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Abstract

This thesis presents a series of Ramsey results on tree graphs versus generalised
wheel graphs, with the focus on the generalised wheel graphs Ws,6 and Ws,7 and the
wheel graph W8.

This thesis consists of 7 chapters. In Chapter 1, we give a brief historical intro-
duction to Ramsey theory and Ramsey’s Theorem, as well as some brief introduction
to the contents of the thesis. Then in Chapter 2, we introduce notation and def-
initions that will be consistently used throughout the thesis, including some basic
knowledge of graph theory which is particularly useful in our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs Tn of order n versus
the generalised wheel graphs Ws,6 and Ws,7. We determine the Ramsey number
R(Tn,W2,6) for n ≥ 5. Then we generalise these results to find R(Tn,Ws,6) for
s ≥ 2. After that, we also determine the Ramsey number R(Tn,Ws,7) for n ≥ 5
and s ≥ 1. In the last section of Chapter 3, we discuss results on the Ramsey
numbers for tree graphs versus generalised wheel graphs, R(Tn,Ws,m), and propose
a conjecture.

Chapters 4 and 5 present the Ramsey numbers Tn for tree graphs of order n
versus the wheel graph of order 9, W8. In Chapter 4, we focus on the tree graphs
with maximum degree of at least n − 3. In Chapter 5, we provide results for the
tree graphs with maximum degree of n− 4 and n− 5.

In Chapter 6, we present the Ramsey numbers R(Tn,W8) for the tree graphs
with maximum degree of at most n− 6 where n is sufficiently large.

Chapter 7 concludes the thesis with suggestions for possible future work.
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Chapter 1

Introduction

Ramsey theory is a beautiful but difficult subject, proposed by the British mathe-
matician and philosopher Frank Plumpton Ramsey [44] nearly a century ago. Gen-
erally speaking, Ramsey theory shows how, in certain orderly structure, patterns
and order can never be completely eradicated by randomness or disarray; in other
words, complete randomness is impossible. A typical result in Ramsey theory states
that if some mathematical structure is cut into pieces, then at least one of the parts
must attain a given property. Before Ramsey’s death at the age of 26 in 1930, he
did seminal work in this area; however, the theory was brought to public attention
by the Hungarian mathematician Paul Erdős, who made a huge contribution to
combinatorics and graph theory.

The archetypal Ramsey theory result is Ramsey’s Theorem [44] which states
that in any edge-colouring of a sufficiently large finite complete graph, one can
find some monochromatic complete graph of any given order. The Ramsey number
N = R(m,n) is the minimum integer with the property that the complete graph on
N vertices will, whenever its edges are each coloured by one of two given colours,
either contain a complete subgraph on m vertices whose edges are each coloured in
the first colour, or contain a complete subgraph on n vertices whose edges are each
coloured in the second colour. Equivalently, N = R(m,n) is the minimum integer
for which each simple undirected graph with N vertices either contains a complete
graph of order m or has its graph complement contain a complete graph of order n.

The first lower bound on Ramsey numbers were obtained by Paul Erdős using
probabilistic methods [27]. Together with George Szekeres, Paul Erdős also found
some upper bounds on these numbers [28].

Over the years, much research had been done to improve these bounds; however,
little progress has been made. There are a few interesting results on the lower
bound of general Ramsey numbers, which were proposed by Spencer [48] and Alon
and Pudlák [2]. The best lower bound up to today was given by Bohman and
Keevash [7]:

R(m,n) ≥ c
n

m+1
2

(log n)
m+1

2
− 1

m−2

for some positive c. On the other hand, the best upper bound of general Ramsey
numbers up to today was proposed by Ajtai, Komlós and Szemerédi [1]:

R(m,n) ≤ c
nm−1

(log n)m−2

for some constant c.
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Let consider the case where m = 3. This is one of the popular research topics
in the area since it is related to the study of triangle-free graphs. In [37], Kim
had shown that R(3, n) has order of magnitude n2

logn
. The best-known upper-bound

constant is due to Shearer [47], who had shown that

R(3, n) ≤
(
1 + o(1)

) n2

log n
.

On the other hand, Bohman and Keevash [8] had provided a lower bound constant
and shown that

R(3, n) ≥
(1
4
− o(1)

) n2

log n
.

A similar result was also proved by Pontiveros, Griffiths and Morris; see [42]. This
lower bound is within a 4 + o(1) factor of the upper bound by Shearer and is
currently the best-known lower bound of R(3, n).

Another interesting special type of Ramsey number is called the diagonal Ram-
sey number, denoted by R(n, n), or just R(n). Trivially, R(1) = 1 and R(2) = 2.
Currently, the only known exact numbers R(n) are R(3) = 6 (the famous Party
Problem) and R(4) = 18 [32]. Even the exact result for n = 5 is still unknown,
with the currently best known bounds of 43 ≤ R(5) ≤ 48; see [3, 29]. In the general
case, the first lower bound on R(n) was proposed by Erdős [27] in 1947:

R(n) >
1

e
√
2

(
1 + o(n)

)
n2

n
2 .

This was only improved after 30 years by a factor of 2 by Spencer [49].
On the other hand, the first upper bound of R(n) was from the proof of Erdős

and Szekeres [28]:

R(n) ≤
(
2n− 2

n− 1

)
≤ 4n .

Very little progess was made on improving this bound until the mid-1980s. Some
improvements were then made by Rödl [30] and Thomason [51]. In 2009, Conlon [12]
showed that

R(n) ≤ n−c logn
log logn

(
2n− 2

n− 1

)
for some positive c. Very recently, Sah [45] improved this result to

R(n) ≤ e−c(logn)2
(
2n− 2

n− 1

)
.

Another very recent breakthrough result was provided by Campos, Griffiths, Morris
and Sahasrabudhe [15]. They gave the first exponential improvement over the
upper bound of Erdős and Szekeres and proved that there exists ϵ > 0 such that
R(n) ≤ (4− ϵ)n for all sufficiently large n (ϵ = 2−7 in their proof).

Looking away from complete graphs, a more general Ramsey number is R(G,H),
which is the minimum number of vertices to ensure that, in any graph with that
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number of vertices, either the graph contains a subgraph G or its complement graph
contains a subgraph H.

In this thesis, the Ramsey numbersR(Tn,Ws,m) have been determined for certain
tree graphs Tn and the generalised wheel graphWs,m. In [22], Chen et al. determined
the Ramsey numbers R(Tn,W1,6) and R(Tn,W1,7). We extend these results and
determine the Ramsey numbers R(Tn,Ws,6) and R(Tn,Ws,7) for s ≥ 2. Next, we
proceed with a discussion on the Ramsey numbers R(Tn,W1,8). In [18], Chen,
Zhang and Zhang conjectured that R(Tn,Wm) = 2n − 1 for all tree graphs Tn of
order n ≥ m−1 when m is even and the maximum degree ∆(Tn) “is not too large”;
see also [20, 21, 22]. Later in [33], Hafidh and Baskoro refined this conjecture by
specifying the bound ∆(Tn) ≤ n−m+2. When n is large compared to m, ∆(Tn) is
not required to be small; indeed, the refined conjecture implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs {Tn : n ≥ m− 1}
satisfy R(Tn,Wm) = 2n − 1. One of the main aims of this thesis is to explore and
partially verify this conjecture. Very briefly described, our main results provide
strong evidence for the conjecture and also show that the conjecture is true for
sufficiently large graphs.

The contents of the thesis are as follows. In Chapter 2, we introduce some
necessary notation and definitions, including some fundamental graph theory, which
will be particularly useful in our discussion. We also introduce some previously
known theorems and lemmas which are essential to our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs Tn of order n versus
the generalised wheel graphs Ws,6 and Ws,7. We determine the Ramsey number
R(Tn,W2,6) for n ≥ 5. Then we generalise these results to find R(Tn,Ws,6) for
s ≥ 2. After that, we also determine the Ramsey number R(Tn,Ws,7) for n ≥ 5
and s ≥ 1. In the last section of the chapter, we discuss results on the Ramsey
numbers for tree graphs versus generalised wheel graphs, R(Tn,Ws,m), and propose
a conjecture.

Chapters 4, 5 and 6 present the Ramsey numbers for tree graphs Tn versus
the wheel graph W8 of order 9. In Chapter 4, we focus on the tree graphs with
maximum degree of at least n− 3. There are four types of such graphs, namely Sn,
Sn(1, 1), Sn(1, 2) and Sn(3). In Chapter 5, we present results for the tree graphs
with maximum degree of n − 4 and n − 5. There are 7 types of tree graphs with
maximum degree n− 4 and 19 types of tree graphs with maximum degree of n− 5,
respectively. In Chapter 6, we discuss the analogous results for the tree graphs with
maximum degree of at most n− 6 where n is sufficiently large.

In Chapter 7, we discuss our results and partially answer our conjecture in
Chapter 3. We end our discussion by proposing possible future work on the topic.
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Chapter 2

Graph theory

Since graph theory contributes to a major part of our discussion, we will begin the
journey with some introductory graph theory.

2.1 Graph theory

In this section, we will present some fundamental graph theory definitions which
will be used throughout the thesis.

Definition 2.1.1 (Graph). A graph is a pair of sets G = (V,E) where V (G) := V
is a finite non-empty set of elements called vertices and E(G) := E is a set of
unordered pairs of vertices called edges.

Figure 2.1 shows an example of a graph G = (V,E). It has the vertex set
V = {s, t, u, v, w} and the edge set E =

{
{s, t}, {t, u}, {t, v}, {u,w}, {v, w}

}
.

t

v w

us

Figure 2.1: A graph G

Definition 2.1.2 (Adjacency). Two vertices u and v of a graph G are said to be
adjacent if {u, v} is an edge of G. In this case, e is incident to u and v.

In Figure 2.1, vertices s and t are adjacent to each other, while vertex u is not
adjacent to vertex v.

Definition 2.1.3 (Neighbourhood and degree). The neighbourhood NG(u) of a
vertex u in graph G is the set of vertices which are adjacent to the vertex u in G.
The degree of vertex u in G is the number dG(u) = |NG(u)| of vertices adjacent
to u in G. We use ∆(G) and δ(G) to denote the maximum degree and minimum
degree of the vertices in G, respectively.

In Figure 2.1, {s, u, v} forms the neighbourhood NG(t) of the vertex t, and the
degree of vertex t is dG(t) = 3.

Definition 2.1.4 (Chromatic number). The chromatic number χ(G) of a graph G
is the smallest number of colours needed to colour the vertices of graph G so that
no two adjacent vertices share the same colour.

4



Definition 2.1.5 (Complete graph).
A complete graph is a graph in which every two vertices are adjacent to each other.
A complete graph with n vertices is denoted by Kn.

Figure 2.2 shows examples of complete graphs.

K3 K4 K5

Figure 2.2: Complete graphs

Definition 2.1.6 (Subgraph).
A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Figure 2.3 shows an example of a subgraph H of a graph G.

G H

Figure 2.3: H is a subgraph of G

Definition 2.1.7 (Complement of a graph). The complement G of a graph G is
the graph with vertices V (G) = V (G) and edges E(G) = E(Kn)− E(G).

Figure 2.4 shows a graph G and its complement G.

G G

Figure 2.4: A graph G and its complement G

Definition 2.1.8 (Walk, path and cycle). A walk in a graph G is an alternating
sequence of vertices and edges v0e1v1e2v2 . . . ekvk in which the ends of each edge ei
are vi−1 and vi for i ∈ [k]. It is closed if v0 = vk and is open otherwise. A walk in
which all vertices v0, v1, . . . , vk are distinct is called a path. A cycle is a closed walk
in which all vertices v0, v1, . . . , vk are distinct except for v0 = vk. The cycle graph
Cn is the graph consisting of a cycle of order n.

5



Definition 2.1.9 (Connected graph). A graph G is connected if there exists a walk
between each pair of vertices in G. If G is not connected, then it is disconnected.

Figure 2.5 shows a connected graph G and a disconnected graph H.

G H

Figure 2.5: A connected graph G and a disconnected graph H

Definition 2.1.10 (Addition of two graphs). The addition of graphs G1 and G2,
denoted by G1 + G2, is the graph obtained by adding to the disjoint union of G1

and G2 edges between each vertex of G1 and each vertex of G2.

Figure 2.6 shows an example of a graph addition.

K3 P2 K3 + P2

Figure 2.6: Graph addition K3 + P2

Definition 2.1.11 (Generalised wheel). The generalised wheel graph Ws,m is the
graph Ks + Cm obtained by adding the graphs Ks and Cm as defined in Definition
2.1.10. If s = 1, then Ws,m is a wheel graph which we also denote by Wm.

Figure 2.7 shows examples of generalised wheel graphs.

W2,6 W3,6 W8 = W1,8

Figure 2.7: Generalised wheel graphs

6



Definition 2.1.12 (Tree). A tree is a connected graph which has no cycle subgraph.
In this thesis, trees with n vertices are denoted by Tn.

Here, we introduce some of the tree graphs used in our discussions. Let Pn be
the path graph consisting of a path of order n, and let Sn be the star graph of order n
consisting of one vertex that is adjacent to n− 1 vertices which are non-adjacent to
each other. Let Sn(ℓ,m) be the tree of order n obtained from the star graph Sn−ℓ×m

by subdividing each of ℓ chosen edges m times. Sn(ℓ) is the tree graph of order
n obtained by adding an edge joining the centres of two star graphs Sℓ and Sn−ℓ.
Sn[ℓ] is the tree graph of order n obtained by adding an edge joining the centre of
Sn−ℓ to a degree-one vertex of Sℓ.

Figure 2.8 shows examples of these trees. Other tree graphs will be introduced
throughout the thesis.

P5 S5

Sn−1

Sn(1, 1)

Sn−2

Sn(1, 2)

Sn−2

Sn(2, 1)

Sn−3

Sn(3, 1)

Sn−2

Sn(3)

Sn−3

Sn[4]

Figure 2.8: Examples of Pn, Sn, Sn(ℓ,m), Sn(ℓ) and Sn[ℓ]

Definition 2.1.13 (Multipartite graph). A k-partite graph is a connected graph
whose vertex set can be partition into k disjoint subsets containing no edges as
subsets; that is, each edge contains a vertex from one subset and a vertex from
another subset. A k-partite graph is complete if each vertex from one subset is
adjacent to every vertex from every other subset. A complete k-partite graph is
denoted by Kn1,...,nk

where n1, . . . , nk are the numbers of vertices in each subset,
respectively. The graph is bipartite if k = 2 and tripartite if k = 3.

Figure 2.9 shows examples of complete multipartite graphs.

A complete bipartite graph, K3,4 A complete tripartite graph, K2,2,2

Figure 2.9: Complete multipartite graphs
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2.2 Auxiliary results

In this section, we will introduce some previously known results and lemmas which
will be particularly useful in our discussions. We do not provide the proofs for
these; interested readers are directed to the respective references.

First, we will introduce some known Ramsey theory results relating to the Ram-
sey numbers of tree graphs versus generalised wheel graphs. These results motivated
us into conducting this research work.

In [54], Wang and Chen determined the Ramsey number for tree graphs versus
generalised wheel graphs Ws,4 and Ws,5. Inspired by their work, we have studied
the Ramsey numbers for tree graphs versus generalised wheel graphs Ws,6 and Ws,7.
We will discuss these numbers in Chapter 3.

Theorem 2.2.1. [54] If n ≥ 3 and s ≥ 2, then R(Tn,Ws,4) = (n − 1)(s + 1) + 1.
Furthermore, if n ≥ 3 and s ≥ 1, then R(Tn,Ws,5) = (n− 1)(s+ 2) + 1.

Now, we introduce some known Ramsey theory results concerning the Ramsey
numbers of tree graphs versus the wheel graphs Wm. In [22], Chen, Zhang and
Zhang determined the Ramsey numbers R(Tn,W6) and R(Tn,W7).

Theorem 2.2.2. [22] R(Tn,W6) = 2n− 1 + µ for n ≥ 5, where

(a) µ = 2, if Tn = Sn;
(b) µ = 1, if Tn = Sn(1, 1) or Tn = Sn(1, 2) and n ≡ 0 (mod 3);
(c) µ = 0, otherwise.

Theorem 2.2.3. [22] R(Tn,W7) = 3n− 2 for n ≥ 6.

Next, we introduce results for path and star graphs. Chen, Zhang and Zhang [19]
and Zhang [55] determined the Ramsey numbers R(Pn,Wm) for 3 ≤ m ≤ n + 1
and n + 2 ≤ m ≤ 2n, respectively. Combining these results, we have the following
theorem.

Theorem 2.2.4. [19, 55] For 3 ≤ m ≤ 2n, we have

R(Pn,Wm) =


3n− 2, if m is odd ;

2n− 1, if m is even and 3 ≤ m ≤ n+ 1 ;

m+ n− 2, if m is even and n+ 2 ≤ m ≤ 2n .

For star graphs, Chen, Zhang and Zhang [17] proved the following result.

Theorem 2.2.5. [17] R(Sn,Wm) = 3n− 2 for m odd and n ≥ m− 1 ≥ 2.

The exact Ramsey numbers R(Sn,W8) were determined together in three papers.

Theorem 2.2.6. [56, 57, 58] For n ≥ 5, we have

R(Sn,W8) =

{
2n+ 1, if n is odd ;

2n+ 2, if n is even .

In [11], Burr found an interesting lower bound for the Ramsey number R(G,H)
for any pair of graphs G and H, in terms of |V (G)|, χ(H) and t(H).

8



Theorem 2.2.7. [11] Let G be a connected graph of order n, and let H be a graph
with parameters χ(H) and t(H), where t(H) is the minimum number of vertices
in any colour class of any vertex-colouring of H with χ(H) colours and n ≥ t(H).
Then R(G,H) ≥ (n− 1)(χ(H)− 1) + t(H).

Now, we introduce two lemmas that are useful in our discussion.

Lemma 2.2.8 (Handshaking Lemma). The sum of vertex degrees of a graph G is
equal to twice the number of edges in G.

Lemma 2.2.9. [16] Let G be a graph with δ(G) ≥ n− 1. Then G contains all tree
graphs of order n.

Since we are studying the wheel graph, which contains a cycle graph, the fol-
lowing lemmas are particularly useful.

Lemma 2.2.10. [9] Let G be a graph of order n. If δ(G) ≥ n
2
, then either G

contains Cℓ for all 3 ≤ ℓ ≤ n, or n is even and G = Kn
2
,n
2
.

Lemma 2.2.11. [36] Let G(u, v, k) be a simple bipartite graph with bipartition U
and V , where |U | = u ≥ 2 and |V | = v ≥ k, and each vertex of U has degree at
least k. If G(u, v, k) satisfies u ≤ k and v ≤ 2k − 2, then it contains a cycle of
length 2u.

9



Chapter 3

Ramsey numbers for tree graphs versus certain generalised

wheel graphs

In this chapter, we look at the Ramsey numbers for tree graphs versus the gener-
alised wheel graphs Ws,6 and Ws,7. The results in this chapter have been published
in [23] during my PhD candidature and are joint work with Dr Ta Sheng Tan and
Prof. Dr Kok Bin Wong. In this article, I am the main author, in charge of devel-
oping and writing the proof of the results, especially those have been incorporated
in the chapter. Similar results were also obtained independently by Wang [53].

3.1 Introduction

In [54], Wang and Chen determined the Ramsey numbers for the tree graphs versus
Ws,4 and Ws,5. This inspires us to study the Ramsey numbers of tree graphs versus
generalised wheel graphs beyond Ws,4 and Ws,5. We will focus on the results for
Ws,6 and Ws,7.

Note that χ(Ws,6) = s+2 and t(Ws,6) = 1. By Theorem 2.2.7, we therefore have
R(Tn,Ws,6) ≥ (s + 1)(n − 1) + 1. Now, we need to determine the upper bound of
R(Tn,Ws,6) for various types of trees. We will do so in the next few sections. But
before that, we want to introduce a useful lemma.

In the paper [11], Burr also established the following definition. Under the
condition of Theorem 2.2.7, the graph G is said to be H-good if

R(G,H) = (n− 1)(χ(H)− 1) + t(H) .

Lin, Li and Dong [41] proved that, for a tree graph T and a graph G with t(G) = 1,
if T is G-good, then T is (K1 + G)-good. This leads us to the following lemma
whose proof follows that of [41].

Lemma 3.1.1. Let G be a finite simple graph and Tn be any fixed tree graph of
order n. Then R(Tn, K1 +G) ≤ R(Tn, G) + n− 1.

Proof. Let N = R(Tn, G)+n− 1. Consider any graph H of order N . Suppose that
H does not contain Tn as a subgraph. Let T ′ be a maximal subtree of H that is
(isomorphic to) a subgraph of Tn. Here, the term ‘maximal’ is in the sense that if
a vertex x ∈ X := V (H)− V (T ′) and an edge xu ∈ E(H) for some u ∈ V (T ′) are
added to T ′, then the resulting tree is not a subgraph of Tn.

Note that T ′ ̸= Tn. This implies that there is a vertex u ∈ V (T ′) and a vertex
w ∈ V (Tn) − V (T ′) such that uw ∈ E(Tn). So, if u is adjacent to a vertex x ∈ X
in H, then the graph obtained by adding the vertex x and the edge ux to T ′ is a
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subtree of H and it also forms a subgraph of Tn. By the maximality of T ′, this is
impossible. Hence, u is not adjacent in H to any vertex x ∈ X.

Since T ′ ̸= Tn, the order of T ′ is at most n − 1. Therefore, |X| ≥ R(Tn, G).
Note that H[X] must contain G as H[X] does not contain Tn. From the preceding
paragraph, ux /∈ E(H) for all x ∈ X. This implies that ux ∈ E(H) for all x ∈ X.
In particular, u is adjacent to all y ∈ V (G) in H. Hence, H contains K1 +G, and
so R(Tn, K1 +G) ≤ R(Tn, G) + n− 1.

Theorem 3.1.2. Let Tn be any fixed tree graph of order n and Ws,m = Ks +Cm be
a generalised wheel graph. Then R(Tn,Ws,m) ≤ R(Tn,Wm) + (s− 1)(n− 1).

