \ldots, u_{7}, v_{1}\right]$ contains C_{8} by Lemma 4.3.5 which with v_{7} forms W_{8}, a contradiction, so $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{1}\right\}\right]}\left(v_{1}\right)\right| \geq 3$. Thus, $\left|N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{1}\right\}\right]}\left(v_{1}\right) \cap N_{G\left[\left\{u_{1}, \ldots, u_{4}, v_{5}\right\}\right\}}\left(v_{5}\right)\right| \geq 2$, and G contains D with v_{5} as the vertex of degree 3, a contradiction.
Case 2: u_{1} is the vertex of degree at least 4 in $G[W]$ and v_{6} is adjacent to u_{1}.
Without loss of generality, suppose that u_{1} is adjacent to u_{2}, u_{3} and u_{4} in $G[W]$. If v_{5} is adjacent to u_{1}, then Case 1 applies with v_{6} replaced by u_{1}. Suppose then that v_{5} is not adjacent to u_{1}. Since $D \nsubseteq G, v_{1}$ and v_{2} are not adjacent in G to v_{4}, v_{5} or $v_{6} ; v_{3}$ is not adjacent to $v_{6}, u_{1}, \ldots, u_{4}$; and v_{4} is not adjacent to u_{1}, \ldots, u_{4}.
Subcase 2.1: $E_{G}\left(\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right) \neq \emptyset$.
Without loss of generality, assume that u_{2} is adjacent to u_{5} in G. Then u_{3} and u_{4} are not adjacent to each other or to $v_{1}, v_{2}, u_{6}, u_{7}$. Also, u_{1} is not adjacent to v_{1} or v_{2}, and neither u_{2} nor u_{5} is adjacent to $v_{3}, v_{4}, v_{5}, v_{6}$.

Suppose that v_{7} is adjacent to v_{4} in G. If u_{1} is adjacent to v_{1}, u_{5}, u_{6} or u_{7}, then Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose that u_{1} is not adjacent to any of these vertices. Since $D \nsubseteq G, v_{7}$ is not adjacent to v_{1}. If v_{6} is not adjacent to u_{6}, then $v_{1} u_{1} u_{5} v_{6} u_{6} u_{3} u_{7} u_{4} v_{1}$ and v_{7} form W_{8} in \bar{G}, a contradiction. Similarly, \bar{G} contains W_{8} if v_{6} is not adjacent to u_{7}, a contradiction. Therefore, v_{6} is adjacent to both u_{6} and u_{7} in G. Since $D \nsubseteq G, u_{6}$ is not adjacent to u_{7}, and neither u_{6} nor u_{7} is adjacent to u_{2}. Then $v_{1} u_{1} u_{5} v_{6} u_{2} u_{6} u_{7} u_{3} v_{1}$ and v_{7} form W_{8} in \bar{G}, a contradiction.

Suppose now that v_{7} is not adjacent to v_{4} in G. If v_{7} is adjacent to v_{5}, then v_{7} is not adjacent to v_{1} or v_{2}, and v_{4} is not adjacent to v_{6}, u_{6} or u_{7}. Then $v_{1} u_{1} v_{2} u_{3} u_{6} v_{4} u_{7} u_{4} v_{1}$ and v_{7} form W_{8} in \bar{G}, a contradiction. Therefore, v_{7} is not adjacent to v_{5} in G. If v_{6} is not adjacent to u_{3}, then $u_{3} v_{6} u_{2} v_{5} u_{5} v_{4} u_{4} u_{6} u_{3}$ and v_{7} form W_{8} in \bar{G}, a contradiction. Similarly, \bar{G} contains W_{8} if v_{6} is not adjacent to u_{4}, a contradiction. Then v_{6} is adjacent to both u_{3} and u_{4} in G, so v_{6} is not adjacent to u_{6} and u_{7}, or else Case 1 applies. Hence, $v_{4} u_{2} v_{5} u_{5} v_{6} u_{6} u_{3} u_{4} v_{4}$ and v_{7} form W_{8} in \bar{G}, a contradiction.
Subcase 2.2: $\left\{u_{2}, u_{3}, u_{4}\right\}$ is not adjacent to $\left\{u_{5}, u_{6}, u_{7}\right\}$ in $G[W]$.
If $\left|N_{G\left[\left\{u_{2}, u_{3}, u_{4}, v_{6}\right\}\right]}\left(v_{6}\right)\right| \geq 3$ or $\left|N_{G\left[\left\{u_{5}, u_{6}, u_{7}, v_{6}\right\}\right\}}\left(v_{6}\right)\right| \geq 3$, then Case 1 applies, so $\left|N_{G\left[\left\{u_{2}, u_{3}, u_{4}, v_{6}\right\}\right]}\left(v_{6}\right)\right| \leq 2$ and $\left|N_{G\left[\left\{u_{5}, u_{6}, u_{7}, v_{6}\right\}\right]}\left(v_{6}\right)\right| \leq 2$. Without loss of generality, assume that v_{6} is not adjacent in G to u_{2} or u_{5}.

Suppose that v_{4} is not adjacent to v_{7} in G. If u_{5} is adjacent to u_{6} or u_{7}, say u_{6}, then v_{4} is not adjacent to u_{5} or u_{6}, so $v_{4} u_{2} v_{6} u_{5} u_{3} u_{7} u_{4} u_{6} v_{4}$ and v_{7} form W_{8} in \bar{G}, a contradiction. If u_{5} is not adjacent to u_{6} or u_{7}, then $v_{4} u_{2} v_{6} u_{5} u_{6} u_{3} u_{7} u_{4} v_{4}$ and v_{7} form W_{8} in \bar{G}, a contradiction. Suppose that v_{4} is adjacent to v_{7} in G. By similar arguments to those in Subcase 2.1, u_{1} is not adjacent to v_{1}, u_{5}, u_{6} or u_{7}, and v_{7} is not adjacent to v_{1}. Then $v_{1} v_{6} u_{5} u_{2} u_{6} u_{3} u_{7} u_{1} v_{1}$ and v_{7} form W_{8} in \bar{G}, a contradiction.
Case 3: u_{1} is the vertex of degree at least 4 in $G[W]$ and v_{6} is not adjacent to u_{1}.
Assume that u_{1} is adjacent to u_{2}, u_{3}, u_{4} and u_{5} in $G[W]$. Since $D \nsubseteq G, v_{3}$ and v_{4} are not adjacent to $u_{1}, u_{2}, u_{3}, u_{4}$ or u_{5} in G. If either v_{1} or v_{5} are adjacent to u_{1} in G, then Case 1 applies, so suppose that v_{1} and v_{5} are not adjacent to u_{1}. In addition, v_{1} and v_{5} is not adjacent to u_{2}, u_{3}, u_{4} or u_{5} in G, or else Case 2 applies. Subcase 3.1: $N_{G\left[u_{2}, \ldots, u_{5}\right]}\left(v_{6}\right) \neq \emptyset$.

Assume that v_{6} is adjacent to u_{2} in G. Note that v_{4} is not adjacent to v_{6}, v_{7}, u_{6} or u_{7} in G, and v_{3} is not adjacent to v_{5} in G, or else Case 2 applies by slight adjustment of vertex labels. Since $D \nsubseteq G, v_{1}$ and v_{2} are not adjacent in G to v_{5}, v_{6} or u_{2}, and v_{3} is not adjacent to v_{6} in G.

If u_{2} and u_{6} are not adjacent in G, then $v_{1} u_{1} v_{6} v_{2} u_{2} u_{6} v_{7} u_{3} v_{1}$ and v_{4} form W_{8} in \bar{G}, a contradiction. A similar contradiction arises if u_{2} and u_{7} not adjacent. Therefore, u_{2} is adjacent to both u_{6} and u_{7} in G, and u_{3}, u_{4} and u_{5} are not adjacent to u_{6} or u_{7} in G since $D \nsubseteq G$. Then $v_{1} u_{1} v_{6} v_{2} u_{2} v_{7} u_{6} u_{3} v_{1}$ and v_{4} form W_{8} in \bar{G}, a contradiction.
Subcase 3.2: $N_{G\left[u_{2}, \ldots, u_{5}\right]}\left(v_{6}\right)=\emptyset$.
Suppose that v_{1} is adjacent to v_{7} in G. Then v_{2} is not adjacent to v_{5}, v_{6} or U since $D \nsubseteq G$. If $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right)\right| \leqq 2$, then Lemma 4.3.5 implies that $\bar{G}\left[u_{2}, u_{3}, u_{4}, u_{5}, v_{4}, v_{5}, v_{6}, u_{6}\right]$ contains C_{8} in \bar{G} which with v_{2} forms W_{8}, a contradiction. Therefore, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right)\right| \geq 3$. Similarly, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}\right\}\right]}\left(u_{7}\right)\right| \geq 3$. By the Inclusion-exclusion Principle, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right) \cap N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}\right\}\right\}}\left(u_{7}\right)\right| \geq 2$. Without loss of generality, u_{6} is adjacent to u_{2}, u_{3} and u_{4} in G, and u_{7} is adjacent to u_{3} and u_{4}, and $G\left[u_{1}, \ldots, u_{7}\right]$ contains D with u_{3} or u_{4} being the vertex of degree 3 , a contradiction.

Now suppose that v_{1} is not adjacent to v_{7} in G. If v_{7} is adjacent to v_{4} in G, then v_{2} is not adjacent to any of u_{1}, \ldots, u_{5} in G, or else either Case 1 or Case 2 applies. Also, $\left|N_{G\left[\left\{v_{2}, v_{5}, v_{7}\right\}\right]}\left(v_{7}\right)\right| \leq 1$ since $D \subseteq G$. Assume that v_{7} is not adjacent to v_{2} in G. If $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right)\right| \leq 2$, then Lemma 4.3.5 implies that $\bar{G}\left[u_{2}, u_{3}, u_{4}, u_{5}, v_{1}, v_{2}, v_{6}, u_{6}\right]$ contains C_{8} which with v_{7} forms W_{8}, a contradiction. Thus, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right\}}\left(u_{6}\right)\right| \geq 3$. Similarly, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}\right\}\right\}}\left(u_{7}\right)\right| \geq 3$, so $\left|N_{G\left\{\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right) \cap N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}\right\}\right]}\left(u_{7}\right)\right| \geq 2$. By arguments similar to those in the previous paragraph, G will contain a subgraph D, a contradiction.

Thus, $R\left(D, W_{8}\right) \leq 14$ which completes the proof of the theorem.
Theorem 5.2.3. $R\left(E, W_{8}\right)=15$.
Proof. The graph $G=K_{6} \cup K_{4,4}$ does not contain E and \bar{G} does not contain W_{8}. Thus, $R\left(E, W_{8}\right) \geq 15$. For the upper bound, let G be any graph of order 15. Suppose that G does not contain E and that \bar{G} does not contain W_{8}. By Theorem 4.3.11, G contains $T=S_{7}(3)$ subgraph. Label the vertices of this subgraph as in Figure 5.6 and set $U=V(G)-V(T)$. Note that $|U|=8$.

Figure 5.6: $S_{7}(3)$ and U in G.

Case 1: Some vertex u in U is adjacent to v_{6}.
Since $E \nsubseteq G, v_{6}$ is not adjacent to $v_{1}, v_{2}, v_{3}, v_{7}$ or any vertex of U other than u. Let $W=\left\{v_{1}, v_{2}, v_{3}, v_{7}, u_{1}, \ldots, u_{4}\right\}$, for any vertices u_{1}, \ldots, u_{4} in U other than u. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2 .10 which with v_{6} forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[W]) \leq 3$ and $\Delta(G[W]) \geq 4$. Since $E \nsubseteq G$, $N_{G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{7}\right\}\right]}\left(v_{7}\right) \leq 1$ and $N_{G\left[\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{7}, v_{i}\right\}\right]}\left(v_{i}\right) \leq 1$ for $i=1,2,3$, so none of $v_{1}, v_{2}, v_{3}, v_{7}$ has degree at least 4 . Without loss of generality, assume that u_{1} has degree at least 4. If u_{1} is adjacent to v_{7}, then G contains E with u_{1} and v_{5} as the vertices of degree 3 , a contradiction. Similarly, if u_{1} is adjacent to v_{1}, v_{2} or v_{3}, then G contains E with u_{1} and v_{4} as the vertices of degree 3 , a contradiction. Therefore, u_{1} is not adjacent to v_{1}, v_{2}, v_{3} or v_{7}. However, then u_{1} has degree at most 3 in $G[W]$, a contradiction.
Case 2: v_{6} is not adjacent to any vertex in U.
If v_{7} is adjacent to some vertex in U, then Case 1 applies with v_{7} replacing v_{6}, so suppose that v_{7} is not adjacent to any vertex in U. Now, if $\delta(\bar{G}[U]) \geq 4$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2.10 which, with v_{6} or v_{7}, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[U]) \leq 3$ and $\Delta(G[U]) \geq 4$. Let $V(U)=\left\{u_{1}, \ldots, u_{8}\right\}$. Without loss of generality, assume that u_{1} is adjacent to u_{2}, u_{3}, u_{4} and u_{5}. Since $E \nsubseteq G, v_{4}$ is not adjacent in G to any of $u_{1}, \ldots, u_{5} ; v_{5}$ is not adjacent to any of $v_{1}, v_{2}, v_{3}, u_{1}, \ldots, u_{5}$; and u_{1} is not adjacent to v_{1}, v_{2} or v_{3}. Furthermore, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, v_{i}\right\}\right]}\left(v_{i}\right)\right| \leq 1$ for $i=1,2,3$ and $\left|N_{G\left[\left\{v_{1}, v_{2}, v_{3}, u_{j}\right\}\right]}\left(u_{j}\right)\right| \leq 1$ for $j=2, \ldots, 5$.

Now, suppose that $N_{G\left[\left\{v_{5}, u_{6}, u_{7}, u_{8}\right\}\right]}\left(v_{5}\right)=\emptyset$. If $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right)\right| \leq 1$, then $\bar{G}\left[u_{2}, \ldots, u_{5}, v_{1}, v_{2}, v_{3}, u_{6}\right]$ contains C_{8} by Lemma 4.3 .5 which with v_{5} forms W_{8}, a contradiction. Therefore, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{6}\right\}\right]}\left(u_{6}\right)\right| \geq 2$. Similarly, $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}\right\}\right]}\left(u_{7}\right)\right| \geq 2$ and $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{8}\right\}\right]}\left(u_{8}\right)\right| \geq 2$. By the Inclusion-Exclusion Principle, u_{2}, u_{3}, u_{4} or u_{5} is adjacent in G to at least two of u_{6}, u_{7}, u_{8}. Without loss of generality, assume that u_{2} is adjacent to u_{6} and u_{7}. Then u_{2} is not adjacent to u_{3}, u_{4} or u_{5}, Therefore, Lemma 4.3.5 implies that $\bar{G}\left[u_{1}, u_{3}, u_{4}, u_{5}, v_{1}, v_{2}, v_{3}, u_{2}\right]$ contains C_{8} which with v_{5} forms W_{8}, a contradiction.

On the other hand, if $N_{G\left[u_{6}, u_{7}, u_{8}\right]}\left(v_{5}\right) \neq \emptyset$, then without loss of generality assume that u_{6} is adjacent to v_{5} in G. Since $E \nsubseteq G, v_{4}$ is not adjacent to v_{6}, v_{7} or u_{6} in G. Also, $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{6}, v_{7}, u_{6}\right\}$ are independent in G, and $v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, u_{6} \notin$ $N_{G}\left(u_{i}\right)$ for $i=1, \ldots, 5,7,8$, or else Case 1 applies with vertex label adjustments. Now, if u_{1} is not adjacent to both u_{7} and u_{8} in G, then $v_{1} v_{2} v_{3} u_{7} v_{6} v_{7} u_{6} u_{8} v_{1}$ and u_{1} form W_{8} in \bar{G}, a contradiction. Therefore, $N_{G\left[\left\{u_{1}, u_{7}, u_{8}\right\}\right]}\left(u_{1}\right) \neq \emptyset$. Without loss of generality, assume that u_{1} is adjacent to u_{7} in G. Note that for $E \nsubseteq$ $G,\left|N_{G\left[\left\{v_{4}, v_{5}, u_{8}\right\}\right]}\left(u_{8}\right)\right| \leq 1$. Now, suppose that u_{8} is not adjacent to v_{4} in G. If $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{8}\right\}\right]}\left(u_{8}\right)\right| \leq 3$, then assume without loss of generality that u_{8} is not adjacent to u_{2} or u_{3} in G. Then $v_{6} u_{4} v_{7} u_{5} u_{6} u_{2} u_{8} u_{3} v_{6}$ and v_{4} form W_{8} in \bar{G}, a
contradiction. Similar arguments work if u_{8} is not adjacent to v_{5} in G, by replacing v_{4} with v_{5} and v_{6}, v_{7}, u_{6} with v_{1}, v_{2}, v_{3}, respectively, so $\left|N_{G\left[\left\{u_{2}, \ldots, u_{5}, u_{7}, u_{8}\right\}\right]}\left(u_{8}\right)\right| \geq 4$. However, G then contains E with u_{1} and u_{8} of degree 3, a contradiction.

Thus, $R\left(E, W_{8}\right) \leq 15$. This completes the proof of the theorem.
Next, we will proceed to the results for the tree graphs T_{n} with $n \geq 8$. There are 7 types of tree graphs to be discussed, namely $S_{n}(4), S_{n}[4], S_{n}(1,3), S_{n}(3,1)$, $T_{A}(n), T_{B}(n)$ and $T_{C}(n)$ as shown in Figure 5.2.
Lemma 5.2.4. Let $n \geq 8$. Then for each tree graph $T_{n} \in\left\{S_{n}(4), S_{n}(3,1), T_{C}(n)\right\}$, $R\left(T_{n}, W_{8}\right) \geq 2 n-1$. Also, for each tree graph $T_{n} \in\left\{S_{n}[4], S_{n}(1,3), T_{A}(n), T_{B}(n)\right\}$, $R\left(T_{n}, W_{8}\right) \geq 2 n-1$ if $n \not \equiv 0(\bmod 4)$ and $R\left(T_{n}, W_{8}\right) \geq 2 n$ otherwise.

Proof. The graph $G=2 K_{n-1}$ does not contain any tree graphs of order n, and \bar{G} does not contain W_{8}. Finally, if $n \equiv 0(\bmod 4)$, then the graph $G=K_{n-1} \cup K_{4, \ldots, 4}$ of order $2 n-1$ does not contain $S_{n}[4], S_{n}(1,3), T_{A}(n)$ or $T_{B}(n)$; nor does the complement \bar{G} contain W_{8}.

Theorem 5.2.5. If $n \geq 8$, then

$$
R\left(S_{n}(4), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \geq 9 \\ 16 & \text { if } n=8\end{cases}
$$

Proof. By Lemma 5.2.4, $R\left(S_{n}(4), W_{8}\right) \geq 2 n-1$ for $n \geq 8$. For $n=8$, observe that the graph $G=K_{7} \cup H_{8}$, where H_{8} is the graph of order 8 as shown in Figure 5.7 does not contain $S_{8}(4)$ and its complement \bar{G} does not contain W_{8}. Therefore, for $n=8$, we have a better bound of $R\left(S_{8}(4), W_{8}\right) \geq 16$.

Figure 5.7: The graphs H_{8}.
For the upper bound, let G be any graph of order $2 n-1$ if $n \geq 9$, and of order 16 if $n=8$. Assume that G does not contain $S_{n}(4)$ and that \bar{G} does not contain W_{8}.

If $n \geq 9$ is odd or $n=8$, then G has a subgraph $T=S_{n}(3)$ by Theorem 4.3.11. Let $V(T)=\left\{v_{0}, \ldots, v_{n-3}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{1} w_{1}, v_{1} w_{2}\right\}$. Also, let $V=\left\{v_{2}, \ldots, v_{n-3}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-4 \geq 5$ and $|U|=$ $n-1 \geq 8$ if n is odd, while $|U|=8$ if $n=8$. Since $S_{n}(4) \nsubseteq G, v_{1}$ is not adjacent in G to any vertex of $U \cup V$ in G. Furthermore, for each $2 \leq i \leq n-3, v_{i}$ is adjacent to at most two vertices of U in G. By Corollary 5.3.1, $\bar{G}[U \cup V]$ contains C_{8}, and together with v_{1}, gives us W_{8} in \bar{G}, a contradiction.

For the remaining case when $n \geq 10$ is even, $S_{n-1} \subseteq G$ by Theorem 2.2.6. Let v_{0} be the centre of S_{n-1} and set $L=N_{S_{n-1}}\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n-2}\right\}$ and $U=$ $V(G)-V\left(S_{n-1}\right)$. Then $|U|=n$. Since G does not contain $S_{n}(4)$, each vertex of L is adjacent to at most two vertices of U. We consider two cases here.

Case 1: $E(L, U)=\emptyset$.
If $\Delta(\bar{G}[U]) \geq 4$, then some vertex u in U is adjacent to at least four vertices in $\bar{G}[U]$. These four vertices and any four vertices from L form C_{8} in \bar{G} which, with hub u, form W_{8}, a contradiction. Therefore, $\Delta(\bar{G}[U]) \leq 3$ and $\delta(G[U]) \geq n-4$. Suppose that $\delta(G[U])=n-4-\ell$ for some $\ell \geq 0$, and let u_{0} be a vertex in U with minimum degree in $G[U]$. Label the remaining vertices in U as u_{1}, \ldots, u_{n-1} such that $U_{A}=\left\{u_{1}, \ldots, u_{n-4}\right\} \subseteq N_{G}\left(u_{0}\right)$, and let $U_{B}=\left\{u_{n-3}, u_{n-2}, u_{n-1}\right\}$. Since $S_{n}(4) \nsubseteq G$, each vertex in U_{A} is adjacent to at most two vertices in U_{B}, and so $\left|E_{G}\left(U_{A}, U_{B}\right)\right| \leq 2(n-4)$. On the other hand, noting that u_{0} is adjacent to exactly ℓ vertices in U_{B} and letting $e_{B} \leq 3$ be the number of edges in $G\left[U_{B}\right]$, we see that $\left|E_{G}\left(U_{A}, U_{B}\right)\right| \geq 3 \delta(G[U])-\ell-2 e_{B}=3(n-4-\ell)-\ell-2 e_{B}$. Therefore, $2(n-4) \geq$ $\left|E_{G}\left(U_{A}, U_{B}\right)\right| \geq 3 n-12+2 \ell-2 e_{B}$, implying that $n+2 \ell \leq 4+2 e_{B} \leq 10$, which is only possible when $n=10, \ell=0, e_{B}=3$, and $\left|E_{G}\left(U_{A}, U_{B}\right)\right|=2(n-4)=12$. For such scenario where $n=10$, noting that u_{0} was an arbitrary vertex with minimum degree in $G[U]$, it is straightforward to deduce that the only possible edge set of $G[U]$ (up to isomorphism) with $S_{10}(4) \nsubseteq G[U]$ is

$$
\begin{aligned}
&\left\{u_{1} u_{0}, \ldots, u_{6} u_{0}\right\} \cup\left\{u_{1} u_{7}, \ldots, u_{4} u_{7}\right\} \cup\left\{u_{1} u_{8}, u_{2} u_{8}, u_{5} u_{8}, u_{6} u_{8}\right\} \cup\left\{u_{3} u_{9}, \ldots, u_{6} u_{9}\right\} \\
& \cup\left\{u_{1} u_{2}, u_{3} u_{4}, u_{5} u_{6}\right\} \cup\left\{u_{1} u_{3}, u_{1} u_{5}, u_{3} u_{5}\right\} \cup\left\{u_{2} u_{4}, u_{2} u_{6}, u_{4} u_{6}\right\} \cup\left\{u_{7} u_{8}, u_{7} u_{9}, u_{8} u_{9}\right\}
\end{aligned}
$$

Observe now that $\bar{G}[U]$ contains C_{8}, which forms a W_{8} in \bar{G} with any vertex in L as hub, a contradiction.
Case 2: $E(L, U) \neq \emptyset$.
Without loss of generality, assume that v_{1} is adjacent to u_{1} in G. Since $S_{n}(4) \nsubseteq$ G, v_{1} is adjacent to at most one vertex of $U \cup L \backslash\left\{u_{1}\right\}$ in G. Therefore, we can find a 4 -vertex set $V^{\prime} \subseteq V \backslash\left\{v_{1}\right\}$ and an 8-vertex set $U^{\prime} \subseteq U \backslash\left\{u_{1}\right\}$ such that v_{1} is not adjacent in G to any vertex of $U^{\prime} \cup V^{\prime}$. Note that each vertex of V^{\prime} is adjacent to at most two vertices of U^{\prime} in G, so $\left|E\left(V^{\prime}, U^{\prime}\right)\right| \leq 8$. This implies that there are four vertices in U^{\prime} that are each adjacent in G to at most one vertex of V^{\prime}, and so \bar{G} contains C_{8} by Lemma 4.3.5 and, with v_{1} as hub, form W_{8}, a contradiction.

Thus, $R\left(S_{n}(4), W_{8}\right) \leq 2 n-1$ when $n \geq 9$ and $R\left(S_{n}(4), W_{8}\right) \leq 16$ when $n=8$. This completes the proof of the theorem.

Lemma 5.2.6. Let H be a graph of order $n \geq 8$ with minimum degree $\delta(H) \geq n-4$. Then either H contains $S_{n}[4]$ and $T_{A}(n)$, or $n \equiv 0(\bmod 4)$ and \bar{H} is the disjoint union of $\frac{n}{4}$ copies of K_{4}, i.e., $\bar{H}=\frac{n}{4} K_{4}$.

Proof. Let $V(H)=\left\{u_{0}, \ldots, u_{n-1}\right\}$. We first consider the case that H has a vertex of degree at least $n-3$, which we may assume without loss of generality that this vertex is u_{0}, and that $\left\{u_{1}, \ldots, u_{n-3}\right\} \subseteq N_{H}\left(u_{0}\right)$.

Suppose that u_{n-2} is adjacent to u_{n-1} in H. Since $\delta(H) \geq n-4, u_{n-2}$ is adjacent to at least $n-6 \geq 2$ vertices of $\left\{u_{1}, \ldots, u_{n-3}\right\}$, say u_{1} and u_{2}, and so H contains $S_{n}[4]$. Furthermore, also by the minimum degree condition, u_{1} is adjacent to at least $n-7 \geq 1$ vertices of $\left\{u_{1}, \ldots, u_{n-3}\right\}$, and so H contains $T_{A}(n)$.

Suppose now that u_{n-2} is not adjacent to u_{n-1} in H. Then by the minimum degree condition, there is a vertex in $\left\{u_{1}, \ldots, u_{n-3}\right\}$, say u_{1}, that is adjacent to both
u_{n-2} and u_{n-1}. The vertices u_{1} and u_{n-2} must also each be adjacent to a vertex of $\left\{u_{2}, \ldots, u_{n-3}\right\}$, and so H contains both $S_{n}[4]$ and $T_{A}(n)$.

For the remaining case, suppose that H is $(n-4)$-regular and that $N_{H}\left(u_{0}\right)=$ $\left\{u_{1}, \ldots, u_{n-4}\right\}$. Let $U=\left\{u_{n-3}, u_{n-2}, u_{n-1}\right\}$ and suppose that $H[U]$ has an edge, say $u_{n-3} u_{n-2}$. Since u_{n-3} must be adjacent in H to some vertex of $N_{H}\left(u_{0}\right)$, it follows that H contains $S_{n}[4]$ if u_{n-3} or u_{n-2} is adjacent to u_{n-1}. Suppose then that neither u_{n-3} nor u_{n-2} is adjacent to u_{n-1}. Then u_{n-1} is adjacent to every vertex of $N_{H}\left(u_{0}\right)$. Note that $d_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-3}\right\}\right]}\left(u_{n-3}\right)=n-5$ and let u be the vertex of $N_{H}\left(u_{0}\right)$ that is not adjacent in H to u_{n-3}. Since $d_{H}(u)=n-4, u$ is adjacent in H to some vertex in $N_{H}\left(u_{n-3}\right)$, so H contains $S_{n}[4]$. Also, note that u_{n-3} is adjacent in H to at least $n-6$ vertices of $N_{H}\left(u_{0}\right)$. If u_{n-1} is adjacent to some vertex of $N_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-3}\right\}\right]}\left(u_{n-3}\right)$, then H contains $T_{A}(n)$. Note that this will always happen for $n \geq 9$. For $n=8$, there is a case where $\left|N_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-3}\right\}\right]}\left(u_{n-3}\right)\right|=\left|N_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-1}\right\}\right]}\left(u_{n-1}\right)\right|=2$ and $N_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-3}\right\}\right]}\left(u_{n-3}\right) \cap N_{H\left[N_{H}\left(u_{0}\right) \cup\left\{u_{n-1}\right\}\right]}\left(u_{n-1}\right)=\emptyset$, so u_{n-1} is adjacent to u_{n-3} and u_{n-2}, giving $T_{A}(n)$ in H.

Now, suppose that $H[U]$ contains no edge. Then $U_{1}=U \cup\left\{u_{0}\right\}$ is an independent set in H. Furthermore, $N_{H}(u)=\left\{u_{1}, \ldots, u_{n-4}\right\}$ for every $u \in U$, as every vertex has degree $n-4$. Therefore, $\bar{H}\left[U_{1}\right]$ is a K_{4} component in \bar{H}. Repeating the above proof for each vertex u of H shows that either u is contained in a K_{4} component of \bar{H}, or H contains both $S_{n}[4]$ or $T_{A}(n)$. In other words, either H contains both $S_{n}[4]$ and $T_{A}(n)$, or \bar{H} is the disjoint union of $\frac{n}{4}$ copies of K_{4}, and so $n \equiv 0(\bmod 4)$.

Theorem 5.2.7. If $n \geq 8$, then

$$
R\left(S_{n}[4], W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper bounds. Now let G be a graph that does not contain $S_{n}[4]$ and assume that \bar{G} does not contain W_{8}.