Proof. Note that W1,m = Wm and for s ≥ 2, the generalised wheel graph Ws,m is
K1 +Ws−1,m. Hence, by Lemma 3.1.1, it follows that

R(Tn,Ws,m) ≤ R(Tn,Ws−1,m) + n− 1

≤ R(Tn,Ws−2,m) + 2(n− 1)

...

≤ R(Tn,W1,m) + (s− 1)(n− 1) .

3.2 The Ramsey number R(Tn,W2,6)

In this section, we investigate the Ramsey numbers R(Tn,W2,6) for tree graphs
Tn of order n versus the generalised wheel graph W2,6. As the very first step, we
determine the Ramsey number R(Sn,W2,6) for the star graph Sn. To do so, we
prove the following lemma.

Lemma 3.2.1. Let G be a graph of order 3n− 2 and δ(G) ≥ 2n− 1 where n ≥ 5.
Then G contains W2,6 as a subgraph.

Proof. The condition δ(G) ≥ 2n− 1 implies that G does not contain Sn. Let ω(G)
be the number of vertices in a maximum clique of G. By [25], it is known that
R(Sn, K4) = 3n− 2, so we have ω(G) ≥ 4. If ω(G) ≥ 8, then G must contain every
subgraph of order 8, including W2,6. So, we only need to consider the four cases
4 ≤ ω(G) ≤ 7.

Let ω = ω(G) and K = Kω ⊆ G, and define the set U = V (G) − V (K). Then
|U | = 3n − 2 − ω. Since δ(G) ≥ 2n − 1, every vertex in K is adjacent to at least
2n−ω vertices in U . This implies that there are at least ω(2n−ω) edges connecting
K and U . Now, let

X = {u ∈ U : |NG(u) ∩ V (K)| ≤ 3} ;

Y = {u ∈ U : |NG(u) ∩ V (K)| ≥ 4} .

Then U = X ∪ Y and |X| + |Y | = |U | = 3n− 2− ω. Since Kω+1 is not contained
in G, each vertex in U is adjacent to at most ω − 1 vertices in K, so we have

ω(2n− ω) ≤ 3|X|+ (w − 1)|Y | . (3.2.1)

Case 1: ω(G) = 7.

11



By substituting |X| = 3n−9−|Y | into Equation (3.2.1), we get 3|Y | ≥ 5n−22.
For n ≥ 5, we have |Y | ≥ 1. Hence, there must be a vertex in U , say u, that is
adjacent to at least 4 vertices in K. Therefore, G[V (K) ∪ {u}] must contain W2,6.

Case 2: ω(G) = 6.
By substituting |X| = 3n− 8−|Y | into Equation (3.2.1) and noting that n ≥ 5,

we obtained the inequality |Y | ≥ 3n
2
− 6 ≥ 2.

Suppose there is a vertex in U , say u1, that is adjacent to 5 vertices in K.
Since |Y | ≥ 2, there must be another vertex in U , say u2, that is adjacent to
at least 4 vertices in K. As there are only 6 vertices in K, u1 and u2 must be
adjacent to at least 3 common vertices in K, say k1, k2, k3. Now let k4 ∈ V (K) ∩
NG(u2)\{k1, k2, k3}, k5 ∈ V (K)∩NG(u1)\{k1, . . . , k4} and k6 ∈ V (K)\{k1, . . . , k5}.
We see that G[V (K) ∪ {u1, u2}] contains W2,6 with k1 and k2 in the centre and
k5u1k3u2k4k5k6 as C6.

We may therefore assume that every vertex in U is adjacent to at most 4 vertices
in K. In this case, we have

6(2n− 6) ≤ 3|X|+ 4|Y | = 3|U |+ |Y | = 3(3n− 8) + |Y | ,

implying that |Y | ≥ 3n− 12 and |X| ≤ 4. Since n ≥ 5 and δ(G) ≥ 2n− 1 ≥ 9, we
deduce that G[Y ] has no isolated vertex.

Let u1 and u2 be two adjacent vertices in Y , and note that at least two vertices
k1, k2 ∈ K are each adjacent to both u1 and u2. Now, let

k3 ∈ V (K) ∩NG(u1) \ {k1, k2} ,
k4 ∈ V (K) ∩NG(u2) \ {k1, k2, k3}

and {k5, k6} = V (K) \ {k1, . . . , k4} .

We again see that G[V (K) ∪ {u1, u2}] contains W2,6 with k1 and k2 in the centre
and k3u1u2k4k5k6k3 as C6.

Case 3: ω(G) = 5.
By substituting |X| = 3n−7−|Y | into Equation (3.2.1), we obtain |Y | ≥ n−4.

We note here that if |Y | = n − 4, then every vertex in X is adjacent to exactly 3
vertices in K.

Write V (K) = {k1, . . . , k5}. We can partition Y into five sets A1, . . . , A5 where

Ai = {y ∈ Y : y is not adjacent to ki} .

Since each vertex in Y is adjacent to exactly 4 vertices in K, we see that each vertex
in Ai is adjacent to kj for j ∈ {1, . . . , 5} − {i}.

Note that Ai is an independent set, for we could otherwise find two vertices
in Ai, say a1 and a2, such that a1 is adjacent to a2. Now, G[S] = K6 where
S = {a1, a2, kj : j ∈ {1, . . . , 5} − {i}}, a contradiction since ω(G) = 5.

Next, note that if any three of the five sets are non-empty, then we have W2,6 in
G. For illustration purposes, suppose that Ai ̸= ∅ for i = 1, 2, 3. Let ai ∈ Ai. Then
G[V (K)∪{a1, a2, a3}] contains W2,6 with k4 and k5 in the centre and k1a3k2a1k3a2k1
as C6. Hence, we may assume that Ai = ∅ for i = 3, 4, 5. So, Y = A1 ∪A2. We also
may assume that |A1| ≥ |A2|. Since |Y | ≥ n− 4 and n ≥ 5, we have |A1| ≥ 1.
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Case 3.1: Suppose that |A1| ≥ 2.
Let x1, x2 ∈ A1 and set U ′ = U − {x1, x2}. Then |U ′| = 3n − 7 − 2 = 3n − 9.

Also, let

X ′ = {u ∈ U ′ : |NG(u) ∩ V (K)| ≤ 2} ;

Y ′ = {u ∈ U ′ : |NG(u) ∩ V (K)| ≥ 3} .

Since each xi is adjacent to 4 vertices in K and |EG(U, V (K))| ≥ 5(2n−5), we have

5(2n− 5)− 2× 4 ≤ 2|X ′|+ 4|Y ′| = 2|U ′|+ 2|Y ′| = 2(3n− 9) + 2|Y ′| ,

implying that |Y ′| ≥ 2n− 7 and |X ′| ≤ n− 2. Let

X1 = {u ∈ U ′ : u is adjacent to x1} ;

X2 = {u ∈ U ′ : u is adjacent to x2} .

Since xi is adjacent to 4 vertices in K and x1 and x2 are not adjacent to each
other, we have |Xi| ≥ 2n − 5. Therefore, |X1 ∩ X2| = |X1| + |X2| − |X1 ∪ X2| ≥
2(2n− 5)− (3n− 9) = n− 1 > |X ′|, and we deduce that Y ′ ∩X1 ∩X2 ̸= ∅.

Let u′ ∈ X1∩X2∩Y ′. Note that u′ is adjacent to x1 and x2, and u′ is also adjacent
to at least three vertices in K. Therefore, u′ must be adjacent to at least two of
k1, . . . , k5, without loss of generality say k2 and k3. Then G[V (K) ∪ {x1, x2, u

′}]
contains W2,6 with k2 and k3 in the centre and x1u

′x2k4k1k5x1 as C6.

Case 3.2: Suppose that |A1| = 1.
Since n − 4 ≤ |Y | = |A1 ∪ A2| ≤ 2, we must have |Y | = 2 with 5 ≤ n ≤ 6, or

|Y | = 1 with n = 5.

Case 3.2.1: Suppose that |Y | = 2; that is, |A1| = |A2| = 1.
Let x1 ∈ A1 and x2 ∈ A2. Recall that every vertex in X is adjacent to at most

three vertices in K. If u ∈ X is adjacent to 3 vertices in K and also adjacent to
a vertex in Y , then we may assume |NG(u) ∩ {k3, k4, k5}| = 1. Suppose otherwise;
then without loss of generality, u is adjacent to x1, k3, k4, and another vertex in K.
It is then straightforward to check that G contains W2,6 with k3 and k4 in the centre
and C6 in G [{k1, k2, k5, u, x1, x2}].

Now if n = 6, then we have equality in Equation (3.2.1), implying that every
vertex in X is adjacent to exactly 3 vertices in K. Since δ(G) ≥ 2n − 1 = 11, we
must have x1 adjacent to at least 6 vertices in X. Let A be a subset of NG(x1)∩X
with |A| = 6. We see that every vertex in A is adjacent to both k1 and k2. It is
straightforward to deduce from the degree conditions that δ(G[A]) ≥ 3, implying
that G[A] contains C6 by Lemma 2.2.10. Therefore, G contains W2,6.

For the case when n = 5, we have |G| = 13, δ(G) ≥ 9 and |X| = 6. By the
degree conditions, every vertex in X is adjacent to some vertex in Y . A more
refined analysis similar to those used in obtaining Equation (3.2.1) implies that 5
vertices in X are each adjacent to 3 vertices in K, while the remaining vertex v ∈ X
is adjacent to either 2 or 3 vertices in K. Note that every vertex in X − {v} is
adjacent to both k1 and k2.
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Suppose that v is adjacent to kj for some j ∈ {1, 2}. Then |NG(kj)| = 11. Since
G does not contain S5, and R(W6, S5) = 11 by Theorem 2.2.2, we deduce that
G[NG(kj)] contains W6 which, together with kj, forms W2,6 in G.

The remaining case is, without loss of generality, when NG(v)∩V (K) = {k3, k4}.
Since δ(G) ≥ 9, v is adjacent to both x1 and x2. Therefore, G[V (K) ∪ {v, x1, x2}]
contains W2,6 with k3 and k4 in the centre and k1x2vx1k2k5k1 as C6.

Case 3.2.2: Suppose that |Y | = 1.
Since |Y | ≥ n− 4, we must have n = 5 and equality in (3.2.1). So in this case,

the graph G is of order 13 with δ(G) ≥ 9 such that, whenever G contains K5, the
following property P on G holds:

there is exactly one vertex in V (G) − V (K5) that is adjacent to exactly 4
vertices in K5 while the remaining vertices are each adjacent to exactly 3
vertices in K5; and every vertex in V (K5) has degree exactly 9 in G.

Now let x ∈ Y ; then x is adjacent to all vertices except the vertex k1 in K. Observe
that G[V (K) ∪ {x} − {k1}] is another K5 in G. Therefore, by property P , x has
degree exactly 9 in G. Setting A = V (G)− (V (K) ∪ {x}), we shall now show that
there is another K5 in G[A].

From the above discussion together with property P , it is straightforward to
check that G[V (K)∪{x}] has exactly 14 edges, and the number of edges in G from
V (K)∪{x} to A is exactly 26, implying that G[A] has at least 19 edges. Since G[A]
is a graph of order 7 with at least 19 edges, it is easy to see that G[A] contains K5,
either by deducing from Turan’s Theorem [52], or by observing that G[A] can be
obtained by deleting at most two edges from K7.

Suppose that K ′ is a K5 subgraph of G[A]. From the remaining three vertices
in V (G)− (V (K) ∪ V (K ′)), property P implies that there must be a vertex, say y,
that is adjacent to exactly three vertices in K and exactly 3 vertices in K ′. This
implies that y has degree at most 8, which is a contradiction.

Case 4: ω(G) = 4.
Recall that K is a K4 subgraph of G and that U = V (G) − V (K). Since

ω(G) = 4, we must have Y = ∅; that is, each vertex in U is adjacent to at most 3
vertices in K. Partition U = X ′ ∪ Y ′ as follows:

X ′ = {u ∈ U : |NG(u) ∩ V (K)| ≤ 2} ;

Y ′ = {u ∈ U : |NG(u) ∩ V (K)| = 3} .

Since δ(G) ≥ 2n− 1 and |U | = 3n− 6, we have

4(2n− 4) ≤ 2|X ′|+ 3|Y ′| = 2|U |+ |Y ′| = 2(3n− 6) + |Y ′| ,

implying that |Y ′| ≥ 2n− 4 and |X ′| ≤ n− 2. We note here that if |Y ′| = 2n− 4,
then every vertex in X ′ must be adjacent to exactly 2 vertices in K.

Let V (K) = {k1, . . . , k4}. We can further partition Y ′ into four sets A1, . . . , A4

where
Ai = { y ∈ Y : y is not adjacent to ki } .
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Since each vertex in Y is adjacent to exactly 3 vertices in K, we see that each
vertex in Ai is adjacent to kj for j ∈ {1, 2, 3, 4} − {i}. Furthermore, each Ai is an
independent set since ω(G) = 4.

Without loss of generality, assume that |A1| ≥ |A2| ≥ |A3| ≥ |A4|. Since
|Y ′| ≥ 2n− 4 ≥ 6, we have |A1| ≥ 2.

Case 4.1: Suppose that |A2| ≤ 1.
Then |A4| ≤ |A3| ≤ 1. This implies that |A1| ≥ 2n− 4− 3 = 2n− 7. Now, k1 is

not adjacent to any of the vertices in A1, so k1 is adjacent to at most(
|V (G)| − 1

)
− |A1| ≤

(
(3n− 2)− 1

)
− (2n− 7) = n+ 4

vertices. Thus, 2n − 1 ≤ |NG(k1)| ≤ n + 4 which implies that n ≤ 5. In this
scenario, we must have n = 5, |V (G)| = 13, |A1| = 3, and |A2| = |A3| = |A4| = 1;
also, k1 is adjacent to all vertices in (V (G) − {k1}) − A1. Let A1 = {x1, x2, x3},
A2 = {x4}, A3 = {x5} and A4 = {x6}. Since A1 is independent, x1 is not adjacent
to x2 or x3. Now, x1 is also not adjacent to k1, so x1 must be adjacent to all
vertices in V (G)−{x2, x3, k1}, since δ(G) ≥ 9. Similarly, x2 and x3 are adjacent to
all vertices in V (G)− (A1 ∪ {k1}). Thus, |NG(k1)| = |NG(a)| = 9 for all a ∈ A1.

Since |V (G)| = 13, the Handshaking Lemma implies that one of the vertices in
V (G) − (A1 ∪ {k1}) must be of degree at least 10. Let y ∈ V (G) − (A1 ∪ {k1})
and |NG(y)| ≥ 10. If |NG(y)| ≥ 11, Then by Theorem 2.2.2, either G[NG(y)]
contains S5 or G[NG(y)] contains W6. If the former holds, then G contains S5,
and this contradicts that δ(G) ≥ 9. Hence, the latter must hold; that is, G[NG(y)]
contains W6. Since y is adjacent to all vertices in W6, G[V (W6)∪{y}] contains W2,6.
So, we may assume that |NG(y)| = 10. Then

∣∣NG(y) ∩
(
V (G)− (A1 ∪ {k1})

)∣∣ = 6,
since y is adjacent to all vertices in A1 ∪ {k1}.

Let Z = NG(y) ∩
(
V (G) − (A1 ∪ {k1})

)
. Then there are only two vertices

in V (G) − (Z ∪ A1 ∪ {y, k1}), say u1 and u2. Suppose there is a vertex z0 ∈ Z
with |NG(z0) ∩ Z| ≥ 3. We may assume that z0 is adjacent to z1, z2, z3 ∈ Z.
Then G[{k1, x1, x2, z1, z2, z3, z0, y}] contains W2,6 with k1z1x1z2x2z3k1 as C6 and the
vertices y and z0 in the centre.

Suppose that |NG(z)∩Z| ≤ 2 for all z ∈ Z. Let z1 ∈ Z; then z1 is adjacent to all
vertices in A1 ∪ {k1, y}. Since δ(G) ≥ 9, z1 must be adjacent to u1 and u2. In fact,
for each z ∈ Z, z is adjacent to u1 and u2. Note that Z cannot be an independent
set, so let z1, z2 ∈ Z be adjacent to each other. Then G[{k1, x1, x2, z1, z2, u1, u2, y}]
contains W2,6 with z1 and z2 in the centre and k1yx1u1x2u2k1 as C6.

Case 4.2: Suppose that |A2| ≥ 2.
We first claim that we may assume that there are no two independent edges

connecting Ai and Aj for any i ̸= j. Indeed, if x1y1 and x2y2 are two independent
edges with x1, x2 ∈ Ai and y1, y2 ∈ Aj, then we see that G contains W2,6 with
V (K)− {ki, kj} in the centre and kjx1y1kiy2x2kj as C6.

Since A1 and A2 are independent sets, each of size at least 2, and there are no two
independent edges connecting A1 and A2, there is an isolated vertex a ∈ G[A1∪A2].
We consider the case when a ∈ A1. The other case when a ∈ A2 is similar.

Recall that NG(a) ∩ V (K) = {k2, k3, k4}. We have

(2n− 1)− 3 ≤ |NG(a) ∩ U | ≤ 3n− 6− (|A1|+ |A2|) ,
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so |A1|+ |A2| ≤ n− 2. Since |Y ′| ≥ 2n− 4 and |A1| ≥ |A2| ≥ |A3| ≥ |A4|, this can
only happen when |Ai| = n

2
− 1 for all 1 ≤ i ≤ 4 and n is even.

Note that we now have
∣∣V (G)−({k1}∪A1∪A2)

∣∣ = 2n−1, and so by the minimum
degree condition, a must be adjacent to all vertices in V (G)−

(
{k1}∪A1∪A2

)
and,

in particular, to all vertices in A3 ∪A4. Pick a vertex b ∈ A1 −{a}; then b must be
adjacent to at least one vertex in A3 ∪ A4, as we otherwise would have

2n− 1 ≤ |NG(b)| ≤ (3n− 2)− |{k1} ∪ A1 ∪ A3 ∪ A4| =
3n

2
,

giving n ≤ 2, which is a contradiction.
Finally, assume without loss of generality that b is adjacent to a vertex in A3.

Then as |A3| ≥ 2 and a is adjacent to all vertices in A3, we have two independent
edges connecting A1 and A3. This contradicts the assumption that there are no two
independent edges connecting Ai and Aj for any i ̸= j.

This completes the proof of the lemma.

Now, we can determine the Ramsey numbers for star graphs versus the gener-
alised wheel graph W2,6.

Theorem 3.2.2. If n ≥ 5, then R(Sn,W2,6) = 3n− 2.

Proof. From Theorem 2.2.7, we know that R(Sn,W2,6) ≥ (2+1)(n−1)+1 = 3n−2.
From Lemma 3.2.1, we have R(Sn,W2,6) ≤ 3n−2 for n ≥ 5. We therefore conclude
that R(Sn,W2,6) = 3n− 2.

Now, we will look at a similar result for two tree graphs, namely Sn(1, 1) and
Sn(1, 2), versus the generalised wheel graph W2,6.

Theorem 3.2.3. If n ≥ 5, then R(Tn,W2,6) = 3n− 2 for Tn ∈ {Sn(1, 1), Sn(1, 2)}.

Proof. From Theorem 2.2.7, we know that R(Tn,W2,6) ≥ (2+1)(n−1)+1 = 3n−2.
We therefore only need to look at the upper bound.

Case 1: Suppose that Tn = Sn(1, 1).
Let G be a graph of order 3n−2 such that G does not contain W2,6. Then since

R(Sn,W2,6) ≤ 3n − 2, G must contain Sn. Let T be a Sn subgraph of G, let its
centre be v0, and define L = NT (v0) = {v1, . . . , vn−1}. Set U = V (G)− V (T ); then
|U | = 2(n− 1). If G does not contain Sn(1, 1), then L must be an independent set
and E(L,U) = ∅.

If n ≥ 6, then any 3 vertices from L and 3 vertices from U form C6 in G and,
with another 2 vertices from L as the centre, give W2,6 in G, a contradiction.

Suppose that n = 5. Then G is of order 13 and |U | = 8. If δ(G[U ]) ≥ 4, then
G[U ] contains C6 by Lemma 2.2.10. So, together with any two vertices in L as the
centre, we have W2,6 in G, a contradiction. If δ(G[U ]) ≤ 3, then ∆(G[U ]) ≥ 4 and
G[U ] contains another S5 disjoint from T , say T ′ = Sn. Let the centre of T ′ be u0

and define L′ = NT ′(u0) = {u1, . . . , u4}. If G does not contain S5(1, 1), then L′ is
an independent set and E(L,L′) = ∅. Then any 8 vertices from L ∪ L′ form W2,6

in G, a contradiction.
Thus, R(Sn(1, 1),W2,6) ≤ 3n− 2.

Case 2: Suppose that Tn = Sn(1, 2).
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If n ≡ 1, 2 (mod 3), then R(Sn(1, 2),W6) = 2n− 1 by Theorem 2.2.2. It follows
from Theorem 3.1.2 that R(Sn(1, 2),W2,6) ≤ 3n− 2.

Suppose that n ≡ 0 (mod 3). Then n ≥ 6. Let G be a graph of order 3n − 2
such that G does not contain W2,6. By Case 1, G contains a subgraph T = Sn(1, 1).
Let V (T ) = {v0, . . . , vn−1} and E(T ) = {v0v1, . . . , v0vn−2} ∪ {v1vn−1}, and define
U = V (G)−V (T ); then |U | = 2(n−1). If G does not contain Sn(1, 2), then neither
v1 nor vn−1 are adjacent to any of v2, . . . , vn−2, and vn−1 is not adjacent to any
vertex in U . Now, we consider the following two cases.

Case 2.1: NG(v2) ∩ U = ∅.
If δ(G[U ] ≥ n− 1, then by Lemma 2.2.10, G[U ] contains C6. This C6 together

with v2 and vn−1 as the centre gives W2,6 in G, a contradiction. If δ(G[U ]) ≤ n− 2,
then ∆(G[U ]) ≥ n − 1, so G[U ] contains a subgraph T = Sn. Let u0 be the
centre of T and define L′ = NT ′(u0) = {u1, . . . , un−1}. Suppose that G does not
contain Sn(1, 2). Then none of v1, . . . , vn−1 is adjacent to any vertex in L′ in G. If
L′ is an independent set, then G contains W2,6 with u1 and u5 in the centre and
v2u2v3u3v4u4v2 as C6.

Suppose that L′ is not an independent set. We may assume that u1 and u2 are
adjacent to each other. Then u1 is not adjacent to u3, . . . , un−1 since G does not con-
tain Sn(1, 2). Furthermore, u3 is adjacent to at most one vertex in {u4, . . . , un−1}.
We may assume that u3 is not adjacent to u4. Then G contains W2,6 with u1 and
u3 in the centre and v1v2vn−1v3u4v4v1 as C6.

Case 2.2: v2 is adjacent to a vertex in U , say b.
Set U ′ = V (G) − (V (T ) ∪ {b}); then |U ′| = 2n − 3. Suppose that G does not

contain Sn(1, 2). Then neither v2 nor b are adjacent to any of v1, v3, v4, . . . , vn−1,
and b is not adjacent to any vertex in U ′. If δ(G[U ′]) ≥ n−1, then by Lemma 2.2.10,
G[U ′] contains C6 which, together with vn−1 and b as the centre, gives W2,6 in G,
a contradiction. If δ(G[U ′]) ≤ n − 2, then ∆(G[U ′]) ≥ n − 2, so G[U ′] contains
a subgraph T = Sn−1. Let u0 be the centre of T ′ and define L′ = NT ′(u0) =
{u1, . . . , un−2}. Since G does not contain Sn(1, 2), none of v1, . . . , vn−1 is adjacent
to any vertex in L′ in G. If L′ is an independent set, then G contains W2,6 with u1

and u4 in the centre and v2u2v3bv4u3v2 as C6.
Suppose that L′ is not an independent set. We may assume that u1 and u2 are

adjacent to each other. Then neither u1 nor u2 is adjacent to any other vertices in
V (U ′) − V (T ′) in G. Let w ∈ V (U ′) − V (T ′). Then G contain a W2,6 with b and
vn−1 in the centre and u1wu2v3u3v4u1 as C6.

Thus, R(Sn(1, 2),W2,6) ≤ 3n− 2 which completes the proof.

Next, we will determine the Ramsey numbers R(Tn,W2,6) for all other tree
graphs Tn versus the generalised wheel graph W2,6.

Theorem 3.2.4. If n ≥ 5, then R(Tn,W2,6) = 3n − 2 where Tn is any tree graph
of order n apart from Sn, Sn(1, 1) and Sn(1, 2).

Proof. Let Tn be any tree graph of order n apart from Sn, Sn(1, 1) and Sn(1, 2). By
Theorem 2.2.7, R(Tn,W2,6) ≥ (2+ 1)(n− 1)+ 1 = 3n− 2. Also, by Theorems 2.2.2
and 3.1.2, R(Tn,W2,6) ≤ R(Tn,W6) + (2− 1)(n− 1) = (2n− 1) + (n− 1) = 3n− 2.

We conclude that R(Tn,W2,6) = 3n− 2.
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By Theorems 3.2.2, 3.2.3 and 3.2.4, we conclude that R(Tn,W2,6) = 3n − 2 for
each tree graph Tn of order n. We can now consider the more general Ramsey
numbers for the generalised wheel graphs Ws,m.

3.3 The Ramsey number R(Tn,Ws,6) and R(Tn,Ws,7)

In this section, we investigate the Ramsey numbers for tree graphs Tn of order n
versus the generalised wheel graph Ws,6 and Ws,7. We start by considering Ws,6.

Theorem 3.3.1. Let n ≥ 5 and s ≥ 2. Then R(Tn,Ws,6) = (s+ 1)(n− 1) + 1.

Proof. By Theorem 3.2.4, R(Tn,W2,6) = 3n− 2. By applying Lemma 3.1.1 repeat-
edly, we see that R(Tn,Ws,6) ≤ (s+1)(n−1)+1. Furthermore, since χ(Ws,6) = s+2
and t(Ws,6) = 1, Theorem 2.2.7 implies that R(Tn,Ws,6) ≥ (s+1)(n−1)+1. Hence,
R(Tn,Ws,6) = (s+ 1)(n− 1) + 1.

Next, we consider Ws,7.

Theorem 3.3.2. Let n ≥ 5 and s ≥ 1. Then R(Tn,Ws,7) = (s+ 2)(n− 1) + 1.

Proof. Note that χ(Ws,7) = s+3 and t(Ws,7) = 1. Therefore, Theorem 2.2.7 implies
that R(Tn,Ws,7) ≥ (s+ 2)(n− 1) + 1 for each tree graph Tn of order n. Also, since
Ws,7 is a subgraph of Ws+1,6, R(Tn,Ws,7) ≤ R(Tn,Ws+1,6) = (s + 2)(n − 1) + 1 by
Theorem 3.3.1. Hence, R(Tn,Ws,7) = (s+ 2)(n− 1) + 1.

3.4 Other results and possible future work

In this section, we state a conjecture.

Conjecture 3.4.1. Suppose that m ≥ 3 and s ≥ 2. Then for sufficiently large n,

R(Tn,Ws,m) =

{
(s+ 1)(n− 1) + 1, if m is even;

(s+ 2)(n− 1) + 1, if m is odd.

Brennan [10] determined the Ramsey numbers of large trees versus odd cycles.

Theorem 3.4.2. [10] For all odd m ≥ 3 and n ≥ 25m, R(Tn, Cm) = 2n− 1.

Lemma 3.4.3. Suppose that ℓ ≥ 2, n ≥
⌊
m
2

⌋
+ 1 and

r(m) =

{
2 , if m is odd;

1 , if m is even.

If R(Tn,Ws,m) ≤
(
s+ r(m)

)
(n− 1) + ℓ, then

R(Tn,Ws+2,m) ≤
(
s+ 2 + r(m)

)
(n− 1) + ℓ− 1 .

Proof. Let G be a graph of order (s+2+r)(n−1)+ ℓ−1 where r = r(m). Suppose
that G does not contain Tn.

Case 1: Suppose that G has a vertex of degree at most n− 3, say v0.
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Let U1 = {v0} ∪ NG(v0); then |U1| ≤ n − 2. Let Y1 = V (G) − U1 and consider
the graph G[Y1]. Note that G[Y1] is of order at least

|V (G)| − |U1| ≥
(
(s+ 2 + r)(n− 1) + ℓ− 1

)
− (n− 2) = (s+ 1 + r)(n− 1) + ℓ .

Since the generalised wheel graph Ws+1,m is K1 +Ws,m, Lemma 3.1.1 implies that

R(Tn,Ws+1,m) ≤ R(Tn,Ws,m) + n− 1 ≤ (s+ r + 1)(n− 1) + ℓ .

Therefore, G[Y1] contains Ws+1,m. Note that v0 is adjacent to every vertex of Y1

in G. In particular, v0 is adjacent to every vertex of this Ws+1,m in G. Hence, G
contains Ws+2,m.

Case 2: Suppose that each vertex of G has degree at least n− 2.

Subcase 2.1: Suppose that each component of G is of order at most n− 1.
Then every component of G is Kn−1. This implies that G contains a complete

(s + 3 + r)-partite graph, where each part has exactly n − 1 ≥
⌊
m
2

⌋
vertices. It is

straightforward to see that this complete (s+3+ r)-partite graph contains Ws+2,m.
Indeed, Cm is a subgraph of the induced subgraph on r+1 of the vertex classes, and
Ks+2 is a subgraph of the induced subgraph on the remaining s+ 2 vertex classes.

Subcase 2.2: Suppose that G has a component, say H0, of order at least n.

Claim: There are two vertices u, v ∈ V (H0) such that

(i) u is not adjacent to v in G, and
(ii) |NG(u) ∪NG(v)| ≤ 2n− 5.

Proof. Suppose that Tn = Sn. Then every vertex is of degree n − 2 in G. Let
u ∈ V (H0) and consider the graph G[{u} ∪ NG(u)]. Note that it is of order n − 1
and that it is a subgraph of H0. Since H0 is connected, there is a vertex v ∈
V (H0) − ({u} ∪ NG(u)) that is adjacent to some vertex in NG(u). Note that u is
not adjacent to v and NG(u) ∩NG(v) ̸= ∅. Therefore,

|NG(u) ∪NG(v)| = |NG(u)|+ |NG(v)| − |NG(u) ∩NG(v)|
= (n− 2) + (n− 2)− |NG(u) ∩NG(v)| ≤ 2n− 4− 1 = 2n− 5 .

Suppose that Tn ̸= Sn. Then Tn can be drawn as a rooted tree with one vertex at
level 1. Let Li denote all the vertices at level i. Note that

(i) each vertex at level Li is adjacent to a unique vertex at level Li−1; and
(ii) no two vertices at level Li are adjacent to each other.

Since Tn ̸= Sn, Tn has at least three levels. Since every vertex in H0 has degree at
least n − 2, H0 has a subgraph T of order n − 1, and it is also a subgraph of Tn.
Let ℓ be the total levels of Tn. Then ℓ ≥ 3 and there is a vertex in T , say u0 at
level ℓ− 1 such that if a vertex x ∈ X = V (H0)− V (T ) and an edge xu0 ∈ E(H0)
are added to T , then the resulting tree is Tn. This implies that u0 is not adjacent
to any vertex in X. Since u0 has degree at least n− 2, it must be of degree exactly
n− 2 and it is adjacent to every vertex in V (T )− {u0} in H0.

Since H0 is connected and of order at least n, there is a vertex in X that is
adjacent to a vertex in V (T ). Let Q be the set of all vertices at level ℓ in T that
are adjacent to u0. Consider the tree T − Q. Either there is an edge connecting
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a vertex in X with a vertex in T − Q or there is no edge connecting a vertex in
X with a vertex in T − Q. Suppose that the latter holds and let b be a vertex in
T −Q. Since b has degree at least n− 2 and is not adjacent to any vertex in X, it
must be of degree exactly n−2 and is adjacent to every vertex in V (T )−{b}. This
means that H0[V (T )−Q] is a complete graph and every vertex in Q is adjacent to
every vertex in T −Q.

Since H0 is connected, we can find a vertex a in X and a vertex q in Q such
that aq is an edge in H0. Let c be the unique vertex at level ℓ− 2 that is adjacent
to u0. Now, we interchange the nodes c and q in T and consider the resulting graph
T ′. We can do this because q is adjacent to every vertex in T − Q. Note that
V (T ) = V (T ′). Let Q′ be the set of all the vertices at level ℓ in T ′ that are adjacent
to u0. Then aq is the edge connecting the vertex a in X with the vertex q in T ′−Q′.
Hence, we may assume from the beginning that there is an edge connecting a vertex
in X, say z, with a vertex u in T −Q.

Let u0u1 . . . ut = u be the unique path in T connecting u0 to ut. Note that u1

is the unique vertex at level ℓ − 2 that is adjacent to u0. Since u0 is not adjacent
to z, we have t ≥ 1. We may assume that t is the smallest positive integer such
that NG(ut) ∩ X ̸= ∅ and NG(ui) ∩ X = ∅ for 0 ≤ i ≤ t − 1. This implies that
each u0, . . . , ut−1 has degree n− 2 in H0 and each ui is adjacent to every vertex in
V (T )− {ui} in H0.

Suppose that z has degree at least n− 1 in H0. Then NG(z) = NH0(z) ≥ n− 1.
Now, we are going to form a new tree T ∗ which is a subgraph of H0. Suppose that
t = 1. First, we remove u0 and all the vertices that are adjacent to u0 at level ℓ from
T . Second, we add the vertex z at level ℓ−1 and an edge connecting z to u1. Let the
resulting graph be T ∗. Note that the graph T ∗ is of order |V (T )| − |NT (u0)|+ 1 =
n−|NG(u0)|. So, |V (T ∗)−{z}| = n−|NT (u0)|−1. Now, z has degree at least n−1
implies that we can find |NT (u0)| vertices in NG(z) − (V (T ∗) − {z}). By adding
these vertices to level ℓ in T ∗ and edges connecting these vertices to z, the resulting
tree is Tn, a contradiction.

Suppose that t ≥ 2. First, we remove all the vertices that are adjacent to u0

at level ℓ from T . Note that |NT (u0)| − 1 vertices are removed from T . Let the
resulting graph be S. Second, we interchange the node ut and u0 in S. This can be
done as u0 is adjacent to every vertex in V (T ) − {u0} in H0 and u1 is adjacent to
ut (recall that each u0, . . . , ut−1 has degree n− 2 and is adjacent to every vertex in
V (T )− {ui}). Let the resulting graph be S ′. If ut has degree at least n− 1 in H0,
Then following the argument from the previous paragraph, adding some vertices in
NG(ut) and edges connecting them to ut into the graph S ′, we obtain the tree Tn,
a contradiction.

So, we may assume that ut has degree n− 2. Note also that if ut is not adjacent
to one of the vertices in V (S)− {ut} in H0, then following the argument as in the
previous paragraph, by adding some vertices in NG(ut) and edges connecting them
to ut into the graph S ′, we obtain the tree Tn. So, we may assume that ut is adjacent
to every vertex in V (S)− {ut} in H0. In this scenario, let’s consider the graph T .
We interchange the node ut and u1 in T . This can be done because ut is adjacent
to all vertices that are adjacent to u1 in T . Now, we are in the situation as in the
previous paragraph with t = 1. Hence, we may assume that z has degree n− 2.
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Now, let u = ut−1 and v = z. Then u and v are not adjacent in G and
ut ∈ NG(u) ∩NG(v), which means that |NG(u) ∩NG(v)| ≥ 1. Since u and v are of
degree n− 2, we have |NG(u) ∪NG(v)| ≤ 2n− 5.

This completes the proof of the claim.

Let u, v ∈ V (H0) be two vertices satisfying the conditions in the Claim and let
Y0 = {u, v} ∪NG(u) ∪NG(v). Then

|Y0| ≤ |{u, v}|+ |NG(u) ∪NG(v)| ≤ 2n− 3 .

Let Y1 = V (G) − Y0. Note that u and v are not adjacent to any vertices in Y1.
Consider the graph G[Y1]. Note that G[Y1] is of order at least

|V (G)| − |Y0| ≥
(
(s+ 2 + r)(n− 1) + ℓ− 1

)
− (2n− 3) = (s+ r)(n− 1) + ℓ

≥ R(Tn,Ws,m) .

Thus, G[Y1] contains Ws,m. Now, u and v are adjacent to each other and to each
vertex in Y1 in G. So, by adding u and v to the hub of Ws,m, we obtain Ws+2,m.

This completes the proof of the lemma.

Theorem 3.4.4. Let m ≥ 3. Then

(a) If m is odd and n ≥ 25m, then R(Tn,Ws,m) = (s+ 2)(n− 1) + 1.
(b) If m is even, n ≥ 25(m− 1) and s ≥ 4n− 3,

then R(Tn,Ws,m) = (s+ 1)(n− 1) + 1.

Proof. (a) For all odd m ≥ 3, χ(Ws,m) = s+3 and t(Ws,m) = 1. By Theorem 2.2.7,
we have R(Tn,Ws,m) ≥ (s+ 2)(n− 1) + 1 for any tree of order n.

For the upper bound, recall that the wheel graph Wm is the graph K1 + Cm.
Therefore, R(Tn,Wm) ≤ R(Tn, Cm) + (n− 1) = 3(n− 1) + 1 by Theorem 3.4.2 and
Lemma 3.1.1. Therefore, R(Tn,Ws,m) ≤ R(Tn,Wm)+(s−1)(n−1) ≤ (s+2)(n−1)+1
by Theorem 3.1.2. Hence, R(Tn,Ws,m) = (s+ 2)(n− 1) + 1.

(b) Now, m is even implies that m− 1 is odd and m− 1 ≥ 3. Let G be a graph of
order 3n − 2. Suppose that G does not contain Tn. Then G contains a subtree T ′

that is also a subtree of Tn and is maximal in the sense that it cannot be extended
to a larger tree in Tn. Note that T ′ ̸= Tn. Thus, T

′ is at most of order n− 1. This
implies that there is a vertex u ∈ V (T ′) such that if a new vertex z′ and a new edge
uz′ are added to T ′, then it is a larger subtree of Tn. Thus, u is not adjacent to any
vertex in X = V (G)− V (T ′) in G.

We now consider the graphG[X]. It is of order at least 3n−2−(n−1)=2n−1. By
Theorem 3.4.2, G[X] contains Cm−1, say a1a2 . . . am−1a1. Since u is adjacent to every
vertex of X in G, a1a2 . . . am−1ua1 forms Cm in G. Thus, R(Tn, Cm) ≤ 3n− 2. By
Lemma 3.1.1, R(Tn,Wm) ≤ R(Tn, Cm)+(n−1) ≤ 2(n−1)+2n−1. By Lemma 3.4.3,
R(Tn,W3,m) ≤ 4(n−1)+2n−2 and then R(Tn,W5,m) ≤ 6(n−1)+2n−3. Continuing
this way, we see that R(Tn,W2(2n−1)−1,m) ≤ ((2(2n − 1) − 1) + 1)(n − 1) + 1. So,
R(Tn,Ws,m) ≤ (s+1)(n− 1)+ 1 for all s ≥ 2(2n− 1)− 1 = 4n− 3 by Lemma 3.1.1
and induction.

For the lower bound, χ(Ws,m) = s + 2 and t(Ws,m) = 1. By Theorem 2.2.7,
R(Tn,Ws,m) ≥ (s+ 1)(n− 1) + 1, so R(Tn,Ws,m) = (s+ 1)(n− 1) + 1.
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Chapter 4

Ramsey numbers for tree graphs with maximum degree of

n− 1, n− 2 and n− 3 versus the wheel graph of order 9

In this chapter, we will look at the Ramsey numbers for tree graphs Tn of order
n versus the wheel graph W8 of order 9, focusing on tree graphs with maximum
degree of at least n − 3. Similar results have been determined independently by
Hafidh and Baskoro [33].

4.1 Introduction

In 2006, Chen, Zhang and Zhang [22] determined R(Tn,W6) and showed that this
number is not generally 2n− 1, especially when Tn is one of the graphs Sn, Sn(1, 1)
or Sn(1, 2). So as the first step to analyse the Ramsey numbers for tree graphs of
order n versus the wheel graphs W8 of order 9, we first look at these trees. So,
in this chapter, we will present results for tree graphs Tn with maximum degree of
n− 1, n− 2 and n− 3 or, more specifically, on Sn, Sn(1, 1), Sn(1, 2) and Sn(3).

4.2 Ramsey numbers for tree graphs with maximum degree of
n− 1 and n− 2 versus the wheel graph of order 9

In this section, we investigate the Ramsey numbers for tree graphs with maximum
degree of n − 1 and n − 2 versus the wheel graph of order 9. There are only
two types of graph need to be studied, namely Sn and Sn(1, 1). In a series of
papers [56, 57, 58], Zhang et al. determined the Ramsey numbers R(Sn,W8) for the
star graph Sn versus the wheel graph W8, as stated in Theorem 2.2.6. Now, we only
need to consider Sn(1, 1).

Theorem 4.2.1. For n ≥ 5,

R
(
Sn(1, 1),W8

)
=

{
2n+ 1 if n is odd,

2n if n is even.

Proof. Consider the graph G = Kn−1 ∪H where

H =


n−5
4
K4 ∪K3,3 if n ≡ 1 (mod 4);

n+1
4
K4 if n ≡ 3 (mod 4);

2K4 if n = 8;

Cn if n is even and n ̸= 8.

Note that G is a graph of order 2n when n is odd and of order 2n−1 when n is even.
Also, G does not contain Sn(1, 1) since Kn−1 does not contain Sn(1, 1) and since H
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is (n− 3)-regular when n ̸= 8 and 4-regular when n = 8. Assume that G contains
W8 with hub x. Then x /∈ V (Kn−1) as H does not contain C8, and so x ∈ V (H).
Since x is adjacent to at most 3 vertices in H, at least 5 vertices in V (Kn−1) are
vertices of a cycle C8 in G, a contradiction since Kn−1 has no edges. Therefore, G
does not contain W8, so R(Sn(1, 1),W8) ≥ |V (G)|+ 1 = 2n+ (n mod 2).

Now let G be a graph that does not contain Sn(1, 1) and assume that G does
not contain W8. Let n ≥ 5 be odd and suppose that G has order 2n + 1. By
Theorem 2.2.6, R(Sn,W8) = 2n+ 1, so G contains Sn. Let v be a vertex in G that
is adjacent to all vertices in a set L of n− 1 ≥ 4 vertices. Since G does not contain
Sn(1, 1), L must be an independent set and no vertex in L is adjacent to any vertex
in U = V (G)− ({v} ∪L). Now |U | = n+1 and G[U ] does not contain Sn(1, 1), so,
by Lemma 2.2.9, some vertex u1 in U is not adjacent to at least two other vertices
in U , say u0 and u2. Let u3 and u4 be two other vertices in U and consider any
vertices v1, . . . , v4 ∈ L. Then L ∪ {u0, . . . , u4} spans W8 in G with hub v1 and rim
v2u0u1u2v3u3v4u4v2, a contradiction. Therefore, R(Sn(1, 1),W8) ≤ 2n+ 1.

For even n ≥ 6, suppose that G has order 2n. If G has a vertex v that is adjacent
to all vertices in a set L of n−1 ≥ 5 vertices, Then as above, G must contain W8, a
contradiction. Therefore, ∆(G) ≤ n− 2. By Theorem 2.2.6, R(Sn−1,W8) = 2n− 1,
so G contains a vertex-disjoint star Sn−1. Let u be its centre vertex. Since G−{u}
is of order 2n − 1, it must contain another star Sn−1. These two stars are vertex-
disjoint since ∆(G) ≤ n − 2 and G does not contain Sn(1, 1). Let X1 and X2

be the vertex sets of these two stars. Then for each i ∈ {1, 2}, no vertex of Xi

is adjacent to any vertex outside Xi. Therefore, G contains W8 with a vertex
x ∈ V (G)− (X1 ∪X2) as hub and its C8 rim spanned by X1 ∪X2, a contradiction.
Therefore, R(Sn(1, 1),W8) ≤ 2n.