We first suppose that G has order $2 n$ if $n \equiv 0(\bmod 4)$ and G has order $2 n-1$ if n is odd. By Theorem 4.3.11, G has a subgraph $T=S_{n}(3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-3}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}\right\} \cup\left\{v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $U=V(G)-V(T)$ and $V=\left\{v_{2}, \ldots, v_{n-3}\right\}$. Then $|U|=n-j$, for $j=0$ if $n \equiv 0$ $(\bmod 4)$ and $j=1$ if n is odd, and $|V|=n-4$. Since G does not contain $S_{n}[4]$, v_{1} is not adjacent to any vertex of V in G, and each vertex of V is adjacent to at most $n-6$ vertices of $U \cup V$ in G. Noting also that w_{1} and w_{2} each is adjacent to at most one vertex of $\left\{w_{1}, w_{2}\right\} \cup U$ in G, we consider two cases.
Case 1: At least one of w_{1} and w_{2} is not an isolated vertex in $G\left[\left\{w_{1}, w_{2}\right\} \cup U\right]$.
Without loss of generality, assume that w_{1} is adjacent to some vertex $u \in\left\{w_{2}\right\} \cup$ U in G. Let $Z=\left(V \cup U \cup\left\{w_{2}\right\}\right) \backslash\{u\}$ and note that $|Z|=2 n-4-j$. Since $S_{n}[4] \nsubseteq G, w_{1}$ is not adjacent to any vertex of Z in G. If $\delta(\bar{G}[Z]) \geq\left\lceil\frac{2 n-4-j}{2}\right\rceil$, then $\bar{G}[Z]$ contains C_{8} by Lemma 2.2 .10 which with w_{1}, forms W_{8} in \bar{G}, a contradiction. Therefore, $\delta(\bar{G}[Z]) \leq\left\lceil\frac{2 n-4-j}{2}\right\rceil-1$ and $\Delta(G[Z]) \geq\left\lfloor\frac{2 n-4-j}{2}\right\rfloor=n-2-j$. Since each v of V is adjacent to at most $n-6$ vertices of $U \cup V$ in G, and w_{2} is adjacent to at most one vertex of U in G, a vertex with maximum degree in $G[Z]$ must be a
vertex of $U \backslash\{u\}$. So let u_{2} be a vertex of U with $d_{G[Z]}\left(u_{2}\right) \geq n-2$. As $S_{n}[4] \nsubseteq G$, observe that $N_{G[Z]}\left(u_{2}\right) \subseteq U$; each vertex of V is adjacent to at most one vertex of $N_{G[Z]}\left(u_{2}\right)$ in G; and each vertex of $N_{G[Z]}\left(u_{2}\right)$ is adjacent to at most one vertex of V in G. Then by Lemma 4.3.5, any four vertices from V and any four vertices from $N_{G[Z]}\left(u_{2}\right)$ form C_{8} in \bar{G} which with w_{1} forms W_{8} in \bar{G}, a contradiction.
Case 2: w_{1} and w_{2} are isolated vertices in $G\left[\left\{w_{1}, w_{2}\right\} \cup U\right]$.
If $\delta(\bar{G}[U]) \geq \frac{n-j}{2}$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2 .10 which with w_{1} forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[U]) \leq \frac{n-j}{2}-1$, and $\Delta(G[U]) \geq \frac{n-j}{2}$. Let u_{1} be a vertex of U with $d_{G[U]} \geq \frac{n-j}{2}$. Since $S_{n}[4] \nsubseteq G, v_{0}$ is not adjacent to any vertex of $N_{G[U]}\left(u_{1}\right)$ in G. Now, if v_{1} is adjacent to some vertex u of $N_{G[U]}\left(u_{1}\right)$ in G, then apply Case 1 with w_{1} and u interchanged. So we may assume that v_{1} is not adjacent to any vertex of $N_{G[U]}\left(u_{1}\right)$ in G.

If $E\left(V, N_{G[U]}\left(u_{1}\right)\right)=\emptyset$ in G, then any four vertices of V and any four vertices of $N_{G[U]}\left(u_{1}\right)$ form C_{8} in \bar{G}, and with v_{1}, form W_{8} in \bar{G}, a contradiction. So without loss of generality, assume that v_{2} is adjacent to some vertex u_{2} of $N_{G[U]}\left(u_{1}\right)$ in G. Since $S_{n}[4] \nsubseteq G, u_{2}$ is not adjacent to any vertex of $U \backslash\left\{u_{1}\right\}$. Then $v_{0}, v_{1}, w_{1}, w_{2}$ and any four vertices from $U \backslash\left\{u_{1}, u_{2}\right\}$, at least three of which are from $N_{G[U]}\left(u_{1}\right) \backslash\left\{u_{2}\right\}$, form C_{8} in \bar{G} and, with u_{2}, form W_{8} in \bar{G}, a contradiction.

In either case, $R\left(S_{n}[4], W_{8}\right) \leq 2 n$ for $n \equiv 0(\bmod 4)$ and $R\left(S_{n}[4], W_{8}\right) \leq 2 n-1$ for odd n.

Next, suppose that $n \equiv 2(\bmod 4)$ and G has order $2 n-1$. If G contains $S_{n}(3)$, then we can use the previous arguments to show that $R\left(S_{n}[4], W_{8}\right) \leq 2 n-1$. Hence, we only need to consider the case where G does not contain $S_{n}(3)$. Now, by Theorem 5.2.5, G has a subgraph $T=S_{n}(4)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Let $U=V(G)-V(T)$; then $|U|=n-1$. Since G does not contain $S_{n}(3)$ and $S_{n}[4], v_{0}$ is not adjacent in G to w_{1}, w_{2}, w_{3} or U. Now, set $U^{\prime}=N_{G\left[U \cup\left\{w_{1}\right\}\right]}\left(w_{1}\right) \cup N_{G\left[U \cup\left\{w_{2}\right\}\right]}\left(w_{2}\right) \cup N_{G\left[U \cup\left\{w_{3}\right\}\right]}\left(w_{3}\right)$. Then $\left|U^{\prime}\right| \leq 3$ and w_{1}, w_{2} and w_{3} are not adjacent in G to any vertex of $U \backslash U^{\prime}$. By Lemma 4.3.4, $G\left[U \backslash U^{\prime}\right]$ is either $K_{n-1-\left|U^{\prime}\right|}$ or $K_{n-1-\left|U^{\prime}\right|}-e$. If $d_{\bar{G}\left[U \backslash U^{\prime}\right]}\left(u^{\prime}\right) \geq 2$ for some vertex u^{\prime} in U^{\prime}, then at least two vertices of $U \backslash U^{\prime}$ are not adjacent to u^{\prime} in G. Let X be a set containing these two vertices and any other two vertices in $U \backslash U^{\prime}$, and set $Y=\left\{w_{1}, w_{2}, w_{3}, u^{\prime}\right\}$. Note that $\bar{G}[X \cup Y]$ contains C_{8} by Lemma 4.3.5 which, with v_{0} as hub, forms W_{8}, a contradiction. Therefore, every vertex of U^{\prime} is adjacent in G to at least $n-2-\left|U^{\prime}\right|$ vertices of $U \backslash U^{\prime}$. Hence, $\delta(G[U]) \geq n-5$, and since $S_{n}[4] \nsubseteq G, E_{G}(T, U)=\emptyset$. Now, if $\bar{G}[V(T)]$ contains S_{5}, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Thus, $\delta(G[V(T)]) \geq n-4$. By Lemma 5.2.6, G contains $S_{n}[4]$, a contradiction. Hence, $R\left(S_{n}[4], W_{8}\right) \leq 2 n-1$ for $n \equiv 2(\bmod 4)$. This completes the proof.

Theorem 5.2.8. If $n \geq 8$, then

$$
R\left(S_{n}(1,3), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.2.4 provides the lower bounds. It therefore remains to prove the upper bounds. Let G be any graph of order $2 n$ if $n \equiv 0(\bmod 4)$ and of order
$2 n-1$ if $n \not \equiv 0(\bmod 4)$. Assume that G does not contain $S_{n}(1,3)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, w_{1} v_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$. Since $S_{n}(1,3) \nsubseteq G, w_{2}$ and w_{3} are not adjacent to each other, or to any vertex in $U \cup V$. Since $C_{8} \nsubseteq \bar{G}[U \cup V]$ as $W_{8} \nsubseteq \bar{G}$, Lemma 2.2.10 implies that $G[U \cup V]$ has a vertex u of degree at least $n-3$ in $G[U \cup V]$. Since $S_{n}(1,3) \nsubseteq G, u \in U$ and u is not adjacent to any vertex in V. Furthermore, $E\left(V, N_{G[U]}(u)\right)=\emptyset$. Finally, note that w_{3}, any 3 vertices in V and any 4 vertices in $N_{G[U]}(u)$ form C_{8} in \bar{G} which, with w_{2} as hub, form W_{8}, a contradiction.

Theorem 5.2.9. If $n \geq 8$, then

$$
R\left(T_{A}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper bounds. Let G be any graph of order $2 n$ if $n \equiv 0(\bmod 4)$ and of order $2 n-1$ if $n \not \equiv 0(\bmod 4)$. Assume that G does not contain $T_{A}(n)$ and that \bar{G} does not contain W_{8}.

Suppose that G has a subgraph $T=S_{n}(3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-3}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-3}\right\}$ and $U=V(G)-$ $V(T)$. Since G does not contain $T_{A}(n), w_{1}$ and w_{2} are not adjacent to any vertex of $U \cup V$ in G. Let V^{\prime} be the set of any $n-5$ vertices in V, and U^{\prime} be the set of any $n-1$ vertices in U. If $\delta\left(\bar{G}\left[U^{\prime} \cup V^{\prime}\right]\right) \geq n-3$, then $\bar{G}\left[U^{\prime} \cup V^{\prime}\right]$ contains C_{8} by Lemma 2.2.10 which, with w_{1} as hub, form W_{8}, a contradiction. Therefore, $\delta\left(\bar{G}\left[U^{\prime} \cup V^{\prime}\right]\right) \leq n-4$ and $\Delta\left(G\left[U^{\prime} \cup V^{\prime}\right]\right) \geq n-3$. Since $T_{A}(n) \nsubseteq G, d_{G\left[U^{\prime} \cup V^{\prime}\right]}(v) \leq n-6$ for each $v \in V^{\prime}$. Hence, some vertex $u \in U^{\prime}$ satisfies $d_{G\left[U^{\prime} \cup V^{\prime}\right]}(u) \geq n-3$, which also implies that u is adjacent to at least two vertices of U.

Since $T_{A}(n) \nsubseteq G$, each vertex of V is adjacent to at most one vertex of $N_{G[U]}(u)$. If $\left|N_{G[U]}(u)\right| \geq n-4$, then we also have that each vertex of $N_{G[U]}(u)$ is adjacent to at most one vertex of V, and so $\bar{G}\left[V \cup N_{G[U]}(u)\right]$ contains C_{8} by Lemma 2.2.10 which, with w_{1} as hub, form W_{8}, a contradiction. Thus, at least three vertices of V^{\prime} (and so of V), v_{2}, v_{3}, and v_{4}, are adjacent to u in G. Let a and b be any two vertices in $N_{G[U]}(u)$. As $T_{A}(n) \nsubseteq G$, each of v_{2}, v_{3}, v_{4} is not adjacent to any vertex of $V(G) \backslash\left\{u, v_{0}\right\}$. Then $w_{1} v_{5} w_{2} v_{3} a v_{1} b v_{4} w_{1}$ and v_{2} form W_{8} in \bar{G}, a contradiction.

By Theorem 4.3.11, we have shown that $R\left(S_{n}(3), W_{8}\right) \leq 2 n$ for $n \equiv 0(\bmod 4)$. So we may now assume that G has order $2 n-1$ with $n \not \equiv 0(\bmod 4)$, and that G does not contain $S_{n}(3)$. By Theorem 5.2.5, G has a subgraph $T=S_{n}(4)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Then $U=V(G)-V(T)$ and $|U|=n-1$. Since $T_{A}(n) \nsubseteq G, w_{1}, w_{2}, w_{3}$ are not adjacent to each other in G or to any vertex of U. Since $S_{3}(n) \nsubseteq G, v_{0}$ is not adjacent any vertex of $U \cup\left\{w_{1}, w_{2}, w_{3}\right\}$. By Lemma 4.3.4, $G[U]$ is K_{n-1} or $K_{n-1}-e$. Since $T_{A}(n) \nsubseteq G$, each vertex of T is not adjacent to any vertex of U in G, and so $\delta(G[V(T)]) \geq n-4$ by Observation 4.3.2, which in turn implies that $G[V(T)]$ contains $T_{A}(n)$ by Lemma 5.2.6, a contradiction.

This completes the proof of the theorem.

Theorem 5.2.10. If $n \geq 8$, then

$$
R\left(T_{B}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper bounds. Let G be a graph with no $T_{B}(n)$ subgraph whose complement \bar{G} does not contain W_{8}.

Suppose that $n \equiv 0(\bmod 4)$ and that G has order $2 n$. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n$. Since $T_{B}(n) \nsubseteq G, E_{G}(U, V)=\emptyset$ and neither w_{2} nor w_{3} is adjacent in G to V. Suppose that $n \geq 12$. If w_{2} is non-adjacent to some 4 vertices from U, then these 4 vertices and any 4 vertices from V form C_{8} in \bar{G} that with w_{2} forms W_{8}, a contradiction. Otherwise, w_{2} must be adjacent to at least $n-3$ vertices of U in G. Since $T_{B}(n) \nsubseteq G, w_{3}$ must not be adjacent to these $n-3$ vertices; then any 4 vertices from these $n-3$ vertices and 4 vertices from V form C_{8} in \bar{G} and, with w_{3} as hub, form W_{8}, again a contradiction. For $n=8,|V|=3$ and $|U|=8$. If w_{2} is not adjacent to any vertex of U in G, then by Lemma 4.3.4, $G[U]$ is K_{8} or $K_{8}-e$ which contains $T_{B}(8)$, a contradiction. Otherwise, suppose that w_{2} is adjacent to $u \in U$. Since $T_{B}(8) \nsubseteq G, w_{1}$ must not be adjacent to $(U \cup V) \backslash\{u\}$ in G. Now, if w_{3} is not adjacent to v_{0} in G, then by Observation 4.3.2, \bar{G} contains W_{8}, a contradiction. Else, u is not adjacent to $V \cup\left\{w_{3}\right\}$, and again by Observation 4.3.2, \bar{G} contains W_{8}, another contradiction. Thus, $R\left(T_{B}(n), W_{8}\right) \leq 2 n$ for $n \equiv 0$ $(\bmod 4)$.

Next, suppose that $n \not \equiv 0(\bmod 4)$ and that G has order $2 n-1$. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{B}(n) \nsubseteq G$, $E_{G}(U, V)=\emptyset$ and neither w_{2} nor w_{3} is adjacent in G to V. For $n \geq 9$, if w_{2} is non-adjacent to some 4 vertices from U, then these 4 vertices and any 4 vertices from V form C_{8} in \bar{G} and, with w_{2} as hub, form W_{8}, a contradiction. Otherwise, w_{2} is adjacent to at least $n-4$ vertices of U in G. Since $T_{B}(n) \nsubseteq G, w_{3}$ is not adjacent to these $n-4$ vertices, so any 4 vertices from these $n-4$ vertices and 4 vertices from V form C_{8} in \bar{G} that, with w_{3}, form W_{8}, again a contradiction. Therefore, $R\left(T_{B}(n), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0(\bmod 4)$.

This completes the proof.
Theorem 5.2.11. For $n \geq 8, R\left(T_{C}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$ and assume that G does not contain $T_{C}(n)$ and that \bar{G} does not contain W_{8}.

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \geq n-4$. If $\delta(G[X])=n-4$, then let $x \in X$ be such that $d_{G[X]}(x)=n-4$, and set $Y=X \backslash\left(\{x\} \cup N_{G[X]}(x)\right)$ where $|Y|=3$. Noting that $3(n-6)>n-4$ for $n \geq 8$, there must be two vertices of Y that are adjacent to a common vertex of $N_{G[X]}(x)$
in G, say to $x^{\prime} \in N_{G[X]}(x)$. Then the remaining vertex of Y is not adjacent to any vertex of $N_{G[X]}(x) \backslash\left\{x^{\prime}\right\}$ as $T_{C}(n) \nsubseteq G$, a contradiction to $\delta(G[X]) \geq n-4$. Thus, $\delta(G[X]) \geq n-3$. Pick any vertex $x \in X$ and pick a subset $X^{\prime} \subseteq N_{G[X]}(x)$ of size $n-3$. Set $Y=X \backslash\left(\{x\} \cup X^{\prime}\right)$ where $|Y|=2$. As $2(n-5)>n-3$ for $n \geq 8$, the two vertices of Y must be adjacent to a common of X^{\prime} in G, say to x^{\prime}. Then $G\left[X^{\prime} \backslash\left\{x^{\prime}\right\}\right]$ is an empty graph since $T_{C}(n) \nsubseteq G$, a contradiction to $\delta(G[X]) \geq n-3$.

We may now assume that $\delta(G[X]) \leq n-5$ whenever $X \subseteq V(G)$ is of size n. By Theorem 4.3.11, G has a subgraph $T=S_{n-1}(3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-$ $V(T)$; then $|V|=n-5$ and $|U|=n$. Since $T_{C}(n) \nsubseteq G, E_{G}(U, V)=\emptyset$.

For the case $n=8$ such that v_{1} is not adjacent to any vertex of U in G, or the case $n \geq 9$, there are four vertices of $V(T)$ that are not adjacent to any vertex of U in G. Since $\delta(G[U]) \leq n-5, \bar{G}[U]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

For the final case $n=8$ with v_{1} adjacent to some vertex u of U in G, observe that since $T_{C}(8) \nsubseteq G$, the vertex u is not adjacent to any vertex of $\left\{v_{2}, v_{3}, v_{4}\right\} \cup U$. By Lemma 4.3.4, $G[U \backslash\{u\}]$ is K_{7} or $K_{7}-e$, which implies that every vertex of $V(T) \cup\{u\}$ is not adjacent to any vertex of $U \backslash\{u\}$ in G as $T_{C}(8) \nsubseteq G$. Since $\delta(G[V(T) \cup\{u\}]) \leq n-5, \bar{G}[V(T) \cup\{u\}]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

This completes the proof of the theorem.
Theorem 5.2.12. For $n \geq 8, R\left(S_{n}(3,1), W_{8}\right)=2 n-1$.
Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $S_{n}(3,1)$ and that \bar{G} does not contain W_{8}.

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \geq n-4$. Let x_{0} be any vertex of X, and pick a subset $X^{\prime} \subseteq N_{G[X]}\left(x_{0}\right)$ of size $n-4$. Set $Y=X \backslash\left(\left\{x_{0}\right\} \cup X^{\prime}\right)$, and so $|Y|=3$. Since $\delta(G[X]) \geq n-4$, each vertex of Y is adjacent to at least $n-7$ vertices of X^{\prime} in G. For $n \geq 10$, it is straightforward to see that there is a matching from Y to X^{\prime} in G; hence, G contains $S_{n}(3,1)$, a contradiction. For $n=9$, if $d_{G[X]}\left(x_{0}\right)=n-4=5$, we can similarly deduce the contradiction that G contains $S_{9}(3,1)$, since in this case, each vertex of Y is adjacent to at least $n-6=3$ vertices of X^{\prime} in G. As x_{0} was arbitrary, we may assume for the case when $n=9$, we have $\delta(G[X]) \geq n-3=6$, which again leads to the contradiction that G contains $S_{9}(3,1)$.

Now for $n=8$, suppose that $d_{G[X]}\left(x_{0}\right)=4$. Let $X^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{x_{5}, x_{6}, x_{7}\right\}$. Noting that $\delta(G[X]) \geq n-4$ and $S_{8}(3,1) \nsubseteq G$, we deduce that $G[Y]$ is K_{3}; all three vertices of Y are adjacent to exactly two common vertices of X^{\prime} in G, say to x_{1} and x_{2}; and each of x_{3} and x_{4} is not adjacent to any vertex of Y in G. By the minimum degree condition, x_{3} and x_{4} are then adjacent in G, and each of them is also adjacent to both x_{1} and x_{2}. This implies that G contains $S_{8}(3,1)$, with x_{1} being the vertex with degree four, a contradiction. As x_{0} was arbitrary, we may assume for the case when $n=8$, we have $\delta(G[X]) \geq 5$, which again leads to the contradiction that G contains $S_{8}(3,1)$.

We may now assume that $\delta(G[X]) \leq n-5$ whenever $X \subseteq V(G)$ is of size n. Recall that G has order $2 n-1$, so by Theorem 4.3.12, G has a subgraph $T=S_{n-1}(2,1)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}\right\}$. Set $V=\left\{v_{3}, v_{4}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-6$ and $|U|=n$. Since $S_{n}(3,1) \nsubseteq G, E_{G}(U, V)=\emptyset$. Now as $\delta(G[U]) \leq n-5, \bar{G}[U]$ contains S_{5}, and so for $n \geq 10, \bar{G}$ contains W_{8} by Observation 4.3.2, a contradiction.

For $n=9$, Theorem 4.3 .12 shows that G has a subgraph $T=S_{9}(2,1)$, so without loss of generality, assume that v_{0} is adjacent to some vertex u in U. Since $S_{9}(3,1) \nsubseteq G, G[V \cup\{u\}]$ is an empty graph and u is not adjacent to any vertex of U in G. By Lemma 4.3.4, $G[U \backslash\{u\}]$ is K_{8} or $K_{8}-e$, which implies that each vertex of $V(T) \cup\{u\}$ is not adjacent to any vertex of $U \backslash\{u\}$ in G since $S_{9}(3,1) \nsubseteq G$. Since $\delta(G[V(T) \cup\{u\}]) \leq n-5, \bar{G}[V(T) \cup\{u\}]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Finally for $n=8$, recall that G has order 15 , and so G has a subgraph $T^{\prime}=S_{7}$ by Theorem 2.2.6. Let $V\left(T^{\prime}\right)=\left\{v_{0}^{\prime}, \ldots, v_{6}^{\prime}\right\}$ and $E\left(T^{\prime}\right)=\left\{v_{0}^{\prime} v_{1}^{\prime}, \ldots, v_{0}^{\prime} v_{6}^{\prime}\right\}$. Set $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{6}^{\prime}\right\}$ and $U^{\prime}=V(G)-V\left(T^{\prime}\right)$, then $\left|U^{\prime}\right|=8$. Suppose that v_{2}^{\prime} and v_{3}^{\prime} are adjacent to a common vertex u of U^{\prime} in G, while v_{1}^{\prime} is adjacent to another vertex $u^{\prime} \neq u$ of U^{\prime} in G. Then as $S_{8}(3,1) \nsubseteq G$, every vertex of $\left\{v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup\left(U^{\prime} \backslash\left\{u, u^{\prime}\right\}\right)$ is not adjacent to any vertex of $V^{\prime} \backslash\left\{v_{1}^{\prime}\right\}$ in G. Now $G\left[V^{\prime} \backslash\left\{v_{1}^{\prime}\right\}\right]$ contains S_{5} and $\left|U^{\prime} \backslash\left\{u, u^{\prime}\right\}\right|=6$, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Similar arguments lead to the same contradiction when the roles of $v_{1}^{\prime}, v_{2}^{\prime}$, and v_{3}^{\prime} are replaced by any three vertices of V^{\prime}. So we may assume that no two vertices of V^{\prime} are adjacent to a common vertex of U^{\prime} in G while a third vertex of V^{\prime} is adjacent to another vertex of U^{\prime} in G.

For $i=1, \ldots, 6$, let $d_{i}=\left|E_{G}\left(\left\{v_{i}^{\prime}\right\}, U\right)\right|$ be the number of vertices of U^{\prime} that are adjacent to v_{i}^{\prime}. Without loss of generality, assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{6}$. Since $\delta\left(G\left[U^{\prime}\right]\right) \leq 3$ and so $S_{5} \subseteq \bar{G}\left[U^{\prime}\right]$, Observation 4.3.2 implies that $d_{3} \geq 1$. If $d_{1} \geq 3$ and $d_{2} \geq 2$, then it is trivial that G contains $S_{8}(3,1)$, a contradiction. By our assumption on the adjacencies of vertices in V^{\prime} to vertices of U^{\prime} in G, it is also clear that when $\left(d_{1}, d_{2}, d_{3}\right)$ is of the form $(2,2,1),(2,2,2)$ or $(k, 1,1)$ for $k \geq 3$, there is a matching from $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ to U^{\prime} in G, as v_{2}^{\prime} and v_{3}^{\prime} are adjacent to different vertices of U^{\prime} in G. Then G contains $S_{8}(3,1)$, a contradiction. If $\left(d_{1}, d_{2}, d_{3}\right)=(2,1,1)$, then we similarly have that v_{2}^{\prime} and v_{3}^{\prime} are adjacent to different vertices of U^{\prime} in G, say to u and u^{\prime}, respectively, which in turn implies that v_{1}^{\prime} is adjacent to two vertices in $U^{\prime} \backslash\left\{u, u^{\prime}\right\}$. So G contains $S_{8}(3,1)$, again a contradiction.

For the final case when $d_{1}=d_{2}=d_{3}=1$, our assumption implies that $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} are adjacent to a common vertex $u \in U^{\prime}$ in G to avoid a matching from $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ to U^{\prime} in G. Furthermore, none of $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ is adjacent to any vertex of $U^{\prime} \backslash\{u\}$ in G. Now if $S_{5} \subseteq \bar{G}\left[V^{\prime}\right]$, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. So $\delta\left(G\left[V^{\prime}\right]\right) \geq 2$, and in particular, v_{4}^{\prime} is adjacent to some vertex of V^{\prime} in G. Without loss of generality, v_{4} is adjacent to either v_{1} or v_{5} in G. Since $S_{8}(3,1) \nsubseteq G$, $\bar{G}\left[\left\{v_{5}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{6}^{\prime}\right\}\right]$ contains S_{4} if v_{4}^{\prime} is adjacent to v_{1}^{\prime} in G, while $\bar{G}\left[\left\{v_{6}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}\right]$ contains S_{4} if v_{4}^{\prime} is adjacent to v_{5}^{\prime} in G. By Lemma 4.3.4, $G\left[U^{\prime} \backslash\{u\}\right]$ is K_{7} or $K_{7}-e$, which implies that every vertex of $V\left(T^{\prime}\right) \cup\{u\}$ is not adjacent to any vertex of $U^{\prime} \backslash\{u\}$ in G since $S_{8}(3,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right) \cup\{u\}\right]\right) \leq 3, \bar{G}[V(T) \cup\{u\}]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Thus, $R\left(S_{n}(3,1), W_{8}\right) \leq 2 n-1$ for $n \geq 8$ which completes the proof.

5.3 Ramsey numbers for tree graphs with maximum degree of $n-5$ versus the wheel graph of order 9

In this section, we discuss the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for tree graphs T_{n} with maximum degree of $n-5$ versus the wheel graph of order 9 . As introduced in the previous section, there will be 19 tree graphs to be discussed, which are $S_{n}(1,4)$, $S_{n}(5), S_{n}[5], S_{n}(4,1)$ and all the tree graphs shown in Figure 5.3. Before that, we introduce two corollaries about the existence of the cycle graph C_{8}.
Corollary 5.3.1. Suppose that U and V are two disjoint subsets of vertices of a graph G for which $\left|N_{G[V \cup\{u\}]}(u)\right| \leq 2$ for each $u \in U$. If $|U| \geq 4$ and $|V| \geq 6$, then $\bar{G}[U \cup V]$ contains C_{8}.

Proof. Since $|U| \geq 4$ and $|V| \geq 6$, we can choose any 4 vertices from U to form U^{\prime} and any 6 vertices from V to form V^{\prime}. We have that $N_{G\left[V^{\prime} \cup\{u\}\right]}(u) \leq 2$ for each $u \in U^{\prime}$. Then each vertex of U^{\prime} is adjacent to at least 4 vertices of V^{\prime} in \bar{G} and $\bar{G}\left[U^{\prime} \cup V^{\prime}\right]$ contains a graph with the properties of $G(4,6,4)$ in Lemma 2.2.11. Hence by that lemma, $\bar{G}[U \cup V]$ must contain C_{8}.

Corollary 5.3.2. Suppose that U and V are two disjoint subsets of vertices of a graph G for which $\left|N_{G[V \cup\{u\}]}(u)\right| \leq 3$ for each $u \in U$. If $|U| \geq 4$ and $|V| \geq 8$, then $\bar{G}[U \cup V]$ contains C_{8}.

Proof. Since $|U| \geq 4$ and $|V| \geq 8$, we can choose any 4 vertices from U to form U^{\prime} and any 8 vertices from V to form V^{\prime}. We have that $N_{G\left[V^{\prime} \cup\{u\}\right]}(u) \leq 3$ for each $u \in U^{\prime}$. Then each vertex of U^{\prime} is adjacent to at least 5 vertices of V^{\prime} in \bar{G} and $\bar{G}\left[U^{\prime} \cup V^{\prime}\right]$ contains a graph with the properties of $G(4,8,5)$ in Lemma 2.2.11. Hence by that lemma, $\bar{G}[U \cup V]$ must contain C_{8}.

We are now ready to present the Ramsey numbers for tree graphs with maximum degree of $n-5$ versus the wheel graph of order 9 .
Lemma 5.3.3. Let $n \geq 8$. Then $R\left(T_{n}, W_{8}\right) \geq 2 n-1$ for each $T_{n} \in\left\{S_{n}(1,4), S_{n}(5)\right.$, $\left.S_{n}[5], S_{n}(4,1), T_{D}(n), \ldots, T_{S}(n)\right\}$. Also, $R\left(T_{n}, W_{8}\right) \geq 2 n$ if $n \equiv 0(\bmod 4)$ and $T_{n} \in\left\{S_{n}(1,4), T_{D}(n), S_{n}(2,2), T_{N}(n)\right\}$ or if $T_{n} \in\left\{T_{E}(8), T_{F}(8)\right\}$.