4.3 Ramsey numbers for tree graphs with maximum degree of
n− 3 versus the wheel graph of order 9

In this section, we study the Ramsey numbers R(Tn,W8) for tree graphs Tn with
maximum degree of n − 3 versus the wheel graph W8 of order 9. There are three
types of graph to be studied, namely Sn(1, 2) and Sn(3) and Sn(2, 1). Before we
continue, there are several observations and lemmas have to be introduced.

First note two very simple observations for the existence of Sn(1, 2) in a graph
and the existence of W8 in the complement of a graph. These observations will be
used repeatedly in deriving the exact Ramsey numbers for Sn(1, 2) versus W8.

Observation 4.3.1. If a graph G contains Sn−1 and there is a vertex v ∈ V (G)−
V (Sn−1) such that v is adjacent to at least two leaves of Sn−1, then G contains
Sn(1, 2).

Observation 4.3.2. If G = H1 ∪ H2 is the disjoint union of graphs H1 and H2,
where H1 contains S5 and H2 is a graph of order at least 4, then G contains W8.

Lemma 4.3.3. Let n ≥ 6. If H is a graph of order n+ 1 with δ(H) ≥ n− 3, then
either H contains Sn(1, 2), or n ≡ 3 (mod 4) and H is the disjoint union of n+1

4

copies of K4; i.e., H = n+1
4
K4.

Proof. Suppose that some vertex in H has degree at least n − 2; then H contains
Sn−1. Since δ(H) ≥ n − 3 ≥ 3, the two vertices in V (H) − V (Sn−1) are either
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adjacent and must each be adjacent to at least one leaf of Sn−1, or they are not
adjacent and must each be adjacent to at least two leaves of Sn−1. In either case,
H contains Sn(1, 2).

Now suppose that H is (n − 3)-regular and let v0 be any vertex of H. The
set U = V (H) − NH(v0) has exactly 3 vertices, each with degree n − 3 ≥ 3 and
each therefore adjacent to at least one vertex in NH(v0). If H[U ] has an edge, then
H contains Sn(1, 2); otherwise, U is an independent set, and so {v0} ∪ U is an
independent set of size 4. Furthermore, NH(u) = NH(v0) for all u ∈ U , as every
vertex has degree n − 3. Hence, H[{v0} ∪ U ] = K4 and is a component in H.
Applying the above arguments to each vertex v0 ∈ V (H) shows that either that H
contains Sn(1, 2) or that H is the disjoint union of n+1

4
copies of K4, in which case

n ≡ 3 (mod 4).

Lemma 4.3.4. Let H1 be a graph whose complement H1 contains S4, and let H2

be a graph of order m ≥ 5. If G = H1 ∪H2, then either G contains W8, or H2 is
Km or Km − e, where e is an edge in Km.

Proof. If H2 has at most one edge, then H2 is the complete graph Km or the graph
Km − e obtained from removing an edge e from Km. Suppose now that H2 has at
least two edges. Consider a star S4 in H1 and let v0 be its centre and v1, v2, v3 its
leaves. Note that each vi is adjacent to each a ∈ V (H2) in G. Choose 5 vertices
a, b, c, d, e ∈ V (H2) such that either ab and cd are independent edges, or abc is
a path, in H2. In both cases, G contains W8 with hub v0. In the former case,
v1abv2cdv3ev1 forms the C8 rim; in the latter, v1abcv2dv3ev1 forms the C8 rim.

The following lemmas provides sufficient conditions for a graph or its comple-
ment to contain C8.

Lemma 4.3.5. Suppose that U = {u1, . . . , u4} and V = {v1, . . . , v4} are two dis-
joint subsets of vertices of a graph G for which |NG[V ](u)| ≤ 1 for each u ∈ U and
|NG[U ](v)| ≤ 2 for each v ∈ V . Then G[U ∪ V ] contains C8.

Proof. Suppose that NG[U ](v) ≤ 1 for each v ∈ V . Then G[U ∪ V ] contains a
subgraph obtained by removing a matching from K4,4 and therefore contains C8.
Suppose now that NG[U ](v1) = {u1, u2}, and assume without loss of generality that
v3 /∈ NG[V ](u3) and v4 /∈ NG[V ](u4). Neither u1 nor u2 is adjacent to v2, v3 or v4, so
v1u3v3u1v2u2v4u4v1 forms C8 in G[U ∪ V ].

Lemma 4.3.6. Let U = {u1, u2, u3} and V = {a, b, c, d, e, f} be disjoint sets of
vertices of a graph G. Suppose that, for each v ∈ V , either v is adjacent to all
vertices in U , or v is adjacent to exactly two vertices in U and every vertex in
V − {v}. If G[V ] has at least two edges, then G[U ∪ V ] contains C8.

Proof. Consider the set X = {v ∈ V : v is not adjacent to some vertex in U}.
Case 1: Suppose that |X| = 0. The graph G[V ] contains either a path of length
two, say abc, or two disjoint edges, say ab and cd. Then either eu1abcu2du3e or
eu1abu2cdu3e forms C8 in G.

Case 2: Suppose that 1 ≤ |X| ≤ 4. Without loss of generality, assume that
e, f ∈ V −X and a ∈ X. Then a is adjacent to each vertex in V − {a}. Now, b is
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adjacent to some vertex in U , say u1, and c is adjacent to at least one other vertex
in U , say u2. Then u1bacu2eu3fu1 forms C8.

Case 3: Suppose that |X| = 5. Then V −X contains a single vertex, say f , and
G[V − {f}] = K5. Without loss of generality, a is adjacent to u1 and e is adjacent
to u2. Then u1abcdeu2fu1 forms C8.

Case 4: Suppose that |X| = 6. Then G[V ] = K6. Each vertex in V is adjacent to
2 vertices in U , so 12 edges connect the 3 vertices in U with the 6 vertices in V .
Thus, some vertex ui is adjacent to at least 4 vertices in V and some other vertex
uj is adjacent to at least 3 vertices in V . Suppose that ui is adjacent to a and b,
and that uj is adjacent to c and d. Then auibcujdefa forms C8.

In each case, G[U ∪ V ] contains C8.

The next two lemmas consider a graph of order 2n obtained from the disjoint
union of two graphs whose orders differ by at most two.

Lemma 4.3.7. Let G = H1 ∪ H2, where H1 and H2 are graphs of order n ≥ 6.
Then either G contains Sn(1, 2) or G contains W8.

Proof. Suppose that G does not contain Sn(1, 2). Then neither H1 nor H2 is Kn

or Kn − e, where e is an edge in Kn. By Lemma 4.3.4, neither G[H1] nor G[H2]
contains S4, so each vertex in G has degree at most two; hence, each vertex in G
has degree at least n− 3. If some vertex in G has degree at least n− 2, then H1 or
H2 contains Sn(1, 2), a contradiction.

Therefore, G is (n − 3)-regular. Then G[H1] and G[H2] are 2-regular graphs
and must each be a union of cycles. Since |V (H1)| = |V (H2)| = n ≥ 6, there are
vertex-disjoint paths of length two in G[H1], say abc and def , and a path xyz in
G[H2]. Now, as every vertex in V (H2) is adjacent to every vertex in V (H1) in G,
the graph G contains W8 with hub y and rim xabczdefx.

Lemma 4.3.8. For n ≥ 6, let G = H1 ∪H2, where H1 and H2 are graphs of order
n−1 and n+1, respectively. If G does not contain Sn(1, 2) and G does not contain
W8, then n ≡ 3 (mod 4) and H1 = Kn−1 or H1 = Kn−1 − e where e is an edge in
Kn−1, while H2 =

n+1
4
K4.

Proof. The graphH2 does not contain S5 since G would otherwise containW8. Each
vertex of H2 therefore has degree at least n− 3 in H2 (and in G). By Lemma 4.3.3,
n ≡ 3 (mod 4) and H2 is the disjoint union of n+1

4
copies of K4. Therefore, H2

contains S4, and since H1 has order n−1 ≥ 5, Lemma 4.3.4 implies that H1 = Kn−1

or Kn−1 − e where e is an edge in Kn−1.

The following theorem implies that, for most graphs G of order 2n, either G
contains Sn(1, 2) or G contains W8.

Theorem 4.3.9. For n ≥ 6, let G be a graph of order 2n. Suppose that G does not
contain Sn(1, 2) and G does not contain W8. Then n ≡ 3 (mod 4) and G = H1∪H2

where H1 = Kn−1 or H1 = Kn−1 − e where e is an edge in Kn−1, and H2 =
n+1
4
K4.

Proof. Since n − 1 ≥ 5, G has a subgraph T = Sn−1(1, 1) by Theorem 4.2.1. Let
V (T ) = {a, v0, . . . , vn−3} and E(T ) = {v0v1, . . . , v0vn−3, v1a}.
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Assume that v0 is adjacent to a vertex vn−2 in V (G) − V (T ). Then the graph
T1 = Sn(1, 1) is obtained from T by adding the vertex vn−2 and the edge v0vn−2.
Since G does not contain Sn(1, 2), a is not adjacent to any vertex in V (G)−{v0, v1}.
Let U = V (G)− V (T1) and note that |U | = n ≥ 6. If each vertex of U has degree
at least n− 2 in G[U ], then G[U ] contains Sn(1, 2), a contradiction. There is then
a vertex of U with degree at most n− 3 in G[U ], so G[U ] contains a path of length
two. Since G does not contain Sn(1, 2), each vertex u ∈ U is adjacent to at most
one vertex in {v1, . . . , vn−2} and if u is adjacent to one of these vertices, then u is
not adjacent to any vertex in U . Let Y1 = {v2, v3, v4} and Y2 ⊂ U be a set of six
vertices such that G[Y2] contains a path of length two. Then the graph G[Y1 ∪ Y2]
satisfies the conditions in Lemma 4.3.6 and therefore contains C8 which, with a as
hub, forms W8, a contradiction.

Hence, v0 is not adjacent to any vertex in V (G) − V (T ). Let G = H1 ∪ H2,
where H1 is the component of G containing T and where V (H2) may be empty.
Set U = V (H1)− V (T ) and note that a is not adjacent to any vertex in U since G
does not contain Sn(1, 2). If G[U ] contains an edge uv, then since H1 is connected,
either u or v is adjacent to vi for some 1 ≤ i ≤ n − 3, and G contains Sn(1, 2), a
contradiction. Therefore, U is independent; indeed, {v0} ∪ U and {a} ∪ U are two
independent sets in G. Assume that |U | ≥ 3. Since |U ∪ V (H2)| = n+1 ≥ 7, there
are at least 3 vertices b, c, d ∈ U and 4 vertices x, y, z, w ∈ U ∪ V (H2) − {b, c, d}.
Together with v0 and a, these vertices spanW8 in G with hub b and rim axv0yczdwa,
a contradiction. Therefore, |U | ≤ 2, so the orders of H1 and H2 differ by at most
two, and the theorem follows from Lemmas 4.3.7 and 4.3.8.

We are now ready to determine the exact Ramsey number for Sn(1, 2) versusW8.

Theorem 4.3.10. For n ≥ 6,

R(Sn(1, 2),W8) =

{
2n+ 1 if n ≡ 3 (mod 4),

2n otherwise.

Proof. For the upper bound, Theorem 4.3.9 implies that R(Sn(1, 2),W8) ≤ 2n
unless n ≡ 3 (mod 4). Suppose that n ≡ 3 (mod 4), and let G be a graph of order
2n+1 such that G does not contain W8. Then G contains Sn by Theorem 2.2.6. For
any vertex a /∈ V (Sn), the graph G1 = G− {a} has order 2n and contains a vertex
of degree at least n−1, so G1 cannot equal H1∪H2 for H1 = Kn−1 or H1 = Kn−1−e

and H2 =
n+1
4
K4. By Theorem 4.3.9, G1 and thus G contains Sn(1, 2).

For the lower bound, let m and ℓ be any non-negative integers with 4m+3ℓ = n;
such integers exist since n ≥ 6. Consider the graph G = Kn−1 ∪ H, where H =
n+1
4
K4 if n ≡ 3 (mod 4) and H = mK4 ∪ ℓK3 otherwise. Now, Kn−1 does not

contain Sn(1, 2); nor does H, since each vertex v of H has degree at most n − 3
and the set of vertices in H that are not adjacent to v is an independent set in G.
Thus, G does not contain Sn(1, 2). Assume that G contains W8 with hub x. Then
x /∈ V (Kn−1) since H does not contain C8, so x ∈ V (H). Since x is adjacent to
at most 3 vertices in G[V (H)], at least 5 vertices in V (Kn−1) are vertices of C8

subgraph of G, a contradiction since Kn−1 has no edges. Therefore, G does not
contain W8, completing the proof of the theorem.
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Theorem 4.3.11. If n ≥ 6, then

R(Sn(3),W8) =

{
2n− 1 , for odd n ≥ 9 ;

2n , otherwise .

Proof. First, consider the case where n ≥ 9 is odd. The graph 2Kn−1 does not
contain Sn(3) and its complement does not contain W8, so R(Sn(3),W8) ≥ 2n− 1.
To prove that R(Sn(3),W8) ≤ 2n−1, let G be any graph of order 2n−1 and assume
that G does not contain Sn(3) and that G does not contain W8. By Theorem 2.2.6,
G contains Sn−2. Let v0 be the centre of Sn−2 and let L = {v1, . . . , vn−3} be its
leaves. Set U = V (G)−V (Sn−2); then |U | = n+1. Since G does not contain Sn(3),
v1, . . . , vn−3 are each adjacent to at most one vertex in U .

Claim 1: If some vertex in U is adjacent in G to at least 4 vertices in L, then G
contains W8.

Proof of Claim 1. Let v1, v2, v3 and v4 be vertices in L that are adjacent in G to
some vertex u ∈ U . Set U ′ = U − {u} and write U ′ = {u1, . . . , un}. Then v1, v2,
v3 and v4 are not adjacent in G to any vertex of U ′. Assume that ∆(G[U ′]) ≤ 3;
then δ(G[U ′]) ≥ n − 4. Since n is odd, the Handshaking Lemma implies that
∆(G[U ′]) ≥ n − 3, so some vertex of U ′, say u1, must be adjacent in G to at
least other n − 3 vertices of U , say u2, . . . , un−2. Note that un−1 and un are both
adjacent to at least n − 6 vertices of {u2, . . . , un−2} in G. If n ≥ 11, then at least
one of u2, . . . , un−2 is adjacent to both un−1 and un, forming Sn(3), a contradiction.
Suppose that n = 9. The vertices u8 and u9 cannot both be adjacent in G to some
vertex in {u2, . . . , u7} since that would form Sn(3); therefore, u8 and u9 are adjacent
to each other as well as to u1; also, u8 is adjacent to three of the vertices u2, . . . , u7

and u9 is adjacent to other the three, again forming S9(3) in G, a contradiction.
Therefore, ∆(G[U ′]) ≥ 4 and, by Observation 4.3.2, G contains W8.

Claim 2: If each vertex in U is non-adjacent in G to at least 5 vertices of L, then
G contains W8.

Proof of Claim 2. Assume that ∆(G[U ]) ≤ 3. Then δ(G[U ]) ≥ n − 3. Write U =
{u1, . . . , un+1}. Without loss of generality, u1 is adjacent in G to every vertex of
U ′ = {u2, . . . , un−2}. Now, un−1, un and un+1 are each adjacent to at least n − 6
vertices of U ′. Since n ≥ 9, at least two of un−1, un and un+1 are adjacent to some
vertex in U ′, forming Sn(3) in G, a contradiction.

Therefore, ∆(G[U ]) ≥ 4. Then some vertex u ∈ U is adjacent in G to at
least 4 other vertices of U , say u1, . . . , u4. Let v1, . . . , v5 be 5 vertices of L that
are not adjacent to u in G. If any of u1, . . . , u4 is adjacent in G to 4 vertices
from {v1, . . . , v5}, then G contains W8 by Claim 1. Otherwise, u1, . . . , u4 are each
adjacent in G to at least two of v1, . . . , v5. Since each vertex vi is adjacent to at
most one vertex in U , it is adjacent in G to at least 3 vertices from {u1, . . . , u4}.
Then 4 vertices vi together with u1, . . . , u4 form C8 in G, and thus W8 with vertex
u as hub, a contradiction.
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Proof of Theorem 4.3.11 (continued). For n ≥ 11, |L| ≥ 8. By Claim 1, each vertex
in U is adjacent in G to at most 3 vertices of L. Then by Claim 2, G contains W8,
a contradiction.

Suppose that n = 9; then |L| = 6. By Claim 1, each vertex in U is adjacent in
G to at most 3 vertices in L. Therefore, by Claim 2, at least one vertex u ∈ U must
be adjacent in G to either 2 or 3 vertices of L. Assume that u is adjacent in G to
exactly 3 vertices of L, say v, v′ and v′′. Set U ′ = U − {u} and note that no vertex
in U ′ is adjacent in G to v, v′ or v′′. If each vertex in U ′ is adjacent to at most two
vertices in L, then every vertex in U ′ is non-adjacent to at least 4 vertices in L. If
∆(G[U ′]) ≥ 4, then some vertex u′ ∈ U ′ is non-adjacent to at least 4 vertices of
L and 4 vertices of U ′ in G. Since 3 of the vertices in L are non-adjacent to each
vertex in U ′ and dU ′(v) ≤ 1 for all v ∈ L, these 8 vertices form C8 in G which, with
u′ as hub, forms W8 in G, a contradiction. If ∆(G[U ′]) ≤ 3, then δ(G[U ′]) ≥ 5. By a
similar argument to that in the proof of Claim 1, G contains S9(3), a contradiction.
Therefore, suppose that some vertex in U ′ is non-adjacent to exactly 3 vertices of
L in G. Let u′ and u′′ be the two vertices that are adjacent to exactly 3 vertices of
L in G. Note that no vertex of L is adjacent in G to the vertices in U −{u′, u′′}. If
∆(G[L]) ≥ 4, then G contains W8 by Observation 4.3.2, a contradiction. Therefore,
∆(G[L] ≤ 3 and so δ(G[L]) ≥ 2. Since S9(3) ⊈ G, v0 is not adjacent in G to any
vertex of U . Now, if δ(G[U ]) ≥ 6, by the similar argument to that in the proof
of Claim 2, G contains S9(3), a contradiction. On the other hand, suppose that
δ(G[U ]) ≤ 5. Then ∆(G[U ]) ≥ 4, so some vertex u ∈ U is adjacent in G to at least
4 other vertices of U . Together with v0 and 3 other vertices from L, these 5 vertices
from U form W8 in G with u as hub, a contradiction.

Now, consider the case where u ∈ U is adjacent in G to exactly two vertices of L,
say v and v′. Set U ′ = U −{u} and note that every vertex in U is adjacent in G to
at most two vertices of L; for otherwise, relabel the vertex u and apply the previous
case. If u is non-adjacent to at least 4 vertices in U ′, then since dG[U ′](w) ≤ 1
for all w ∈ L, these 4 vertices and the remaining 4 vertices of L form C8 in G
by Lemma 4.3.5 and, with u as hub, form W8, a contradiction. Therefore, u is
adjacent to at least 6 vertices of U ′ in G. Then neither v and v′ are adjacent to
the remaining 4 vertices in L, since G does not contain S9(3). Then 4 vertices of
U ′ and the 4 vertices of L form C8 in G by Lemma 4.3.5 and, with v as hub, form
W8, a contradiction.

Hence, R(Sn(3),W8) ≤ 2n− 1, so R(Sn(3),W8) = 2n− 1 for all odd n ≥ 9.
Now, consider the cases in which n = 7 and n ≥ 6 is even. Define the graph

G = Kn−1 ∪ H, where H is as shown in Figure 4.1 if n = 7; H = n
4
K4 if n ≡ 0

(mod 4); and H = n−6
4
K4 ∪ 2K3 if n ≡ 2 (mod 4). Since G has no Sn(3) subgraph

and G does not contain W8, R(Sn(3),W8) ≥ 2n.

Figure 4.1: The graph H when n = 7.
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For the upper bound, let G be any graph of order 2n. Suppose to the contrary
that G does not contain Sn(3) and G does not containW8. By Theorem 2.2.6, G has
a subgraph T = Sn−1. Let v0 be the centre of T and L = NT (v0) = {v1, . . . , vn−2}.
Set U = V (G)− V (T ); then |U | = n+ 1.

Case 1: EG(L,U) ̸= ∅.
Without loss of generality, assume that v1 is adjacent to u ∈ U , and set U ′ =

U − {u}. Since G does not contain Sn(3), NG(v1) = {v0, u} and dU ′(vi) ≤ 1 for
2 ≤ i ≤ n−2. Then for n ≥ 7, there are 4 vertices from L−{v1} and 4 vertices from
U ′ that together form C8 in G and, with v1 as hub, form W8 in G, a contradiction.

Suppose that n = 6. If ∆(G[U ′]) ≥ 3, then some vertex u′ ∈ U ′ is adjacent in G
to at least 3 other vertices of U ′, say u1, u2, u3. Since dU ′(vi) ≤ 1 for 2 ≤ i ≤ n− 2,
each vi is adjacent in G to at least two of u1, u2, u3, and so G contains W8. To
illustrate this, suppose that v2 is adjacent to u1. Since v3 is adjacent to two of
u1, u2, u3 in G, v3 must be adjacent to another vertex other than u1, say u2, in
G. Let u4 and u5 be the two remaining vertices of U ′. Then v2u1u

′u2v3u4v4u5v2
and v1 W8 in G, a contradiction. Therefore, ∆(G[U ′]) ≤ 2, and δ(G[U ′]) ≥ 3. Let
U ′ = {u1, . . . , u6}. Suppose that U ′ has a vertex, say u1, that is adjacent in G to at
least 4 other vertices, say u2, u3, u4, u5. Then u6 is adjacent to ui and ui is adjacent
to uj for some 2 ≤ i ̸= j ≤ 5, so G[U ′] contains S6(3), a contradiction. Therefore,
G[U ′] is 3-regular. Suppose that u1 is adjacent to u2, u3 and u4. Since u5 and u6 are
adjacent to at least two of u2, u3, u4, ui is adjacent to u5 and u6 for some 2 ≤ i ≤ 4.
Then G[U ′] contains S6(3), a contradiction.

Case 2: EG(L,U) = ∅.
If n is even, then R(Sn(1, 1),W8) = 2n by Theorem 4.2.1, and Case 1 applies.

Hence, it suffices to consider n = 7. If ∆(G[U ]) ≥ 4, then some vertex u ∈ U
is adjacent in G to at least 4 vertices of U . Together with any 4 vertices from
L, these vertices form W8, with u as hub, in G, a contradiction. Suppose that
∆(G[U ]) ≤ 3. Then δ(G[U ]) ≥ 4. Write U = {u1, . . . , u8} where u1 is adjacent
to {u2, . . . , u5}. Since δ(G[U ]) ≥ 4, each of the vertices u6, u7, u8 is adjacent to at
least one of u2, . . . , u5. If u1 is not adjacent in G to u6, u7 or u8 in G, then one of
u2, . . . , u5 is adjacent to at least two of these 3 vertices and G therefore contains
S7(3), a contradiction. Now, suppose that u1 is adjacent to one of u6, u7, u8, say
u6. Since δ(G[U ]) ≥ 4, u7 is adjacent to at least two vertices of u2, . . . , u6, say u2

and u3. Since δ(G[U ]) ≥ 4, u2 is adjacent to another vertex from u3, . . . , u6. Then
G therefore contains S7(3), a contradiction.

In either case, R(Sn(3),W8) ≤ 2n for n = 7 and even n ≥ 6.

Theorem 4.3.12. If n ≥ 6, then

R(Sn(2, 1),W8) =

{
2n− 1 , if n is odd .

2n , otherwise .

Proof. When n is odd, note that G = 2Kn−1 has no Sn(2, 1) subgraph and G does
not contain W8. Hence, R(Sn(2, 1),W8) ≥ 2n−1. When n is even, define H = n

4
K4

if n ≡ 0 (mod 4) and H = n−6
4
K4 ∪ 2K3 if n ≡ 2 (mod 4); then G = Kn−1 ∪ H

does not contain Sn(2, 1) and G does not contain W8. Hence, R(Sn(2, 1),W8) ≥ 2n.
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Now let G be a graph of order n + 2⌊n/2⌋ and assume that G does not con-
tain Sn(2, 1) and that G does not contain W8. Suppose that n ≥ 8. Then by
Theorem 4.3.11, G has a subgraph T = Sn(3). Let V (T ) = {v0, . . . , vn−1} and
E(T ) = {v0v1, . . . , v0vn−3, v1vn−2, v1vn−1}. Set U = V (G) − V (T ) and U ′ =
{vn−2, vn−1} ∪ U ; then |U | = 2⌊n/2⌋. Since Sn(2, 1) ⊈ G, none of v2, . . . , vn−3

is adjacent to any vertex in U ′. Then ∆(G[U ′]) ≤ 3 by Observation 4.3.2. This
implies that δ(G[U ′]) ≥ |U ′| − 4 ≥ n − 3. Choose a S|U ′|−3 subgraph in G[U ′] and
note that each of the remaining 3 vertices in U ′ must be adjacent to at least two
leaves of this S|U ′|−3, forming Sn(2, 1), a contradiction.

Suppose now that n = 7. Then G is a graph of order 13. Two cases are now
considered.

Case 1a: Suppose that ∆(G) ≥ 5.
Let T be an S6 subgraph in G with centre v0 and leaves L = {v1, . . . , v5}. Set

U = V (G) − V (T ). Since G[U ] does not contain S7(2, 1), it is straightforward
to verify that δ(G[U ]) ≤ 2. Therefore, ∆(G[U ]) ≥ 4. If at least 4 vertices in L
are not adjacent to any vertex in U , then G contains W8 by Observation 4.3.2, a
contradiction. Since G does not contain S7(2, 1), the only possible case avoiding
the above scenario is when two of the vertices in L, say v1 and v2, are adjacent to
a common vertex u ∈ U . Again as G does not contain S7(2, 1), v5 is not adjacent
to any vertex in L−{v5}, and no vertex in L is adjacent to any vertex in U −{u}.
Then G contains W8 with hub v5 and C8 formed by L− {v5} and any 4 vertices in
U − {u}, a contradiction.

Case 1b: Suppose that ∆(G) ≤ 4.
By Theorem 4.2.1, G has a subgraph T = S6(1, 1). Let V (T ) = {v0, . . . , v5} and

E(T ) = {v0v1, . . . , v0v4, v1v5}. Set U = V (G)−V (T ). As in Case 1a, ∆(G[U ]) ≥ 4.
Since ∆(G) ≤ 4, v0 is not adjacent to any vertex in U , and none of the vertices
v2, v3, v4 is adjacent to any vertex in U since G does not contain S7(2, 1). Again, G
contains W8 by Observation 4.3.2, a contradiction.

In either case, R(Sn(2, 1),W8) ≤ 2n − 1. Hence, R(Sn(2, 1),W8) = 2n − 1 for
all odd n ≥ 7.

Suppose that n = 6. If some vertex u ∈ U is adjacent to v1 in G, then since
G does not contain S6(2, 1), neither v5 nor u is adjacent to v2, v3, v4 or any vertex
in U . Then v3, v4, v5, u and any other 4 vertices of U form C8 in G which, with v2
as hub, forms W8, a contradiction.

Suppose then that v1 is not adjacent in G to any vertex of U . Consider the
following two cases.

Case 2a: Suppose that v1 is not adjacent to v2, v3 or v4.
Let U = {u1, . . . , u6}. If ∆(G[U ]) ≥ 2, then some vertex in U , say u1, is adjacent

to another two vertices in U , say u2 and u3, in G. Then u2u1u3v1u4v2u5v3u2 and v4
form W8 in G, a contradiction. If ∆(G[U ]) ≤ 1, then δ(G[U ]) ≥ 4. Suppose that
u1 is adjacent to u2, . . . , u5 in G. Since u5 and u6 are each adjacent to at least two
vertices of {u2, u3, u4}, G[U ] contains Sn(2, 1), a contradiction.

Case 2b: v1 is adjacent to another vertex of T other than v0 and v5 in G.
Without loss of generality, suppose that v1 is adjacent to v2 in G. Since G

does not contain S6(2, 1), v5 is not adjacent to v3, v4 or any vertex in U . Let
U = {u1, . . . , u6}. If ∆(G[U ]) ≥ 2, then some vertex in U , say u1, is adjacent in G
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to another two vertices in U , say u2 and u3, so u2u1u3v5u4v2u5v3u2 and v4 form W8

in G, a contradiction. Thus, ∆(G[U ]) ≤ 1, and δ(G[U ]) ≥ 4. As in Case 1, G[U ]
must contain Sn(2, 1), a contradiction.

In either case, R(Sn(2, 1),W8) ≤ 2n. Thus, R(Sn(2, 1),W8) = 2n for all even
n ≥ 6.
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Chapter 5

Ramsey numbers for tree graphs with maximum degree of

n− 4 and n− 5 versus the wheel graph of order 9

In this chapter, we will continue to look at the Ramsey numbers for tree graphs
of order n versus the wheel graph W8 of order 9, focusing on tree graphs Tn with
maximum degree n− 4 and n− 5.

5.1 Introduction

Before we start to look into the Ramsey results, in this section, we introduce the
trees that will appear in our discussion. First, we introduce all tree graphs Tn of
order n ≥ 6 with ∆(Tn) = n−4. For n = 6, there is just one such graph, namely the
path graph T6 = P6. Theorem 2.2.4 provides the Ramsey number R(P6,W8) = 12.
For n = 7, there are 5 tree graphs with ∆(T7) = 7 − 4 = 3, which are A, B, C, D
and E shown in Figure 5.1.

A B C

D E

Figure 5.1: Tree graphs of order 7

For n ≥ 8, there are 7 tree graphs Tn of order n with ∆(Tn) = n − 4, namely
Sn(4), Sn[4], Sn(1, 3), Sn(3, 1) as defined in Definition 2.1.12, as well as TA(n),
TB(n) and TC(n) shown in 5.2.

Sn−4

TA(n)

Sn−5

TB(n)

Sn−5

TC(n)

Figure 5.2: Three tree graphs with ∆(Tn) = n− 4.

Next, we introduce all the tree graphs Tn of order n ≥ 7 with maximum degree
of n− 5. For n = 7, there is just one such graph, namely the path graph T7 = P7.
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Theorem 2.2.4 provides the Ramsey number R(P7,W8) = 13. For n ≥ 8, there are
19 tree graphs Tn of order n with ∆(Tn) = n − 5, namely Sn(1, 4), Sn(5), Sn[5],
Sn(2, 2), Sn(4, 1) and the tree graphs shown in Figure 5.3.

Sn−4

TD(n)

Sn−7

TE(n)

Sn−6

TF (n)

Sn−7

TG(n)

Sn−6

TH(n)

Sn−6

TJ(n)

Sn−4

TK(n)

Sn−5

TL(n)

Sn−4

TM(n)

Sn−4

TN(n)

Sn−4

TP (n)

Sn−6

TQ(n)

Sn−6

TR(n)

Sn−6

TS(n)

Figure 5.3: Tree graphs Tn with ∆(Tn) = n− 5.

5.2 Ramsey numbers for tree graphs with maximum degree of
n− 4 versus the wheel graph of order 9

In this section, we discuss the Ramsey numbers for tree graphs with maximum
degree of n − 4 versus the wheel graph of order 9. We will start by looking at the
results for tree graph of order 7. As mentioned in previous section, there will be 5
tree graphs to be discussed, which are A, B, C, D and E as shown in Figure 5.1.

Theorem 5.2.1. R(T,W8) = 13 for T ∈ {A,B,C}.
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Proof. Note that G = 2K6 does not contain A, B or C and that G does not contain
W8. Therefore, R(T,W8) ≥ 13 for T = A,B,C.

Let G be a graph of order 13 whose complement G does not contain W8. By
Theorem 4.3.12, G has a subgraph T = S7(2, 1). Label V (T ) as in Figure 5.4. Set
U = V (G)− V (T ); then |U | = 6.

First suppose that A ⊈ G. Then v1 is not adjacent to v2 or v6, and v2 and v5
are not adjacent.

v1 v5 v6 v2

v3

v4
v7

U

Figure 5.4: S7(2, 1) and U in G.

Case 1a: There is a vertex in U , say u, that is adjacent to v1.
Since A is not contained in G, v1 is not adjacent to v3, v4 or any vertex of U other

than u. Let W = {v2, v3, v4, v6, u1, . . . , u4} for any 4 vertices u1, . . . , u4 in U other
than u. If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10 and, together
with v1 as hub, forms W8, a contradiction. Thus, δ(G[W ]) ≤ 3 and ∆(G[W ]) ≥ 4.
Note that |NG[{u1,...,u4,vi}](vi)| ≤ 1 for i = 2, 3, 4, 6 since G does not contain A. It
is now straightforward to check that v2, v3, v4 and v6 cannot be the vertex with
degree at least 4. Without loss of generality, assume that u1 has degree at least 4
in G[W ]. Then u1 is adjacent to at least one of v2, v3, v4, v6, so G contains A, a
contradiction.

Case 1b: v1 is not adjacent to any vertex in U .
By arguments similar to those in Case 1a, v2 is not adjacent to any vertex in U .

Let W = {v2, v6} ∪ U . If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10
which, with v1 as hub, forms W8 in G[W ], a contradiction. Thus, δ(G[W ]) ≤ 3 and
∆(G[W ]) ≥ 4. Since v2 is not adjacent to any vertex in U , there are only three
subcases to be considered.

Subcase 1b.1: dG[W ](v6) ≥ 4.
Label U = {u1, . . . , u6} so that v6 is adjacent to u1, u2 and u3 in G[W ]. Since

G does not contain A, vertices u1, u2, u3, v2 are not adjacent to v3 or v4 in G. Note
that by arguments as in Case 1a, u1, u2 and u3 are isolated vertices in G[U ]. Then
v1u4u2v3v2u5u3u6v1 and u1 form W8 in G, a contradiction.

Subcase 1b.2: dG[W ](v6) ≤ 3 and v6 is adjacent to some u ∈ U with dG[W ](u) ≥ 4.
The graph G contains A, with u as the vertex of degree 3 in A, a contradiction.

Subcase 1b.3: dG[W ](v6) ≤ 3 and v6 is not adjacent to any vertex u ∈ U with
dG[W ](u) ≥ 4.

Label V (U) = {u1, . . . , u6} so that u6 is adjacent to u2, u3, u4 and u5 in G. Since
A ⊈ G, none of v1, . . . , v7 is adjacent in G to any of u2, . . . , u5. If v1 is not adjacent
in G to any two of the vertices v3, v4, v7, then G contains W8 by Observation 4.3.2,
a contradiction. Therefore, NG[v3,v4,v7](v1) ≥ 2 and, similarly, NG[v3,v4,v7](v2) ≥ 2.
Hence, one of v3, v4, v7 is adjacent in G to both v1 and v2. If v3 or v4 is adjacent to
both v1 and v2, then G contains A, with v7 as vertex of degree 3, a contradiction.
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Finally, if both v1 and v2 are adjacent in G to v7 and each of them is adjacent to
a different vertex in v3 and v4, then G also contains A, where either v1 or v2 is the
vertex of degree 3, a contradiction.

Therefore, R(A,W8) ≤ 13, so R(A,W8) = 13.
Now, suppose that B ⊈ G. Then v1, v2, v5, v6 are not adjacent to v3 or v4 in G,

and v1 and v2 are not adjacent to U in G. Label the vertices U = {u1, . . . , u6} and
let W = {v3, v4} ∪ U . If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10
which, with v1 as hub, forms W8, a contradiction. Therefore, δ(G[W ]) ≤ 3 and
∆(G[W ]) ≥ 4. If v3 or v4 is adjacent to the vertex of degree at least 4 in G[W ],
then B is contained in G, with v7 as the vertex of degree 3. Hence, only two cases
need to be considered.

Case 2a: v3 or v4 is the vertex of degree at least 4 in G[W ].
Without loss of generality, assume that v3 is the vertex of degree at least 4

in G[W ]. As previously shown, v3 is not adjacent to v4. Therefore, it may be
assumed that v3 is adjacent to u1, u2, u3 and u4 in G. Since B ⊈ G, u1, . . . , u4 are
independent in G and are not adjacent to {v1, v2, v4, v5, v6}. Also, v1 is not adjacent
to v6 and v2 is not adjacent to v5. Then v1v6u2v2v5u3v4u4v1 and u1 form W8 in G,
a contradiction.

Case 2b: One of the vertices in U , say u1, is the vertex of degree at least 4 in
G[W ].

As above, u1 is not adjacent to v3 or v4 in G. It may then be assumed that
u1 is adjacent to u2, u3, u4 and u5. Since B ⊈ G, v1, . . . , v7 are not adjacent to
{u2, . . . , u5}. Note that v3 is not adjacent to {v1, v2, v5, v6}. By Observation 4.3.2,
G contains W8, a contradiction.

Therefore, R(B,W8) ≤ 13.
Lastly, suppose that C ⊈ G. Then v5 and v6 are not adjacent in G to each

other or to v3, v4 or U . Furthermore, v5 is not adjacent to v2 and v6 is not adjacent
to v1. Label the vertices U = {u1, . . . , u6} and let W = {v3, v4, v6, u1, . . . , u5}. If
δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10 which, with v5 as hub, forms
W8, a contradiction. Then δ(G[W ]) ≤ 3 and ∆(G[W ]) ≥ 4. Since v6 is not adjacent
to v3, v4 or U , v6 is not the vertex of degree at least 4 in G[W ] and is not adjacent
to that vertex. Note that if v3 or v4 is the vertex of degree 4, then G contains C,
with v3 or v4 and v7 as the vertices of degree 3. Thus, one of the vertices in U , say
u1, is the vertex of degree at least 4 in G[W ]. Now, consider the following three
cases.

Case 3a: Both v3 and v4 are adjacent to u1 in G[W ].
Suppose that u1 is also adjacent to u2 and u3 in G[W ]. Since C ⊈ G, v3 is not

adjacent in G to v4 and neither v3 nor v4 is adjacent to {v1, v2, v5, v6, u2, . . . , u6}.
Note that |NG[{v1,v2,ui}](ui)| ≤ 1 for i = 2, 3 since C ⊈ G. If v1 is adjacent to u2 and
u3 in G, then v1u2v5u4v3u5v6u3v1 and v4 form W8 in G, a contradiction. Therefore,
v1 is adjacent in G to at least one of u2 and u3. Similarly, v2 is adjacent to at least
one of u2 and u3. Since |NG[{v1,v2,ui}](ui)| ≤ 1 for i = 2, 3, v1 is adjacent to u2 and v2
is adjacent to u3, or vice versa. Then neither u2 nor u3 is adjacent in G to u4, u5, u6,
since C ⊈ G. Therefore, v1v3v2v5u2u4u3v6v1 and v4 form W8 in G, a contradiction.

Case 3b: One of v3 and v4, say v3, is adjacent to u1 in G[W ].
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Suppose that u1 is adjacent to u2, u3 and u4 in G[W ]. Then v3 is not adjacent
to v1, v2, v4, v5, v6, u2, u3, u4 in G and |NG[{v4,u2,u3,u4}](v4)| ≤ 1. Without loss of
generality, assume that v4 is not adjacent to u2 or u3 in G. Now, suppose that v4
is adjacent to u4 in G. Since C ⊈ G, u4 is not adjacent to v1 or v2 in G. Then
v1u4v2v5u2v4u3v6v1 and v3 form W8 in G, a contradiction. Otherwise, suppose that
v4 is not adjacent to u4 in G. Then |NG[{ui,v1,v2}](ui)| ≤ 1 for i = 2, 3, 4 and at least
two of u2, u3 and u4 are not adjacent to v1 or v2 in G. Without loss of generality,
assume that u2 and u3 are not adjacent to v1 in G. In this case, v1u2v4u4v5u5v6u3v1
and v3 form W8 in G, again a contradiction.

Case 3c: v3 and v4 are both non-adjacent in G[W ] to u1.
Assume that u1 is adjacent to each of u2, . . . , u5 in G[W ]. Since C ⊈ G,

|NG[{v1,...,v7,ui}](ui)| ≤ 1 for i = 2, . . . , 5, and |NG[{u2,...,u5,vj}](vj)| ≤ 1 for j = 3, 4.
Since |NG[{v1,v2,ui}](ui)| ≤ 1 for i = 2, . . . , 5, one of v1 and v2, say v1, satisfies
|NG[{u2,...,u5,v1}](v1)| ≤ 2. By Lemma 4.3.5, G[v1, v3, v4, v5, u2, . . . , u5] contains C8

which, with hub v6, forms W8 in G.

Therefore, R(C,W8) ≤ 13. This completes the proof of the theorem.

Theorem 5.2.2. R(D,W8) = 14.

Proof. Let G = K6 ∪ H where H is the graph shown in Figure 4.1 in the proof
of Theorem 4.3.11. Since G does not contain D and G does not contain W8,
R(D,W8) ≥ 14.

Now, let G be any graph of order 14. Suppose neither G contains D as a
subgraph, nor G contains W8 as a subgraph. By Theorem 5.2.1, B ⊆ G. Label
the vertices of B as shown in Figure 5.5 and set U = {u1, . . . , u7} = V (G)− V (B).
Since D ⊈ G, v7 is non-adjacent to v6 and U , and v4 is non-adjacent to v1 and v2.

v1 v2 v4 v5 v6v3

v7 U

Figure 5.5: B ⊆ G

Let W = {v6} ∪ U . If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10
which, with v7 as hub, forms W8, a contradiction. Thus, δ(G[W ]) ≤ 3 and
∆(G[W ]) ≥ 4. Three cases will now be considered.

Case 1: v6 is the vertex of degree at least 4 in G[W ].
Assume that v6 is adjacent to u1, u2, u3 and u4 in G[W ]. Then v5 is adjacent

to v1 and v2 in G and v3 is adjacent in G to v6, u1, u2, u3 and u4.

Subcase 1.1: EG({u1, . . . , u4}, {u5, u6, u7}) ̸= ∅.
Without loss of generality, assume that u1 is adjacent to u5 in G. Since D ⊈ G,

{u2, u3, u4} is independent in G and is adjacent to v1, v2, u6 and u7 in G; v6 is
adjacent in G to v1 and v2; v4 and v5 are adjacent in G to u1 and u5; and v3 is
adjacent in G to u5. If v4 is adjacent to u2 in G, then v5 is adjacent in G to u3 and u4,
so v1v5v2u2u6v7u7u3v1 and u4 form W8 in G, a contradiction. Thus, v4 is adjacent
to u2 in G, and v1v4v2u4u6v7u7u3v1 and u2 form W8 in G, again a contradiction.
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Subcase 1.2: {u1, . . . , u4} is not adjacent to {u5, u6, u7} in G[W ].
Suppose that v5 is adjacent in G to v7; then v7 is not adjacent to v1 or v2. If

|NG[{u1,...,u4,v2}](v2)| ≤ 2, then G[u1, . . . , u7, v2] contains C8 by Lemma 4.3.5 which
with v7 forms W8 in G, a contradiction. Thus, |NG[{u1,...,u4,v2}](v2)| ≥ 3, so v1 is not
adjacent to u1, . . . , u4 in G. By Lemma 4.3.5, G[u1, . . . , u7, v1, v7] contains W8, a
contradiction.