Proof. The graph $G=2 K_{n-1}$ clearly does not contain any tree graphs of order n, and \bar{G} does not contain W_{8}. Furthermore, if $n \equiv 0(\bmod 4)$, then the graph $G=K_{n-1} \cup K_{4, \ldots, 4}$ of order $2 n-1$ does not contain $S_{n}(1,4), T_{D}(n)$ or $S_{n}(2,2)$; nor does the complement \bar{G} contain W_{8}. Finally, the graph $G=K_{7} \cup K_{4,4}$ does not contain $T_{E}(8)$ or $T_{F}(8)$ and \bar{G} does not contain W_{8}.

Theorem 5.3.4. If $n \geq 8$, then

$$
R\left(S_{n}(1,4), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be a graph with no $S_{n}(1,4)$ subgraph whose complement \bar{G} does not contain W_{8}. Suppose that G has order $2 n$ if $n \equiv 0(\bmod 4)$ and that G has order
$2 n-1$ if $n \not \equiv 0(\bmod 4)$. By Theorem 5.2.8, G has a subgraph $T=S_{n}(1,3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=j$ where $j=n$ if $n \equiv 0(\bmod 4)$ and $j=n-1$ if $n \not \equiv 0(\bmod 4)$. Since $S_{n}(1,4) \nsubseteq G, w_{3}$ is not adjacent in G to any vertex of $U \cup V$ and $d_{G[U \cup V]}\left(v_{i}\right) \leq n-7$ for each $v_{i} \in V$. If $\delta(\bar{G}[U \cup V]) \geq\left\lceil\frac{n-5+j}{2}\right\rceil \geq \frac{n-5+j}{2}$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2.10 and thus W_{8} with w_{3} as hub, a contradiction. Therefore, $\delta(\bar{G}[U \cup V]) \leq\left\lceil\frac{n-5+j}{2}\right\rceil-1$ and $\Delta(G[U \cup V]) \geq n-5+j-\left\lceil\frac{n-5+j}{2}\right\rceil=\left\lfloor\frac{n-5+j}{2}\right\rfloor \geq n-3$. Since $d_{G[U \cup V]}\left(v_{i}\right) \leq n-7$ for each $v_{i} \in V, d_{G[U \cup V]}(u) \geq n-3$ for some vertex $u \in U$. Since $S_{n}(1,4) \nsubseteq G$, no vertex of V is adjacent to $\{u\} \cup N_{G[U \cup V]}(u)$ in G.

For $n \geq 9$, any 4 vertices from V and any 4 vertices from $\{u\} \cup N_{G[U \cup V]}(u)$ form C_{8} in \bar{G} and, with w_{3} as hub, form W_{8}, a contradiction. Suppose that $n=8$; then $V=\left\{v_{2}, v_{3}, v_{4}\right\}$. Let $\left\{u_{1}, \ldots, u_{4}\right\}$ be 4 vertices in $N_{G[U \cup V]}(u)$. Since $S_{8}(1,4) \nsubseteq G, w_{1}$ is not adjacent to $N_{G[U U V]}(u)$. If w_{1} is not adjacent to w_{3}, then $w_{1} u_{1} v_{2} u_{2} v_{3} u_{3} v_{4} u_{4} w_{1}$ and w_{3} form W_{8} in \bar{G}, a contradiction. Therefore, w_{1} is adjacent to w_{3} in G. Then w_{2} is not adjacent to any vertex of $U \cup V$ in G. Since $d_{G[V]}\left(v_{i}\right) \leq 1$ for $i=2,3,4$, one of the vertices of V, say v_{2}, is not adjacent to the other two vertices of V. Then $u_{1} w_{2} u_{2} w_{3} u_{3} v_{3} u_{4} v_{4} u_{1}$ and v_{2} form W_{8} in \bar{G}, a contradiction. Thus, $R\left(S_{n}(1,4), W_{8}\right) \leq 2 n$ for $n \equiv 0(\bmod 4)$ and $R\left(S_{n}(1,4), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0$ $(\bmod 4)$.

This completes the proof.
Theorem 5.3.5. If $n \geq 9$, then $R\left(S_{n}(5), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $S_{n}(5)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.5, G has a subgraph $T=S_{n}(4)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $S_{n}(5) \nsubseteq G, v_{1}$ is not adjacent to any vertex of $U \cup V$ in G. Furthermore, for each v_{i} in V, v_{i} is adjacent to at most three vertices of U in G.

For $n \geq 9$, we have $|V| \geq 4$ and $|U| \geq 8$. By Corollary 5.3.2, $\bar{G}[U \cup V]$ contains C_{8} which together with v_{1} gives W_{8} in \bar{G}, a contradiction. Thus, $R\left(S_{n}(5), W_{8}\right) \leq 2 n-1$ which completes the proof.

Theorem 5.3.6. If $n \geq 9$, then $R\left(S_{n}[5], W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $S_{n}[5]$ and that \bar{G} does not contain W_{8}. By Theorem 5.3.5, G has a subgraph $T=S_{n}(5)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, \ldots, v_{1} w_{4}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-5}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-6$ and $|U|=n-1$. Since $S_{n}[5] \nsubseteq G, v_{0}$ is not adjacent to w_{1}, \ldots, w_{4} in G and w_{1}, \ldots, w_{4} are each adjacent to at most two vertices of U in G. Now, suppose that v_{0} is non-adjacent to at least six vertices of U in G. By Corollary 5.3.1, six of these vertices together with w_{1}, \ldots, w_{4} contain C_{8} in \bar{G} which with v_{0} gives W_{8} in \bar{G}, a contradiction. Then suppose that v_{0} is adjacent to at least $n-6$ vertices of U in G. Choose a set U^{\prime}
of $n-6$ of these vertices. Since $S_{n}[5] \nsubseteq G, v_{1}$ is not adjacent to any vertex of $V \cup U^{\prime}$ in G. If $\delta\left(\bar{G}\left[V \cup U^{\prime}\right]\right) \geq n-6$, then by Lemma 2.2.10, $\bar{G}\left[V \cup U^{\prime}\right]$ contains C_{8} which with v_{1} gives W_{8} in \bar{G}, a contradiction. Therefore, $\delta\left(\bar{G}\left[V \cup U^{\prime}\right]\right) \leq n-7$ and $\Delta\left(G\left[V \cup U^{\prime}\right]\right) \geq n-6$. However, this gives $S_{n}[5]$ in G with u and v_{1} as the centre of S_{n-5} and S_{5}, respectively, where u is a vertex in $V \cup U^{\prime}$ with $d_{G\left[V \cup U^{\prime}\right]}(u) \geq n-6$, a contradiction. Thus, $R\left(S_{n}[5], W_{8}\right) \leq 2 n-1$ which completes the proof.

Theorem 5.3.7. If $n \geq 8$, then

$$
R\left(S_{n}(2,2), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Assume that G is a graph with no $S_{n}(2,2)$ subgraph whose complement \bar{G} does not contain W_{8}. Suppose that $n \equiv 0(\bmod 4)$ and that G has order $2 n$. By Theorem 5.2.10, G has a subgraph $T=T_{B}(n)$. Let $V(T)=$ $\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, v_{2} w_{3}\right\}$. Set $V=$ $\left\{v_{3}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-6$ and $|U|=n$. Since $S_{n}(2,2) \nsubseteq G, w_{3}$ is not adjacent in G to $U \cup V$ and v_{2} is not adjacent to V. If $\delta(\bar{G}[U \cup V]) \geq \frac{2 n-6}{2}=n-3$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2.10 which with w_{2} forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U \cup V]) \leq n-4$, and $\Delta(G[U \cup V]) \geq n-3$. Now, there are two cases to be considered.
Case 1a: One of the vertices of V, say v_{3}, is a vertex of degree at least $n-3$ in $G[U \cup V]$.

Note that in this case, there are at least 4 vertices from U, say u_{1}, \ldots, u_{4}, that are adjacent to v_{3} in G. Since $S_{n}(2,2) \nsubseteq G$, these 4 vertices are independent and are not adjacent to any other vertices of U. Since $n \geq 8, U$ contains at least 4 other vertices, say u_{5}, \ldots, u_{8}, so $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} u_{8} u_{1}$ and w_{3} forms W_{8} in \bar{G}, a contradiction.

Case 1b: Some vertex $u \in U$ has degree at least $n-3$ in $G[U \cup V]$.
Since $S_{n}(2,2) \nsubseteq G, u$ is not adjacent to any vertex of V in G. Therefore, u must be adjacent to at least $n-3$ vertices of U in G. Without loss of generality, suppose that $u_{1}, \ldots, u_{n-3} \in N_{G[U]}(u)$. Note that V is not adjacent to $N_{G[U]}(u)$, or else there will be $S_{n}(2,2)$ in G, a contradiction. If $n \geq 12$, then any 4 vertices from $N_{G[U]}(u)$ and any 4 vertices from V form C_{8} in \bar{G} which, with w_{3} as hub, forms W_{8}, a contradiction. Suppose that $n=8$ and let the remaining two vertices be u_{6} and u_{7}. If $\left|N_{G\left\{\left\{u_{1}, \ldots, u_{5}, u_{i}\right\}\right.}\left(u_{i}\right)\right| \leq 1$ for $i=6,7$, then let $X=\left\{u_{1}, \ldots, u_{4}\right\}$ and $Y=\left\{v_{3}, v_{4}, u_{6}, u_{7}\right\}$. By Lemma 4.3.5, $\bar{G}[X \cup Y]$ contains C_{8} and, with w_{3} as hub, forms W_{8} in \bar{G}, a contradiction. Therefore, one of u_{6} and u_{7}, say u_{6}, is adjacent to at least two of u_{1}, \ldots, u_{5}, say u_{1} and u_{2}. Since $S_{8}(2,2) \nsubseteq G, u_{7}$ is adjacent in \bar{G} to at least two of u_{3}, u_{4}, u_{5}, say u_{3} and u_{4}, and $v_{0}, \ldots, v_{4}, w_{1}$ are not adjacent in G to u, u_{1}, \ldots, u_{6}. Now, if w_{3} is not adjacent to some vertex $a \in\left\{v_{0}, v_{1}, w_{1}\right\}$, then $u_{1} v_{3} u_{2} v_{4} u_{3} u_{7} u_{4} a u_{1}$ and w_{3} form W_{8} in \bar{G}, a contradiction. Hence, w_{3} is adjacent to v_{0}, v_{1} and w_{1} in G. Similarly, v_{2} is not adjacent to u_{7} and v_{2} is adjacent to v_{1} and w_{1}. Since $S_{8}(2,2) \nsubseteq G, w_{2}$ is not adjacent to $U \cup V$, and w_{1} is not adjacent to V. Then $u_{1} v_{2} u_{2} w_{1} u_{3} w_{2} u_{4} w_{3} u_{1}$ and v_{3} forms W_{8} in \bar{G}, a contradiction.

In either case, $R\left(S_{n}(2,2), W_{8}\right) \leq 2 n$.
Suppose that $n \not \equiv 0(\bmod 4)$ and that G has order $2 n-1$. By Theorem 5.2.10, G has a subgraph $T=T_{B}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, v_{2} w_{3}\right\}$. Set $V=\left\{v_{3}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-6$ and $|U|=n-1$. Since $S_{n}(2,2) \nsubseteq G, w_{3}$ is not adjacent in G to $U \cup V$. If $\delta(\bar{G}[U \cup V]) \geq\left\lceil\frac{2 n-5}{2}\right\rceil$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2.10 which with w_{3} forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U \cup V]) \leq\left\lceil\frac{2 n-5}{2}\right\rceil-1=n-3$, and $\Delta(G[U \cup V]) \geq n-3$. Again, there are two cases to be considered.
Case 2a: A vertex of V, say v_{3}, has degree at least $n-3$ in $G[U \cup V]$.
There must be at least 4 vertices from U, say u_{1}, \ldots, u_{4} that are adjacent to v_{3} in G. Since $S_{n}(2,2) \nsubseteq G, u_{1}, \ldots, u_{4}$ are independent and are not adjacent to any other vertex of U. Since $n \geq 9$, there are at least 4 other vertices of U, say u_{5}, \ldots, u_{8}, and $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} u_{8} u_{1}$ and w_{3} form W_{8} in \bar{G}, a contradiction.
Case 2b: A vertex $u \in U$ has degree at least $n-3$ in $G[U \cup V]$.
Since $S_{n}(2,2) \nsubseteq G$, no vertex of V is adjacent to u or to $N_{G[U]}(u)$. Then u is adjacent to at least $n-3$ vertices of U in G; suppose without loss of generality that $u_{1}, \ldots, u_{n-3} \subseteq N_{G[U]}(u)$. If $n \geq 10$, then any 4 vertices from $N_{G[U]}(u)$, any 4 vertices from V and w_{3} form W_{8} in \bar{G}, a contradiction. Suppose that $n=9$ and let u_{7} be the vertex in $U \backslash\left\{u, u_{1}, \ldots, u_{n-3}\right\}$. If u_{7} is adjacent in \bar{G} to at least two of u_{1}, \ldots, u_{6}, say u_{1} and u_{2}, then $u_{1} u_{7} u_{2} v_{3} u_{3} v_{4} u_{4} v_{5} u_{1}$ and w_{3} form W_{8} in \bar{G}, a contradiction. Therefore, u_{7} is adjacent in G to at least 5 of the vertices u_{1}, \ldots, u_{6}, say u_{1}, \ldots, u_{5}. Since $S_{9}(2,2) \nsubseteq G, U$ is not adjacent in G to $\left\{v_{0}, v_{1}, v_{2}, w_{1}\right\} \cup V$ and w_{2} is not adjacent to u or u_{7}. If w_{3} is not adjacent to some vertex $a \in\left\{v_{0}, v_{1}, w_{1}, w_{2}\right\}$, then $u v_{3} u_{1} v_{4} u_{2} v_{5} u_{7} a u$ and w_{3} form W_{8} in \bar{G}, a contradiction. Hence, w_{3} is adjacent to v_{0}, v_{1}, w_{1} and w_{2} in G. Similarly, v_{2} is adjacent to v_{1}, w_{1} and w_{2}. Since $S_{9}(2,2) \nsubseteq G$, w_{2} is non-adjacent to at least one of v_{3}, v_{4}, v_{5}, say v_{3} without loss of generality. If v_{1} is also not adjacent to v_{3}, then $u w_{2} u_{7} v_{1} u_{1} v_{2} u_{2} w_{3} u$ and w_{3} form W_{8} in \bar{G}, a contradiction. Thus, v_{1} is adjacent to v_{3}, then v_{3} is not adjacent to both v_{4} and v_{5}, or else G contains $S_{9}(2,2)$. Without loss of generality, assume that v_{3} is not adjacent to v_{4} in G. Then $u w_{2} u_{7} v_{4} u_{1} v_{2} u_{2} w_{3} u$ and w_{3} form W_{8} in \bar{G}, a contradiction. In either case, $R\left(S_{n}(2,2), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0(\bmod 4)$.

Theorem 5.3.8. If $n \geq 9$, then $R\left(S_{n}(4,1), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $S_{n}(4,1)$ and that \bar{G} does not contain W_{8}.

Suppose first that there is a subset $X \subseteq V(G)$ of size n with $\delta(G[X]) \geq n-4$. Let x_{0} be any vertex of X, and pick a subset $X^{\prime} \subseteq N_{G[X]}\left(x_{0}\right)$ of size $n-5$. Set $Y=X \backslash\left(\left\{x_{0}\right\} \cup X^{\prime}\right)$, and so $|Y|=4$. Since $\delta(G[X]) \geq n-4$, each vertex of Y is adjacent to at least $n-8$ vertices of X^{\prime} in G and each vertex of X^{\prime} is adjacent to at least one vertex of Y in G. Hence, for $n \geq 11$, it is straightforward to see that there is a matching from Y to X^{\prime} in G; hence, G contains $S_{n}(4,1)$, a contradiction.

For $n=10$ and $\delta(G[X]) \geq n-4=6$, let $X=\left\{x_{0}, \ldots, x_{9}\right\}$ and $\left\{x_{1}, \ldots, x_{6}\right\} \subseteq$ $N_{G[X]}\left(x_{0}\right)$. Since $\delta(G[X]) \geq 6$, vertices x_{7}, x_{8} and x_{9} must each be adjacent to at least 3 vertices of x_{1}, \ldots, x_{6}. It is straightforward to see that there is a matching from $\left\{x_{7}, x_{8}, x_{9}\right\}$ to $\left\{x_{1}, \ldots, x_{6}\right\}$ in G; without loss of generality, assume that x_{i} is
adjacent to x_{i+6} in G for $i=1,2,3$. Now, if there is any edge in $G\left[\left\{x_{4}, x_{5}, x_{6}\right\}\right]$, then $S_{10}(4,1) \subseteq G$, a contradiction. Otherwise, $G\left[\left\{x_{4}, x_{5}, x_{6}\right\}\right]$ is independent and each of x_{4}, x_{5}, x_{6} must be adjacent to at least two vertices of x_{7}, x_{8}, x_{9} in G. Without loss of generality, assume that x_{4} is adjacent to x_{7} and x_{8} in G. Since $S_{10}(4,1) \nsubseteq G$, x_{5} cannot be adjacent to x_{1} and x_{2} in G, but this is impossible since $\delta(G[X]) \geq 6$.

Now for $n=9$, suppose that $d_{G[X]}\left(x_{0}\right)=n-4=5$. Let $N_{G[X]}\left(x_{0}\right)=\left\{x_{1}, \ldots, x_{5}\right\}$ and $Y=\left\{x_{6}, x_{7}, x_{8}\right\}$. Then three vertices of Y are each adjacent to at least $n-6=3$ vertices of $N_{G[X]}\left(x_{0}\right)$ in G. Without loss of generality, assume that x_{1} is adjacent to x_{6}, x_{2} is adjacent to x_{7} and x_{3} is adjacent to x_{8}, respectively. Now, if x_{4} is adjacent to x_{5}, then G contains $S_{9}(4,1)$, a contradiction. Otherwise, x_{4} and x_{5} must each be adjacent to at least one of x_{6}, x_{7} and x_{8}. Assume that x_{4} is adjacent to x_{6}. Then x_{5} is not adjacent to x_{1} and x_{4} in G, or else G contains $S_{9}(4,1)$. If x_{5} is adjacent to x_{6}, then x_{1}, x_{4}, x_{5} must be independent in G, and they are each adjacent to x_{7} or x_{8} in G; assume that x_{1} is adjacent to x_{7}. Then x_{4} and x_{5} are not adjacent to x_{2} in G, and since $\delta(G[X]) \geq 5$, they are adjacent to x_{7} and x_{8} in G, and G contains $S_{9}(4,1)$, a contradiction. If x_{5} is not adjacent to x_{6}, then since $d_{G[X]}\left(v_{0}\right) \geq 5, x_{5}$ is adjacent to x_{2}, x_{3}, x_{7} and x_{8} in G. Then x_{4} is not adjacent to x_{2} and x_{3} in G, and x_{4} is adjacent to x_{1}, x_{6}, x_{7} and x_{8} in G, and this gives us $S_{9}(4,1)$ in G, a contradiction. As x_{0} was arbitrary, assume for the case when $n=9$ that $\delta(G[X]) \geq n-3=6$, which again leads to the contradiction that G contains $S_{9}(4,1)$.

Now assume that $\delta(G[X]) \leq n-5$ whenever $X \subseteq V(G)$ is of size n. Recall that G has order $2 n-1$, and so by Theorem $5.2 .12, G$ has a subgraph $S_{n}(3,1)$ and thus a subgraph $T=S_{n-1}(3,1)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\}$. Set $V=\left\{v_{4}, \ldots, v_{n-5}\right\}$ and $U=$ $V(G)-V(T)=\left\{u_{1}, \ldots, u_{n}\right\}$; then $|V|=n-8$ and $|U|=n$. Since $S_{n}(4,1) \nsubseteq G$, V is not adjacent to any vertex of U in G. Now as $\delta(G[U]) \leq n-5, G[U]$ contains S_{5}, and so for $n \geq 12, \bar{G}$ contains W_{8} by Observation 4.3.2, a contradiction.

Suppose that $n=11$. If v_{0} is not adjacent to any vertex of U in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Assume that v_{0} is adjacent to some vertex $u \in U$. Since $S_{11}(4,1) \nsubseteq G, G[V \cup\{u\}]$ is an empty graph and u is not adjacent to any vertex of U in G. By Lemma 4.3.4, $G[U \backslash\{u\}]$ is K_{10} or $K_{10}-e$, so no vertex of $V(T) \cup\{u\}$ is adjacent to any vertex of $U \backslash\{u\}$ in G, as $S_{11}(4,1) \nsubseteq G$. Since $\delta(G[V(T) \cup\{u\}]) \leq n-5, \bar{G}[V(T) \cup\{u\}]$ contains S_{5}, so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Now, suppose that $n=10$. Then G has order 19, and by Theorem 5.2.12, G has a subgraph $T^{\prime}=S_{10}(3,1)$. Let $V\left(T^{\prime}\right)=\left\{v_{0}^{\prime}, \ldots, v_{6}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}$ and $E\left(T^{\prime}\right)=$ $\left\{v_{0}^{\prime} v_{1}^{\prime}, \ldots, v_{0}^{\prime} v_{6}^{\prime}, v_{1}^{\prime} w_{1}^{\prime}, v_{2}^{\prime} w_{2}^{\prime}, v_{3}^{\prime} w_{3}^{\prime}\right\}$. Set $V^{\prime}=\left\{v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\}$ and $U^{\prime}=V(G)-V\left(T^{\prime}\right)=$ $\left\{u_{1}^{\prime}, \ldots, u_{9}^{\prime}\right\}$. Since $S_{10}(4,1) \nsubseteq G, V^{\prime}$ must be independent in G and is not adjacent to any vertex of U^{\prime} in G. If v_{0}^{\prime} is adjacent to some vertices in U^{\prime} in G, say u_{1}^{\prime}. Since $S_{10}(4,1) \nsubseteq G, u_{1}^{\prime}$ is not adjacent to any vertex of V^{\prime} or $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G. Then by Lemma 4.3.4, $G\left[U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ is K_{8} or $K_{8}-e$, so no vertex of $V\left(T^{\prime}\right)$ is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G, as $S_{10}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq 5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Now, suppose that v_{0}^{\prime} is not adjacent to any vertex of U^{\prime} in G. Note that $\left|U^{\prime} \cup\left\{w_{1}^{\prime}\right\}\right|=n$; therefore, $\delta\left(G\left[U^{\prime} \cup\left\{w_{1}^{\prime}\right\}\right]\right) \leq 5$, and so $\bar{G}\left[U^{\prime} \cup\left\{w_{1}^{\prime}\right\}\right]$ contains S_{5}. If w_{1}^{\prime} is not adjacent to any vertex from $V^{\prime} \cup\left\{v_{0}^{\prime}\right\}$, then by Observation 4.3.2, \bar{G} contains W_{8}, a contradiction. Otherwise, there are two cases to be considered.

Case 1a: w_{1}^{\prime} is adjacent to some vertices of V^{\prime} in G.
Without loss of generality, assume that w_{1}^{\prime} is adjacent to v_{4}^{\prime} in G. In this case, v_{1}^{\prime} is not adjacent to $U^{\prime} \cup\left\{v_{5}^{\prime}, v_{6}^{\prime}\right\}$. Then by Lemma 4.3.4, $G\left[U^{\prime}\right]$ is K_{9} or $K_{9}-e$, so no vertex of $V\left(T^{\prime}\right)$ is adjacent to any vertex of U^{\prime} in G, as $S_{10}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq 5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.
Case 1b: w_{1}^{\prime} is non-adjacent to each vertex of V^{\prime} in G.
In this case, w_{1}^{\prime} is adjacent to v_{0}^{\prime} in G. Note that w_{1}^{\prime} is not adjacent to U^{\prime}, since this would revert to the case where v_{0}^{\prime} is adjacent to some vertex of U^{\prime}. Then again by Lemma 4.3.4, $G\left[U^{\prime}\right]$ is K_{9} or $K_{9}-e$, so no vertex of $V\left(T^{\prime}\right)$ is adjacent to any vertex of U^{\prime} in G, as $S_{10}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq 5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Finally, suppose that $n=9$. Then G has order 17 , and so G has a subgraph $T^{\prime}=S_{9}(2,1)$ by Theorem 4.3.12. Let $V\left(T^{\prime}\right)=\left\{v_{0}^{\prime}, \ldots, v_{6}^{\prime}, w_{1}^{\prime}, w_{2}^{\prime}\right\}$ and $E\left(T^{\prime}\right)=$ $\left\{v_{0}^{\prime} v_{1}^{\prime}, \ldots, v_{0}^{\prime} v_{6}^{\prime}, v_{1}^{\prime} w_{1}^{\prime}, v_{2}^{\prime} w_{2}^{\prime}\right\}$. Set $V^{\prime}=\left\{v_{3}^{\prime}, \ldots, v_{6}^{\prime}\right\}$ and $U^{\prime}=V(G)-V\left(T^{\prime}\right)=$ $\left\{u_{1}^{\prime}, \ldots, u_{8}^{\prime}\right\}$.

Now, suppose that $E_{G}\left(V^{\prime}, U^{\prime}\right) \neq \emptyset$. Without loss of generality, assume that v_{3}^{\prime} is adjacent to u_{1}^{\prime} in G. Since $S_{9}(4,1) \nsubseteq G, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ are independent and not adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G.

Suppose that v_{0}^{\prime} is adjacent to some vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$, say u_{2}^{\prime}. Then u_{2}^{\prime} is nonadjacent to $\left\{v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$ in G. Since $\delta\left(G\left[\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{2}^{\prime}\right\}\right]\right) \leq n-5$, $\bar{G}\left[\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{2}^{\prime}\right\}\right]$ contains S_{5}. If $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ and u_{2}^{\prime} are not adjacent to $w_{1}^{\prime}, w_{2}^{\prime}$ or u_{1}^{\prime} in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Assume that v_{4}^{\prime} is adjacent to w_{1}^{\prime} in G. In this case, v_{1}^{\prime} is not adjacent to $\left\{v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G, and $v_{1}^{\prime} u_{3}^{\prime} v_{4}^{\prime} u_{4}^{\prime} v_{6}^{\prime} u_{7}^{\prime} u_{2}^{\prime} u_{8}^{\prime} v_{1}^{\prime}$ and v_{5}^{\prime} form W_{8} in \bar{G}, a contradiction. Similar contradictions occur if we assume that $v_{5}^{\prime}, v_{6}^{\prime}$ or u_{2}^{\prime} are adjacent to $w_{1}^{\prime}, w_{2}^{\prime}$ or u_{1}^{\prime} in G.

Thus, v_{0}^{\prime} is not adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G. Since $\delta\left(G\left[\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\} \cup\right.\right.$ $\left.\left.U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]\right) \leq n-5, \bar{G}\left[\left\{w_{1}^{\prime}, w_{2}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ contains S_{5}. If $v_{0}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} are not adjacent to w_{1}^{\prime} or w_{2}^{\prime} in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. There are two cases to be considered.
Case 2a: v_{0}^{\prime} is adjacent to w_{1}^{\prime} or w_{2}^{\prime} in G.
Without loss of generality, assume that v_{0}^{\prime} is adjacent to w_{1}^{\prime} in G. Note that v_{1}^{\prime} and w_{1}^{\prime} are not adjacent to $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$, since this would revert to the case where v_{0}^{\prime} is adjacent to some vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$. Again, since $\delta\left(G\left[\left\{w_{2}^{\prime}\right\} \cup U^{\prime}\right]\right) \leq n-5$, $\left.\bar{G}\left[\left\{w_{\underline{2}}^{\prime}\right\} \cup U^{\prime}\right\}\right]$ contains S_{5}. If $v_{1}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} are not adjacent to w_{2}^{\prime} and u_{1}^{\prime} in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Suppose that v_{1}^{\prime} is adjacent to w_{2}^{\prime} or u_{1}^{\prime}, say w_{2}^{\prime}, in G. If w_{1}^{\prime} is not adjacent to $v_{4}^{\prime}, v_{5}^{\prime}$ or v_{6}^{\prime}, then by Lemma 4.3.4, $G\left[U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ is K_{7} or $K_{7}-e$, so no vertex of $V\left(T^{\prime}\right) \cup\left\{u_{1}^{\prime}\right\}$ is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G, as $S_{9}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Otherwise, w_{1}^{\prime} is adjacent to at least one of $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ in G, say v_{4}^{\prime}. Then v_{2}^{\prime} is not adjacent to $\left\{v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$, since G does not contain $S_{9}(4,1)$. Similarly, by Lemma 4.3.4, $G\left[U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ is K_{7} or $K_{7}-e$, so no vertex of $V\left(T^{\prime}\right) \cup\left\{u_{1}^{\prime}\right\}$ is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G, as $S_{9}(4,1) \nsubseteq G$. Again, since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Now suppose that v_{1}^{\prime} is non-adjacent to both w_{2}^{\prime} and u_{1}^{\prime} in G. Then one of $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ is adjacent to w_{2}^{\prime} or u_{1}^{\prime} in G. Without loss of generality, assume that v_{4}^{\prime} is adjacent to w_{2}^{\prime} in G. In this case, v_{2}^{\prime} is not adjacent to $\left\{v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$. Then again, by Lemma 4.3.4, $G\left[U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ is K_{7} or $K_{7}-e$, so no vertex of $V\left(T^{\prime}\right) \cup\left\{u_{1}^{\prime}\right\}$ is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G, as $S_{9}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5$, $\bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.
Case 2b: v_{0}^{\prime} is non-adjacent to both w_{1}^{\prime} and w_{2}^{\prime} in G.
In this case, one of $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ is adjacent to w_{1}^{\prime} or w_{2}^{\prime} in G, say v_{4}^{\prime} to w_{1}^{\prime} in G. Since $S_{9}(4,1) \nsubseteq G, v_{1}^{\prime}$ is not adjacent to $\left\{v_{5}^{\prime}, v_{6}^{\prime}\right\} \cup U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$ in G. By Lemma 4.3.4, $G\left[U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}\right]$ is K_{7} or $K_{7}-e$, so no vertex of $V\left(T^{\prime}\right) \cup\left\{u_{1}^{\prime}\right\}$ is adjacent to any vertex of $U \backslash\left\{u_{1}^{\prime}\right\}$ in G, as $S_{9}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Now suppose that $E_{G}\left(V^{\prime}, U^{\prime}\right)=\emptyset$. If $\delta\left(G\left[V^{\prime}\right]\right)=0$, then by Lemma 4.3.4, $G\left[U^{\prime}\right]$ is K_{8} or $K_{8}-e$, and no vertex of $V\left(T^{\prime}\right)$ is adjacent to any vertex of U^{\prime} in G, as $S_{9}(4,1) \nsubseteq G$. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Hence, $\delta\left(G\left[V^{\prime}\right]\right) \geq 1$, and since $S_{9}(4,1) \nsubseteq G$, one of the vertices in V^{\prime} is adjacent to other three in G. Without loss of generality, assume that v_{3}^{\prime} is adjacent to $v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} in G. Since G does not contain $S_{9}(4,1), v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ are independent in G. Furthermore, v_{0}^{\prime} is not adjacent to U^{\prime} in G or else this reverts to the case where v_{3}^{\prime} is adjacent to u_{1}^{\prime} and v_{0}^{\prime} is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$. Since $\delta\left(G\left[\left\{w_{1}^{\prime}\right\} \cup U^{\prime}\right]\right) \leq n-5, \bar{G}\left[\left\{w_{1}^{\prime}\right\} \cup U^{\prime}\right]$ contains S_{5}. If $v_{0}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} are non-adjacent to w_{1}^{\prime} in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction. Again, there are two cases to be considered.
Case 3a: v_{0}^{\prime} is adjacent to w_{1}^{\prime} in G.
Note that v_{1}^{\prime} and w_{1}^{\prime} are not adjacent to U^{\prime}, or else this reverts to the case where v_{3}^{\prime} is adjacent to u_{1}^{\prime} and v_{0}^{\prime} is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$. Now, since $\left.\delta\left(G\left[\left\{w_{2}^{\prime}\right\} \cup U^{\prime}\right]\right) \leq n-5, \bar{G}\left[\left\{w_{2}^{\prime}\right\} \cup U^{\prime}\right\}\right]$ contains S_{5}. If $v_{0}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} are non-adjacent to w_{2}^{\prime} in G, then \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Suppose that v_{0}^{\prime} is adjacent to w_{2}^{\prime} in G. Again, v_{2}^{\prime} and w_{2}^{\prime} are non-adjacent to U^{\prime}, or else else this reverts to the case where v_{3}^{\prime} is adjacent to u_{1}^{\prime} and v_{0}^{\prime} is adjacent to any vertex of $U^{\prime} \backslash\left\{u_{1}^{\prime}\right\}$. Now, $E_{G}\left(V\left(T^{\prime}\right), U^{\prime}\right)=\emptyset$, and since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5$, $\bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Therefore, w_{2}^{\prime} is adjacent to at least one of $v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime} in G, say v_{4}^{\prime}. Then v_{2}^{\prime} is not adjacent to $v_{5}^{\prime}, v_{6}^{\prime}$ or U^{\prime}, as $S_{9}(4,1) \nsubseteq G$, a contradiction. By Lemma 4.3.4, $G\left[U^{\prime}\right]$ is K_{8} or $K_{8}-e$, so no vertex of $V\left(T^{\prime}\right)$ is adjacent to any vertex of U^{\prime} in G, as $S_{9}(4,1) \nsubseteq G$. Again, since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.
Case 3b: v_{0}^{\prime} is not adjacent to w_{1}^{\prime} in G.
In this case, one of $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ is adjacent to w_{1}^{\prime} in G, say v_{4}^{\prime}. Since $S_{9}(4,1) \nsubseteq G$, v_{1}^{\prime} is not adjacent to $v_{5}^{\prime}, v_{6}^{\prime}$ or U^{\prime} in G. By Lemma 4.3.4, $G\left[U^{\prime}\right]$ is K_{8} or $K_{8}-e$, so no vertex of $V\left(T^{\prime}\right) \cup\left\{u_{1}^{\prime}\right\}$ is adjacent to any vertex of U^{\prime} in G, as $S_{9}(4,1) \nsubseteq$ G. Since $\delta\left(G\left[V\left(T^{\prime}\right)\right]\right) \leq n-5, \bar{G}\left[V\left(T^{\prime}\right)\right]$ contains S_{5}, and so \bar{G} contains W_{8} by Observation 4.3.2, a contradiction.

Thus, $R\left(S_{n}(4,1), W_{8}\right) \leq 2 n-1$ for $n \geq 9$ which completes the proof.

Theorem 5.3.9. If $n \geq 8$, then

$$
R\left(T_{D}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be a graph with no $T_{D}(n)$ subgraph whose complement \bar{G} does not contain W_{8}. Suppose that $n \equiv 0(\bmod 4)$ and that G has order $2 n$. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=$ $V(G)-V(T)$; then $|V|=n-5$ and $|U|=n$. Since $T_{D}(n) \nsubseteq G$, neither w_{2} nor w_{3} is adjacent in G to $U \cup V$.

Suppose that $n=8$. Since G does not contain $T_{D}(n), V$ must be independent and non-adjacent to U in G. Then for any vertices u_{1}, \ldots, u_{4} in U, $v_{3} u_{1} v_{4} u_{2} w_{2} u_{3} w_{3} u_{4} v_{3}$ and v_{2} form W_{8} in \bar{G}, a contradiction. Suppose that that $n \geq 12$. Then $|U \cup V|=2 n-5$. If $\delta(\bar{G}[U \cup V]) \geq\left\lceil\frac{2 n-5}{2}\right\rceil$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2 .10 which, with w_{2} as hub, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[U \cup V]) \leq\left\lceil\frac{2 n-5}{2}\right\rceil-1=n-3$, and $\Delta(G[U \cup V]) \geq n-3$. Now, there are two cases to consider.
Case 1: One of the vertices of V, say v_{2}, is a vertex of degree at least $n-3$ in $G[U \cup V]$.

Since $T_{D}(n) \nsubseteq G, v_{1}$ is not adjacent in G to w_{2}, w_{3} or $U \cup V \backslash\left\{v_{2}\right\}$. Let $U^{\prime}=\left\{w_{2}, w_{3}\right\} \cup U \cup V \backslash\left\{v_{2}\right\}$; then $\left|U^{\prime}\right|=2 n-4$. Now, if $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq \frac{2 n-4}{2}=$ $n-2$, then $\bar{G}\left[U^{\prime}\right]$ contains C_{8} by Lemma 2.2 .10 which, with v_{1} as hub, forms W_{8}, a contradiction. Hence, $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq n-3$, and $\Delta\left(G\left[U^{\prime}\right]\right) \geq n-2$. Note that neither w_{2} nor w_{3} have degree $\Delta\left(G\left[U^{\prime}\right]\right)$. Therefore, $d_{G\left[U^{\prime}\right]}\left(u^{\prime}\right) \geq n-2$ for some vertex $u^{\prime} \in U \cup V \backslash\left\{v_{2}\right\}$. By the Inclusion-Exclusion Principle, some vertex $a \in U \cup V \backslash\left\{v_{2}\right\}$ is adjacent in G to both u^{\prime} and v_{2}. Then G has a subgraph $T_{D}(n)$ in which u^{\prime} is the vertex of degree $n-5$ and v_{2} is the vertex of degree 3 , a contradiction.
Case 2: Some vertex $u \in U$ has degree at least $n-3$ in $G[U \cup V]$.
Suppose that there is at least one vertex in V that is adjacent to u in G, say v_{2}. Then G has a subgraph $T_{D}(n)$ in which u is the vertex of degree $n-5$ and v_{0} is the vertex of degree 3, a contradiction. Similarly, no other vertex of V is adjacent to u. Now, since $T_{D}(n) \nsubseteq G$, we must have $d_{G\left[N_{G[U]}(u) \cup\{v\}\right]}(v) \leq 1$ and $d_{G[V \cup\{x\}]}(x) \leq 1$, for any $v \in V$ and $x \in N_{G[U]}(u)$. Then by Lemma 4.3.5, $\bar{G}\left[V \cup N_{G[U]}(u)\right]$ must contain C_{8}, which with w_{2} as hub, forms W_{8} in \bar{G}, a contradiction.

Now, suppose that $n \not \equiv 0(\bmod 4)$ and that G has order $2 n-1$. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{D}(n) \nsubseteq G$, neither w_{2} nor w_{3} is adjacent to $U \cup V$ in G. If $\delta(\bar{G}[U \cup V]) \geq \frac{2 n-6}{2}=n-3$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2 .10 which, with w_{2} as hub, forms W_{8} in \bar{G}, a contradiction. Thus, $\delta(\bar{G}[U \cup V]) \leq n-4$, and $\Delta(G[U \cup V]) \geq n-3$. The arguments of the preceding cases then lead to contradictions.

Thus, $R\left(T_{D}(n), W_{8}\right) \leq 2 n$, which completes the proof.

Lemma 5.3.10. Each graph H of order $n \geq 8$ with minimal degree at least $n-4$ contains $T_{E}(n)$ unless $n=8$ and $H=K_{4,4}$.

Proof. Let $V(H)=\left\{u_{0}, \ldots, u_{n-1}\right\}$. First, suppose that $\Delta(H) \geq n-3$ and assume without loss of generality that $u_{1}, \ldots, u_{n-3} \in N_{H}\left(u_{0}\right)$. Suppose that u_{n-2} and u_{n-1} are adjacent in H. Since $\delta(H) \geq n-4, N_{H}\left(u_{0}\right) \cap N_{H}\left(u_{n-2}\right) \neq \emptyset$, so assume without loss of generality that u_{1} is adjacent to u_{n-2} in H. Furthermore, u_{1} must be adjacent to at least $n-7$ vertices from $\left\{u_{2}, \ldots, u_{n-3}\right\}$ in H. Without loss of generality, assume that u_{1} is adjacent to u_{2}, \ldots, u_{n-6} in H. Now, if any vertex of $\left\{u_{2}, \ldots, u_{n-6}\right\}$ is adjacent to u_{n-5}, u_{n-4} or u_{n-3} in H, then we have $T_{E}(n)$ in H. Suppose that is not the case; then each vertex of $\left\{u_{2}, \ldots, u_{n-6}\right\}$ must be adjacent to each other and to u_{0}, u_{1}, u_{n-2} and u_{n-1} in H. Since $d_{H}\left(u_{n-3}\right) \geq n-4, u_{n-3}$ is adjacent to at least one of u_{1}, u_{n-2} and u_{n-1} in H, so H contains $T_{E}(n)$, a contradiction.

Suppose that u_{n-2} is not adjacent to u_{n-1} in H. Since $\delta(H) \geq n-4, u_{n-2}$ and u_{n-1} are each adjacent to at least $n-5$ vertices in $N_{H}\left(u_{0}\right)$, so at least one vertex of $N_{H}\left(u_{0}\right)$, say u_{1}, is adjacent in H to both u_{n-2} and u_{n-1}. If $H\left[\left\{u_{2}, \ldots, u_{n-3}\right\}\right]$ contains subgraph $2 K_{2}$, then H contains subgraph $T_{E}(n)$. Note that this will always happens for $n \geq 11$, since $\delta(H) \geq n-4$.

Suppose that $n=10$. Since $\delta(H) \geq 6, u_{2}$ must be adjacent in H to at least two vertices of u_{3}, \ldots, u_{7}, without loss of generality say u_{3} and u_{4}. If $H\left[\left\{u_{4}, \ldots, u_{7}\right\}\right]$ contains any edge, then H contains $T_{E}(10)$. Otherwise, $\left\{u_{4}, \ldots, u_{7}\right\}$ must be independent in H and each of these vertices must be adjacent to $u_{0}, u_{1}, u_{2}, u_{3}, u_{8}$ and u_{9}; this also gives a subgraph $T_{E}(10)$ in H.

Similarly, for $n=9, u_{2}$ must be adjacent to at least one of u_{3}, \ldots, u_{6}, say u_{3}, in H. If $H\left[\left\{u_{4}, u_{5}, u_{6}\right\}\right]$ contains any edge, then H contains $T_{E}(9)$. Otherwise, $\left\{u_{4}, u_{5}, u_{6}\right\}$ is independent in H and since $\delta(H) \geq 5, u_{4}$ is adjacent to at least one of u_{2} and u_{3}, and u_{5} is adjacent to at least one of u_{7} and u_{8}. Again, this gives a subgraph $T_{E}(9)$ in H.

For $n=8$, if u_{2}, \ldots, u_{5} are independent in H, then they are each adjacent to u_{0}, u_{1}, u_{6} and u_{7} in H, which gives $T_{E}(8)$ in H. Otherwise, we can assume that u_{2} is adjacent to u_{3} in H. If u_{4} is adjacent to u_{5} in H, we will have $T_{E}(8)$ in H; otherwise, assume that u_{4} is not adjacent to u_{5}. Now, suppose that u_{4} is adjacent to u_{2} or u_{3} in H. If u_{5} is adjacent to u_{6} or u_{7} in H, then H contains $T_{E}(8)$. Otherwise, u_{5} must be adjacent to u_{0}, u_{1}, u_{2} and u_{3} since $\delta(H) \geq 4$. However, this also gives $T_{E}(8)$ in H. On the other hand, suppose that u_{4} is adjacent to neither u_{2} nor u_{3} in H. Similarly, u_{5} is not adjacent to u_{2} or to u_{3} in H. Since $\delta(H) \geq 4$, both u_{4} and u_{5} are adjacent to u_{0}, u_{1}, u_{6} and u_{7} in H, and this also gives $T_{E}(8)$ in H.

Suppose that H is $(n-4)$-regular and that $N_{H}\left(u_{0}\right)=\left\{u_{1}, \ldots, u_{n-4}\right\}$. By the Handshaking Lemma, this only happens when n is even.

Suppose that $n \geq 10$. Note that u_{n-3}, u_{n-2} and u_{n-1} are each adjacent to at least $n-6$ vertices of $N_{H}\left(u_{0}\right)$ in H. By the Inclusion-Exclusion Principle, at least one of u_{1}, \ldots, u_{n-4} is adjacent to two of $u_{n-3}, u_{n-2}, u_{n-1}$ in H, say u_{1} to u_{n-3} and u_{n-2}, and there must be another vertex, say u_{2}, that is adjacent to u_{n-1} in H. Now, if there is any edge in $H\left[\left\{u_{3}, \ldots, u_{n-4}\right\}\right]$, then $T_{E}(n) \subseteq H$, and this always happens for $n \geq 12$. For $n=10$, since $d_{H}\left(u_{1}\right)=6, u_{1}$ is non-adjacent in H to at least one
of u_{3}, \ldots, u_{6}, say u_{3}. Since $d_{H}\left(u_{3}\right)=6, u_{3}$ is adjacent to one of u_{4}, u_{5}, u_{6}, giving $T_{E}(10)$ in H.

Now suppose that $n=8$. If u_{5}, u_{6} and u_{7} are independent in H, then $H=K_{4,4}$. Otherwise, we can assume that u_{5} is adjacent to u_{6} in H. If u_{5} is also adjacent to u_{7} in H, then u_{5} is adjacent in H to two vertices of $N_{H}\left(u_{0}\right)$, say u_{1} and u_{2}. Suppose that u_{6} is adjacent to u_{1} or u_{2}, say u_{1}, in H. Since $d_{H}\left(u_{6}\right)=4, u_{6}$ is also adjacent to at least one of $u_{2}, u_{3}, u_{4}, u_{7}$, so $T_{E}(8) \subseteq H$. Otherwise, suppose that neither u_{6} nor u_{7} is adjacent to u_{1} or u_{2} in H. Since H is a 4-regular graph, u_{6} and u_{7} are both adjacent to u_{3} and u_{4} in H, and u_{1} is adjacent to at least one of u_{3} and u_{4} in H. This gives $T_{E}(8)$ in H. On the other hand, suppose that u_{5} is not adjacent to u_{7} in H. Then similarly, u_{6} is not adjacent to u_{7} in H, so u_{7} is adjacent to u_{1}, u_{2}, u_{3} and u_{4} in H, and H contains $T_{E}(8)$.

Theorem 5.3.11. For $n \geq 8$,

$$
R\left(T_{E}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \geq 9 \\ 16 & \text { if } n=8\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$ if $n \geq 9$ and of order 16 if $n=8$. Assume that G does not contain $T_{E}(n)$ and that \bar{G} does not contain W_{8}.

By Theorem 5.2.12, G has a subgraph $T=S_{n}(3,1)$. Let

$$
\begin{aligned}
V(T) & =\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\} \\
\text { and } \quad E(T) & =\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\} .
\end{aligned}
$$

Set $V=\left\{v_{4}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$. Then $|V|=n-7$ and $|U| \geq n-1$. Since $T_{E}(n) \nsubseteq G$, each of v_{1}, v_{2}, v_{3} is not adjacent to any vertex of $V \cup U$ in G, and each vertex of V is adjacent to at most one vertex of U in G. Let W be a set of $n-2$ vertices of U that are not adjacent to v_{4} in G. By Lemma 4.3.4, $G[W]$ is K_{n-2} or $K_{n-2}-e$. Since $T_{E}(n) \nsubseteq G$, every vertex of T is not adjacent to any vertex of W, and so $\delta(G[V(T)]) \geq n-4$ by Observation 4.3.2.

Now Lemma 5.3.10 implies that $G[V(T)]$ contains $T_{E}(n)$ if $n \geq 9$, which is a contradiction, and so we must have $n=8$ and $G[V(T)]=K_{4,4}$. Observe now that $|U|=8$, and as $T_{E}(8) \nsubseteq G$, no vertex of U is adjacent to any vertex of $G[V(T)]$. So again by Lemma 4.3.4, $G[U]$ is K_{8} or $K_{8}-e$, which clearly contains $T_{E}(8)$, a contradiction.

Therefore, $R\left(T_{E}(n), W_{8}\right) \leq 2 n-1$ when $n \geq 9$ and $R\left(T_{E}(n), W_{8}\right) \leq 16$ when $n=8$. This completes the proof of the theorem.

Lemma 5.3.12. Each graph H of order $n \geq 8$ with minimal degree at least $n-4$ contains $T_{F}(n)$ unless $n=8$ and $H=K_{4,4}$.

Proof. Let $V(H)=\left\{u_{0}, u_{1} \ldots, u_{n-1}\right\}$ with $d\left(u_{0}\right)=\delta(H)$ and $V:=\left\{u_{1}, \ldots, u_{n-4}\right\} \subseteq$ $N\left(u_{0}\right)$. Set $U=\left\{u_{n-3}, u_{n-2}, u_{n-1}\right\}$. By the minimum degree condition, every vertex of U is adjacent to at least $n-6$ vertices of V. It is straightforward to see that
some pair of vertices in U has a common neighbour in V, and moreover for $n \geq 9$, every pair of vertices in U has a common neighbour in V.

We assume without loss of generality that u_{1} is adjacent to both u_{n-3} and u_{n-2}, and that u_{2} is adjacent to u_{n-1}. If u_{2} is adjacent to a vertex of $V \backslash\left\{u_{1}\right\}$, which is the case when $n \geq 10$, then H contains $T_{F}(n)$. We may assume now that $n \leq 9$ and that u_{2} is not adjacent to any vertex of $V \backslash\left\{u_{1}\right\}$.

For the case when $n=9$, we know u_{n-1} is adjacent to at least $n-6=3$ vertices of V, and so it is adjacent to another vertex, say to u_{3}. As above, we may assume that u_{3} is not adjacent to any vertex of $V \backslash\left\{u_{1}\right\}$. By the minimum degree condition, each of u_{2} and u_{3} is adjacent to every vertex of $\left\{u_{1}\right\} \cup U$, giving $T_{F}(9)$ in H.

For the final case when $n=8$, the minimum degree condition implies that u_{2} is adjacent to at least two of u_{1}, u_{5}, u_{6}. If u_{2} is adjacent to u_{1}, H contains $T_{F}(8)$. Thus, we are left with the case in which u_{2} is not adjacent to u_{1} but is adjacent to both u_{5} and u_{6}. Exchanging the roles of u_{1} and u_{2}, we may further assume that u_{1} is adjacent to u_{7} but not to any vertex of V. From the minimum degree condition on u_{3} and u_{4}, it is easy to see that either H contains $T_{F}(8)$ or $H=K_{4,4}$.

Theorem 5.3.13. For $n \geq 8$,

$$
R\left(T_{F}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \geq 9 \\ 16 & \text { if } n=8\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be a graph with no $T_{F}(n)$ subgraph whose complement \bar{G} does not contain W_{8}. Suppose that $n=8$ and that G has order 16. By Theorem 5.2.11, G has a subgraph $T=T_{C}(8)$. Let $V(T)=\left\{v_{0}, \ldots, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{4}, v_{1} w_{1}, v_{2} w_{2}, v_{2} w_{3}\right\}$. Set $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{8}\right\} ;$ then $|U|=8$. Since $T_{F}(8) \nsubseteq G, v_{1}$ is not adjacent in G to $\left\{v_{2}, v_{3}, v_{4}\right\} \cup U$, and $d_{G[U]}(v) \leq 1$ for $v=v_{3}, v_{4}, w_{2}, w_{3}$.

Suppose that v_{1} is adjacent to w_{2} or w_{3}, without loss of generality say w_{2}. Since $T_{F}(8) \nsubseteq G, v_{2}$ is not adjacent to $\left\{v_{3}, v_{4}\right\} \cup U$. If neither v_{3} nor v_{4} are adjacent to U, then by Lemma 4.3.4, $G[U]$ is K_{8} or $K_{8}-e$, so $G[U]$ contains $T_{F}(8)$, a contradiction. Suppose that only one of the vertices v_{3} and v_{4} is adjacent to U in G, say v_{3}. By Lemma 4.3.4, $G\left[U \backslash\left\{u_{1}\right\}\right]$ is K_{7} or $K_{7}-e$, and $G\left[V(T) \cup\left\{u_{1}\right\}\right]$ is not adjacent to $G\left[U \backslash\left\{u_{1}\right\}\right]$. By Observation 4.3.2, $\delta\left(G\left[V(T) \cup\left\{u_{1}\right\}\right]\right) \geq 5$, and by Lemma 5.3.12, $G\left[V(T) \cup\left\{u_{1}\right\}\right]$ contains $T_{F}(9)$ and hence $T_{F}(8)$, a contradiction. Suppose that both v_{3} and v_{4} are adjacent to U in G and assume that v_{3} is adjacent to u_{1} and that v_{4} is adjacent to u_{2}. By Lemma 4.3.4, $G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]$ is K_{6} or $K_{6}-e$. At most one vertex from $G\left[V(T) \cup\left\{u_{1}, u_{2}\right\}\right]$ is adjacent to $G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]$ or else G will contain $T_{F}(8)$. Therefore, 9 vertices from $G\left[V(T) \cup\left\{u_{1}, u_{2}\right\}\right]$ form a vertex set W that is not adjacent to $U \backslash\left\{u_{1}, u_{2}\right\}$. By Observation 4.3.2, $\delta(G[W]) \geq 5$, and by Lemma 5.3.12, $G[W]$ contains $T_{F}(9)$ and hence $T_{F}(8)$, a contradiction.

Suppose then that v_{1} is not adjacent to w_{2} or w_{3}. Since $d_{G[U]}(v) \leq 1$ for $v=$ $v_{3}, v_{4}, w_{2}, w_{3}$, there are 4 vertices from U that are not adjacent to $\left\{v_{3}, v_{4}, w_{2}, w_{3}\right\}$. These 8 vertices form C_{8} in \bar{G} and thus, with v_{1} as hub, W_{8}, a contradiction.

Thus, $R\left(T_{F}(8), W_{8}\right) \leq 16$.

Now, suppose that $n \geq 9$ and that G has order $2 n-1$. By Theorem 5.2.11, G has a subgraph $T=T_{C}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, v_{4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}, v_{2} w_{3}\right\}$. Set $V=\left\{v_{3}, \ldots, v_{n-4}\right\}$ and $U=$ $V(G)-V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$; then $|V|=n-6$ and $|U|=n-1$. Since $T_{F}(n) \nsubseteq G$, v_{1} is not adjacent in G to any vertex of $U \cup V$, and $d_{G[U]}(v) \leq 1$ for $v \in V$. Since $n \geq 10$, there are 4 vertices from $U, 4$ vertices from V and v_{1} that form W_{8} in \bar{G}, a contradiction. Thus, $R\left(T_{F}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 10$.

Suppose that $n=9$ and let m be the number of vertices of U that are adjacent in G to at least one vertex of V. Since $d_{G[U]}(v) \leq 1$ for $v \in V, 0 \leq m \leq 3$. If $m=0$, then $G[U]$ is K_{8} or $K_{8}-e$ by Lemma 4.3.4, so $G[V(T)]$ is not adjacent to $G[U]$. By Observation 4.3.2, $\delta(G[V(T)]) \geq 5$, and $G[V(T)]$ contains $T_{F}(9)$ by Lemma 5.3.12, a contradiction. Suppose that $m=1$. Assume without loss of generality that u_{1} is adjacent to some vertex of V, and that $E_{G}\left(V, U \backslash\left\{u_{1}\right\}\right)=\emptyset$. By Lemma 4.3.4, $G\left[U \backslash\left\{u_{1}\right\}\right]$ is K_{7} or $K_{7}-e$, and at most one vertex from $G\left[V(T) \cup\left\{u_{1}\right\}\right]$ is adjacent to $G\left[U \backslash\left\{u_{1}\right\}\right]$ or else G contains $T_{F}(9)$. There are then 9 vertices from $G\left[V(T) \cup\left\{u_{1}\right\}\right]$ that form a vertex set W_{1} that is not adjacent to $U \backslash\left\{u_{1}\right\}$. By Observation 4.3.2, $\delta\left(G\left[W_{1}\right]\right) \geq 5$, and $G\left[W_{1}\right]$ contains $T_{F}(9)$ by Lemma 5.3.12, a contradiction. Suppose that $m=2$. Assume that u_{1} and u_{2} are adjacent to some vertices of V and that $E_{G}\left(V, U \backslash\left\{u_{1}, u_{2}\right\}\right)=\emptyset$. By Lemma 4.3.4, $G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]$ is K_{6} or $K_{6}-e$. If at least three vertices in $U \backslash\left\{u_{1}, u_{2}\right\}$ are adjacent to $V(T) \cup\left\{u_{1}\right\}$, then $T_{F}(9) \subseteq G$. If at most two vertices in $U \backslash\left\{u_{1}, u_{2}\right\}$ are adjacent to $V(T) \cup\left\{u_{1}\right\}$, then there are 4 vertices in $U \backslash\left\{u_{1}, u_{2}\right\}$ that are not adjacent to $V(T)$. Then by Observation 4.3.2, $\delta(G[V(T)]) \geq 5$, and $G[V(T)]$ contains $T_{F}(9)$ by Lemma 5.3.12, a contradiction. Suppose that $m=3$. Assume that u_{1}, u_{2}, u_{3} are each adjacent to some vertex of V and that $E_{G}\left(V, U \backslash\left\{u_{1}, u_{2}, u_{3}\right\}\right)=\emptyset$. Without loss of generality, assume that u_{i} is adjacent to v_{i+2} for $i=1,2,3$. By Lemma 4.3.4, $G\left[U \backslash\left\{u_{1}, u_{2}, u_{3}\right\}\right]$ is K_{5} or $K_{5}-e$. Since $T_{F}(9) \nsubseteq G,\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ is independent and $V(T) \backslash\left\{w_{1}\right\}$ is not adjacent to $U \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$. Then by Observation 4.3.2, $\delta\left(G\left[V(T) \backslash\left\{w_{1}\right\}\right]\right) \geq 4$, and v_{1}, v_{3}, v_{4} and v_{5} are each adjacent to v_{2}, w_{2} and w_{3} in G. This gives $T_{F}(9)$ in G. Therefore, $T_{F}(9) \leq 17=2 n-1$.

Theorem 5.3.14. If $n \geq 8$, then $R\left(T_{G}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{G}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.12, G has a subgraph $T=S_{n}(3,1)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\}$. Set $V=\left\{v_{4}, v_{5}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-7$ and $|U|=n-1$. Since $T_{G}(n) \nsubseteq G, w_{1}, w_{2}, w_{3}$ are not adjacent to $U \cup V$ in G, and v_{1}, v_{2}, v_{3} are not adjacent to V.

Suppose that $n \geq 9$; then $|U| \geq 8$. If $\delta(\bar{G}[U]) \geq \frac{n-1}{2}$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2 .10 which, with w_{2} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U])<\frac{n-1}{2}$, and $\Delta(G[U \cup V]) \geq \frac{n-1}{2} \geq 4$. Therefore, some vertex $u \in U$ satisfies $\left|N_{G[U]}(u)\right| \geq 4$. Since $T_{G}(n) \nsubseteq G, N_{G[U]}(u)$ is not adjacent in G to $N_{G[V(T)]}\left(v_{0}\right)$. Hence, 4 vertices from $N_{G[U]}(u), v_{1}, v_{2}, v_{3}, w_{1}$ and any vertex from V form W_{8} in \bar{G}, a contradiction. Thus, $R\left(T_{G}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 9$.