Hence, v5 is not adjacent to v7 in G. Now, if |NG[{u1,...,u4,v5}](v5)| ≤ 2, then
G[u1, . . . , u7, v5] contains C8 by Lemma 4.3.5 which with v7 forms W8 in G, a con-
tradiction. Thus |NG[{u1,...,u4,v5}](v5)| ≥ 3, so v4 is not adjacent to {u1, . . . , u4} in
G, or else G will contain D with v4 be the vertex of degree 3. By Lemma 4.3.5,
G[u1, . . . , u7, v1] contains C8. If v4 is not adjacent to v7 in G, then G contains
W8, a contradiction. Thus, v4 is adjacent to v7, and since D ⊈ G, v1 is not
adjacent to v7. If |NG[{u1,...,u4,v1}](v1)| ≤ 2, then G[u1, . . . , u7, v1] contains C8 by
Lemma 4.3.5 which with v7 forms W8, a contradiction, so |NG[{u1,...,u4,v1}](v1)| ≥ 3.
Thus, |NG[{u1,...,u4,v1}](v1)∩NG[{u1,...,u4,v5}](v5)| ≥ 2, and G contains D with v5 as the
vertex of degree 3, a contradiction.

Case 2: u1 is the vertex of degree at least 4 in G[W ] and v6 is adjacent to u1.
Without loss of generality, suppose that u1 is adjacent to u2, u3 and u4 in G[W ].

If v5 is adjacent to u1, then Case 1 applies with v6 replaced by u1. Suppose then
that v5 is not adjacent to u1. Since D ⊈ G, v1 and v2 are not adjacent in G to v4,
v5 or v6; v3 is not adjacent to v6, u1, . . . , u4; and v4 is not adjacent to u1, . . . , u4.

Subcase 2.1: EG({u2, u3, u4}, {u5, u6, u7}) ̸= ∅.
Without loss of generality, assume that u2 is adjacent to u5 in G. Then u3 and

u4 are not adjacent to each other or to v1, v2, u6, u7. Also, u1 is not adjacent to v1
or v2, and neither u2 nor u5 is adjacent to v3, v4, v5, v6.

Suppose that v7 is adjacent to v4 in G. If u1 is adjacent to v1, u5, u6 or u7, then
Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose
that u1 is not adjacent to any of these vertices. Since D ⊈ G, v7 is not adjacent
to v1. If v6 is not adjacent to u6, then v1u1u5v6u6u3u7u4v1 and v7 form W8 in G, a
contradiction. Similarly, G contains W8 if v6 is not adjacent to u7, a contradiction.
Therefore, v6 is adjacent to both u6 and u7 in G. Since D ⊈ G, u6 is not adjacent
to u7, and neither u6 nor u7 is adjacent to u2. Then v1u1u5v6u2u6u7u3v1 and v7
form W8 in G, a contradiction.

Suppose now that v7 is not adjacent to v4 in G. If v7 is adjacent to v5, then
v7 is not adjacent to v1 or v2, and v4 is not adjacent to v6, u6 or u7. Then
v1u1v2u3u6v4u7u4v1 and v7 form W8 in G, a contradiction. Therefore, v7 is not
adjacent to v5 in G. If v6 is not adjacent to u3, then u3v6u2v5u5v4u4u6u3 and v7
form W8 in G, a contradiction. Similarly, G contains W8 if v6 is not adjacent to u4,
a contradiction. Then v6 is adjacent to both u3 and u4 in G, so v6 is not adjacent
to u6 and u7, or else Case 1 applies. Hence, v4u2v5u5v6u6u3u4v4 and v7 form W8 in
G, a contradiction.

Subcase 2.2: {u2, u3, u4} is not adjacent to {u5, u6, u7} in G[W ].
If |NG[{u2,u3,u4,v6}](v6)| ≥ 3 or |NG[{u5,u6,u7,v6}](v6)| ≥ 3, then Case 1 applies, so

|NG[{u2,u3,u4,v6}](v6)| ≤ 2 and |NG[{u5,u6,u7,v6}](v6)| ≤ 2. Without loss of generality,
assume that v6 is not adjacent in G to u2 or u5.
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Suppose that v4 is not adjacent to v7 in G. If u5 is adjacent to u6 or u7, say u6,
then v4 is not adjacent to u5 or u6, so v4u2v6u5u3u7u4u6v4 and v7 form W8 in G,
a contradiction. If u5 is not adjacent to u6 or u7, then v4u2v6u5u6u3u7u4v4 and v7
form W8 in G, a contradiction. Suppose that v4 is adjacent to v7 in G. By similar
arguments to those in Subcase 2.1, u1 is not adjacent to v1, u5, u6 or u7, and v7 is
not adjacent to v1. Then v1v6u5u2u6u3u7u1v1 and v7 form W8 in G, a contradiction.

Case 3: u1 is the vertex of degree at least 4 in G[W ] and v6 is not adjacent to u1.
Assume that u1 is adjacent to u2, u3, u4 and u5 in G[W ]. Since D ⊈ G, v3 and

v4 are not adjacent to u1, u2, u3, u4 or u5 in G. If either v1 or v5 are adjacent to
u1 in G, then Case 1 applies, so suppose that v1 and v5 are not adjacent to u1. In
addition, v1 and v5 is not adjacent to u2, u3, u4 or u5 in G, or else Case 2 applies.
Subcase 3.1: NG[u2,...,u5](v6) ̸= ∅.

Assume that v6 is adjacent to u2 in G. Note that v4 is not adjacent to v6, v7,
u6 or u7 in G, and v3 is not adjacent to v5 in G, or else Case 2 applies by slight
adjustment of vertex labels. Since D ⊈ G, v1 and v2 are not adjacent in G to v5,
v6 or u2, and v3 is not adjacent to v6 in G.

If u2 and u6 are not adjacent in G, then v1u1v6v2u2u6v7u3v1 and v4 form W8

in G, a contradiction. A similar contradiction arises if u2 and u7 not adjacent.
Therefore, u2 is adjacent to both u6 and u7 in G, and u3, u4 and u5 are not adjacent
to u6 or u7 in G since D ⊈ G. Then v1u1v6v2u2v7u6u3v1 and v4 form W8 in G, a
contradiction.

Subcase 3.2: NG[u2,...,u5](v6) = ∅.
Suppose that v1 is adjacent to v7 in G. Then v2 is not adjacent to v5, v6

or U since D ⊈ G. If |NG[{u2,...,u6}](u6)| ≤ 2, then Lemma 4.3.5 implies that
G[u2, u3, u4, u5, v4, v5, v6, u6] contains C8 in G which with v2 forms W8, a contra-
diction. Therefore, |NG[{u2,...,u6}](u6)| ≥ 3. Similarly, |NG[{u2,...,u5,u7}](u7)| ≥ 3. By
the Inclusion-exclusion Principle, |NG[{u2,...,u6}](u6)∩NG[{u2,...,u5,u7}](u7)| ≥ 2. With-
out loss of generality, u6 is adjacent to u2, u3 and u4 in G, and u7 is adjacent to u3

and u4, and G[u1, . . . , u7] contains D with u3 or u4 being the vertex of degree 3, a
contradiction.

Now suppose that v1 is not adjacent to v7 in G. If v7 is adjacent to v4 in G, then
v2 is not adjacent to any of u1, . . . , u5 in G, or else either Case 1 or Case 2 applies.
Also, |NG[{v2,v5,v7}](v7)| ≤ 1 since D ⊆ G. Assume that v7 is not adjacent to v2 in G.
If |NG[{u2,...,u6}](u6)| ≤ 2, then Lemma 4.3.5 implies that G[u2, u3, u4, u5, v1, v2, v6, u6]
contains C8 which with v7 forms W8, a contradiction. Thus, |NG[{u2,...,u6}](u6)| ≥ 3.
Similarly, |NG[{u2,...,u5,u7}](u7)| ≥ 3, so |NG[{u2,...,u6}](u6)∩NG[{u2,...,u5,u7}](u7)| ≥ 2. By
arguments similar to those in the previous paragraph, G will contain a subgraph
D, a contradiction.

Thus, R(D,W8) ≤ 14 which completes the proof of the theorem.

Theorem 5.2.3. R(E,W8) = 15.

Proof. The graph G = K6 ∪ K4,4 does not contain E and G does not contain
W8. Thus, R(E,W8) ≥ 15. For the upper bound, let G be any graph of order
15. Suppose that G does not contain E and that G does not contain W8. By
Theorem 4.3.11, G contains T = S7(3) subgraph. Label the vertices of this subgraph
as in Figure 5.6 and set U = V (G)− V (T ). Note that |U | = 8.
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U

Figure 5.6: S7(3) and U in G.

Case 1: Some vertex u in U is adjacent to v6.
Since E ⊈ G, v6 is not adjacent to v1, v2, v3, v7 or any vertex of U other than

u. Let W = {v1, v2, v3, v7, u1, . . . , u4}, for any vertices u1, . . . , u4 in U other than
u. If δ(G[W ]) ≥ 4, then G[W ] contains C8 by Lemma 2.2.10 which with v6 forms
W8, a contradiction. Therefore, δ(G[W ]) ≤ 3 and ∆(G[W ]) ≥ 4. Since E ⊈ G,
NG[{u1,u2,u3,u4,v1,v7}](v7) ≤ 1 and NG[{u1,u2,u3,u4,v7,vi}](vi) ≤ 1 for i = 1, 2, 3, so none of
v1, v2, v3, v7 has degree at least 4. Without loss of generality, assume that u1 has
degree at least 4. If u1 is adjacent to v7, then G contains E with u1 and v5 as the
vertices of degree 3, a contradiction. Similarly, if u1 is adjacent to v1, v2 or v3, then
G contains E with u1 and v4 as the vertices of degree 3, a contradiction. Therefore,
u1 is not adjacent to v1, v2, v3 or v7. However, then u1 has degree at most 3 in
G[W ], a contradiction.

Case 2: v6 is not adjacent to any vertex in U .
If v7 is adjacent to some vertex in U , then Case 1 applies with v7 replacing v6,

so suppose that v7 is not adjacent to any vertex in U . Now, if δ(G[U ]) ≥ 4, then
G[U ] contains C8 by Lemma 2.2.10 which, with v6 or v7, forms W8, a contradiction.
Thus, δ(G[U ]) ≤ 3 and ∆(G[U ]) ≥ 4. Let V (U) = {u1, . . . , u8}. Without loss of
generality, assume that u1 is adjacent to u2, u3, u4 and u5. Since E ⊈ G, v4 is not
adjacent in G to any of u1, . . . , u5; v5 is not adjacent to any of v1, v2, v3, u1, . . . , u5;
and u1 is not adjacent to v1, v2 or v3. Furthermore, |NG[{u2,...,u5,vi}](vi)| ≤ 1 for
i = 1, 2, 3 and |NG[{v1,v2,v3,uj}](uj)| ≤ 1 for j = 2, . . . , 5.

Now, suppose that NG[{v5,u6,u7,u8}](v5) = ∅. If |NG[{u2,...,u6}](u6)| ≤ 1, then
G[u2, . . . , u5, v1, v2, v3, u6] contains C8 by Lemma 4.3.5 which with v5 forms W8, a
contradiction. Therefore, |NG[{u2,...,u6}](u6)| ≥ 2. Similarly, |NG[{u2,...,u5,u7}](u7)| ≥ 2
and |NG[{u2,...,u5,u8}](u8)| ≥ 2. By the Inclusion-Exclusion Principle, u2, u3, u4 or
u5 is adjacent in G to at least two of u6, u7, u8. Without loss of generality, assume
that u2 is adjacent to u6 and u7. Then u2 is not adjacent to u3, u4 or u5, Therefore,
Lemma 4.3.5 implies that G[u1, u3, u4, u5, v1, v2, v3, u2] contains C8 which with v5
forms W8, a contradiction.

On the other hand, if NG[u6,u7,u8](v5) ̸= ∅, then without loss of generality assume
that u6 is adjacent to v5 in G. Since E ⊈ G, v4 is not adjacent to v6, v7 or u6 in G.
Also, {v1, v2, v3} and {v6, v7, u6} are independent in G, and v1, v2, v3, v6, v7, u6 /∈
NG(ui) for i = 1, . . . , 5, 7, 8, or else Case 1 applies with vertex label adjustments.
Now, if u1 is not adjacent to both u7 and u8 in G, then v1v2v3u7v6v7u6u8v1 and
u1 form W8 in G, a contradiction. Therefore, NG[{u1,u7,u8}](u1) ̸= ∅. Without
loss of generality, assume that u1 is adjacent to u7 in G. Note that for E ⊈
G, |NG[{v4,v5,u8}](u8)| ≤ 1. Now, suppose that u8 is not adjacent to v4 in G. If
|NG[{u2,...,u5,u8}](u8)| ≤ 3, then assume without loss of generality that u8 is not
adjacent to u2 or u3 in G. Then v6u4v7u5u6u2u8u3v6 and v4 form W8 in G, a
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contradiction. Similar arguments work if u8 is not adjacent to v5 in G, by replacing
v4 with v5 and v6, v7, u6 with v1, v2, v3, respectively, so |NG[{u2,...,u5,u7,u8}](u8)| ≥ 4.
However, G then contains E with u1 and u8 of degree 3, a contradiction.

Thus, R(E,W8) ≤ 15. This completes the proof of the theorem.

Next, we will proceed to the results for the tree graphs Tn with n ≥ 8. There
are 7 types of tree graphs to be discussed, namely Sn(4), Sn[4], Sn(1, 3), Sn(3, 1),
TA(n), TB(n) and TC(n) as shown in Figure 5.2.

Lemma 5.2.4. Let n ≥ 8. Then for each tree graph Tn ∈ {Sn(4), Sn(3, 1), TC(n)},
R(Tn,W8) ≥ 2n− 1. Also, for each tree graph Tn ∈ {Sn[4], Sn(1, 3), TA(n), TB(n)},
R(Tn,W8) ≥ 2n− 1 if n ̸≡ 0 (mod 4) and R(Tn,W8) ≥ 2n otherwise.

Proof. The graph G = 2Kn−1 does not contain any tree graphs of order n, and G
does not contain W8. Finally, if n ≡ 0 (mod 4), then the graph G = Kn−1 ∪K4,...,4

of order 2n − 1 does not contain Sn[4], Sn(1, 3), TA(n) or TB(n); nor does the
complement G contain W8.

Theorem 5.2.5. If n ≥ 8, then

R(Sn(4),W8) =

{
2n− 1 if n ≥ 9 ;

16 if n = 8 .

Proof. By Lemma 5.2.4, R(Sn(4),W8) ≥ 2n− 1 for n ≥ 8. For n = 8, observe that
the graph G = K7 ∪ H8, where H8 is the graph of order 8 as shown in Figure 5.7
does not contain S8(4) and its complement G does not contain W8. Therefore, for
n = 8, we have a better bound of R(S8(4),W8) ≥ 16.

Figure 5.7: The graphs H8.

For the upper bound, let G be any graph of order 2n− 1 if n ≥ 9, and of order
16 if n = 8. Assume that G does not contain Sn(4) and that G does not contain W8.

If n ≥ 9 is odd or n = 8, then G has a subgraph T = Sn(3) by Theorem 4.3.11.
Let V (T ) = {v0, . . . , vn−3, w1, w2} and E(T ) = {v0v1, . . . , v0vn−3, v1w1, v1w2}. Also,
let V = {v2, . . . , vn−3} and U = V (G) − V (T ); then |V | = n − 4 ≥ 5 and |U | =
n− 1 ≥ 8 if n is odd, while |U | = 8 if n = 8. Since Sn(4) ⊈ G, v1 is not adjacent in
G to any vertex of U ∪ V in G. Furthermore, for each 2 ≤ i ≤ n− 3, vi is adjacent
to at most two vertices of U in G. By Corollary 5.3.1, G[U ∪ V ] contains C8, and
together with v1, gives us W8 in G, a contradiction.

For the remaining case when n ≥ 10 is even, Sn−1 ⊆ G by Theorem 2.2.6.
Let v0 be the centre of Sn−1 and set L = NSn−1(v0) = {v1, . . . , vn−2} and U =
V (G)− V (Sn−1). Then |U | = n. Since G does not contain Sn(4), each vertex of L
is adjacent to at most two vertices of U . We consider two cases here.
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Case 1: E(L,U) = ∅.
If ∆(G[U ]) ≥ 4, then some vertex u in U is adjacent to at least four vertices in

G[U ]. These four vertices and any four vertices from L form C8 in G which, with
hub u, form W8, a contradiction. Therefore, ∆(G[U ]) ≤ 3 and δ(G[U ]) ≥ n − 4.
Suppose that δ(G[U ]) = n − 4 − ℓ for some ℓ ≥ 0, and let u0 be a vertex in U
with minimum degree in G[U ]. Label the remaining vertices in U as u1, . . . , un−1

such that UA = {u1, . . . , un−4} ⊆ NG(u0), and let UB = {un−3, un−2, un−1}. Since
Sn(4) ⊈ G, each vertex in UA is adjacent to at most two vertices in UB, and so
|EG(UA, UB)| ≤ 2(n− 4). On the other hand, noting that u0 is adjacent to exactly
ℓ vertices in UB and letting eB ≤ 3 be the number of edges in G[UB], we see that
|EG(UA, UB)| ≥ 3δ(G[U ])− ℓ− 2eB = 3(n− 4− ℓ)− ℓ− 2eB. Therefore, 2(n− 4) ≥
|EG(UA, UB)| ≥ 3n− 12 + 2ℓ− 2eB, implying that n+ 2ℓ ≤ 4 + 2eB ≤ 10, which is
only possible when n = 10, ℓ = 0, eB = 3, and |EG(UA, UB)| = 2(n− 4) = 12. For
such scenario where n = 10, noting that u0 was an arbitrary vertex with minimum
degree in G[U ], it is straightforward to deduce that the only possible edge set of
G[U ] (up to isomorphism) with S10(4) ⊈ G[U ] is

{u1u0, . . . , u6u0} ∪ {u1u7, . . . , u4u7} ∪ {u1u8, u2u8, u5u8, u6u8} ∪ {u3u9, . . . , u6u9}
∪ {u1u2, u3u4, u5u6} ∪ {u1u3, u1u5, u3u5} ∪ {u2u4, u2u6, u4u6} ∪ {u7u8, u7u9, u8u9} .

Observe now that G[U ] contains C8, which forms a W8 in G with any vertex in L
as hub, a contradiction.

Case 2: E(L,U) ̸= ∅.
Without loss of generality, assume that v1 is adjacent to u1 in G. Since Sn(4) ⊈

G, v1 is adjacent to at most one vertex of U ∪ L \ {u1} in G. Therefore, we can
find a 4-vertex set V ′ ⊆ V \ {v1} and an 8-vertex set U ′ ⊆ U \ {u1} such that v1 is
not adjacent in G to any vertex of U ′ ∪ V ′. Note that each vertex of V ′ is adjacent
to at most two vertices of U ′ in G, so |E(V ′, U ′)| ≤ 8. This implies that there are
four vertices in U ′ that are each adjacent in G to at most one vertex of V ′, and so
G contains C8 by Lemma 4.3.5 and, with v1 as hub, form W8, a contradiction.

Thus, R(Sn(4),W8) ≤ 2n − 1 when n ≥ 9 and R(Sn(4),W8) ≤ 16 when n = 8.
This completes the proof of the theorem.

Lemma 5.2.6. Let H be a graph of order n ≥ 8 with minimum degree δ(H) ≥ n−4.
Then either H contains Sn[4] and TA(n), or n ≡ 0 (mod 4) and H is the disjoint
union of n

4
copies of K4, i.e., H = n

4
K4.

Proof. Let V (H) = {u0, . . . , un−1}. We first consider the case that H has a vertex
of degree at least n− 3, which we may assume without loss of generality that this
vertex is u0, and that {u1, . . . , un−3} ⊆ NH(u0).

Suppose that un−2 is adjacent to un−1 in H. Since δ(H) ≥ n−4, un−2 is adjacent
to at least n − 6 ≥ 2 vertices of {u1, . . . , un−3}, say u1 and u2, and so H contains
Sn[4]. Furthermore, also by the minimum degree condition, u1 is adjacent to at
least n− 7 ≥ 1 vertices of {u1, . . . , un−3}, and so H contains TA(n).

Suppose now that un−2 is not adjacent to un−1 in H. Then by the minimum
degree condition, there is a vertex in {u1, . . . , un−3}, say u1, that is adjacent to both
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un−2 and un−1. The vertices u1 and un−2 must also each be adjacent to a vertex of
{u2, . . . , un−3}, and so H contains both Sn[4] and TA(n).

For the remaining case, suppose that H is (n − 4)-regular and that NH(u0) =
{u1, . . . , un−4}. Let U = {un−3, un−2, un−1} and suppose that H[U ] has an edge, say
un−3un−2. Since un−3 must be adjacent in H to some vertex of NH(u0), it follows
that H contains Sn[4] if un−3 or un−2 is adjacent to un−1. Suppose then that neither
un−3 nor un−2 is adjacent to un−1. Then un−1 is adjacent to every vertex of NH(u0).
Note that dH[NH(u0)∪{un−3}](un−3) = n− 5 and let u be the vertex of NH(u0) that is
not adjacent in H to un−3. Since dH(u) = n−4, u is adjacent in H to some vertex in
NH(un−3), soH contains Sn[4]. Also, note that un−3 is adjacent inH to at least n−6
vertices of NH(u0). If un−1 is adjacent to some vertex of NH[NH(u0)∪{un−3}](un−3),
then H contains TA(n). Note that this will always happen for n ≥ 9. For n = 8,
there is a case where |NH[NH(u0)∪{un−3}](un−3)| = |NH[NH(u0)∪{un−1}](un−1)| = 2 and
NH[NH(u0)∪{un−3}](un−3) ∩ NH[NH(u0)∪{un−1}](un−1) = ∅, so un−1 is adjacent to un−3

and un−2, giving TA(n) in H.
Now, suppose thatH[U ] contains no edge. Then U1 = U∪{u0} is an independent

set in H. Furthermore, NH(u) = {u1, . . . , un−4} for every u ∈ U , as every vertex
has degree n− 4. Therefore, H[U1] is a K4 component in H. Repeating the above
proof for each vertex u of H shows that either u is contained in a K4 component of
H, or H contains both Sn[4] or TA(n). In other words, either H contains both Sn[4]
and TA(n), or H is the disjoint union of n

4
copies of K4, and so n ≡ 0 (mod 4).

Theorem 5.2.7. If n ≥ 8, then

R(Sn[4],W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Now let G be a graph that does not contain Sn[4] and assume that G does
not contain W8.

We first suppose that G has order 2n if n ≡ 0 (mod 4) and G has order
2n − 1 if n is odd. By Theorem 4.3.11, G has a subgraph T = Sn(3). Let
V (T ) = {v0, . . . , vn−3, w1, w2} and E(T ) = {v0v1, . . . , v0vn−3} ∪ {v1w1, v1w2}. Set
U = V (G) − V (T ) and V = {v2, . . . , vn−3}. Then |U | = n − j, for j = 0 if n ≡ 0
(mod 4) and j = 1 if n is odd, and |V | = n − 4. Since G does not contain Sn[4],
v1 is not adjacent to any vertex of V in G, and each vertex of V is adjacent to at
most n− 6 vertices of U ∪ V in G. Noting also that w1 and w2 each is adjacent to
at most one vertex of {w1, w2} ∪ U in G, we consider two cases.

Case 1: At least one of w1 and w2 is not an isolated vertex in G[{w1, w2} ∪ U ].
Without loss of generality, assume that w1 is adjacent to some vertex u ∈ {w2}∪

U in G. Let Z =
(
V ∪ U ∪ {w2}

)
\ {u} and note that |Z| = 2n − 4 − j. Since

Sn[4] ⊈ G, w1 is not adjacent to any vertex of Z in G. If δ(G[Z]) ≥ ⌈2n−4−j
2

⌉, then
G[Z] contains C8 by Lemma 2.2.10 which with w1, forms W8 in G, a contradiction.
Therefore, δ(G[Z]) ≤ ⌈2n−4−j

2
⌉−1 and ∆(G[Z]) ≥ ⌊2n−4−j

2
⌋ = n−2− j. Since each

v of V is adjacent to at most n − 6 vertices of U ∪ V in G, and w2 is adjacent to
at most one vertex of U in G, a vertex with maximum degree in G[Z] must be a
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vertex of U \ {u}. So let u2 be a vertex of U with dG[Z](u2) ≥ n− 2. As Sn[4] ⊈ G,
observe that NG[Z](u2) ⊆ U ; each vertex of V is adjacent to at most one vertex of
NG[Z](u2) in G; and each vertex of NG[Z](u2) is adjacent to at most one vertex of V
in G. Then by Lemma 4.3.5, any four vertices from V and any four vertices from
NG[Z](u2) form C8 in G which with w1 forms W8 in G, a contradiction.

Case 2: w1 and w2 are isolated vertices in G[{w1, w2} ∪ U ].
If δ(G[U ]) ≥ n−j

2
, then G[U ] contains C8 by Lemma 2.2.10 which with w1 forms

W8, a contradiction. Thus, δ(G[U ]) ≤ n−j
2

− 1, and ∆(G[U ]) ≥ n−j
2
. Let u1 be a

vertex of U with dG[U ] ≥ n−j
2
. Since Sn[4] ⊈ G, v0 is not adjacent to any vertex

of NG[U ](u1) in G. Now, if v1 is adjacent to some vertex u of NG[U ](u1) in G, then
apply Case 1 with w1 and u interchanged. So we may assume that v1 is not adjacent
to any vertex of NG[U ](u1) in G.

If E(V,NG[U ](u1)) = ∅ in G, then any four vertices of V and any four vertices of
NG[U ](u1) form C8 in G, and with v1, form W8 in G, a contradiction. So without loss
of generality, assume that v2 is adjacent to some vertex u2 of NG[U ](u1) in G. Since
Sn[4] ⊈ G, u2 is not adjacent to any vertex of U \ {u1}. Then v0, v1, w1, w2 and any
four vertices from U \ {u1, u2}, at least three of which are from NG[U ](u1) \ {u2},
form C8 in G and, with u2, form W8 in G, a contradiction.

In either case, R(Sn[4],W8) ≤ 2n for n ≡ 0 (mod 4) and R(Sn[4],W8) ≤ 2n− 1
for odd n.

Next, suppose that n ≡ 2 (mod 4) and G has order 2n − 1. If G contains
Sn(3), then we can use the previous arguments to show that R(Sn[4],W8) ≤ 2n−1.
Hence, we only need to consider the case where G does not contain Sn(3). Now, by
Theorem 5.2.5, G has a subgraph T = Sn(4). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Let U = V (G) − V (T ); then
|U | = n − 1. Since G does not contain Sn(3) and Sn[4], v0 is not adjacent in G to
w1, w2, w3 or U . Now, set U ′ = NG[U∪{w1}](w1) ∪ NG[U∪{w2}](w2) ∪ NG[U∪{w3}](w3).
Then |U ′| ≤ 3 and w1, w2 and w3 are not adjacent in G to any vertex of U \U ′. By
Lemma 4.3.4, G[U \ U ′] is either Kn−1−|U ′| or Kn−1−|U ′| − e. If dG[U\U ′](u

′) ≥ 2 for
some vertex u′ in U ′, then at least two vertices of U \U ′ are not adjacent to u′ in G.
Let X be a set containing these two vertices and any other two vertices in U \ U ′,
and set Y = {w1, w2, w3, u

′}. Note that G[X ∪ Y ] contains C8 by Lemma 4.3.5
which, with v0 as hub, forms W8, a contradiction. Therefore, every vertex of U ′ is
adjacent in G to at least n−2−|U ′| vertices of U \U ′. Hence, δ(G[U ]) ≥ n−5, and
since Sn[4] ⊈ G, EG(T, U) = ∅. Now, if G[V (T )] contains S5, then G contains W8

by Observation 4.3.2, a contradiction. Thus, δ(G[V (T )]) ≥ n−4. By Lemma 5.2.6,
G contains Sn[4], a contradiction. Hence, R(Sn[4],W8) ≤ 2n−1 for n ≡ 2 (mod 4).

This completes the proof.

Theorem 5.2.8. If n ≥ 8, then

R(Sn(1, 3),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.2.4 provides the lower bounds. It therefore remains to prove the
upper bounds. Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order
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2n − 1 if n ̸≡ 0 (mod 4). Assume that G does not contain Sn(1, 3) and that
G does not contain W8. By Theorem 5.2.7, G has a subgraph T = Sn[4]. Let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, w1v1, w1w2, w1w3}.
Set V = {v2, . . . , vn−4} and U = V (G)− V (T ). Since Sn(1, 3) ⊈ G, w2 and w3 are
not adjacent to each other, or to any vertex in U ∪ V . Since C8 ⊈ G[U ∪ V ] as
W8 ⊈ G, Lemma 2.2.10 implies that G[U ∪ V ] has a vertex u of degree at least
n− 3 in G[U ∪ V ]. Since Sn(1, 3) ⊈ G, u ∈ U and u is not adjacent to any vertex
in V . Furthermore, E(V,NG[U ](u)) = ∅. Finally, note that w3, any 3 vertices in V
and any 4 vertices in NG[U ](u) form C8 in G which, with w2 as hub, form W8, a
contradiction.

Theorem 5.2.9. If n ≥ 8, then

R(TA(n),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order 2n − 1
if n ̸≡ 0 (mod 4). Assume that G does not contain TA(n) and that G does not
contain W8.

Suppose that G has a subgraph T = Sn(3). Let V (T ) = {v0, . . . , vn−3, w1, w2}
and E(T ) = {v0v1, . . . , v0vn−3, v1w1, v1w2}. Set V = {v2, . . . , vn−3} and U = V (G)−
V (T ). Since G does not contain TA(n), w1 and w2 are not adjacent to any vertex of
U∪V in G. Let V ′ be the set of any n−5 vertices in V , and U ′ be the set of any n−1
vertices in U . If δ(G[U ′∪V ′]) ≥ n−3, then G[U ′∪V ′] contains C8 by Lemma 2.2.10
which, with w1 as hub, form W8, a contradiction. Therefore, δ(G[U ′ ∪ V ′]) ≤ n− 4
and ∆(G[U ′ ∪ V ′]) ≥ n− 3. Since TA(n) ⊈ G, dG[U ′∪V ′](v) ≤ n− 6 for each v ∈ V ′.
Hence, some vertex u ∈ U ′ satisfies dG[U ′∪V ′](u) ≥ n− 3, which also implies that u
is adjacent to at least two vertices of U .

Since TA(n) ⊈ G, each vertex of V is adjacent to at most one vertex of NG[U ](u).
If |NG[U ](u)| ≥ n − 4, then we also have that each vertex of NG[U ](u) is adjacent
to at most one vertex of V , and so G[V ∪ NG[U ](u)] contains C8 by Lemma 2.2.10
which, with w1 as hub, form W8, a contradiction. Thus, at least three vertices of
V ′ (and so of V ), v2, v3, and v4, are adjacent to u in G. Let a and b be any two
vertices in NG[U ](u). As TA(n) ⊈ G, each of v2, v3, v4 is not adjacent to any vertex
of V (G) \ {u, v0}. Then w1v5w2v3av1bv4w1 and v2 form W8 in G, a contradiction.

By Theorem 4.3.11, we have shown that R(Sn(3),W8) ≤ 2n for n ≡ 0 (mod 4).
So we may now assume that G has order 2n − 1 with n ̸≡ 0 (mod 4), and that
G does not contain Sn(3). By Theorem 5.2.5, G has a subgraph T = Sn(4). Let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}.
Then U = V (G) − V (T ) and |U | = n − 1. Since TA(n) ⊈ G, w1, w2, w3 are
not adjacent to each other in G or to any vertex of U . Since S3(n) ⊈ G, v0 is not
adjacent any vertex of U∪{w1, w2, w3}. By Lemma 4.3.4, G[U ] is Kn−1 or Kn−1−e.
Since TA(n) ⊈ G, each vertex of T is not adjacent to any vertex of U in G, and
so δ(G[V (T )]) ≥ n − 4 by Observation 4.3.2, which in turn implies that G[V (T )]
contains TA(n) by Lemma 5.2.6, a contradiction.

This completes the proof of the theorem.
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Theorem 5.2.10. If n ≥ 8, then

R(TB(n),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Let G be a graph with no TB(n) subgraph whose complement G does not
contain W8.

Suppose that n ≡ 0 (mod 4) and that G has order 2n. By Theorem 5.2.7,
G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G)−V (T );
then |V | = n − 5 and |U | = n. Since TB(n) ⊈ G, EG(U, V ) = ∅ and neither w2

nor w3 is adjacent in G to V . Suppose that n ≥ 12. If w2 is non-adjacent to some
4 vertices from U , then these 4 vertices and any 4 vertices from V form C8 in G
that with w2 forms W8, a contradiction. Otherwise, w2 must be adjacent to at least
n− 3 vertices of U in G. Since TB(n) ⊈ G, w3 must not be adjacent to these n− 3
vertices; then any 4 vertices from these n−3 vertices and 4 vertices from V form C8

in G and, with w3 as hub, form W8, again a contradiction. For n = 8, |V | = 3 and
|U | = 8. If w2 is not adjacent to any vertex of U in G, then by Lemma 4.3.4, G[U ]
is K8 or K8 − e which contains TB(8), a contradiction. Otherwise, suppose that w2

is adjacent to u ∈ U . Since TB(8) ⊈ G, w1 must not be adjacent to (U ∪ V ) \ {u}
in G. Now, if w3 is not adjacent to v0 in G, then by Observation 4.3.2, G contains
W8, a contradiction. Else, u is not adjacent to V ∪{w3}, and again by Observation
4.3.2, G contains W8, another contradiction. Thus, R(TB(n),W8) ≤ 2n for n ≡ 0
(mod 4).

Next, suppose that n ̸≡ 0 (mod 4) and that G has order 2n − 1. By The-
orem 5.2.7, G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and
U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1. Since TB(n) ⊈ G,
EG(U, V ) = ∅ and neither w2 nor w3 is adjacent in G to V . For n ≥ 9, if w2

is non-adjacent to some 4 vertices from U , then these 4 vertices and any 4 vertices
from V form C8 in G and, with w2 as hub, form W8, a contradiction. Otherwise, w2

is adjacent to at least n−4 vertices of U in G. Since TB(n) ⊈ G, w3 is not adjacent
to these n − 4 vertices, so any 4 vertices from these n − 4 vertices and 4 vertices
from V form C8 in G that, with w3, form W8, again a contradiction. Therefore,
R(TB(n),W8) ≤ 2n− 1 for n ̸≡ 0 (mod 4).

This completes the proof.

Theorem 5.2.11. For n ≥ 8, R(TC(n),W8) = 2n− 1.

Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1 and assume that G does not contain
TC(n) and that G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X]) ≥ n− 4.
If δ(G[X]) = n − 4, then let x ∈ X be such that dG[X](x) = n − 4, and set
Y = X \ ({x} ∪NG[X](x)) where |Y | = 3. Noting that 3(n− 6) > n− 4 for n ≥ 8,
there must be two vertices of Y that are adjacent to a common vertex of NG[X](x)
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in G, say to x′ ∈ NG[X](x). Then the remaining vertex of Y is not adjacent to any
vertex of NG[X](x) \ {x′} as TC(n) ⊈ G, a contradiction to δ(G[X]) ≥ n− 4. Thus,
δ(G[X]) ≥ n − 3. Pick any vertex x ∈ X and pick a subset X ′ ⊆ NG[X](x) of size
n−3. Set Y = X \ ({x}∪X ′) where |Y | = 2. As 2(n−5) > n−3 for n ≥ 8, the two
vertices of Y must be adjacent to a common of X ′ in G, say to x′. Then G[X ′\{x′}]
is an empty graph since TC(n) ⊈ G, a contradiction to δ(G[X]) ≥ n− 3.

We may now assume that δ(G[X]) ≤ n− 5 whenever X ⊆ V (G) is of size n. By
Theorem 4.3.11, G has a subgraph T = Sn−1(3). Let V (T ) = {v0, . . . , vn−4, w1, w2}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2}. Set V = {v2, . . . , vn−4} and U = V (G)−
V (T ); then |V | = n− 5 and |U | = n. Since TC(n) ⊈ G, EG(U, V ) = ∅.

For the case n = 8 such that v1 is not adjacent to any vertex of U in G, or
the case n ≥ 9, there are four vertices of V (T ) that are not adjacent to any vertex
of U in G. Since δ(G[U ]) ≤ n − 5, G[U ] contains S5, and so G contains W8 by
Observation 4.3.2, a contradiction.

For the final case n = 8 with v1 adjacent to some vertex u of U in G, observe
that since TC(8) ⊈ G, the vertex u is not adjacent to any vertex of {v2, v3, v4} ∪U .
By Lemma 4.3.4, G[U \ {u}] is K7 or K7 − e, which implies that every vertex of
V (T ) ∪ {u} is not adjacent to any vertex of U \ {u} in G as TC(8) ⊈ G. Since
δ(G[V (T ) ∪ {u}]) ≤ n − 5, G[V (T ) ∪ {u}] contains S5, and so G contains W8 by
Observation 4.3.2, a contradiction.

This completes the proof of the theorem.

Theorem 5.2.12. For n ≥ 8, R(Sn(3, 1),W8) = 2n− 1.

Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1. Assume that G does not contain
Sn(3, 1) and that G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X]) ≥ n− 4.
Let x0 be any vertex of X, and pick a subset X ′ ⊆ NG[X](x0) of size n − 4. Set
Y = X \ ({x0} ∪ X ′), and so |Y | = 3. Since δ(G[X]) ≥ n − 4, each vertex of Y
is adjacent to at least n − 7 vertices of X ′ in G. For n ≥ 10, it is straightforward
to see that there is a matching from Y to X ′ in G; hence, G contains Sn(3, 1),
a contradiction. For n = 9, if dG[X](x0) = n − 4 = 5, we can similarly deduce
the contradiction that G contains S9(3, 1), since in this case, each vertex of Y is
adjacent to at least n − 6 = 3 vertices of X ′ in G. As x0 was arbitrary, we may
assume for the case when n = 9, we have δ(G[X]) ≥ n − 3 = 6, which again leads
to the contradiction that G contains S9(3, 1).

Now for n = 8, suppose that dG[X](x0) = 4. Let X ′ = {x1, x2, x3, x4} and
Y = {x5, x6, x7}. Noting that δ(G[X]) ≥ n − 4 and S8(3, 1) ⊈ G, we deduce that
G[Y ] is K3; all three vertices of Y are adjacent to exactly two common vertices of
X ′ in G, say to x1 and x2; and each of x3 and x4 is not adjacent to any vertex of Y
in G. By the minimum degree condition, x3 and x4 are then adjacent in G, and each
of them is also adjacent to both x1 and x2. This implies that G contains S8(3, 1),
with x1 being the vertex with degree four, a contradiction. As x0 was arbitrary, we
may assume for the case when n = 8, we have δ(G[X]) ≥ 5, which again leads to
the contradiction that G contains S8(3, 1).

46



We may now assume that δ(G[X]) ≤ n−5 whenever X ⊆ V (G) is of size n. Re-
call that G has order 2n−1, so by Theorem 4.3.12, G has a subgraph T = Sn−1(2, 1).
Let V (T ) = {v0, . . . , vn−4, w1, w2} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2}. Set
V = {v3, v4, . . . , vn−4} and U = V (G)− V (T ); then |V | = n− 6 and |U | = n. Since
Sn(3, 1) ⊈ G, EG(U, V ) = ∅. Now as δ(G[U ]) ≤ n− 5, G[U ] contains S5, and so for
n ≥ 10, G contains W8 by Observation 4.3.2, a contradiction.

For n = 9, Theorem 4.3.12 shows that G has a subgraph T = S9(2, 1), so
without loss of generality, assume that v0 is adjacent to some vertex u in U . Since
S9(3, 1) ⊈ G, G[V ∪ {u}] is an empty graph and u is not adjacent to any vertex of
U in G. By Lemma 4.3.4, G[U \{u}] is K8 or K8−e, which implies that each vertex
of V (T ) ∪ {u} is not adjacent to any vertex of U \ {u} in G since S9(3, 1) ⊈ G.
Since δ(G[V (T )∪ {u}]) ≤ n− 5, G[V (T )∪ {u}] contains S5, and so G contains W8

by Observation 4.3.2, a contradiction.
Finally for n = 8, recall that G has order 15, and so G has a subgraph T ′ = S7

by Theorem 2.2.6. Let V (T ′) = {v′0, . . . , v′6} and E(T ′) = {v′0v′1, . . . , v′0v′6}. Set
V ′ = {v′1, . . . , v′6} and U ′ = V (G) − V (T ′), then |U ′| = 8. Suppose that v′2 and v′3
are adjacent to a common vertex u of U ′ in G, while v′1 is adjacent to another vertex
u′ ̸= u of U ′ in G. Then as S8(3, 1) ⊈ G, every vertex of {v′4, v′5, v′6} ∪ (U ′ \ {u, u′})
is not adjacent to any vertex of V ′ \ {v′1} in G. Now G[V ′ \ {v′1}] contains S5 and
|U ′ \ {u, u′}| = 6, and so G contains W8 by Observation 4.3.2, a contradiction.
Similar arguments lead to the same contradiction when the roles of v′1, v

′
2, and v′3

are replaced by any three vertices of V ′. So we may assume that no two vertices of
V ′ are adjacent to a common vertex of U ′ in G while a third vertex of V ′ is adjacent
to another vertex of U ′ in G.

For i = 1, . . . , 6, let di = |EG({v′i}, U)| be the number of vertices of U ′ that are
adjacent to v′i. Without loss of generality, assume that d1 ≥ d2 ≥ · · · ≥ d6. Since
δ(G[U ′]) ≤ 3 and so S5 ⊆ G[U ′], Observation 4.3.2 implies that d3 ≥ 1. If d1 ≥ 3
and d2 ≥ 2, then it is trivial that G contains S8(3, 1), a contradiction. By our
assumption on the adjacencies of vertices in V ′ to vertices of U ′ in G, it is also clear
that when (d1, d2, d3) is of the form (2, 2, 1), (2, 2, 2) or (k, 1, 1) for k ≥ 3, there is a
matching from {v′1, v′2, v′3} to U ′ in G, as v′2 and v′3 are adjacent to different vertices
of U ′ in G. Then G contains S8(3, 1), a contradiction. If (d1, d2, d3) = (2, 1, 1), then
we similarly have that v′2 and v′3 are adjacent to different vertices of U ′ in G, say to
u and u′, respectively, which in turn implies that v′1 is adjacent to two vertices in
U ′ \ {u, u′}. So G contains S8(3, 1), again a contradiction.

For the final case when d1 = d2 = d3 = 1, our assumption implies that v′1, v
′
2 and

v′3 are adjacent to a common vertex u ∈ U ′ in G to avoid a matching from {v′1, v′2, v′3}
to U ′ in G. Furthermore, none of v′4, v

′
5, v

′
6 is adjacent to any vertex of U ′ \ {u}

in G. Now if S5 ⊆ G[V ′], then G contains W8 by Observation 4.3.2, a contradiction.
So δ(G[V ′]) ≥ 2, and in particular, v′4 is adjacent to some vertex of V ′ in G.
Without loss of generality, v4 is adjacent to either v1 or v5 in G. Since S8(3, 1) ⊈ G,
G[{v′5, v′2, v′3, v′6}] contains S4 if v′4 is adjacent to v′1 in G, while G[{v′6, v′1, v′2, v′3}]
contains S4 if v′4 is adjacent to v′5 in G. By Lemma 4.3.4, G[U ′ \ {u}] is K7 or
K7−e, which implies that every vertex of V (T ′)∪{u} is not adjacent to any vertex
of U ′ \ {u} in G since S8(3, 1) ⊈ G. Since δ(G[V (T ′) ∪ {u}]) ≤ 3, G[V (T ) ∪ {u}]
contains S5, and so G contains W8 by Observation 4.3.2, a contradiction.