Suppose that $n=8$ and let $U=\left\{u_{1}, \ldots, u_{7}\right\}$ and $W=\left\{v_{4}\right\} \cup U$. If $\delta(\bar{G}[W]) \geq 4$, then \bar{G} contains C_{8} by Lemma 2.2.10 and thus W_{8} with w_{1} as hub, a contradiction. Hence, $\delta(\bar{G}[W]) \leq 3$, and $\Delta(G[W]) \geq 4$. Suppose that $d_{G[W]}\left(v_{4}\right) \geq 4$. Then without loss of generality, assume that $u_{1}, \ldots, u_{4} \in N_{G}\left(v_{4}\right)$. Then $u_{1}, \ldots, u_{4}, w_{1}, w_{2}, w_{3}$ are independent and are not adjacent to u_{5}, u_{6} or u_{7}, giving W_{8}, a contradiction. On the other hand, suppose that some vertex in U, say u_{1}, satisfies $d_{G[W]}\left(u_{1}\right) \geq 4$. Then v_{4} is not adjacent to u_{1}; therefore, assume that $u_{2}, \ldots, u_{5} \in N_{G}\left(u_{1}\right)$. Then v_{1}, \ldots, v_{4} are not adjacent to $\left\{u_{1}, \ldots, u_{5}\right\}$, so $v_{1} u_{1} v_{2} u_{2} v_{3} u_{3} w_{1} u_{4} v_{1}$ and v_{4} form W_{8} in \bar{G}, a contradiction. Thus, $R\left(T_{G}(8), W_{8}\right) \leq 15$.

Lemma 5.3.15. Each graph H of order $n \geq 8$ with minimal degree at least $n-4$ contains $T_{H}(n), T_{K}(n)$ and $T_{L}(n)$.

Proof. Let $V(H)=\left\{u_{0}, \ldots, u_{n-1}\right\}$ where $u_{1}, \ldots, u_{n-4} \in N_{H}\left(u_{0}\right)$. Suppose that u_{n-3}, u_{n-2} or u_{n-1}, say u_{n-3}, is adjacent in H to the two others.

Since $\delta(H) \geq n-4, u_{n-3}$ is adjacent to at least one of u_{1}, \ldots, u_{n-4}, say u_{1}. If u_{1} is adjacent to another vertex in $\left\{u_{2}, \ldots, u_{n-4}\right\}$, then H contains $T_{K}(n)$. Note that this always happens for $n \geq 9$. Suppose that $n=8$ and that u_{1} is not adjacent to any of u_{2}, u_{3}, u_{4}. Then u_{1} is adjacent to u_{6} and u_{7}. Since $\delta(H) \geq n-4, u_{2}$ is adjacent to at least one of u_{5}, u_{6}, u_{7}, giving $T_{K}(n)$ in H.

Similarly, since $\delta(H) \geq n-4, u_{n-2}$ is adjacent to at least $n-7$ vertices of $\left\{u_{1}, \ldots, u_{n-4}\right\}$. Suppose that u_{n-2} is adjacent to u_{1}. If $n \geq 10$, then at least two of u_{2}, \ldots, u_{n-4} are adjacent, so H contains $T_{H}(n)$. If $n \geq 9$, then u_{1} is adjacent to at least one of u_{2}, \ldots, u_{n-4}, so H contains $T_{L}(n)$. Now suppose that $n=9$. If any of u_{2}, \ldots, u_{5} are adjacent to each other, then H contains $T_{H}(9)$. Otherwise, u_{2}, \ldots, u_{5} are each adjacent to u_{6}, u_{7} and u_{8}, and so H contains $T_{H}(9)$. Finally, suppose that $n=8$. If any two of u_{2}, u_{3}, u_{4} are adjacent, then H contains $T_{H}(8)$; otherwise, they are each adjacent to u_{6} or u_{7}. Now, if u_{1} is adjacent to any of u_{2}, u_{3}, u_{4}, then H contains $T_{H}(8)$. Otherwise, u_{1}, \ldots, u_{4} are each adjacent to u_{5}, u_{6} and u_{7}, and H also contains $T_{H}(8)$. Furthermore, if u_{1} is adjacent to u_{2}, u_{3} or u_{4}, then H contains $T_{L}(8)$. If u_{1} is not adjacent to u_{2}, u_{3} or u_{4}, then u_{6}, u_{7}, u_{8} are adjacent to u_{2}, u_{3}, u_{4}, and then H contains $T_{L}(8)$. Now if u_{n-2} is adjacent to some u_{2}, \ldots, u_{n-4}, say u_{2}, then similar arguments apply by interchanging u_{1} and u_{2}.

Suppose now that none of $u_{n-3}, u_{n-2}, u_{n-1}$ is adjacent to both of the others. Then one of these, say u_{n-3}, is adjacent to neither of the others. Since $\delta(H) \geq n-4$, u_{n-3} is adjacent to at least $n-5$ of the vertices u_{1}, \ldots, u_{n-4}. Without loss of generality, assume that $u_{1}, \ldots, u_{n-5} \in N_{H}\left(u_{n-3}\right)$. Then u_{n-2} is adjacent to at least $n-7$ of the vertices u_{1}, \ldots, u_{n-5} including, without loss of generality, the vertex u_{1}. Also, u_{n-1} is adjacent to at least one of u_{2}, \ldots, u_{n-4}, so H contains $T_{H}(n)$. If u_{n-2} is adjacent to u_{n-1}, then H also contains $T_{L}(n)$. If u_{n-2} is not adjacent to u_{n-1}, then u_{n-2} is adjacent to at least $n-6$ vertices of u_{1}, \ldots, u_{n-5}, so H contains $T_{L}(n)$. Now, suppose that $n \geq 9$. Then u_{n-2} and u_{n-1} are each adjacent to at least 3 of u_{1}, \ldots, u_{5}, and one of those vertices must be adjacent to both u_{n-2} and u_{n-1}; thus, H contains $T_{K}(n)$. Finally, suppose that $n=8$. If u_{6} and u_{7} are each adjacent to at least two of the vertices u_{1}, u_{2}, u_{3}, then one of those vertices must be adjacent to both u_{6} and u_{7}; thus, H contains $T_{K}(8)$. Otherwise, u_{6} or u_{7}, say u_{6}, is non-adjacent to at least two of u_{1}, u_{2}, u_{3}, say u_{1} and u_{2}. Then u_{6} is adjacent to u_{0}, u_{3}, u_{4} and u_{7}, and so H contains $T_{K}(8)$.

Theorem 5.3.16. If $n \geq 8$, then $R\left(T_{H}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound. Let G be any graph of order $2 n-1$ and assume that G does not contain $T_{H}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.3.14, G has a subgraph $T=T_{G}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, w_{3} w_{4}\right\}$. Set $U=\left\{u_{1}, \ldots, u_{n-1}\right\}=V(G)-V(T)$; then $|U|=n-1$. Since $T_{G}(n) \nsubseteq G$, $E_{G}\left(\left\{w_{1}, w_{2}\right\},\left\{w_{3}, w_{4}\right\}\right)=\emptyset$ and w_{4} is not adjacent to U. Now, let $W=\left\{w_{1}\right\} \cup U$; then $|W|=n$. If $\delta(\bar{G}[W]) \geq \frac{n}{2}$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which, with w_{4} as hub, forms W_{8}, a contradiction. It follows that $\delta(\bar{G}[W])<\frac{n}{2}$, and $\Delta(G[W]) \geq\left\lfloor\frac{n}{2}\right\rfloor \geq 4$.

First, suppose that w_{1} is a vertex with degree at least $\frac{n}{2}$ in $G[W]$. Assume without loss of generality that $u_{1}, \ldots, u_{4} \in N_{G[W]}\left(w_{1}\right)$. Since $T_{H}(n) \nsubseteq G, u_{1}, \ldots, u_{4}$ are independent and are not adjacent to $\left\{w_{2}, u_{5}, \ldots, u_{n-1}\right\}$ in G. Then $w_{2}, u_{1}, \ldots, u_{4}, w_{4}$ and any 3 vertices from $\left\{u_{5}, \ldots, u_{n-1}\right\}$ form W_{8} in \bar{G}, a contradiction.

Hence, $d_{G[W]}\left(u^{\prime}\right) \geq \frac{n}{2}$ for some vertex $u^{\prime} \in U$, say $u^{\prime}=u_{1}$. Note that w_{1} is not adjacent to u_{1}, or else G contains $T_{H}(n)$. Without loss of generality, suppose that $u_{2}, \ldots, u_{5} \in N_{G[W]}\left(u_{1}\right)$. Since $T_{H}(n) \nsubseteq G, u_{2}, \ldots, u_{5}$ are not adjacent to $V(T) \backslash\left\{v_{0}\right\}$ in G. Now, if v_{0} is not adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$ in G, then by Observation 4.3.2, $\delta(G[V(T)]) \geq n-4$, or else \bar{G} contains W_{8}. By Lemma 5.3.15, $G[V(T)]$ contains $T_{H}(n)$, a contradiction. On the other hand, suppose that v_{0} is adjacent to at least one of u_{2}, \ldots, u_{5}, say u_{2}. Then u_{3}, u_{4}, u_{5} are independent in G and are not adjacent to u_{6} and u_{7} in G. Furthermore, w_{4} is not adjacent to v_{1} or v_{2}. Then $v_{1} u_{3} v_{2} u_{4} u_{6} w_{1} u_{7} u_{5} v_{1}$ and w_{4} form W_{8} in \bar{G}, a contradiction.

Thus, $R\left(T_{H}(n), W_{8}\right) \leq 2 n-1$.
Theorem 5.3.17. If $n \geq 8$, then $R\left(T_{J}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound. Let G be any graph of order $2 n-1$ and assume that G does not contain $T_{J}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.11, G has a subgraph $T=T_{C}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{2} w_{3}\right\}$. Set $V=\left\{v_{3}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$. Since $T_{J}(n) \nsubseteq G$, neither w_{1} nor w_{2} is adjacent in G to any vertex from $U \cup V$.

Let $W=\left\{v_{3}\right\} \cup U$; then $|W|=n$. If $\delta(\bar{G}[W]) \geq\left\lceil\frac{n}{2}\right\rceil \geq \frac{n}{2}$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which with w_{1} forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[W])<\left\lceil\frac{n}{2}\right\rceil$, and $\Delta(G[W]) \geq\left\lfloor\frac{n}{2}\right\rfloor \geq 4$.

Suppose that $d_{G[W]}\left(v_{3}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor \geq 4$. Without loss of generality, assume that $u_{1}, \ldots, u_{4} \in N_{G}\left(v_{3}\right)$. Since $T_{J}(n) \nsubseteq G, u_{1}, \ldots, u_{4}$ is independent in G and is not adjacent to any remaining vertices from U in G. Then $u_{2} w_{1} u_{3} u_{5} u_{4} u_{6} w_{2} u_{7} u_{2}$ and u_{1} form W_{8} in \bar{G}, a contradiction. Hence, there is a vertex in U, say u_{1}, such that $d_{G[W]}\left(u_{1}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor \geq 4$.

Now, suppose that v_{3} is adjacent to u_{1} in $G[W]$. Then u_{1} is adjacent to at least 3 other vertices of U in G, say u_{2}, u_{3} and u_{4}. Since $T_{J}(n) \nsubseteq G, v_{3}$ is not adjacent to $v_{1}, v_{2}, v_{4}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}, u_{2}, u_{3}, u_{4}$ and neither v_{1} nor v_{2} is adjacent to u_{2}, u_{3} or u_{4} in G. Then $v_{2} u_{2} v_{1} u_{3} w_{1} v_{4} w_{2} u_{4} v_{2}$ and v_{3} form W_{8} in \bar{G}, a contradiction.

Thus, v_{3} is not adjacent to u_{1} in G. Note that u_{1} is not adjacent to any other vertices of V in G or else previous arguments apply. Similarly, v_{0} is not adjacent to $N_{G[W]}\left(u_{1}\right)$ in G. Since $T_{J}(n) \nsubseteq G$, neither v_{1} nor v_{2} is adjacent to u_{1} or $N_{G[W]}\left(u_{1}\right)$ in G, and so $d_{N_{G[W]}\left(u_{1}\right)}(v) \leq 1$ for all $v \in V$.

Suppose that $n \geq 10$; then $|V| \geq 4$ and $\left|N_{G[W]}\left(u_{1}\right)\right| \geq 5$. If $d_{G[V]}(u) \leq 2$ for each $u \in N_{G[W]}\left(u_{1}\right)$, then $\bar{G}\left[V \cup N_{G[W]}\left(u_{1}\right)\right]$ contains C_{8} by Lemma 4.3.5 which, with w_{1} as hub, forms W_{8} in \bar{G}, a contradiction. Thus, $d_{V}\left(u^{\prime}\right) \geq 3$ for some vertex $u^{\prime} \in N_{G[W]}\left(u_{1}\right)$. Then any 4 vertices from V, of which at least 3 are in $N_{G[V]}\left(u^{\prime}\right)$, and any 4 vertices from $N_{G[W]}\left(u_{1}\right) \backslash\left\{u^{\prime}\right\}$ satisfy the condition in Lemma 4.3.5, so $\bar{G}\left[V \cup N_{G[W]}\left(u_{1}\right)\right]$ contains C_{8} which with w_{1} forms W_{8}, a contradiction.

Suppose that $n=9$; then $V=\left\{v_{3}, v_{4}, v_{5}\right\}$. Assume that $u_{2}, \ldots, u_{5} \in N_{G[W]}\left(u_{1}\right)$. Suppose that w_{1} is not adjacent to w_{2} in G. Let $X=\left\{v_{3}, v_{4}, v_{5}, w_{2}\right\}$ and $Y=$ $\left\{u_{2}, \ldots, u_{5}\right\}$ and note that $d_{G[Y]}(x) \leq 1$ for each $x \in X$. If $d_{G[X]}(y) \leq 2$ for each $y \in Y$, then $\bar{G}[X \cup Y]$ contains C_{8} by Lemma 4.3.5 which, with w_{1} as hub, forms W_{8}, a contradiction. Thus, $d_{G \mid X]}\left(u^{\prime}\right) \geq 3$ for some $u^{\prime} \in Y$, say $u^{\prime}=u_{2}$, so X is not adjacent to $Y \backslash\left\{u_{2}\right\}$. Hence, $v_{3} u_{1} v_{4} u_{3} v_{5} u_{4} w_{2} u_{5} v_{3}$ and w_{1} form W_{8} in \bar{G}, a contradiction.

Thus, w_{1} is adjacent to w_{2} in G. Then v_{1} is not adjacent to $\left\{v_{3}, v_{4}, v_{5}\right\} \cup U$ and suppose that v_{1} is not adjacent to v_{2}. Set $X=\left\{v_{2}, \ldots, v_{5}\right\}$ and $Y=\left\{u_{2}, \ldots, u_{5}\right\}$. If $d_{G[X]}(y) \leq 2$ for each $y \in Y$, then $\bar{G}[X \cup Y]$ contains C_{8} by Lemma 4.3 .5 which, with v_{1} as hub, forms W_{8}, a contradiction. Thus, $d_{G[X]}\left(u^{\prime}\right) \geq 3$ for some $u^{\prime} \in Y$, say $u^{\prime}=u_{2}$, so X is not adjacent to $Y \backslash\left\{u_{2}\right\}$, and $v_{2} u_{1} v_{3} u_{3} v_{4} u_{4} v_{5} u_{5} v_{2}$ and v_{1} form W_{8} in \bar{G}, a contradiction. Thus, v_{1} is adjacent to v_{2} in G. Then V is independent and is not adjacent to U in G. Since $W_{8} \nsubseteq \bar{G}, G[U]$ is K_{n-1} or $K_{n-1}-e$ by Lemma 4.3.4. Since $T_{J}(9) \nsubseteq G, T$ is not adjacent to U and, by Observation 4.3.2, $\delta(G[V(T)]) \geq 5$. However, this cannot be since V is independent and is not adjacent to v_{1}, w_{1} or w_{2}.

Finally, suppose that $n=8$; then $V=\left\{v_{3}, v_{4}\right\}$. Assume that $u_{2}, \ldots, u_{5} \in$ $N_{G[W]}\left(u_{1}\right)$. If v_{3} is adjacent to any vertex of $\left\{u_{2}, \ldots, u_{5}\right\}$, say u_{2}, then v_{3} is not adjacent to $\left\{v_{1}, v_{2}, v_{4}, w_{3}\right\} \cup U \backslash\left\{u_{2}\right\}$, so $v_{1} u_{1} v_{2} u_{3} w_{1} u_{4} w_{2} u_{5} v_{1}$ and v_{3} form W_{8} in \bar{G}, a contradiction. Thus, v_{3} is not adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$. Similarly, v_{4} is not adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$. Now, if w_{3} is adjacent to any of the vertices u_{2}, \ldots, u_{5}, say u_{2}, then v_{2} is not adjacent to $\left\{w_{1}, w_{2}, v_{3}, v_{4}\right\}$, so $v_{3} u_{1} v_{4} u_{2} w_{1} u_{3} w_{2} u_{4} v_{3}$ and v_{2} form W_{8} in \bar{G}, a contradiction. Thus, w_{3} is not adjacent to $\left\{u_{2}, \ldots, u_{5}\right\}$. By Observation 4.3.2, $\delta(G[V(T)]) \geq 4$. Suppose that v_{2} is adjacent to w_{1}. Since $T_{J}(8) \nsubseteq G$, neither v_{3} nor v_{4} is adjacent to w_{3}. Since $\delta(G[V(T)]) \geq 4, v_{3}$ and v_{4} are adjacent to v_{1} and v_{2}, and $\left\{w_{1}, w_{2}, w_{3}\right\}$ is not independent. However, then $T_{J}(8) \subseteq G[V(T)]$, a contradiction. Thus, v_{2} is not adjacent to w_{1} and, similarly, v_{2} is not adjacent to w_{2}. Since $\delta(G[V(T)]) \geq 4, w_{1}$ and w_{2} are adjacent to each other and to w_{3}. Since $T_{J}(8) \nsubseteq G$, neither v_{3} nor v_{4} is adjacent to v_{1} or v_{2}; however, this contradicts $\delta(G[V(T)]) \geq 4$.

In each case, $R\left(T_{J}(8), W_{8}\right) \leq 2 n-1$ which completes the proof of the theorem.

Theorem 5.3.18. If $n \geq 8$, then $R\left(T_{K}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be a graph of order $2 n-1$ and assume that G does not contain $T_{K}(n)$ and that \bar{G} does not contain W_{8}.

Suppose that $n \not \equiv 0(\bmod 4)$. By Theorem 5.2.8, G has a subgraph $T=S_{n}(1,3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=$ $n-1$. Since $T_{K}(n) \nsubseteq G, w_{2}$ is not adjacent in G to any vertex of $U \cup V$. Now, if $\delta(G[U]) \geq \frac{n-1}{2}$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2.10 which, with v_{1} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U])<\frac{n-1}{2}$, and $\Delta(G[U]) \geq\left\lfloor\frac{n-1}{2}\right\rfloor$. Let $U=\left\{u_{1}, \ldots, u_{n-1}\right\}$ and assume without loss of generality that $d_{G[U]}\left(u_{1}\right) \geq$ $\left\lfloor\frac{n-1}{2}\right\rfloor \geq 4$. Since $T_{K}(n) \nsubseteq G, E_{G}\left(V, N_{G[U]}\left(u_{1}\right)\right)=\emptyset$, so any 4 vertices from V, any 4 vertices from $N_{G[U]}\left(u_{1}\right)$ and w_{2} form W_{8} in \bar{G}, a contradiction. Therefore, $R\left(T_{K}(n), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0(\bmod 4)$.

Let $n=8$. By Theorem 5.3.16, G has a subgraph $T=T_{H}(8)$. Let $V(T)=$ $\left\{v_{0}, \ldots, v_{3}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}, v_{2} w_{4}\right\}$. Set $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{7}\right\}$; then $|U|=7$. Since $T_{K}(8) \nsubseteq G, w_{2}$ is not adjacent to $\left\{w_{4}\right\} \cup U$. Let $W=\left\{w_{4}\right\} \cup U$; then $|W|=8$. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2 .10 which, with w_{2} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[W])<3$, and $\Delta(G[W]) \geq 4$.

Now, suppose that $d_{G[W]}\left(w_{4}\right) \geq 4$ and assume without loss of generality that w_{4} is adjacent to u_{1}, u_{2}, u_{3} and u_{4}. Then v_{1} is not adjacent to $\left\{v_{3}, w_{2}, w_{3}\right\} \cup U$ and neither v_{2} nor v_{3} is adjacent to $\left\{u_{1}, \ldots, u_{4}\right\}$, since $T_{K}(8) \nsubseteq G$. Now, suppose that $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right) \neq \emptyset$ and assume that u_{1} is adjacent to u_{5}. Then u_{1} is not adjacent to $\left\{w_{1}, w_{2}, w_{3}, u_{2}, \ldots, u_{7}\right\}$ in G, and $v_{1} u_{2} v_{2} u_{3} v_{3} u_{4} w_{2} u_{6} v_{1}$ and u_{1} form W_{8} in \bar{G}, a contradiction. Thus, $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right)=\emptyset$, so $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} v_{3} u_{1}$ and v_{1} form W_{8} in \bar{G}, a contradiction.

Now suppose that $d_{G[W]}\left(u^{\prime}\right) \geq 4$ for some vertex $u^{\prime} \in U$, say $u^{\prime}=u_{1}$. Since, $T_{K}(8) \nsubseteq G, w_{4}$ is not adjacent to u_{1}. Then without loss of generality, suppose that $u_{2}, \ldots, u_{5} \in N_{G}\left(u_{1}\right)$. Since $T_{K}(8) \nsubseteq G, E_{G}\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{u_{2}, \ldots, u_{5}\right\}\right)=\emptyset$. If u_{2} is adjacent to w_{1}, then u_{2} is not adjacent to $\left\{u_{3}, \ldots, u_{7}\right\}$ and v_{1} is not adjacent to u_{6}. Then $w_{2} u_{3} v_{2} u_{4} v_{3} u_{5} v_{1} u_{6} w_{2}$ and u_{2} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to w_{1}. Similarly, u_{3}, u_{4} and u_{5} are not adjacent to w_{1}. If u_{2} is adjacent to v_{0}, then v_{2} is not adjacent to $\left\{v_{1}, v_{3}, w_{1}, w_{2}, w_{3}, u_{2}, \ldots, u_{7}\right\}$, and $v_{1} u_{2} v_{3} u_{3} w_{1} u_{4} w_{2} u_{5} v_{1}$ and v_{2} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to v_{0}. Similarly, u_{3}, u_{4} and u_{5} are not adjacent to v_{0}. By similar arguments, u_{3}, u_{4} and u_{5} are not adjacent to w_{3} or w_{4}.

Hence, u_{2}, \ldots, u_{5} are not adjacent to $V(T)$ in G, so $\delta(G[V(T)]) \geq 4$ by Observation 4.3.2. By Lemma 5.3.15, $G[V(T)]$ contains $T_{K}(8)$, a contradiction. Thus, $R\left(T_{K}(8), W_{8}\right) \leq 15$.

Now suppose that $n \equiv 0(\bmod 4)$ and that $n \geq 12$. If G has an $S_{n}(1,3)$ subgraph, then the arguments above lead to contradictions. Thus, G does not contain $S_{n}(1,3)$ as a subgraph. Now, by Theorem 5.3.16, G has a subgraph $T=T_{H}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}, v_{2} w_{4}\right\}$. Set $V=\left\{v_{3}, \ldots, v_{n-5}\right\}$ and let $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$. Then $|V|=n-7$ and $|U|=n-1$. Since $T_{K}(n) \nsubseteq G, w_{2}$ is not adjacent in G to $\left\{w_{4}\right\} \cup U$. Since $S_{n}(1,3) \nsubseteq G, v_{0}$ is not adjacent to $\left\{w_{4}\right\} \cup U$.

If $\delta(\bar{G}[U]) \geq \frac{n-1}{2}$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2 .10 which, with w_{2}, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[U])<\frac{n-1}{2}$, and $\Delta(G[U]) \geq\left\lfloor\frac{n-1}{2}\right\rfloor \geq 5$. Without
loss of generality, assume that $u_{2}, \ldots, u_{6} \in N_{G}\left(u_{1}\right)$. Since $T_{K}(n) \nsubseteq G, v_{1}, v_{2}$ and V are not adjacent to $\left\{u_{2}, \ldots, u_{6}\right\}$, and w_{1} and w_{2} are not adjacent to u_{1}.

Now, if u_{2} is adjacent to w_{1}, then u_{2} is not adjacent to $\left\{w_{3}, w_{4}\right\} \cup U \backslash\left\{u_{1}\right\}$, since $T_{K}(n) \nsubseteq G$, so $v_{0} u_{3} v_{1} u_{4} v_{2} u_{5} v_{3} u_{6} v_{0}$ and u_{2} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to w_{1}. Similarly, u_{3}, \ldots, u_{6} are not adjacent to w_{1}. If u_{2} is adjacent to w_{3} in G, then v_{0} is not adjacent to w_{1}, w_{2}, w_{3}, and $d_{G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]}\left(u_{i}\right) \leq n-6$ for $i=3, \ldots, 6$, since $S_{n}(1,3) \nsubseteq G$. Since $T_{K}(n) \nsubseteq G, w_{3}$ is not adjacent to w_{1} or w_{4}. Since $d_{G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]}\left(u_{3}\right) \leq n-6$ and $d_{G\left[U \backslash\left\{u_{1}, u_{2}\right\}\right]}\left(u_{4}\right) \leq n-6, u_{3}$ and u_{4} are adjacent in \bar{G} to at least 2 vertices in $\left\{u_{7}, \ldots, u_{n-1}\right\}$. Without loss of generality, assume that u_{3} is adjacent in \bar{G} to u_{7} and that u_{4} is adjacent to u_{8}. Then $u_{3} u_{7} w_{2} u_{8} u_{4} w_{1} w_{3} w_{4} u_{3}$ and v_{0} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to w_{3}. Similarly, u_{3}, \ldots, u_{6} are not adjacent to w_{4}.

Thus, u_{2}, \ldots, u_{6} are not adjacent to $V(T)$. By Observation 4.3.2, $\delta(G[V(T)]) \geq 4$, so $G[V(T)]$ contains $T_{K}(n)$ by Lemma 5.3.15, a contradiction.

Hence, $R\left(T_{K}(n), W_{8}\right) \leq 2 n-1$ for $n \equiv 0(\bmod 4)$. This completes the proof. \square
Theorem 5.3.19. If $n \geq 8$, then $R\left(T_{L}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be a graph with no $T_{L}(n)$ subgraph whose complement \bar{G} does not contain W_{8}. Suppose that $n \not \equiv 0(\bmod 4)$ and that G has order $2 n-1$. By Theorem 5.2.8, G has a subgraph $T=S_{n}(1,3)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{L}(n) \nsubseteq G, v_{1}$ is not adjacent to $U \cup V$, and $d_{G[U]}\left(v_{i}\right) \leq n-7$ for each $v_{i} \in V$. Now, if $\delta(G[U]) \geq \frac{n-1}{2}$, then $\bar{G}[U]$ contains C_{8} by Lemma 2.2.10 which, with v_{1}, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[U])<\frac{n-1}{2}$, and $\Delta(G[U]) \geq\left\lfloor\frac{n-1}{2}\right\rfloor$.

Let $U=\left\{u_{1}, \ldots, u_{n-1}\right\}$ and without loss of generality assume that $d_{G[U]}\left(u_{1}\right) \geq$ $\left\lfloor\frac{n-1}{2}\right\rfloor \geq 4$ and that $u_{2}, \ldots, u_{5} \in N_{G[U]}\left(u_{1}\right)$. Now if $E_{G}\left(V, N_{G[U]}\left(u_{1}\right)\right)=\emptyset$, then 4 vertices from $V, 4$ vertices from $N_{G[U]}\left(u_{1}\right)$ and v_{1} form W_{8} in \bar{G}, a contradiction. Thus, $E_{G}\left(V, N_{G[U]}\left(u_{1}\right)\right) \neq \emptyset$. Assume without loss of generality that v_{2} is adjacent to u_{2}. Since $T_{L}(n) \nsubseteq G, v_{2}$ is not adjacent to $U \backslash\left\{u_{1}, u_{2}\right\}$. Since $d_{G[U]}\left(v_{i}\right) \leq n-7$ for each $v_{i} \in V, v_{5}$ is non-adjacent to at least one of u_{6}, \ldots, u_{n-1}, say u_{6}. Now if $E_{G}\left(\left\{v_{3}, v_{4}, v_{5}\right\},\left\{u_{3}, u_{4}, u_{5}\right\}\right)=\emptyset$, then $v_{2} u_{3} v_{3} u_{4} v_{4} u_{5} v_{5} u_{6} v_{2}$ and v_{1} form W_{8} in \bar{G}, a contradiction. Thus assume, say, that v_{3} is adjacent to u_{3} in G; then v_{3} is not adjacent to $U \backslash\left\{u_{1}, u_{3}\right\}$. Again, if $E_{G}\left(\left\{v_{4}, v_{5}\right\},\left\{u_{4}, u_{5}\right\}\right)=\emptyset$, then $v_{2} u_{7} v_{3} u_{4} v_{4} u_{5} v_{5} u_{6} v_{2}$ and v_{1} form W_{8} in \bar{G}, a contradiction. Thus assume, say, that v_{4} is adjacent to u_{4}, then v_{4} is not adjacent to $U \backslash\left\{u_{1}, u_{4}\right\}$. If v_{5} is not adjacent to u_{5}, then $v_{2} u_{7} v_{3} u_{2} v_{4} u_{5} v_{5} u_{6} v_{2}$ and v_{1} form W_{8} in \bar{G}, a contradiction. Thus, v_{5} is adjacent to u_{5}, so v_{5} is not adjacent to $U \backslash\left\{u_{1}, u_{5}\right\}$, and $v_{2} u_{7} v_{3} u_{2} v_{4} u_{3} v_{5} u_{6} v_{2}$ and v_{1} form W_{8} in \bar{G}, a contradiction.

Hence, $R\left(T_{L}(n), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0(\bmod 4)$.
Now, suppose that $n \equiv 0(\bmod 4)$ and that G has order $2 n-1$. Suppose first that $n=8$. By Theorem 5.3.16, G has a subgraph $T=T_{H}(8)$. Let $V(T)=$ $\left\{v_{0}, \ldots, v_{3}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{3}, v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}, v_{2} w_{4}\right\}$. Set $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{7}\right\}$; then $|U|=7$. Since $T_{L}(8) \nsubseteq G$, neither v_{1} nor v_{2} are adjacent to U, and $d_{G[U]}\left(v_{3}\right) \leq 1$. Furthermore, v_{1} is not adjacent to w_{4}, and
v_{2} is not adjacent to w_{1} or w_{3}. Let $W=w_{4} \cup U$; then $|W|=8$. If $\delta(\bar{G}[W]) \geq 4$, then $\bar{G}[W]$ contains C_{8} by Lemma 2.2.10 which, with v_{1}, forms W_{8}, a contradiction. Thus, $\delta(\bar{G}[W])<3$ and $\Delta(G[W]) \geq 4$.

Now, suppose that $d_{G[W]}\left(w_{4}\right) \geq 4$ and assume without loss of generality that $u_{1}, \ldots, u_{4} \in N_{G}\left(w_{4}\right)$. Then v_{2} is not adjacent to $v_{1}, v_{3}, w_{1}, w_{2}$ and $d_{G[U]}\left(u_{i}\right) \leq 1$ for $1 \leq i \leq 4$, or else $T_{L}(8) \subseteq G$, a contradiction. Since $d_{G[U]}\left(v_{3}\right) \leq 1$, assume without loss of generality that v_{3} is not adjacent to u_{3} or u_{4}. Now, suppose that $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right) \neq \emptyset$ and assume, say, that u_{1} is adjacent to u_{5}. Then u_{1} is not adjacent to $\left\{v_{3}, w_{1}, w_{2}, w_{3}, u_{2}, \ldots, u_{7}\right\}$. Since $T_{L}(8) \nsubseteq G$, at least one of w_{1} and w_{2} is adjacent in \bar{G} to u_{2}, u_{3} and u_{4}, say w_{1}, so $v_{1} u_{2} w_{1} u_{3} v_{3} u_{4} v_{2} u_{6} v_{1}$ and u_{1} form W_{8} in \bar{G}, a contradiction. Thus, $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right)=\emptyset$. Then $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} v_{2} u_{1}$ and v_{1} form W_{8} in \bar{G}, a contradiction. Therefore, $d_{G[W]}\left(u^{\prime}\right) \geq 4$ for some vertex of $u^{\prime} \in U$, say $u^{\prime}=u_{1}$.

Suppose that w_{4} is adjacent to u_{1}. Then without loss of generality, we assume that u_{1} is adjacent to u_{2}, u_{3} and u_{4}. Since $T_{L}(8) \nsubseteq G$, neither v_{0} nor w_{4} is adjacent to w_{1} or w_{2}, and w_{4} is not adjacent to $\left\{v_{1}, v_{3}\right\} \cup U \backslash\left\{u_{1}\right\}$. If $E_{G}\left(\left\{u_{2}, u_{3}, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}\right) \neq \emptyset$, Then say, u_{2} is adjacent to u_{5} and is thus not adjacent to $\left\{v_{0}, v_{3}, w_{1}, w_{2}, w_{3}, u_{3}, u_{4}, u_{6}, u_{7}\right\}$, so $w_{1} v_{0} w_{2} w_{4} u_{3} v_{1} u_{4} v_{2} w_{1}$ and u_{2} form W_{8} in \bar{G}, a contradiction. Thus $E_{G}\left(\left\{u_{1}, \ldots, u_{4}\right\},\left\{u_{5}, u_{6}, u_{7}\right\}=\emptyset\right.$. Let $X=\left\{v_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $Y=\left\{v_{3}, u_{5}, u_{6}, u_{7}\right\}$. Since $d_{G[U]}\left(v_{3}\right) \leq 1, \bar{G}[X \cup Y]$ contains C_{8} by Lemma 4.3.5 which, with w_{4}, forms W_{8}, a contradiction.

Thus, u_{1} is not adjacent to w_{4} so we can assume without loss of generality that $u_{2}, \ldots, u_{5} \in N_{G}\left(u_{1}\right)$. Since G does not contain $T_{L}(8), d_{G[V(T)]}\left(u_{i}\right) \leq 1$ for $2 \leq i \leq 5$. If u_{2} is adjacent to w_{4}, then u_{2} is not adjacent to $V(G) \backslash\left\{u_{1}, w_{4}\right\}$ in G. Since $d_{G[U]}\left(v_{3}\right) \leq 1$, that v_{3} is not adjacent to, say, u_{3} or u_{4}. Since $d_{G[V(T)]}\left(u_{i}\right) \leq 1$ for $2 \leq i \leq 5, u_{4}$ and u_{5} are each adjacent in G to at least 2 of w_{1}, w_{2}, w_{3}, so some $w_{i} \in\left\{w_{1}, w_{2}, w_{3}\right\}$ is adjacent in \bar{G} to both u_{4} and u_{5}. Therefore, $u_{3} v_{3} u_{4} w_{i} u_{5} v_{2} u_{6} v_{1} u_{3}$ and u_{2} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to w_{4}. Similarly, u_{3}, u_{4}, u_{5} are not adjacent to w_{4}. Similar arguments show that u_{2}, \ldots, u_{5} are not adjacent to w_{1} or w_{2}.

Now, if u_{2} is adjacent to any other vertex of $V(T)$, then u_{2} is not adjacent to $\left\{u_{3}, u_{4}, u_{5}\right\}$, so $u_{3} w_{1} u_{4} w_{4} u_{5} v_{2} u_{6} v_{1} u_{3}$ and u_{2} form W_{8} in \bar{G}, a contradiction. Hence, u_{2} is not adjacent to $V(T)$ and, similarly, u_{3}, u_{4}, u_{5} are not adjacent to $V(T)$. Therefore, by Observation 4.3.2, $\delta(G[V(T)]) \geq 4$. By Lemma 5.3.15, $G[V(T)]$ contains $T_{L}(8)$, a contradiction. Thus, $R\left(T_{L}(8), W_{8}\right) \leq 15$.

Now suppose that $n \geq 12$. If G contains $S_{n}(1,3)$, then the previous arguments above lead to contradictions. Thus, G does not contain $S_{n}(1,3)$. By Theorem 5.2.11, G has a subgraph $T=T_{C}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}, v_{2} w_{3}\right\}$. Set $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$; then $|U|=n-1$.

Suppose that w_{2} is not adjacent to U. If $\delta(\bar{G}[U]) \geq \frac{n-1}{2}$, then G contains C_{8} by Lemma 2.2.10 and, with w_{2} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U])<\frac{n-1}{2}$ and so $\Delta(G[U]) \geq\left\lfloor\frac{n-1}{2}\right\rfloor \geq 5$. Without loss of generality, assume that $u_{2}, \ldots, u_{6} \in N_{G}\left(u_{1}\right)$. Since $S_{n}(1,3) \nsubseteq G, u_{2}, \ldots, u_{6}$ are not adjacent to $V(T) \backslash$ $\left\{v_{0}\right\}$. If u_{2} is adjacent to v_{0}, then since $S_{n}(1,3) \nsubseteq G, u_{3}, \ldots, u_{6}$ are not adjacent to $\left\{u_{7}, \ldots, u_{n-1}\right\}$, so $u_{3} u_{7} u_{4} u_{8} u_{5} u_{9} u_{6} u_{10} u_{3}$ and w_{2} form W_{8} in \bar{G}, a contradiction. Thus, u_{2} is not adjacent to v_{0} and, similarly, u_{3}, \ldots, u_{6} are also not adjacent to
v_{0}. Hence, u_{2}, \ldots, u_{6} are not adjacent to $V(T)$. Therefore, by Observation 4.3.2, $\delta(G[V(T)]) \geq n-4$, so $G[V(T)]$ contains $T_{L}(n)$ by Lemma 5.3.15, a contradiction.

Thus some vertex of U, say u_{n-1}, is adjacent to w_{2}. Set $U^{\prime}=U \backslash\left\{u_{n-1}\right\}$; then $\left|U^{\prime}\right|=n-2$. Since $T_{L}(n) \nsubseteq G, u_{n-1}$ is not adjacent to U^{\prime} in G. Now, if $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \geq \frac{n-2}{2}$, then $\bar{G}\left[U^{\prime}\right]$ contains C_{8} by Lemma 2.2 .10 which, with u_{n-1}, forms W_{8}, a contradiction. Thus, $\delta\left(\bar{G}\left[U^{\prime}\right]\right) \leq \frac{n-2}{2}-1$, and $\Delta\left(G\left[U^{\prime}\right]\right) \geq \frac{n-2}{2} \geq 5$. Without loss of generality, assume that $u_{2}, \ldots, u_{6} \in N_{G}\left(u_{1}\right)$ and repeat the above arguments to prove that u_{2}, \ldots, u_{6} are not adjacent to $V(T)$. Therefore, $\delta(G[V(T)]) \geq n-4$ by Observation 4.3.2, so $G[V(T)]$ contains $T_{L}(n)$ by Lemma 5.3.15, a contradiction.

Thus, $R\left(T_{L}(n), W_{8}\right) \leq 2 n-1$ for $n \equiv 0(\bmod 4)$ which completes the proof.
Theorem 5.3.20. If $n \geq 9$, then $R\left(T_{M}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{M}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.5, G has a subgraph $T=S_{n}(4)$. Now, let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{M}(n) \nsubseteq G, w_{1}, w_{2}$ and w_{3} are not adjacent to any vertex of $U \cup V$ in G.

Now, suppose that some vertex in V is adjacent to at least 4 vertices of U in G, say v_{2} to u_{1}, \ldots, u_{4}. Then u_{1}, \ldots, u_{4} are not adjacent to other vertices in U. Then $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} u_{8} u_{1}$ and w_{1} form W_{8} in \bar{G}, a contradiction. Therefore, each vertex in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U. By Corollary 5.3.2, $\bar{G}[U \cup V]$ contains C_{8} which together with w_{1} gives W_{8} in \bar{G}, a contradiction.

Thus, $R\left(T_{M}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 9$. This completes the proof.
Theorem 5.3.21. If $n \geq 9$, then

$$
R\left(T_{N}(n), W_{8}\right)= \begin{cases}2 n-1 & \text { if } n \not \equiv 0 \quad(\bmod 4) \\ 2 n & \text { otherwise }\end{cases}
$$

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound. Let G be any graph of order $2 n$ if $n \equiv 0(\bmod 4)$ and of order $2 n-1$ if $n \not \equiv 0$ $(\bmod 4)$. Assume that G does not contain $T_{N}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.9, G has a subgraph $T=T_{A}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=$ $V(G)-V(T)=\left\{u_{1}, \ldots, u_{j}\right\}$, where $j=n-1$ if $n \not \equiv 0(\bmod 4)$ and $j=n$ otherwise. Since $T_{N}(n) \nsubseteq G, w_{2}$ is not adjacent to $U \cup V$ in G. If each $v_{i} \in V$ is adjacent to at most three vertices of U in G, then by Corollary 5.3.2, $\bar{G}[U \cup V]$ contains C_{8} which with w_{2} gives W_{8} in \bar{G}, a contradiction. Therefore, some vertex in V, say v_{2}, is adjacent to at least four vertices of U in G, say u_{1}, \ldots, u_{4}. If none of these is adjacent to other vertices of U in G, then $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} u_{4} u_{8} u_{1}$ and w_{2} form W_{8} in \bar{G}, a contradiction.

Therefore, assume that u_{1} is adjacent to u_{5} in G. Since $T_{N}(n) \nsubseteq G, u_{2}, u_{3}, u_{4}$ are not adjacent to $\left\{u_{6}, \ldots, u_{j}\right\}$ in G. For $n=9$ and $n=10,\left\{v_{3}, \ldots, v_{n-4}\right\}$ is not
adjacent to $\left\{u_{5}, \ldots, u_{n-1}\right\}$ or else G will contain $T_{N}(n)$ with v_{2} and v_{0} being the vertices of degree $n-5$ and 3 , respectively. However, $v_{3} u_{5} v_{4} u_{6} u_{2} u_{7} u_{3} u_{8} v_{3}$ and w_{2} form W_{8} in \bar{G}, a contradiction. For $n \geq 11$, if v_{2} is not adjacent to $\left\{u_{6}, \ldots, u_{j}\right\}$ in G, then $v_{2} u_{6} u_{2} u_{7} u_{3} u_{8} u_{4} u_{9} v_{2}$ and w_{2} form W_{8} in \bar{G}, a contradiction. Therefore, assume that v_{2} is adjacent to u_{6} in G. Then u_{6} is not adjacent to $\left\{u_{7}, \ldots, u_{j}\right\}$ in G, and $u_{2} u_{7} u_{3} u_{8} u_{4} u_{9} u_{6} u_{10} u_{2}$ and w_{2} form W_{8} in \bar{G}, again a contradiction.

Thus, $R\left(T_{N}(n), W_{8}\right) \leq 2 n$ for $n \equiv 0(\bmod 4)$ and $R\left(T_{N}(n), W_{8}\right) \leq 2 n-1$ for $n \not \equiv 0(\bmod 4)$.

Theorem 5.3.22. If $n \geq 9$, then $R\left(T_{P}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{P}(n)$ and that \bar{G} does not contain W_{8}. Suppose that $n \not \equiv 0(\bmod 4)$. By Theorem 5.2.9, G has a subgraph $T=T_{A}(n)$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T) ;$ then $|V|=n-5$ and $|U|=n-1$. Since $T_{P}(n) \nsubseteq G, w_{1}$ is not adjacent to any vertex of $U \cup V$ in G. If each v_{i} in V is adjacent to at most three vertices of U in G, then by Corollary 5.3.2, $\bar{G}[U \cup V]$ contains C_{8} which with w_{1} gives W_{8} in \bar{G}, a contradiction. Therefore, some vertex in V, say v_{2}, is adjacent to at least four vertices of U in G, say u_{1}, \ldots, u_{4}. For $n=9$ and $n=10, G$ contains $T_{P}(9)$ and $T_{P}(10)$ with edge set $\left\{u_{1} v_{2}, u_{2} v_{2}, u_{3} v_{2}, v_{2} v_{0}, v_{0} v_{1}, v_{0} v_{3}, v_{1} w_{1}, v_{1} w_{2}\right\}$ and $\left\{u_{1} v_{2}, u_{2} v_{2}, u_{3} v_{2}, u_{4} v_{2}, v_{2} v_{0}, v_{0} v_{1}, v_{0} v_{3}, v_{1} w_{1}, v_{1} w_{2}\right\}$, respectively. For $n \geq 11$, each of u_{1}, \ldots, u_{4} is adjacent to at most two remaining vertices in U. Then by Corollary 5.3.1, $\bar{G}[U]$ contains C_{8} which with w_{1} gives W_{8} in \bar{G}, a contradiction.

On the other hand, suppose that $n \equiv 0(\bmod 4)$. By Theorem 5.3.20, G contains a subgraph $T=T_{M}(n)$. Now, we let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, \ldots, w_{4}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}, w_{1} w_{4}\right\}$. Let $V=\left\{v_{2}, \ldots, v_{n-5}\right\}$ and $U=V(G)-$ $V(T)$; then $|V|=n-6$ and $|U|=n-1$. Since $T_{P}(n) \nsubseteq G, w_{1}$ is not adjacent to $\left\{v_{0}, w_{2}, w_{3}\right\} \cup U$ in G, and so $d_{G[U]}\left(w_{2}\right) \leq 1, d_{G[U]}\left(w_{3}\right) \leq 1$ and $d_{G[U]}(v) \leq n-7$ for any vertex $v \in V$. Now, if G contains a subgraph $T_{A}(n)$, then we can use arguments similar to those used for the case $n \not \equiv 0(\bmod 4)$ above. Therefore, G does not contain $T_{A}(n)$. Then v_{0} is not adjacent to $\left\{w_{2}, w_{3}\right\} \cup U$ in G.

Suppose that some vertex $v \in V$ is not adjacent to w_{1} in G. Let X be any four vertices in U that are not adjacent to v in G and set $Y=\left\{v, v_{0}, w_{2}, w_{3}\right\}$. By Lemma 4.3.5, $\bar{G}[X \cup Y]$ contains C_{8} which with w_{1} gives W_{8} in \bar{G}, a contradiction. Therefore, each vertex of V is adjacent to w_{1} in G. Since $T_{P}(n) \nsubseteq G, w_{4}$ is adjacent to at most $n-7$ vertices of U in G. Since $T_{A}(n) \nsubseteq G, w_{2}$ and w_{3} are not adjacent in G. Now, if w_{4} is adjacent to both w_{2} and w_{3} in G, then w_{4} is not adjacent to v_{0} in G since $T_{P}(n) \nsubseteq G$. Let X be any four vertices of U that are not adjacent to w_{4} in G and let $V=\left\{w_{1}, \ldots, w_{4}\right\}$. By Lemma 4.3.5, $\bar{G}[X \cup Y]$ contains C_{8} which with w_{1} gives W_{8} in \bar{G}, a contradiction. Therefore, w_{4} is non-adjacent to either w_{2} or w_{3} in G, say w_{2}. Since $d_{G[U]}\left(w_{2}\right) \leq 1$ and $d_{G[U]}\left(w_{4}\right) \leq n-7$, there is a set X of four vertices in U that are not adjacent to both w_{2} and w_{4} in G. Let $Y=\left\{v_{0}, w_{1}, w_{3}, w_{4}\right\}$. By Lemma 4.3.5, $\bar{G}[X \cup Y]$ contains C_{8} which with w_{1} gives W_{8} in \bar{G}, again a contradiction.

In either case, $R\left(T_{P}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 9$ and this completes the proof.

Theorem 5.3.23. If $n \geq 9$, then $R\left(T_{Q}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{Q}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.5, G has a subgraph $T=S_{n}(4)$. We let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{1} w_{2}, v_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{Q}(n) \nsubseteq G, G[V]$ are independent vertices and not adjacent to U.

Suppose that $n \geq 10$. Then $|V| \geq 5$ and $|U| \geq 9$, so by Observation 4.3.2, \bar{G} contains W_{8}, a contradiction. If $n=9$, then $|V|=4$ and $|U|=8$. By Lemma 4.3.4, $G[U]$ is K_{8} or $K_{8}-e$. Since $T_{Q}(9) \nsubseteq G, T$ is not adjacent to U, and $\delta(G[V(T)] \geq 5$. As v_{2}, \ldots, v_{5} are independent in G, they are each adjacent to all other vertices in $G[V(T)]$, Hence, $G[V(T)]$ contains $T_{Q}(9)$ with v_{2} and v_{0} as the vertices of degree 4, a contradiction.

Thus, $R\left(T_{Q}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 9$ which completes the proof.
Theorem 5.3.24. If $n \geq 9$, then $R\left(T_{R}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{R}(n)$ and that \bar{G} does not contain W_{8}. By Theorem 5.2.11, G has a subgraph $T=T_{C}(n)$. Now, let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, v_{2} w_{2}, v_{2} w_{3}\right\}$. Set $V=\left\{v_{3}, \ldots, v_{n-4}\right\}$ and $U=V(G)-$ $V(T)=\left\{u_{1}, \ldots, u_{n-1}\right\}$; then $|V|=n-6$ and $|U|=n-1$. Since $T_{R}(n) \nsubseteq G$, w_{1} is not adjacent in G to any vertex of $U \cup V$. If $\delta(\bar{G}[U \cup V]) \geq\left\lceil\frac{2 n-7}{2}\right\rceil$, then $\bar{G}[U \cup V]$ contains C_{8} by Lemma 2.2.10 which, with w_{3} as hub, forms W_{8}, a contradiction. Therefore, $\delta(\bar{G}[U \cup V]) \leq\left\lceil\frac{2 n-7}{2}\right\rceil-1$, and $\Delta(G[U \cup V]) \geq\left\lfloor\frac{2 n-7}{2}\right\rfloor=n-4$. Now, there are two cases to be considered.
Case 1: One of the vertices of V, say v_{3}, is a vertex of degree at least $n-4$ in $G[U \cup V]$.

Note that in this case, there are at least 3 vertices from U, say u_{1}, \ldots, u_{3}, that are adjacent to v_{3} in G. Suppose that v_{3} is also adjacent to a in G, where a can be a vertex in U or V. Since $T_{R}(n) \nsubseteq G$, these 4 vertices are independent and are not adjacent to any other vertices of U. Since $n \geq 9, U$ contains at least 4 other vertices, say u_{5}, \ldots, u_{8}, so $u_{1} u_{5} u_{2} u_{6} u_{3} u_{7} a u_{8} u_{1}$ and w_{3} forms W_{8} in \bar{G}, a contradiction.
Case 2: Some vertex $u \in U$ has degree at least $n-4$ in $G[U \cup V]$.
Since $T_{R}(n) \nsubseteq G, u$ is not adjacent to any vertex of V in G. Therefore, u must be adjacent to at least $n-4$ vertices of U in G. Without loss of generality, suppose that $u_{1}, \ldots, u_{n-4} \in N_{G[U]}(u)$. Note that V is not adjacent to $N_{G[U]}(u)$, or else it will form $T_{R}(n)$ in G, a contradiction. If $n \geq 10$, then any 4 vertices from $N_{G[U]}(u)$ and any 4 vertices from V form C_{8} in \bar{G} which, with w_{3} as hub, forms W_{8}, a contradiction. Suppose that $n=9$ and let the remaining two vertices be u_{6} and u_{7}. If either u_{6} or u_{7} is not adjacent to any two vertices of $\left\{u_{1}, \ldots, u_{5}\right\}$ in G, say u_{6} is not adjacent to u_{1} or u_{2} in G, then $u_{1} u_{6} u_{2} v_{3} u_{3} v_{4} u_{4} v_{5} u_{1}$ and w_{3} forms W_{8} in \bar{G}, a contradiction. So, both u_{6} and u_{7} is adjacent to at least 4 vertices of $\left\{u_{1}, \ldots, u_{5}\right\}$ in G. Since $T_{R}(9) \nsubseteq G, T$ cannot be adjacent to U, and $\delta\left(G[V(T)] \geq 5\right.$. As both v_{2}
and w_{3} are not adjacent to v_{3}, v_{4} and v_{5} in G, they is adjacent to all other vertices in $G[V(T)]$. Similarly, since v_{3} does not adjacent to v_{2} and w_{3} in G, v_{3} is adjacent to w_{1} or w_{2} in G, Without loss of generality, we assume that v_{3} is adjacent to w_{1}. Then $G[V(T)]$ contains $T_{R}(9)$ with edge set $\left\{v_{2} w_{2}, v_{2} v_{1}, v_{2} v_{0}, v_{0} v_{4}, v_{0} v_{5}, v_{2} w_{3}, v_{2} w_{1}, w_{1} v_{3}\right\}$, a contradiction.

In either case, $R\left(T_{R}(n), W_{8}\right) \leq 2 n-1$.
Theorem 5.3.25. If $n \geq 9$, then $R\left(T_{S}(n), W_{8}\right)=2 n-1$.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper bound. Let G be any graph of order $2 n-1$. Assume that G does not contain $T_{S}(n)$ and that \bar{G} does not contain W_{8}. Suppose that $n \not \equiv 0(\bmod 4)$. By Theorem 5.2.7, G has a subgraph $T=S_{n}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-4}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-4}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-5$ and $|U|=n-1$. Since $T_{S}(n) \nsubseteq G, G[V]$ are independent vertices and are not adjacent to U. If $n \geq 10$, then $|V| \geq 5$ and $|U| \geq 9$, so by Observation 4.3.2, \bar{G} contains W_{8}, a contradiction. Suppose that $n=9$. Then $|V|=4$ and $|U|=8$. By Lemma 4.3.4, $G[U]$ is K_{8} or $K_{8}-e$. Since $T_{S}(9) \nsubseteq G, T$ is not adjacent to U, and $\delta\left(G[V(T)] \geq 5\right.$. As v_{2}, \ldots, v_{5} are independent in G, they are adjacent to all other vertices in $G[V(T)]$, and so $G[V(T)]$ contains $T_{S}(9)$ with edge set $\left\{v_{0} v_{1}, v_{0} v_{2}, v_{1} v_{4}, v_{1} v_{5}, v_{2} w_{1}, v_{2} w_{2}, v_{2} w_{3}, v_{3} w_{1}\right\}$.

On the other hand, suppose that $n \equiv 0(\bmod 4)$. By Theorem 5.2.7, G has a subgraph $T=S_{n-1}[4]$. Let $V(T)=\left\{v_{0}, \ldots, v_{n-5}, w_{1}, w_{2}, w_{3}\right\}$ and $E(T)=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-5}, v_{1} w_{1}, w_{1} w_{2}, w_{1} w_{3}\right\}$. Set $V=\left\{v_{2}, \ldots, v_{n-5}\right\}$ and $U=V(G)-V(T)$; then $|V|=n-6$ and $|U|=n$. Since $T_{S}(n) \nsubseteq G, G[V]$ is not adjacent to U. Since $|V|=n-6>4$, by Observation 4.3.2, $\Delta(\bar{G}[U]) \leq 3$ and $\delta(G[U]) \geq n-4$ since $W_{8} \nsubseteq \bar{G}$. By Lemma 5.2.6, either $G[U]$ is $K_{4, \ldots, 4}$ and contains $T_{S}(n)$ or $G[U]$ contains $S_{n}[4]$ and the arguments from the $n \not \equiv 0(\bmod 4)$ case above lead to a contradiction.

Thus, $R\left(T_{S}(n), W_{8}\right) \leq 2 n-1$ for $n \geq 9$ which completes the proof.

Chapter 6

Ramsey numbers for large tree graphs versus the wheel graphs of order 9

In this chapter, we provide some insight on the Ramsey numbers for tree graphs of order n versus the wheel graph W_{8} of order 9 , focusing on the tree graphs with maximum degree at most $n-6$ for large values of n.

6.1 Introduction

Before looking into the Ramsey numbers, we define a particular tree as follows.
Definition 6.1.1. Let Q_{1}, \ldots, Q_{t} be disjoint trees with $\left|V\left(Q_{1}\right)\right|, \ldots,\left|V\left(Q_{t}\right)\right| \geq 2$. Define $k=\left|V\left(Q_{1}\right)\right|+\cdots+\left|V\left(Q_{t}\right)\right|-t$, and let $v_{i} \in V\left(Q_{i}\right)$ for each $i=1, \ldots, t$. Finally, let $T=T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ be the tree on n vertices with

$$
\begin{aligned}
& V(T)=\left\{v_{0}, u_{1}, \ldots, u_{n-k-t-1}\right\} \cup V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{t}\right) ; \\
& E(T)=\left\{v_{0} u_{1}, \ldots, v_{0} u_{n-k-t-1}\right\} \cup\left\{v_{0} v_{1}, \ldots, v_{0} v_{t}\right\} \cup E\left(Q_{1}\right) \cup \cdots \cup E\left(Q_{t}\right),
\end{aligned}
$$

as illustrated below:

$$
T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)
$$

6.2 Some lemmas

In this section, we introduce some lemmas that are helpful in our discussion on the Ramsey numbers for large trees T_{n} with maximum degree at most $n-6$ versus the wheel graph W_{8} of order 9 .
Lemma 6.2.1. Suppose that $k \geq 5$ and that $T=T_{n, k}\left(v_{1} ; Q\right)$ for some tree Q with $|V(Q)|=k+1$. Then Q has at least one of the following graphs as a subgraph:

Z_{1}

Z_{5}

Z_{2}

Z_{6}

Z_{3}

Z_{4}

Z_{10}

Proof. Note that Q contains v_{1} and has at least 6 vertices. If $\operatorname{deg}_{T}\left(v_{1}\right) \geq 4$, then Q contains Z_{1}. If $\operatorname{deg}_{T}\left(v_{1}\right)=3$, then Q contains Z_{2}. If $\operatorname{deg}_{T}\left(v_{1}\right)=2$, then Q contains Z_{3} or Z_{4}. If $\operatorname{deg}_{T}\left(v_{1}\right)=1$, then Q contains $Z_{5}, Z_{6}, Z_{7}, Z_{8}, Z_{9}$ or Z_{10}.

Lemma 6.2.2. Suppose that $k \geq 5$ and that $T=T_{n, k}\left(v_{1}, v_{2} ; Q_{1}, Q_{2}\right)$ for trees Q_{1} and Q_{2} with $\left|V\left(Q_{1}\right)\right|+\left|V\left(Q_{2}\right)\right|=k+2$. If $\left|V\left(Q_{1}\right)\right| \geq\left|V\left(Q_{2}\right)\right|$, then $Q_{1} \cup Q_{2}$ contains at least one of the following graphs as subgraph:

Proof. Note that $Q_{1} \cup Q_{2}$ contains $\left\{v_{1}, v_{2}\right\}$ and has $\left|V\left(Q_{1}\right)\right|+\left|V\left(Q_{2}\right)\right|=k+2 \geq 7$ vertices. Suppose that $\left|V\left(Q_{1}\right)\right| \geq\left|V\left(Q_{2}\right)\right|$; then Q_{1} has at least 4 vertices. If $\operatorname{deg}_{T}\left(v_{1}\right) \geq 3$, then $Q_{1} \cup Q_{2}$ contains Z_{11}. If $\operatorname{deg}_{T}\left(v_{1}\right)=2$, then $Q_{1} \cup Q_{2}$ contains Z_{12}. Finally, if $\operatorname{deg}_{T}\left(v_{1}\right)=1$, then $Q_{1} \cup Q_{2}$ contains Z_{13} or Z_{14}.

Lemma 6.2.3. Suppose that $k \geq 5$ and that $T=T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ for trees Q_{1}, \ldots, Q_{t} for which $\left|V\left(Q_{1}\right)\right|+\cdots+\left|V\left(Q_{t}\right)\right|=k+t$. If $t \geq 3$, then $Q_{1} \cup Q_{2} \cup Q_{3}$ contains the subgraph

Z_{15}
Proof. Based on Definition 6.1.1, each v_{i} in Q_{i} has degree at least 1.
Lemma 6.2.4. Let G be a graph, let $U \subseteq V(G)$ with $|U|=m$ and let $y_{1}, y_{2}, y_{3} \in$ $V(G) \backslash U$. If $\left|N_{U}\left(y_{i}\right)\right| \geq m-\ell$ for all i, then
(a) for all $1 \leq i<j \leq 3,\left|N_{U}\left(y_{i}\right) \cap N_{U}\left(y_{j}\right)\right| \geq m-2 \ell$;
(b) $\left|N_{U}\left(y_{1}\right) \cap N_{U}\left(y_{2}\right) \cap N_{U}\left(y_{3}\right)\right| \geq m-3 \ell$.

Proof. (a) $\left|N_{U}\left(y_{i}\right) \cap N_{U}\left(y_{j}\right)\right|=\left|N_{U}\left(y_{i}\right)\right|+\left|N_{U}\left(y_{j}\right)\right|-\left|N_{U}\left(y_{i}\right) \cup N_{U}\left(y_{j}\right)\right| \geq 2(m-\ell)-$ $|U|=m-2 \ell$. (b) By part (a), $\left|N_{U}\left(y_{1}\right) \cap N_{U}\left(y_{2}\right) \cap N_{U}\left(y_{3}\right)\right| \geq\left|N_{U}\left(y_{1}\right) \cap N_{U}\left(y_{2}\right)\right|+$ $\left|N_{U}\left(y_{3}\right)\right|-|U| \geq m-3 \ell$.

Lemma 6.2.5. Let G be a graph with $V(G)=\left\{x_{1}, \ldots, x_{n-t}, y_{1}, y_{2}, y_{3}\right\}$. Suppose that each vertex in G has degree at least $n-t-\ell$. Let Z_{1}, \ldots, Z_{10} be defined as in Lemma 6.2.1. If $n \geq t+3 \ell+7$, then for each $i \in\{1, \ldots, 10\}$, there are $x_{i 1}, x_{i 2}, x_{i 3} \in\left\{x_{1}, \ldots, x_{n-t}\right\}$ such that $G\left[\left\{x_{i 1}, x_{i 2}, x_{i 3}, y_{1}, y_{2}, y_{3}\right\}\right]$ contains a subgraph U_{i} which is isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $x_{i 1}$ is mapped to v_{1} in Z_{i}.

Proof. Let $X=\left\{x_{1}, \ldots, x_{n-t}\right\}$ and note that $\left|N_{X}\left(y_{j}\right)\right| \geq n-t-\ell-2$ for $j=1,2,3$. Also, define $d=n-t-\ell-3$ and note that $d \geq 2 \ell+4 \geq 4$. Finally, define $G^{\prime}=G\left[\left\{x_{i 1}, x_{i 2}, x_{i 3}, y_{1}, y_{2}, y_{3}\right\}\right]$. By Lemma 6.2.4(b), $\left|N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)\right| \geq$ $n-t-3(\ell+2) \geq 1$, so $N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$ is non-empty.
Case $i=1$. Let $x_{i 1} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$. Since $x_{i 1}$ is adjacent to at least d vertices in $V(G) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$, it is adjacent to some $x_{i 2} \in X \backslash\left\{x_{i 1}\right\}$. Choose $x_{i 3} \in X \backslash\left\{x_{i 1}, x_{i 2}\right\}$; then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=2$. Let $x_{i 1} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$. Since y_{1} is adjacent to at least d vertices in $V(G) \backslash\left\{x_{i 1}, y_{2}, y_{3}\right\}$, it is adjacent to a vertex $x_{i 2} \in X \backslash\left\{x_{i 1}\right\}$. Choose $x_{i 3} \in X \backslash\left\{x_{i 1}, x_{i 2}\right\}$; then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=3$. Let $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and let $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Then $\left|N_{X^{\prime}}\left(x_{i 2}\right)\right| \geq d$ and $\left|N_{X^{\prime}}\left(y_{3}\right)\right| \geq d$. By Lemma 6.2.4(a), $\left|N_{X^{\prime}}\left(y_{3}\right) \cap N_{X^{\prime}}\left(x_{i 2}\right)\right| \geq n-t-2(\ell+3) \geq 1$, so there is some $x_{i 1} \in N_{X^{\prime}}\left(y_{3}\right) \cap N_{X^{\prime}}\left(x_{i 2}\right)$. Choose $x_{i 3} \in X^{\prime} \backslash\left\{x_{i 1}\right\}$; then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=4$. Let $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and let $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Then $\left|N_{X^{\prime}}\left(y_{1}\right)\right| \geq d$ and $\left|N_{X^{\prime}}\left(y_{3}\right)\right| \geq d$. By Lemma 6.2.4(a), $\left|N_{X^{\prime}}\left(y_{1}\right) \cap N_{X^{\prime}}\left(y_{3}\right)\right| \geq n-t-2(\ell+3) \geq 1$, so there is some $x_{i 1} \in N_{X^{\prime}}\left(y_{1}\right) \cap N_{X^{\prime}}\left(y_{3}\right)$. Choose $x_{i 3} \in X \backslash\left\{x_{i 1}, x_{i 2}\right\}$; then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=5$. Let $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$ and let $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Since $\left|N_{X^{\prime}}\left(x_{i 2}\right)\right| \geq d \geq 1$, some $x_{i 1} \in X^{\prime}$ is adjacent to $x_{i 2}$. Choose $x_{i 3} \in X \backslash\left\{x_{i 1}, x_{i 2}\right\}$;
then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=6$. As in Case $i=4$, there is some $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and $\mid N_{X^{\prime}}\left(y_{1}\right) \cap$ $N_{X^{\prime}}\left(y_{3}\right) \mid \geq 1$ where $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Let $x_{i 3} \in N_{X^{\prime}}\left(y_{1}\right) \cap N_{X^{\prime}}\left(y_{3}\right)$ and set $X^{\prime \prime}=$ $X \backslash\left\{x_{i 2}, x_{i 3}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{1}\right)\right| \geq d-1 \geq 1$, some $x_{i 1} \in X^{\prime \prime}$ is adjacent to y_{1}. Thus, G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=7$. As in Case $i=6$, there is some $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and some $x_{i 3} \in N_{X^{\prime}}\left(y_{1}\right) \cap N_{X^{\prime}}\left(y_{3}\right)$ where $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Let $X^{\prime \prime}=X \backslash\left\{x_{i 2}, x_{i 3}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(x_{i 2}\right)\right| \geq d-1 \geq 1$, some $x_{i 1} \in X^{\prime \prime}$ is adjacent to $x_{i 2}$, so G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=8$. Let $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$ and let $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Since $\left|N_{X^{\prime}}\left(y_{1}\right)\right| \geq d \geq 1$, some vertex $x_{i 1} \in X^{\prime}$ is adjacent to y_{1}. Choose $x_{i 3} \in X \backslash$ $\left\{x_{i 1}, x_{i 2}\right\}$; then G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=9$. Let $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$ and let $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Since $\left|N_{X^{\prime}}\left(y_{1}\right)\right| \geq d \geq 1$, some $x_{i 3} \in X^{\prime}$ is adjacent to y_{1}. Let $X^{\prime \prime}=X \backslash\left\{x_{i 2}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(x_{i 3}\right)\right| \geq d-1 \geq 1, x_{i 3}$ is adjacent to some $x_{i 1} \in X^{\prime \prime}$. Thus, G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.
Case $i=10$. As in Case $i=6$, there is some $x_{i 2} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and some $x_{i 3} \in N_{X^{\prime}}\left(y_{1}\right) \cap N_{X^{\prime}}\left(y_{3}\right)$ where $X^{\prime}=X \backslash\left\{x_{i 2}\right\}$. Let $X^{\prime \prime}=X \backslash\left\{x_{i 2}, x_{i 3}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{2}\right)\right| \geq d-1 \geq 1$, some $x_{i 1} \in X^{\prime \prime}$ is adjacent to y_{2}, so G^{\prime} has a subgraph isomorphic to Z_{i} and $x_{i 1}$ is mapped to v_{1} by this isomorphism.

This completes the proof of the lemma.
Lemma 6.2.6. Let G be a graph with $V(G)=\left\{x_{1}, \ldots, x_{n-t}, y_{1}, y_{2}, y_{3}\right\}$ in which each vertex has degree at least $n-t-\ell$. For $11 \leq i \leq 14$, let Z_{i} be defined as in Lemma 6.2.2. If $n \geq t+3 \ell+7$, then for each $i \in\{11, \ldots, 14\}$, there are $x_{i, 1}, x_{i, 2}, x_{i, 3} \in\left\{x_{1}, \ldots, x_{n-t}\right\}$ such that $G\left[\left\{x_{i, 1}, x_{i, 2}, x_{i, 3}, y_{1}, y_{2}, y_{3}\right\}\right]$ contains a subgraph U_{i} which is isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $x_{i, 1}$ is mapped to v_{1} and $x_{i, 2}$ is mapped to v_{2} in Z_{i}.

Proof. Let $X=\left\{x_{1}, \ldots, x_{n-t}\right\}$ and note that $\left|N_{X}\left(y_{j}\right)\right| \geq n-t-\ell-2$ for $j=1,2,3$. Also, define $d=n-t-\ell-3$ and note that $d \geq 2 \ell+4 \geq 4$. Finally, define $G^{\prime}=G\left[\left\{x_{i, 1}, x_{i, 2}, x_{i, 3}, y_{1}, y_{2}, y_{3}\right\}\right]$. By Lemma 6.2.4(b), $\left|N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)\right| \geq$ $n-t-3(\ell+2) \geq 1$, so $N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right) \neq \emptyset$.
Case $i=11$. Let $x_{11, j_{1}} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right) \cap N_{X}\left(y_{3}\right)$ and $x_{11, j_{2}} \in X \backslash\left\{x_{11, j_{1}}\right\}$. Since $x_{11, j_{2}}$ is adjacent to at least $d-1$ vertices in $V(G) \backslash\left\{x_{11, j_{1}}, y_{1}, y_{2}, y_{3}\right\}$, it is adjacent to some $x_{11, j_{3}} \in X \backslash\left\{x_{11, j_{1}}\right\}$. Thus, G^{\prime} has a subgraph isomorphic to Z_{11}, and $x_{11, j_{1}}$ is mapped to v_{1} and $x_{11, j_{2}}$ is mapped to v_{2}.
Case $i=12$. Note that y_{1} is adjacent to some $x_{12, j_{3}} \in X$. Let $X^{\prime}=X \backslash$ $\left\{x_{12, j_{3}}\right\}$; then $\left|N_{X^{\prime}}\left(y_{2}\right)\right| \geq d$ and $\left|N_{X^{\prime}}\left(x_{12, j_{3}}\right)\right| \geq d$. By Lemma 6.2.4(a), $\mid N_{X^{\prime}}\left(y_{2}\right) \cap$ $N_{X^{\prime}}\left(x_{12, j_{3}}\right) \mid \geq n-t-1-2(\ell+2) \geq 1$, so there is some $x_{12, j_{1}} \in X^{\prime}$. Let $X^{\prime \prime}=$ $X \backslash\left\{x_{12, j_{1}}, x_{12, j_{3}}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{3}\right)\right| \geq d-1 \geq 1$, some $x_{12, j_{2}} \in X^{\prime \prime}$ is adjacent to y_{3}. Hence, G^{\prime} has a subgraph isomorphic to Z_{12}, and $x_{12, j_{1}}$ is mapped to v_{1} and $x_{12, j_{2}}$ is mapped to v_{2}.

Case $i=13$. Let $x_{13, j_{3}} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and let $X^{\prime}=X \backslash\left\{x_{13, j_{3}}\right\}$. Since $\left|N_{X^{\prime}}\left(x_{13, j_{3}}\right)\right| \geq d-1$, some $x_{13, j_{1}} \in X^{\prime}$ is adjacent to $x_{13, j_{3}}$. Let $X^{\prime \prime}=X \backslash$ $\left\{x_{13, j_{1}}, x_{13, j_{3}}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{3}\right)\right| \geq d-1 \geq 1$, some $x_{13, j_{2}} \in X^{\prime \prime}$ is adjacent to y_{3}. Thus, G^{\prime} has a subgraph isomorphic to Z_{13}, and $x_{13, j_{1}}$ is mapped to v_{1} and $x_{13, j_{2}}$ is mapped to v_{2}.
Case $i=14$. Let $x_{14, j_{3}} \in N_{X}\left(y_{1}\right) \cap N_{X}\left(y_{2}\right)$ and let $X^{\prime}=X \backslash\left\{x_{14, j_{3}}\right\}$. Since $\left|N_{X^{\prime}}\left(y_{1}\right)\right| \geq d \geq 1$, some $x_{14, j_{1}} \in X^{\prime}$ is adjacent to y_{1}. Let $X^{\prime \prime}=X \backslash\left\{x_{14, j_{1}}, x_{14, j_{3}}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{3}\right)\right| \geq d-1 \geq 1$, some $x_{14, j_{2}} \in X^{\prime \prime}$ is adjacent to y_{3}. Thus, G^{\prime} has a subgraph isomorphic to Z_{14}, and $x_{14, j_{1}}$ is mapped to v_{1} and $x_{14, j_{2}}$ is mapped to v_{2}.

This completes the proof of the lemma.
Lemma 6.2.7. Let G be a graph with $V(G)=\left\{x_{1}, \ldots, x_{n-t}, y_{1}, y_{2}, y_{3}\right\}$ in which each vertex has degree at least $n-t-\ell$. Let Z_{15} be defined as in Lemma 6.2.3. If $n \geq t+$ $\ell+5$, then there are $x_{i_{1}}, x_{i_{2}}, x_{i_{3}} \in\left\{x_{1}, \ldots, x_{n-t}\right\}$ such that $G\left[\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, y_{1}, y_{2}, y_{3}\right\}\right]$ contains a subgraph U which is isomorphic to Z_{15}. Furthermore, the isomorphism can be chosen so that $x_{i_{1}}$ is mapped to $v_{1}, x_{i_{2}}$ is mapped to v_{2} and $x_{i_{3}}$ is mapped to v_{3} in Z_{15}.

Proof. Let $X=\left\{x_{1}, \ldots, x_{n-t}\right\}$; then $\left|N_{X}\left(y_{1}\right)\right| \geq n-t-\ell-2 \geq 1$, so y_{1} is adjacent to some $x_{i_{1}} \in X$. Let $X^{\prime}=X \backslash\left\{x_{i_{1}}\right\}$. Since $\left|N_{X^{\prime}}\left(y_{2}\right)\right| \geq n-t-\ell-3 \geq 1, y_{2}$ is adjacent to some $x_{i_{2}} \in X^{\prime}$. Let $X^{\prime \prime}=X \backslash\left\{x_{i_{1}}, x_{i_{2}}\right\}$. Since $\left|N_{X^{\prime \prime}}\left(y_{3}\right)\right| \geq n-t-\ell-4 \geq 1$, y_{3} is adjacent to some $x_{i_{3}} \in X^{\prime \prime}$. Hence, $G\left[\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, y_{1}, y_{2}, y_{3}\right\}\right]$ has a subgraph isomorphic to Z_{15} and $x_{i_{1}}$ is mapped to $v_{1}, x_{i_{2}}$ is mapped to v_{2} and $x_{i_{3}}$ is mapped to v_{3} in Z_{15}.

Lemma 6.2.8. Let G be a graph with $V(G)=Z_{1} \cup Z_{2}$ for sets Z_{1} and Z_{2} with $\left|Z_{2}\right| \geq n-1$ where $n \geq 5 n_{1}+5$ for some positive integer n_{1}. If each vertex in Z_{1} is adjacent in G to at most n_{1} vertices in Z_{2} and $\bar{G}\left[Z_{1}\right]$ contains the star graph S_{5}, then \bar{G} contains W_{8}.

Proof. Suppose that $\bar{G}\left[Z_{1}\right]$ contains S_{5} and write $V\left(S_{5}\right)=\left\{z_{0}, \ldots, z_{4}\right\}$ and $E\left(S_{5}\right)=$ $\left\{z_{0} z_{1}, \ldots, z_{0} z_{4}\right\}$. Since each vertex in Z_{1} is adjacent in G to at most n_{1} vertices in $Z_{2}, Z_{2} \backslash\left(N_{Z_{2}}\left(z_{0}\right) \cup \cdots \cup N_{Z_{2}}\left(z_{4}\right)\right)$ contains at least $n-1-5 n_{1} \geq 4$ vertices, so choose four such vertices, say a_{1}, \ldots, a_{4}. Then \bar{G} contains W_{8} with hub z_{0} and $z_{1} a_{1} z_{2} a_{2} z_{3} a_{3} z_{4} a_{4} z_{1}$ as C_{8}.

Lemma 6.2.9. Suppose that k is a fixed positive integer and let T_{1} be a tree graph $T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ of order n as defined in Definition 6.1.1. Suppose that $\left|V\left(Q_{1}\right)\right| \geq 2$ and that $q \in V\left(Q_{1}\right) \backslash\left\{v_{1}\right\}$ has degree 1 in Q_{1}. Let Q_{1}^{\prime} be the tree obtained from Q_{1} by removing q and its incident edge. Let $T_{2}=$ $T_{n, k-1}\left(v_{1}, \ldots, v_{t} ; Q_{1}^{\prime}, Q_{2}, \ldots, Q_{t}\right)$. There is a positive integer $n_{0}(k)$ such that, for each integer $n \geq n_{0}(k)$, if G is a graph with $2 n-1$ vertices that contains T_{2} but whose complement \bar{G} does not contain W_{8}, then G contains T_{1}.

Proof. Let q_{0} be the vertex in $V\left(Q_{1}\right)$ adjacent to q. Note that q_{0} is also a vertex in $V\left(Q_{1}^{\prime}\right)$. Let \mathcal{T}_{k} be the family of non-isomorphic forests with at most k vertices. Set

$$
n_{1}(k)=\max _{T \in \mathcal{T}_{k}} R\left(T, W_{8}\right) .
$$

Suppose that G is a graph on $2 n-1$ vertices, that T_{2} is a subgraph of G, and that \bar{G} does not contain W_{8}. Let $V\left(T_{2}\right)=\left\{v_{0}\right\} \cup U_{1} \cup V\left(Q_{1}^{\prime}\right) \cup V\left(Q_{2}\right) \cup \cdots \cup V\left(Q_{t}\right)$ where $U_{1}=\left\{u_{1}, \ldots, u_{n-k-t}\right\}$ and

$$
E\left(T_{2}\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{t}\right\} \cup\left\{v_{0} u_{1}, \ldots, v_{0} u_{n-k-t}\right\} \cup E\left(Q_{1}^{\prime}\right) \cup E\left(Q_{2}\right) \cup \cdots \cup E\left(Q_{t}\right) .
$$

Note that u_{1}, \ldots, u_{n-k-t} each has degree 1 in T_{2}. Let $U_{2}=V(G) \backslash V\left(T_{2}\right)$; then $\left|U_{2}\right|=n-1$.

If q_{0} is adjacent to a vertex in $U_{1} \cup U_{2}$, then G contains T_{1}. Therefore, assume that q_{0} is not adjacent to any vertex in $U_{1} \cup U_{2}$. Note that Q_{1} is a tree with $\left|V\left(Q_{1}\right)\right| \leq k+1$. Now, $Q_{1}-v_{1}$ is a forest $Q_{11} \cup \cdots \cup Q_{1 \ell}$ of ℓ disjoint trees for some $\ell \geq 1$. Clearly, $R\left(Q_{1}-v_{1}, W_{8}\right)$ is at most $n_{1}(k)$.

Suppose that u_{1} is adjacent in G to at least $n_{1}(k)$ vertices in U_{2}. Since \bar{G} does not contain W_{8}, the subgraph $G\left[N_{U_{2}}\left(u_{1}\right)\right]$ contains $Q_{1}-v_{1}=Q_{11} \cup \cdots \cup Q_{1 \ell}$. Now, u_{1} is adjacent to each vertex in $Q_{1}-v_{1}$. Adding all of these vertices to T_{2} gives the subgraph T_{1} in G. Therefore, assume that u_{1} is adjacent to at most $n_{1}(k)-1$ vertices in U_{2}. Similarly, assume that u_{j} is adjacent to at most $n_{1}(k)-1$ vertices in U_{2} for $j=2,3,4$.

Let $Z_{1}=\left\{q_{0}, u_{1}, \ldots, u_{4}\right\}$. Since q_{0} is not adjacent to $u_{1}, \ldots, u_{4}, \bar{G}\left[Z_{1}\right]$ contains S_{5}. Now, each vertex in Z_{1} is adjacent in G to at most $n_{1}(k)-1$ vertices in U_{2}. By Lemma 6.2.8, \bar{G} contains W_{8}, provided that $n \geq 5 n_{1}(k)$. This is not possible as \bar{G} does not contain W_{8}. Hence, G contains T_{1}.

Corollary 6.2.10. Let k be a fixed positive integer and let T_{1} be a tree graph $T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ of order n as defined in Definition 6.1.1. Suppose that $0 \leq k^{\prime}<k$ and $1 \leq t^{\prime} \leq t$. Let

$$
T_{2}=T_{n, k^{\prime}}\left(v_{1}^{\prime}, \ldots, v_{t^{\prime}}^{\prime} ; Q_{1}^{\prime}, \ldots, Q_{t^{\prime}}^{\prime}\right)
$$

where, for each $i \in\left\{1, \ldots, t^{\prime}\right\}, Q_{i}^{\prime}$ is isomorphic to a subgraph of Q_{i} where $v_{i}^{\prime} \in$ $V\left(Q_{i}^{\prime}\right)$ is mapped to $v_{i} \in V\left(Q_{i}\right)$ under the isomorphism. There is a positive integer $n_{0}(k)$ such that, for each integer $n \geq n_{0}(k)$, if G is a graph with $2 n-1$ vertices that contains T_{2} but whose complement \bar{G} does not contain W_{8}, then G contains T_{1}.

Proof. Without loss of generality, assume that $\left|V\left(Q_{1}\right)\right| \geq\left|V\left(Q_{2}\right)\right| \geq \cdots \geq\left|V\left(Q_{t}\right)\right|$. By Definition 6.1.1, $\left|V\left(Q_{t}\right)\right| \geq 2$. Now, by repeatedly adding vertices to $Q_{t^{\prime}}^{\prime}$ to obtain $Q_{t^{\prime}}$ and then applying Lemma 6.2.9, we can conclude that G contains $T_{n, k^{\prime \prime}}\left(v_{1}^{\prime}, \ldots, v_{t^{\prime}} ; Q_{1}^{\prime}, \ldots, Q_{t^{\prime}}\right)$ where

$$
k^{\prime \prime}=\left(\left|V\left(Q_{1}^{\prime}\right)\right|+\cdots+\left|V\left(Q_{t^{\prime}-1}^{\prime}\right)\right|\right)+\left|V\left(Q_{t^{\prime}}\right)\right|-t^{\prime}
$$

Repeat the same process to each Q_{j}^{\prime}, by adding vertices to obtain Q_{j}. Then G contains the subgraph $T_{3}=T_{n, k^{\prime \prime \prime}}\left(v_{1}, \ldots, v_{t^{\prime}} ; Q_{1}, \ldots, Q_{t^{\prime}}\right)$ where

$$
k^{\prime \prime \prime}=\left(\left|V\left(Q_{1}\right)\right|+\cdots+\left|V\left(Q_{t^{\prime}}\right)\right|\right)-t^{\prime} .
$$

If $t^{\prime}=t$, then G contains $T_{3}=T_{1}$. Suppose that $t^{\prime}<t$. Now,

$$
\begin{aligned}
& V\left(T_{3}\right)=\left\{v_{0}, u_{1}, \ldots, u_{n-k^{\prime \prime \prime}-t^{\prime}-1}\right\} \cup V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{t^{\prime}}\right) \\
& E\left(T_{3}\right)=\left\{v_{0} u_{1}, \ldots, v_{0} u_{n-k^{\prime \prime \prime}-t^{\prime}-1}\right\} \cup\left\{v_{0} v_{1}, \ldots, v_{0} v_{t^{\prime}}\right\} \cup E\left(Q_{1}\right) \cup \cdots \cup E\left(Q_{t^{\prime}}\right) .
\end{aligned}
$$

Since $\left|Q_{t}\right| \geq 2$, we have $t \leq k$. Let \mathcal{T}_{k} be the family of non-isomorphic forests with at most $2 k$ vertices. Set

$$
n_{0}=\max _{T \in \mathcal{T}_{k}} R\left(T, W_{8}\right) .
$$

Now, $n-k^{\prime \prime \prime}-t^{\prime}-1 \geq n-2 k-1$. If $n-2 k-1 \geq n_{0}$, then $G\left[\left\{u_{1}, \ldots, u_{n-k^{\prime \prime \prime}-t^{\prime}-1}\right\}\right]$ contains the forest $Q_{t^{\prime}+1} \cup \cdots \cup Q_{t}$ which with T_{3} gives the subgraph T_{1} in G.

Lemma 6.2.11. Let G be a graph with $V(G)=\left\{v_{1}, \ldots, v_{4}\right\} \cup U$ where $|U|=n$ and none of v_{1}, \ldots, v_{4} is adjacent to any vertex in U. Let Z_{1}, \ldots, Z_{15} be defined as in Lemmas 6.2.1-6.2.3. For sufficiently large n, if \bar{G} does not contain W_{8}, then
(a) $G[U]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for each $i=1, \ldots, 10$;
(b) $G[U]$ contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for each $i=11, \ldots, 14$ with $X_{i 1} \cup X_{i 2}=Z_{i}$;
(c) $G[U]$ contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$ where $X_{1} \cup X_{2} \cup X_{3}=Z_{15}$.

Proof. Suppose that $\bar{G}[U]$ contains S_{5}, and write $V\left(S_{5}\right)=\left\{z_{0}, \ldots, z_{4}\right\}$ and $E\left(S_{5}\right)=$ $\left\{z_{0} z_{1}, \ldots, z_{0} z_{4}\right\}$. Then \bar{G} contains W_{8} with hub z_{0} and $z_{1} v_{1} z_{2} v_{2} z_{3} v_{3} z_{4} v_{4} z_{1}$ as C_{8}. Therefore, assume that $\bar{G}[U]$ does not contain S_{5}; then every vertex in $\bar{G}[U]$ has degree at most 3. Thus, each vertex in $G[U]$ has degree at least $n-4$. Write $U=\left\{a_{0}, \ldots, a_{n-4}, b_{1}, b_{2}, b_{3}\right\}$ so that each of $a_{0} a_{1}, \ldots, a_{0} a_{n-4}$ is an edge of $G[U]$. Now, consider the graph $G\left[U \backslash\left\{a_{0}\right\}\right]$. Every vertex in $G\left[U \backslash\left\{a_{0}\right\}\right]$ has degree at least $n-5$.
(a) By Lemma 6.2.5, there are elements $a_{i 1}, a_{i 2}, a_{i 3} \in\left\{a_{1}, \ldots, a_{n-4}\right\}$ such that $G\left[\left\{a_{i 1}, a_{i 2}, a_{i 3}, b_{1}, b_{2}, b_{3}\right\}\right]$ contains a subgraph U_{i}^{\prime} isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $a_{i 1}$ is mapped to v_{1} in Z_{i}. Therefore, G contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$.
(b) By Lemma 6.2.6, there are elements $a_{i 1}, a_{i 2}, a_{i 3} \in\left\{a_{1}, \ldots, a_{n-4}\right\}$ such that $G\left[\left\{a_{i 1}, a_{i 2}, a_{i 3}, b_{1}, b_{2}, b_{3}\right\}\right]$ contains a subgraph U_{i}^{\prime} isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $a_{i 1}$ is mapped to v_{1} and $a_{i 2}$ is mapped to v_{2} in Z_{i}. Therefore, G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$.
(c) By Lemma 6.2.7, there are elements $a_{j_{1}}, a_{j_{2}}, a_{j_{3}} \in\left\{a_{1}, \ldots, a_{n-4}\right\}$ such that $G\left[\left\{a_{j_{1}}, a_{j_{2}}, a_{j_{3}}, b_{1}, b_{2}, b_{3}\right\}\right]$ contains a subgraph U isomorphic to Z_{15}. Furthermore, the isomorphism can be chosen so that $a_{j_{1}}$ is mapped to $v_{1}, a_{j_{2}}$ is mapped to v_{2} and $a_{j_{3}}$ is mapped to v_{3} in Z_{15}. Therefore, G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

Lemma 6.2.12. Let Z_{1}, \ldots, Z_{15} be defined as in Lemmas 6.2.1-6.2.3. For each $i=11, \ldots, 14$, let $Z_{i}=X_{i 1} \cup X_{i 2}$ where $X_{i 1}$ is a tree and $X_{i 2}$ is an edge disjoint from $X_{i 2}$. Let $Z_{15}=X_{1} \cup X_{2} \cup X_{3}$ where X_{1}, X_{2}, X_{3} are disjoint edges. Then
(a) $R\left(T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right), W_{8}\right)=2 n-1$ when n is sufficiently large;
(b) $R\left(T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right), W_{8}\right)=2 n-1$ when n is sufficiently large;
(c) $R\left(T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right), W_{8}\right)=2 n-1$ when n is sufficiently large.

Proof. The union of two complete graphs $G^{\prime}=K_{n-1} \cup K_{n-1}$ does not contain $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ and $\overline{G^{\prime}}$ does not contain W_{8}, so $R\left(T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right), W_{8}\right) \geq 2 n-1$. Similarly, we are able to prove that $R\left(T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right), W_{8}\right) \geq 2 n-1$ and that $R\left(T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right), W_{8}\right) \geq 2 n-1$.

Let G be a graph with $2 n-1$ vertices such that \bar{G} does not contain W_{8}. By Theorem 2.2.6, G contains S_{n-2}. If G contains S_{n}, then by Corollary 6.2.10, G contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for each $i \in\{1, \ldots, 10\}, T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for each $i \in\{11, \ldots, 14\}$ and $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$. Therefore, assume that G does not contain S_{n}. We consider two cases.
Case 1. G contains S_{n-1}.
Write $V\left(S_{n-1}\right)=\left\{x_{0}, \ldots, x_{n-2}\right\}$ and $E\left(S_{n-1}\right)=\left\{x_{0} x_{1}, \ldots, x_{0} x_{n-2}\right\}$, and let $U_{2}=$ $V(G) \backslash V\left(S_{n-1}\right)$. Since G does not contain S_{n}, x_{0} is not adjacent to any vertex in U_{2}. If x_{1} is adjacent to a vertex in U_{2}, then G contains $T_{n, 2}\left(x_{1} ; P_{2}\right)$ where P_{2} is a path with two vertices and $x_{1} \in V\left(P_{2}\right)$. Clearly, for each $i=1, \ldots, 10, P_{2}$ is isomorphic to a subgraph of Z_{i} and x_{1} is mapped to $v_{1} \in V\left(Z_{i}\right)$ by this isomorphism. By Corollary 6.2.10, G contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$. For each $i=11, \ldots, 14, P_{2}$ is isomorphic to a subgraph of $X_{i 1}$ and x_{1} is mapped to $v_{1} \in V\left(X_{i 1}\right)$ by this isomorphism. Again by Corollary 6.2.10, G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$. Similarly, G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$. Therefore, assume that x_{1} is not adjacent to any vertex in U_{2}. Similarly, assume that none of x_{2}, \ldots, x_{n-2} is adjacent to any vertex in U_{2}.

Now $\left|U_{2}\right|=n$ and x_{1}, \ldots, x_{4} are not adjacent to any vertex in U_{2}. It follows from Lemma 6.2 .11 that $G\left[U_{2}\right]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for $i=1, \ldots, 10$, $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for $i=11, \ldots, 14$ and $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.
Case 2. G contains S_{n-2} but does not contain S_{n-1}.
Write $V\left(S_{n-2}\right)=\left\{x_{0}, \ldots, x_{n-3}\right\}$ and $E\left(S_{n-2}\right)=\left\{x_{0} x_{1}, \ldots, x_{0} x_{n-3}\right\}$, and let $U_{2}=$ $V(G) \backslash V\left(S_{n-2}\right)$. Then $\left|U_{2}\right|=n+1$ and x_{0} is not adjacent to any vertex in U_{2}. Let $u \in U$ and suppose that there are vertices $x_{l_{1}}, x_{l_{2}}, x_{l_{3}} \in\left\{x_{1}, \ldots, x_{n-3}\right\}$ that are not adjacent to any vertex in $U_{2} \backslash\{u\}$. Since $\left|U_{2} \backslash\{u\}\right|=n$ and x_{0} is also not adjacent to any vertex in $U_{2} \backslash\{u\}$, it follows from Lemma 6.2.11 that $G\left[U_{2} \backslash\{u\}\right]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for $1 \leq i \leq 10, T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for $11 \leq i \leq 14$ and $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$. Therefore, assume that for each $u \in U_{2}$ and all subsets $Y \subseteq\left\{x_{1}, \ldots, x_{n-3}\right\}$ with $|Y|=3$, at least one vertex of $U_{2} \backslash\{u\}$ is adjacent of some vertex of Y.

Let \mathcal{T}_{5} be the family of non-isomorphic forests with at most 5 vertices. Set

$$
n_{0}=\max _{T \in \mathcal{T}_{5}} R\left(T, W_{8}\right) .
$$

and note that $n_{0} \geq 2$. Suppose that x_{1} is adjacent to at least $n_{0}+1$ vertices in U_{2} and let $i \in\{1, \ldots, 10\}$. Since \bar{G} does not contain W_{8} and $Z_{i}-v_{1}$ is a forest
of size at most 5, the subgraph $G\left[N_{U_{2}}\left(x_{1}\right)\right]$ contains $Z_{i}-v_{1}$. Hence, G contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$.

Next, we show that G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$. At least one of x_{2}, x_{3}, x_{4} is adjacent to some vertex $u_{2} \in U_{2}$, without loss of generality say x_{2}. Let $U_{2}^{\prime}=$ $U_{2} \backslash\left\{u_{2}\right\}$. Now, x_{1} is adjacent to at least n_{0} vertices in U_{2}^{\prime}. Since \bar{G} does not contain W_{8} and $X_{i 1}-v_{1}$ is a forest of size 3, the subgraph $G\left[N_{U_{2}^{\prime}}\left(x_{1}\right)\right]$ contains $X_{i 1}-v_{1}$. Thus, G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ where $X_{i 2}$ is the path $x_{2} u_{2}$.

As above, we can assume that x_{2} is adjacent to a vertex $u_{2} \in U_{2}$. Also, at least one of x_{3}, x_{4}, x_{5} is adjacent to some vertex in $u_{3} \in U_{2}$, without loss of generality, say x_{3}. Since x_{1} is adjacent to at least $n_{0}-1$ vertices in $U_{2} \backslash\left\{u_{2}, u_{3}\right\}$, there is a vertex $u_{1} \in U_{2} \backslash\left\{u_{2}, u_{3}\right\}$ for which $x_{1} u_{1} \in E(G)$. Thus, G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

Thus, we may assume that x_{1} is adjacent to at most n_{0} vertices in U_{2}. Similarly, we may assume that each of x_{2}, \ldots, x_{n-3} is adjacent to at most n_{0} vertices in U_{2}.

By Lemma 6.2.8, we may assume that $\bar{G}\left[V\left(S_{n-2}\right)\right]$ does not contain S_{5}. Each vertex of $\bar{G}\left[V\left(S_{n-2}\right)\right]$ therefore has degree at most 3 . Thus, each vertex of $G\left[V\left(S_{n-2}\right)\right]$ has degree at least $n-6$.

At least one of x_{1}, x_{2}, x_{3} is adjacent to some vertex $w_{1} \in U_{2}$, say x_{1}. Recall that x_{1} is adjacent to at least $n-6$ vertices in $G\left[V\left(S_{n-2}\right)\right]$, say b_{1}, \ldots, b_{n-6}. Suppose that w_{1} is adjacent to at least n_{0} vertices in $U_{2} \backslash\left\{w_{1}\right\}$. Since \bar{G} does not contain W_{8} and $Z_{i}-v_{1}$ is a forest of size at most 5 , the subgraph $G\left[N_{U_{2} \backslash\left\{w_{1}\right\}}\left(w_{1}\right)\right]$ contains $Z_{i}-v_{1}$. Let $U_{3} \subseteq N_{U_{2} \backslash\left\{w_{1}\right\}}\left(w_{1}\right)$ be such that $G\left[U_{3}\right]$ contains the forest $Z_{i}-v_{1}$. Then $G\left[U_{3} \cup\left\{b_{1}, \ldots, b_{n-6}, x_{1}, w_{1}\right\}\right]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$.

Next, recall that w_{1} is adjacent to at least n_{0} vertices in $U_{2} \backslash\left\{w_{1}\right\}$. Since \bar{G} does not contain W_{8} and $X_{i 1}-v_{1}$ is a forest of size 3, the subgraph $G\left[N_{U_{2} \backslash\left\{w_{1}\right\}}\left(w_{1}\right)\right]$ contains $X_{i 1}-v_{1}$. Choose an element $c \in V\left(S_{n-2}\right) \backslash\left\{x_{1}, b_{1}, \ldots, b_{n-6}\right\}$. Since c has degree at least $n-6$ in $G\left[V\left(S_{n-2}\right)\right]$, it is adjacent to at least $n-9$ vertices in $\left\{b_{1}, \ldots, b_{n-6}\right\}$, including, say, b_{1}. Thus, G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ where $X_{i 2}$ is the path $c b_{1}$.

Now note that w_{1} is adjacent to a vertex in $U_{2} \backslash\left\{w_{1}\right\}$. Choose two elements $c_{1}, c_{2} \in V\left(S_{n-2}\right) \backslash\left\{x_{1}, b_{1}, \ldots, b_{n-6}\right\}$. Since each c_{i} has degree at least $n-6$ in $G\left[V\left(S_{n-2}\right)\right]$, there are two vertices $d_{1}, d_{2} \in\left\{b_{1}, \ldots, b_{n-6}\right\}$ such that $c_{1} d_{1}$ and $c_{2} d_{2}$ are edges in G. Hence, G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

We may therefore assume that w_{1} is adjacent to at most $n_{0}-1$ vertices in $U_{2} \backslash$ $\left\{w_{1}\right\}$. Consider the graph $\bar{G}\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$. Now, each vertex in $V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}$ is adjacent in G to at most n_{0} vertices in $U_{2} \backslash\left\{w_{1}\right\}$. By Lemma 6.2.8, we may assume that $\bar{G}\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ does not contain S_{5}. Thus, each vertex in $\bar{G}\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ has degree at most 3 , so each vertex in $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ has degree at least $n-5$.

Now, $\left|U_{2} \backslash\left\{w_{1}\right\}\right|=n$. Choose a vertex $a_{0} \in V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}$ and write $V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}=\left\{a_{0}, \ldots, a_{n-5}, c_{1}, c_{2}, c_{3}\right\}$ so that each of $a_{0} a_{1}, \ldots, a_{0} a_{n-5}$ is an edge in $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$. Each vertex in $G\left[\left\{a_{1}, \ldots, a_{n-5}, c_{1}, c_{2}, c_{3}\right\}\right]$ has degree at least $n-6$. By Lemma 6.2.5, for each $i \in\{1, \ldots, 10\}$, there are $a_{i 1}, a_{i 2}, a_{i 3} \in$ $\left\{a_{1}, a_{2}, \ldots, a_{n-5}\right\}$ such that $G\left[\left\{a_{i 1}, a_{i 2}, a_{i 3}, c_{1}, c_{2}, c_{3}\right\}\right]$ contains a subgraph isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $a_{i 1}$ is mapped to v_{1} in Z_{i}. Thus, $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains $T_{n-1,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$. If a_{0} is adjacent to a vertex in $U_{2} \backslash\left\{w_{1}\right\}$, then $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$.

Next, by Lemma 6.2.6, for each integer $i=11, \ldots, 14$, there are elements $a_{i 1}, a_{i 2}, a_{i 3} \in\left\{a_{1}, a_{2}, \ldots, a_{n-5}\right\}$ such that $G\left[\left\{a_{i 1}, a_{i 2}, a_{i 3}, c_{1}, c_{2}, c_{3}\right\}\right]$ contains a subgraph isomorphic to Z_{i}. Furthermore, the isomorphism can be chosen so that $a_{i 1}$ is mapped to v_{1} and $a_{i 2}$ is mapped to v_{2} in Z_{i}. Thus, $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains $T_{n-1,4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$. If a_{0} is adjacent to a vertex in $U_{2} \backslash\left\{w_{1}\right\}$, then $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$.

By Lemma 6.2.7, there are elements $a_{j_{1}}, a_{j_{2}}, a_{j_{3}} \in\left\{a_{1}, \ldots, a_{n-5}\right\}$ such that $G\left[\left\{a_{j_{1}}, a_{j_{2}}, a_{j_{3}}, c_{1}, c_{2}, c_{3}\right\}\right]$ contains a subgraph U isomorphic to Z_{15}. Furthermore, the isomorphism can be chosen so that $a_{j_{1}}$ is mapped to $v_{1}, a_{j_{2}}$ is mapped to v_{2} and $a_{j_{3}}$ is mapped to v_{3} in Z_{15}. Therefore, $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains the subgraph $T_{n-1,3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$. If a_{0} is adjacent to a vertex in $U_{2} \backslash\left\{w_{1}\right\}$, then $G\left[V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}\right]$ contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

Hence, we may assume that a_{0} is not adjacent to any vertex in $U_{2} \backslash\left\{w_{1}\right\}$. Since a_{0} was chosen arbitrarily, no vertex in $V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}$ is adjacent to any vertex in $U_{2} \backslash\left\{w_{1}\right\}$. Choose any vertices $d_{1}, \ldots, d_{4} \in V\left(S_{n-2}\right) \cup\left\{w_{1}\right\}$. Now, $\left|U_{2} \backslash\left\{w_{1}\right\}\right|=n$ and none of d_{1}, \ldots, d_{4} is adjacent to any vertex in $U_{2} \backslash\left\{w_{1}\right\}$. Thus by Lemma $6.2 .11, G\left[U_{2} \backslash\left\{w_{1}\right\}\right]$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for $1 \leq i \leq 10, G$ contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for $11 \leq i \leq 14$ and G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

This completes the proof of the lemma.
6.3 Ramsey numbers for large tree graphs with maximum degree of at most $n-6$ versus the wheel graph of order 9
Now, we present the Ramsey number $R\left(T_{n}, W_{8}\right)$ for large tree with $\Delta\left(T_{n}\right) \leq n-6$. Theorem 6.3.1. Let $k \geq 5$ be a positive integer and $T=T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ be the tree defined in Definition 6.1.1. Then there is a positive integer $n_{0}(k)$ such that, for each integer $n \geq n_{0}(k), R\left(T, W_{8}\right)=2 n-1$.

Proof. Clearly, $G^{\prime}=K_{n-1} \cup K_{n-1}$ does not contain T and $\overline{G^{\prime}}$ does not contain W_{8}. So, $R\left(T, W_{8}\right) \geq 2 n-1$.

Let G be a graph with $2 n-1$ vertices such that \bar{G} does not contain W_{8}. Let Z_{1}, \ldots, Z_{15} be defined as in Lemmas 6.2.1-6.2.3. For $11 \leq i \leq 14$, let $Z_{i}=X_{i 1} \cup X_{i 2}$ where $X_{i 1}$ is a tree and $X_{i 2}$ is an edge disjoint from $X_{i 2}$. Let $Z_{15}=X_{1} \cup X_{2} \cup X_{3}$ where X_{1}, X_{2}, X_{3} are disjoint edges. By Lemma $6.2 .12, G$ contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$ for $1 \leq i \leq 10, T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$ for $11 \leq i \leq 14$ and $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$.

Without loss of generality, assume that $\left|V\left(Q_{1}\right)\right| \geq\left|V\left(Q_{2}\right)\right| \geq \cdots \geq\left|V\left(Q_{t}\right)\right| \geq 2$.
Suppose that $t=1$. By Lemma 6.2.1, the subtree Q in $T=T_{n, k}\left(v_{1} ; Q\right)$ contains Z_{i} for some $i \in\{1, \ldots, 10\}$. By Lemma 6.2.12(a), G contains $T_{n,\left|V\left(Z_{i}\right)\right|-1}\left(v_{1} ; Z_{i}\right)$. By Corollary 6.2.10, G contains T.

Suppose that $t=2$. By Lemma 6.2.2, the subforest $Q_{1} \cup Q_{2}$ in the graph $T=T_{n, k}\left(v_{1}, v_{2} ; Q_{1}, Q_{2}\right)$ contains Z_{i} for some $i \in\{11, \ldots, 14\}$. By Lemma 6.2.12(b), G contains $T_{n, 4}\left(v_{1}, v_{2} ; X_{i 1}, X_{i 2}\right)$. By Corollary $6.2 .10, G$ contains T.

Suppose that $t \geq 3$. By Lemma 6.2.3, the subforest $Q_{1} \cup Q_{2} \cup Q_{3}$ in T contains Z_{15}. By Lemma 6.2.12(b), G contains $T_{n, 3}\left(v_{1}, v_{2}, v_{3} ; X_{1}, X_{2}, X_{3}\right)$. By Corollary $6.2 .10, G$ contains T.

This completes the proof of the theorem.

Corollary 6.3.2. Let $k \geq 5$ be a positive integer and T be a tree with n vertices and $\Delta(T)=n-k-1$. Then there is a positive integer $n_{0}(k)$ such that, for each integer $n \geq n_{0}(k), R\left(T, W_{8}\right)=2 n-1$.

Proof. Note that $T=T_{n, k}\left(v_{1}, \ldots, v_{t} ; Q_{1}, \ldots, Q_{t}\right)$ for some disjoint trees Q_{1}, \ldots, Q_{t}. The corollary then follows from Theorem 6.3.1.

Note that if T is one of the graphs $S_{n}(\ell, k), S_{n}(k)$ or $S_{n}[k]$, and $\Delta(T)=n-k-1$, then the following corollary follows from Corollary 6.3.2.
Corollary 6.3.3. Let $k \geq 5$ be a fixed positive integer. For sufficiently large n, $R\left(T, W_{8}\right)=2 n-1$ for each $T=S_{n}(\ell, k), S_{n}(k), S_{n}[k]$.

Chapter 7

Conclusion and possible future work

7.1 Conclusion

Chen, Zhang and Zhang [18] conjectured that $R\left(T_{n}, W_{m}\right)=2 n-1$ for all tree graphs T_{n} of order $n \geq m-1$ when m is even and the maximum degree $\Delta\left(T_{n}\right)$ "is not too large". This conjecture was further refined by Hafidh and Baskoro [33] who specified the bound $\Delta\left(T_{n}\right) \leq n-m+2$. When n is large compared to $m, \Delta\left(T_{n}\right)$ is not required to be small: the refined conjecture then implies that, for each fixed even integer m, all but a vanishing proportion of the tree graphs T_{n} with $n \geq m-1$ satisfy $R\left(T_{n}, W_{m}\right)=2 n-1$.

Throughout this thesis, the aim has been to explore and partially verify this conjecture. We determined the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for all tree graphs T_{n} of order $n \geq 5$ with maximal degree $\Delta\left(T_{n}\right) \geq n-5$; see Chapters 4 and 5 .

These Ramsey numbers show that the proportion of tree graphs T_{n} satisfying the equality $R\left(T_{n}, W_{8}\right)=2 n-1$ quickly grows as the maximal degree $\Delta\left(T_{n}\right)$ decreases. When $\Delta\left(T_{n}\right) \geq n-2$, no tree graph T_{n} satisfies the equality. In contrast when $\Delta\left(T_{n}\right)=n-3$, roughly one third of all tree graphs T_{n} satisfy the equality. When $\Delta\left(T_{n}\right)=n-4$, more than 85% of all tree graphs T_{n} satisfy the equality. And when $\Delta\left(T_{n}\right)=n-5$, roughly 94.7% of all tree graphs T_{n} satisfy the equality. Moreover, in Chapter 6, we proved that the Ramsey number $R\left(T_{n}, W_{8}\right)$ equals $2 n-1$ for all tree graphs of sufficiently large order n. These results lend strong support for the conjecture described above by Chen et al. and Hafidh and Baskoro.

In Chapter 3, we used Theorem 2.2.2 to find the Ramsey number $R\left(T_{n}, W_{s, 6}\right)$ by applying Lemma 3.1.1 repeatedly. We can apply Lemma 3.1.1 similarly for $R\left(T_{n}, W_{s, 8}\right)$, especially for those tree graphs with $R\left(T_{n}, W_{8}\right)=2 n-1$.
Definition 7.1.1. Let \mathcal{T} be the family consisting of the following tree graphs:

1. $S_{n}(2,1)$ for odd $n \geq 7$;
2. $S_{n}(3)$ for odd $n \geq 9$;
3. $S_{n}(1,3), T_{A}(n)$ or $T_{B}(n)$ for $n \geq 7$ and $n \not \equiv 0(\bmod 4)$;
4. $S_{n}[4], S_{n}(1,4), S_{n}(2,2), T_{D}(n)$ or $T_{N}(n)$ for $n \geq 9$ and $n \not \equiv 0(\bmod 4)$;
5. $T_{C}(n), S_{n}(3,1), S_{n}(5), S_{n}[5], S_{n}(4,1), T_{G}(n), T_{H}(n), T_{J}(n), T_{K}(n), T_{L}(n)$, $T_{M}(n), T_{P}(n), T_{Q}(n), T_{R}(n)$ or $T_{S}(n)$ for all $n \geq 8$;
6. $S_{n}(4), T_{E}(n)$ or $T_{F}(n)$ for all $n \geq 9$;
7. T_{n} with $\Delta\left(T_{n}\right) \leq n-6$ and sufficiently large n.

Theorem 7.1.2. Let $n \geq 7$ and $s \geq 2$. For all $T \in \mathcal{T}$,

$$
R\left(T, W_{s, 8}\right)=(s+1)(n-1)+1 .
$$

Proof. By the various theorems in Chapters 4,5 and $6, R\left(T, W_{1,8}\right)=2 n-1$. By applying Lemma 3.1.1 repeatedly, we conclude that $R\left(T, W_{s, 8}\right) \leq(s+1)(n-1)+1$. Furthermore, since $\chi\left(W_{s, 8}\right)=s+2$ and $t\left(W_{s, 8}\right)=1$, Theorem 2.2.7 implies that $R\left(T, W_{s, 8}\right) \geq(s+1)(n-1)+1$. Hence, $R\left(T, W_{s, 8}\right)=(s+1)(n-1)+1$.

Similarly, we have the following result for $W_{s, 9}$.
Theorem 7.1.3. Let $n \geq 7$ and $s \geq 1$. For all $T \in \mathcal{T}$,

$$
R\left(T, W_{s, 9}\right)=(s+2)(n-1)+1 .
$$

Proof. By Theorem 2.2.7, $\chi\left(W_{s, 9}\right)=s+3$ and $t\left(W_{s, 9}\right)=1$. Therefore, for any tree graph T of order $n, R\left(T, W_{s, 9}\right) \geq(s+2)(n-1)+1$. Since $W_{s, 9}$ is a subgraph of $W_{s+1,8}$, Theorem 3.3.1 implies that $R\left(T, W_{s, 9}\right) \leq R\left(T, W_{s+1,8}\right)=(s+2)(n-1)+1$. Hence, $R\left(T, W_{s, 9}\right)=(s+2)(n-1)+1$.

7.2 Possible future work

As described in Section 3.4, we propose Conjecture 3.4.1, here restated as follows.
Conjecture. Suppose that $m \geq 3$ and $s \geq 2$. Then for sufficiently large n,

$$
R\left(T_{n}, W_{s, m}\right)= \begin{cases}(s+1)(n-1)+1, & \text { if } m \text { is even } \\ (s+2)(n-1)+1, & \text { if } m \text { is odd }\end{cases}
$$

For $m=8$ and $m=9$, we have proved that this conjecture is true for all tree graphs $T \in \mathcal{T}$. To complete all of the cases, we need to find the analogous results for all other trees separately.

Furthermore, in Chapters 4 and 5, we have determined the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for all tree graphs T_{n} with maximum degree of at least $n-5$ versus the wheel graph W_{8}. In Chapter 6, we have determined the Ramsey numbers $R\left(T_{n}, W_{8}\right)$ for all tree graphs T_{n} with maximum degree of at most $n-6$ where n is sufficiently large versus W_{8}. To determine the remaining Ramsey numbers $R\left(T_{n}, W_{8}\right)$, the next step would be to focus on the smaller tree graphs with maximum degree of at most $n-6$.

References

[1] M. Ajtai, J. Komlós and Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980), 354-360.
[2] N. Alon and P. Pudlák, Constructive lower bounds for off-diagonal Ramsey numbers, Israel J. Math. 122 (2001), 243-251.
[3] V. Angeltveit and B.D. McKay, $R(5,5) \leq 48$, J. Graph Theory 89 (2018), 5-13.
[4] E.T. Baskoro, The Ramsey number of paths and small wheels, Majalah Ilmiah Himpunan Matematika Indonesia 8 (2002), 13-16.
[5] E.T. Baskoro and Surahmat, The Ramsey number of paths with respect to wheels, Discrete Math. 294 (2005), 275-277.
[6] E.T. Baskoro, Surahmat, S.M. Nababan and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs Combin. 18 (2002), 717721.
[7] T. Bohman and P. Keevash, The early evolution of the H-free process, Invent. Math. 181 (2010), 291-336.
[8] T. Bohman and P. Keevash, Dynamic concentration of the triangle-free process, Random Structures Algorithms 58 (2021), 221-293.
[9] J.A. Bondy, Pancyclic graphs. I, J. Combin. Theory Ser. B 11 (1971), 80-84.
[10] M. Brennan, Ramsey numbers of trees versus odd cycles, Electron. J. Combin. 23 (2016), \#P3.2, 12 pages.
[11] S.A. Burr, Ramsey numbers involving graphs with long suspended paths, J. Lond. Math. Soc. (2) 24 (1981), 405-413.
[12] D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. of Math. (2) $\mathbf{1 7 0}$ (2009), 941-960.
[13] D. Conlon, J. Fox and B. Sudakov, Recent developments in graph Ramsey theory, in Surveys in Combinatorics 2015, A. Czumaj et al. (eds.), pp. 49-118, Cambridge University Press, Cambridge, 2015.
[14] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, R.J. Gould and M.S. Jacobson, Goodness of trees for generalized books, Graphs Combin. 3 (1987), 1-6.
[15] M. Campos, S. Griffiths, R. Morris and J. Sahasrabudhe, An exponential improvement for diagonal Ramsey (2023), arXiv:2303.09521.
[16] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th edition, Chapman and Hall/CRC, 2015.
[17] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004), 1067-1075.
[18] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq$ $n-3$, Appl. Math. Lett. 17 (2004), 281-285.
[19] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of paths versus wheels, Discrete Math. 290 (2005), 85-87.
[20] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for small n, Util. Math. 67 (2005), 269-284.
[21] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for T_{n} without certain deletable sets, J. Syst. Sci. Complex. 18 (2005), 95-101.
[22] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of trees versus W_{6} or W_{7}, European J. Combin. 27 (2006), 558-564.
[23] Z.Y. Chng, T.S. Tan and K.B. Wong, On the Ramsey numbers for the tree graphs versus certain generalised wheel graphs, Discrete Math. 344 (2021), 112440.
[24] F.R.K. Chung and R. Graham, Erdős on graphs. His legacy of unsolved problems, A.K. Peters, Ltd., Wellesley, MA, 1998.
[25] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
[26] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III: small off-diagonal numbers, Pacific J. Math. 41 (1972), 335-345.
[27] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[28] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[29] G. Exoo, A lower bound for $R(5,5)$, J. Graph Theory 13 (1989), 97-98.
[30] R.L. Graham and V. Rödl, Numbers in Ramsey theory, in Surveys in Combinatorics 1987, pp. 111-153, Lond. Math. Soc. Lect. Note Ser. 123, 1987.
[31] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, John Wiley \& Sons, Inc., Hoboken, NJ, 2013.
[32] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-7.
[33] Y. Hafidh and E.T. Baskoro, The Ramsey number for tree versus wheel with odd order, Bull. Malays. Math. Sci. Soc. 44 (2021), 2151-2160.
[34] Sh. Haghi and H.R. Maimani, A note on the Ramsey number of even wheels versus stars, Discuss. Math. Graph Theory 38 (2018), 397-404.
[35] H. Hasmawati, E.T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Combin. Comput. 55 (2005), 123-128.
[36] B. Jackson, Cycles in bipartite graphs, J. Combin. Theory Ser. B 30 (1981), 332-342.
[37] J.H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $\frac{t^{2}}{\log t}$, Random Structures Algorithms 7 (1995), 173-207.
[38] A. Korolova, Ramsey numbers of stars versus wheels of similar sizes, Discrete Math. 292 (2005), 107-117.
[39] B. Li and B. Ning, The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (2014), \#P4.41.
[40] B. Li and I. Schiermeyer, On star-wheel Ramsey numbers, Graphs Combin. 32 (2016), 733-739.
[41] Q. Lin, Y. Li and L. Dong, Ramsey goodness and generalized stars, European J. Combin. 31 (2010), 1228-1234.
[42] G.F. Pontiveros, S. Griffiths and R. Morris, The Triangle-Free Process and the Ramsey Number $R(3, k)$, American Mathematical Society, Providence, RI, 2020.
[43] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2021), \#DS1.16.
[44] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286.
[45] A. Sah, Diagonal Ramsey via effective quasirandomness, Duke Math. J. 3 (2023), 545-567.
[46] A.N.M. Salman and H.J. Broersma, The Ramsey Numbers for paths versus wheels, Discrete Math. 307 (2007), 975-982.
[47] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983), 83-87.
[48] J. Spencer, Ramsey's theorem - a new lower bound, J. Combin. Theory Ser. A 18 (1975), 108-115.
[49] J. Spencer, Asymptotic lower bounds for Ramsey function, Discrete Math. 18 (1977), 69-76.
[50] Surahmat and E.T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}. In: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, 14-17 July 2001, pp. 165-170 (2001).
[51] A. Thomason, An upper bound for some Ramsey numbers, J. Graph Theory 12 (1988), 509-517.
[52] P. Turán, An extremal problem in graph theory (Hungarian), Mat. Fiz. Lapok 48 (1941), 435-452.
[53] L. Wang, The Ramsey numbers of trees versus generalized 6 -wheels or generalized 7 -wheels, Graphs Combin. 38 (2022), Paper No 153., 9 pp.
[54] L. Wang and Y. Chen, The Ramsey numbers of trees versus generalized wheels, Graphs Combin. 35 (2019), 189-193.
[55] Y. Zhang, On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.
[56] Y. Zhang, The Ramsey numbers for stars of odd small order versus a wheel of order nine, Nanjing Daxue Xuebao Shuxue Bannian Kan 25 (2008), 35-40.
[57] Y. Zhang, Y. Chen and K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European J. Combin. 29 (2008), 1744-1754.
[58] Y. Zhang, T.C.E. Cheng and Y. Chen, The Ramsey numbers for stars of odd order versus a wheel of order nine, Discrete Math. Algorithms Appl. 1 (2009), 413-436.