Thus, R(Sn(3, 1),W8) ≤ 2n− 1 for n ≥ 8 which completes the proof.
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5.3 Ramsey numbers for tree graphs with maximum degree of
n− 5 versus the wheel graph of order 9

In this section, we discuss the Ramsey numbers R(Tn,W8) for tree graphs Tn with
maximum degree of n− 5 versus the wheel graph of order 9. As introduced in the
previous section, there will be 19 tree graphs to be discussed, which are Sn(1, 4),
Sn(5), Sn[5], Sn(4, 1) and all the tree graphs shown in Figure 5.3. Before that, we
introduce two corollaries about the existence of the cycle graph C8.

Corollary 5.3.1. Suppose that U and V are two disjoint subsets of vertices of a
graph G for which |NG[V ∪{u}](u)| ≤ 2 for each u ∈ U . If |U | ≥ 4 and |V | ≥ 6, then
G[U ∪ V ] contains C8.

Proof. Since |U | ≥ 4 and |V | ≥ 6, we can choose any 4 vertices from U to form
U ′ and any 6 vertices from V to form V ′. We have that NG[V ′∪{u}](u) ≤ 2 for each
u ∈ U ′. Then each vertex of U ′ is adjacent to at least 4 vertices of V ′ in G and
G[U ′∪V ′] contains a graph with the properties of G(4, 6, 4) in Lemma 2.2.11. Hence
by that lemma, G[U ∪ V ] must contain C8.

Corollary 5.3.2. Suppose that U and V are two disjoint subsets of vertices of a
graph G for which |NG[V ∪{u}](u)| ≤ 3 for each u ∈ U . If |U | ≥ 4 and |V | ≥ 8, then
G[U ∪ V ] contains C8.

Proof. Since |U | ≥ 4 and |V | ≥ 8, we can choose any 4 vertices from U to form
U ′ and any 8 vertices from V to form V ′. We have that NG[V ′∪{u}](u) ≤ 3 for each
u ∈ U ′. Then each vertex of U ′ is adjacent to at least 5 vertices of V ′ in G and
G[U ′∪V ′] contains a graph with the properties of G(4, 8, 5) in Lemma 2.2.11. Hence
by that lemma, G[U ∪ V ] must contain C8.

We are now ready to present the Ramsey numbers for tree graphs with maximum
degree of n− 5 versus the wheel graph of order 9.

Lemma 5.3.3. Let n ≥ 8. Then R(Tn,W8) ≥ 2n−1 for each Tn ∈ {Sn(1, 4), Sn(5),
Sn[5], Sn(4, 1), TD(n), . . . , TS(n)}. Also, R(Tn,W8) ≥ 2n if n ≡ 0 (mod 4) and
Tn ∈ {Sn(1, 4), TD(n), Sn(2, 2), TN(n)} or if Tn ∈ {TE(8), TF (8)}.

Proof. The graph G = 2Kn−1 clearly does not contain any tree graphs of order
n, and G does not contain W8. Furthermore, if n ≡ 0 (mod 4), then the graph
G = Kn−1 ∪K4,...,4 of order 2n− 1 does not contain Sn(1, 4), TD(n) or Sn(2, 2); nor
does the complement G contain W8. Finally, the graph G = K7 ∪ K4,4 does not
contain TE(8) or TF (8) and G does not contain W8.

Theorem 5.3.4. If n ≥ 8, then

R(Sn(1, 4),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no Sn(1, 4) subgraph whose complement G does not
contain W8. Suppose that G has order 2n if n ≡ 0 (mod 4) and that G has order
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2n − 1 if n ̸≡ 0 (mod 4). By Theorem 5.2.8, G has a subgraph T = Sn(1, 3). Let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w2w3}.
Set V = {v2, . . . , vn−4} and U = V (G)−V (T ); then |V | = n− 5 and |U | = j where
j = n if n ≡ 0 (mod 4) and j = n− 1 if n ̸≡ 0 (mod 4). Since Sn(1, 4) ⊈ G, w3 is
not adjacent in G to any vertex of U ∪V and dG[U∪V ](vi) ≤ n−7 for each vi ∈ V . If
δ(G[U ∪ V ]) ≥ ⌈n−5+j

2
⌉ ≥ n−5+j

2
, then G[U ∪ V ] contains C8 by Lemma 2.2.10 and

thus W8 with w3 as hub, a contradiction. Therefore, δ(G[U ∪V ]) ≤ ⌈n−5+j
2

⌉−1 and

∆(G[U ∪ V ]) ≥ n− 5 + j − ⌈n−5+j
2

⌉ = ⌊n−5+j
2

⌋ ≥ n− 3. Since dG[U∪V ](vi) ≤ n− 7
for each vi ∈ V , dG[U∪V ](u) ≥ n− 3 for some vertex u ∈ U . Since Sn(1, 4) ⊈ G, no
vertex of V is adjacent to {u} ∪NG[U∪V ](u) in G.

For n ≥ 9, any 4 vertices from V and any 4 vertices from {u}∪NG[U∪V ](u) form
C8 in G and, with w3 as hub, form W8, a contradiction. Suppose that n = 8; then
V = {v2, v3, v4}. Let {u1, . . . , u4} be 4 vertices inNG[U∪V ](u). Since S8(1, 4) ⊈ G, w1

is not adjacent to NG[U∪V ](u). If w1 is not adjacent to w3, then w1u1v2u2v3u3v4u4w1

and w3 form W8 in G, a contradiction. Therefore, w1 is adjacent to w3 in G.
Then w2 is not adjacent to any vertex of U ∪ V in G. Since dG[V ](vi) ≤ 1 for
i = 2, 3, 4, one of the vertices of V , say v2, is not adjacent to the other two vertices
of V . Then u1w2u2w3u3v3u4v4u1 and v2 form W8 in G, a contradiction. Thus,
R(Sn(1, 4),W8) ≤ 2n for n ≡ 0 (mod 4) and R(Sn(1, 4),W8) ≤ 2n − 1 for n ̸≡ 0
(mod 4).

This completes the proof.

Theorem 5.3.5. If n ≥ 9, then R(Sn(5),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n− 1. Assume that G does not contain Sn(5)
and that G does not contain W8. By Theorem 5.2.5, G has a subgraph T = Sn(4).
Let V (T ) = {v0,..., vn−4, w1, w2, w3} and E(T ) = {v0v1,..., v0vn−4, v1w1, v1w2, v1w3}.
Set V = {v2, . . . , vn−4} and U = V (G)− V (T ); then |V | = n− 5 and |U | = n− 1.
Since Sn(5) ⊈ G, v1 is not adjacent to any vertex of U ∪ V in G. Furthermore, for
each vi in V , vi is adjacent to at most three vertices of U in G.

For n ≥ 9, we have |V | ≥ 4 and |U | ≥ 8. By Corollary 5.3.2, G[U∪V ] contains C8

which together with v1 gives W8 in G, a contradiction. Thus, R(Sn(5),W8) ≤ 2n−1
which completes the proof.

Theorem 5.3.6. If n ≥ 9, then R(Sn[5],W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n− 1. Assume that G does not contain Sn[5]
and that G does not contain W8. By Theorem 5.3.5, G has a subgraph T = Sn(5).
Let V (T ) = {v0, . . . , vn−5, w1, . . . , w4} and E(T ) = {v0v1, . . . , v0vn−5, v1w1, . . . , v1w4}.
Set V = {v2, . . . , vn−5} and U = V (G)− V (T ); then |V | = n− 6 and |U | = n− 1.
Since Sn[5] ⊈ G, v0 is not adjacent to w1, . . . , w4 in G and w1, . . . , w4 are each
adjacent to at most two vertices of U in G. Now, suppose that v0 is non-adjacent
to at least six vertices of U in G. By Corollary 5.3.1, six of these vertices together
with w1, . . . , w4 contain C8 in G which with v0 gives W8 in G, a contradiction. Then
suppose that v0 is adjacent to at least n − 6 vertices of U in G. Choose a set U ′
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of n − 6 of these vertices. Since Sn[5] ⊈ G, v1 is not adjacent to any vertex of
V ∪U ′ in G. If δ(G[V ∪U ′]) ≥ n− 6, then by Lemma 2.2.10, G[V ∪U ′] contains C8

which with v1 gives W8 in G, a contradiction. Therefore, δ(G[V ∪U ′]) ≤ n− 7 and
∆(G[V ∪ U ′]) ≥ n− 6. However, this gives Sn[5] in G with u and v1 as the centre
of Sn−5 and S5, respectively, where u is a vertex in V ∪U ′ with dG[V ∪U ′](u) ≥ n− 6,
a contradiction. Thus, R(Sn[5],W8) ≤ 2n− 1 which completes the proof.

Theorem 5.3.7. If n ≥ 8, then

R(Sn(2, 2),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Assume that G is a graph with no Sn(2, 2) subgraph whose com-
plement G does not contain W8. Suppose that n ≡ 0 (mod 4) and that G has
order 2n. By Theorem 5.2.10, G has a subgraph T = TB(n). Let V (T ) =
{v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, v2w3}. Set V =
{v3, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 6 and |U | = n. Since
Sn(2, 2) ⊈ G, w3 is not adjacent in G to U ∪ V and v2 is not adjacent to V .
If δ(G[U ∪ V ]) ≥ 2n−6

2
= n − 3, then G[U ∪ V ] contains C8 by Lemma 2.2.10

which with w2 forms W8, a contradiction. Therefore, δ(G[U ∪ V ]) ≤ n − 4, and
∆(G[U ∪ V ]) ≥ n− 3. Now, there are two cases to be considered.

Case 1a: One of the vertices of V , say v3, is a vertex of degree at least n − 3 in
G[U ∪ V ].

Note that in this case, there are at least 4 vertices from U , say u1, . . . , u4, that
are adjacent to v3 in G. Since Sn(2, 2) ⊈ G, these 4 vertices are independent and
are not adjacent to any other vertices of U . Since n ≥ 8, U contains at least
4 other vertices, say u5, . . . , u8, so u1u5u2u6u3u7u4u8u1 and w3 forms W8 in G, a
contradiction.

Case 1b: Some vertex u ∈ U has degree at least n− 3 in G[U ∪ V ].
Since Sn(2, 2) ⊈ G, u is not adjacent to any vertex of V in G. Therefore, u

must be adjacent to at least n − 3 vertices of U in G. Without loss of generality,
suppose that u1, . . . , un−3 ∈ NG[U ](u). Note that V is not adjacent to NG[U ](u), or
else there will be Sn(2, 2) in G, a contradiction. If n ≥ 12, then any 4 vertices from
NG[U ](u) and any 4 vertices from V form C8 in G which, with w3 as hub, forms
W8, a contradiction. Suppose that n = 8 and let the remaining two vertices be
u6 and u7. If |NG[{u1,...,u5,ui}(ui)| ≤ 1 for i = 6, 7, then let X = {u1, . . . , u4} and
Y = {v3, v4, u6, u7}. By Lemma 4.3.5, G[X ∪ Y ] contains C8 and, with w3 as hub,
forms W8 in G, a contradiction. Therefore, one of u6 and u7, say u6, is adjacent
to at least two of u1, . . . , u5, say u1 and u2. Since S8(2, 2) ⊈ G, u7 is adjacent in
G to at least two of u3, u4, u5, say u3 and u4, and v0, . . . , v4, w1 are not adjacent in
G to u, u1, . . . , u6. Now, if w3 is not adjacent to some vertex a ∈ {v0, v1, w1}, then
u1v3u2v4u3u7u4au1 and w3 form W8 in G, a contradiction. Hence, w3 is adjacent to
v0, v1 and w1 in G. Similarly, v2 is not adjacent to u7 and v2 is adjacent to v1 and
w1. Since S8(2, 2) ⊈ G, w2 is not adjacent to U ∪ V , and w1 is not adjacent to V .
Then u1v2u2w1u3w2u4w3u1 and v3 forms W8 in G, a contradiction.
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In either case, R(Sn(2, 2),W8) ≤ 2n.
Suppose that n ̸≡ 0 (mod 4) and that G has order 2n− 1. By Theorem 5.2.10,

G has a subgraph T = TB(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, v2w3}. Set V = {v3, . . . , vn−4} and U = V (G)−V (T );
then |V | = n − 6 and |U | = n − 1. Since Sn(2, 2) ⊈ G, w3 is not adjacent in G to
U ∪V . If δ(G[U ∪V ]) ≥ ⌈2n−5

2
⌉, then G[U ∪V ] contains C8 by Lemma 2.2.10 which

with w3 forms W8, a contradiction. Therefore, δ(G[U ∪ V ]) ≤ ⌈2n−5
2

⌉ − 1 = n− 3,
and ∆(G[U ∪ V ]) ≥ n− 3. Again, there are two cases to be considered.

Case 2a: A vertex of V , say v3, has degree at least n− 3 in G[U ∪ V ].
There must be at least 4 vertices from U , say u1, . . . , u4 that are adjacent to

v3 in G. Since Sn(2, 2) ⊈ G, u1, . . . , u4 are independent and are not adjacent to
any other vertex of U . Since n ≥ 9, there are at least 4 other vertices of U , say
u5, . . . , u8, and u1u5u2u6u3u7u4u8u1 and w3 form W8 in G, a contradiction.

Case 2b: A vertex u ∈ U has degree at least n− 3 in G[U ∪ V ].
Since Sn(2, 2) ⊈ G, no vertex of V is adjacent to u or to NG[U ](u). Then u is

adjacent to at least n−3 vertices of U in G; suppose without loss of generality that
u1, . . . , un−3 ⊆ NG[U ](u). If n ≥ 10, then any 4 vertices from NG[U ](u), any 4 vertices
from V and w3 form W8 in G, a contradiction. Suppose that n = 9 and let u7 be the
vertex in U \ {u, u1, . . . , un−3}. If u7 is adjacent in G to at least two of u1, . . . , u6,
say u1 and u2, then u1u7u2v3u3v4u4v5u1 and w3 form W8 in G, a contradiction.
Therefore, u7 is adjacent in G to at least 5 of the vertices u1, . . . , u6, say u1, . . . , u5.
Since S9(2, 2) ⊈ G, U is not adjacent in G to {v0, v1, v2, w1} ∪ V and w2 is not
adjacent to u or u7. If w3 is not adjacent to some vertex a ∈ {v0, v1, w1, w2}, then
uv3u1v4u2v5u7au and w3 form W8 in G, a contradiction. Hence, w3 is adjacent to v0,
v1, w1 and w2 in G. Similarly, v2 is adjacent to v1, w1 and w2. Since S9(2, 2) ⊈ G,
w2 is non-adjacent to at least one of v3, v4, v5, say v3 without loss of generality.
If v1 is also not adjacent to v3, then uw2u7v1u1v2u2w3u and w3 form W8 in G, a
contradiction. Thus, v1 is adjacent to v3, then v3 is not adjacent to both v4 and
v5, or else G contains S9(2, 2). Without loss of generality, assume that v3 is not
adjacent to v4 in G. Then uw2u7v4u1v2u2w3u and w3 form W8 in G, a contradiction.

In either case, R(Sn(2, 2),W8) ≤ 2n− 1 for n ̸≡ 0 (mod 4).

Theorem 5.3.8. If n ≥ 9, then R(Sn(4, 1),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1. Assume that G does not contain
Sn(4, 1) and that G does not contain W8.

Suppose first that there is a subset X ⊆ V (G) of size n with δ(G[X]) ≥ n− 4.
Let x0 be any vertex of X, and pick a subset X ′ ⊆ NG[X](x0) of size n − 5. Set
Y = X \ ({x0} ∪X ′), and so |Y | = 4. Since δ(G[X]) ≥ n − 4, each vertex of Y is
adjacent to at least n − 8 vertices of X ′ in G and each vertex of X ′ is adjacent to
at least one vertex of Y in G. Hence, for n ≥ 11, it is straightforward to see that
there is a matching from Y to X ′ in G; hence, G contains Sn(4, 1), a contradiction.

For n = 10 and δ(G[X]) ≥ n − 4 = 6, let X = {x0, . . . , x9} and {x1, . . . , x6} ⊆
NG[X](x0). Since δ(G[X]) ≥ 6, vertices x7, x8 and x9 must each be adjacent to at
least 3 vertices of x1, . . . , x6. It is straightforward to see that there is a matching
from {x7, x8, x9} to {x1, . . . , x6} in G; without loss of generality, assume that xi is
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adjacent to xi+6 in G for i = 1, 2, 3. Now, if there is any edge in G[{x4, x5, x6}], then
S10(4, 1) ⊆ G, a contradiction. Otherwise, G[{x4, x5, x6}] is independent and each
of x4, x5, x6 must be adjacent to at least two vertices of x7, x8, x9 in G. Without
loss of generality, assume that x4 is adjacent to x7 and x8 in G. Since S10(4, 1) ⊈ G,
x5 cannot be adjacent to x1 and x2 in G, but this is impossible since δ(G[X]) ≥ 6.

Now for n = 9, suppose that dG[X](x0) = n−4 = 5. Let NG[X](x0) = {x1, . . . , x5}
and Y = {x6, x7, x8}. Then three vertices of Y are each adjacent to at least n−6 = 3
vertices of NG[X](x0) in G. Without loss of generality, assume that x1 is adjacent to
x6, x2 is adjacent to x7 and x3 is adjacent to x8, respectively. Now, if x4 is adjacent
to x5, then G contains S9(4, 1), a contradiction. Otherwise, x4 and x5 must each be
adjacent to at least one of x6, x7 and x8. Assume that x4 is adjacent to x6. Then
x5 is not adjacent to x1 and x4 in G, or else G contains S9(4, 1). If x5 is adjacent to
x6, then x1, x4, x5 must be independent in G, and they are each adjacent to x7 or x8

in G; assume that x1 is adjacent to x7. Then x4 and x5 are not adjacent to x2 in G,
and since δ(G[X]) ≥ 5, they are adjacent to x7 and x8 in G, and G contains S9(4, 1),
a contradiction. If x5 is not adjacent to x6, then since dG[X](v0) ≥ 5, x5 is adjacent
to x2, x3, x7 and x8 in G. Then x4 is not adjacent to x2 and x3 in G, and x4 is
adjacent to x1, x6, x7 and x8 in G, and this gives us S9(4, 1) in G, a contradiction.
As x0 was arbitrary, assume for the case when n = 9 that δ(G[X]) ≥ n − 3 = 6,
which again leads to the contradiction that G contains S9(4, 1).

Now assume that δ(G[X]) ≤ n − 5 whenever X ⊆ V (G) is of size n. Recall
that G has order 2n − 1, and so by Theorem 5.2.12, G has a subgraph Sn(3, 1)
and thus a subgraph T = Sn−1(3, 1). Let V (T ) = {v0, . . . , vn−5, w1, w2, w3} and
E(T ) = {v0v1, . . . , v0vn−5, v1w1, v2w2, v3w3}. Set V = {v4, . . . , vn−5} and U =
V (G) − V (T ) = {u1, . . . , un}; then |V | = n − 8 and |U | = n. Since Sn(4, 1) ⊈ G,
V is not adjacent to any vertex of U in G. Now as δ(G[U ]) ≤ n− 5, G[U ] contains
S5, and so for n ≥ 12, G contains W8 by Observation 4.3.2, a contradiction.

Suppose that n = 11. If v0 is not adjacent to any vertex of U in G, then G
contains W8 by Observation 4.3.2, a contradiction. Assume that v0 is adjacent to
some vertex u ∈ U . Since S11(4, 1) ⊈ G, G[V ∪{u}] is an empty graph and u is not
adjacent to any vertex of U in G. By Lemma 4.3.4, G[U \{u}] is K10 or K10− e, so
no vertex of V (T )∪{u} is adjacent to any vertex of U \ {u} in G, as S11(4, 1) ⊈ G.
Since δ(G[V (T ) ∪ {u}]) ≤ n− 5, G[V (T ) ∪ {u}] contains S5, so G contains W8 by
Observation 4.3.2, a contradiction.

Now, suppose that n = 10. Then G has order 19, and by Theorem 5.2.12, G
has a subgraph T ′ = S10(3, 1). Let V (T ′) = {v′0, . . . , v′6, w′

1, w
′
2, w

′
3} and E(T ′) =

{v′0v′1, . . . , v′0v′6, v′1w′
1, v

′
2w

′
2, v

′
3w

′
3}. Set V ′ = {v′4, v′5, v′6} and U ′ = V (G) − V (T ′) =

{u′
1, . . . , u

′
9}. Since S10(4, 1) ⊈ G, V ′ must be independent in G and is not adjacent

to any vertex of U ′ in G. If v′0 is adjacent to some vertices in U ′ in G, say u′
1. Since

S10(4, 1) ⊈ G, u′
1 is not adjacent to any vertex of V ′ or U ′ \ {u′

1} in G. Then by
Lemma 4.3.4, G[U ′ \ {u′

1}] is K8 or K8− e, so no vertex of V (T ′) is adjacent to any
vertex of U ′ \{u′

1} in G, as S10(4, 1) ⊈ G. Since δ(G[V (T ′)]) ≤ 5, G[V (T ′)] contains
S5, so G contains W8 by Observation 4.3.2, a contradiction. Now, suppose that v′0
is not adjacent to any vertex of U ′ in G. Note that |U ′ ∪ {w′

1}| = n; therefore,
δ(G[U ′ ∪ {w′

1}]) ≤ 5, and so G[U ′ ∪ {w′
1}] contains S5. If w

′
1 is not adjacent to any

vertex from V ′ ∪ {v′0}, then by Observation 4.3.2, G contains W8, a contradiction.
Otherwise, there are two cases to be considered.
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Case 1a: w′
1 is adjacent to some vertices of V ′ in G.

Without loss of generality, assume that w′
1 is adjacent to v′4 in G. In this case,

v′1 is not adjacent to U ′ ∪ {v′5, v′6}. Then by Lemma 4.3.4, G[U ′] is K9 or K9 − e,
so no vertex of V (T ′) is adjacent to any vertex of U ′ in G, as S10(4, 1) ⊈ G. Since
δ(G[V (T ′)]) ≤ 5, G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3.2,
a contradiction.

Case 1b: w′
1 is non-adjacent to each vertex of V ′ in G.

In this case, w′
1 is adjacent to v′0 in G. Note that w′

1 is not adjacent to U ′, since
this would revert to the case where v′0 is adjacent to some vertex of U ′. Then again
by Lemma 4.3.4, G[U ′] is K9 or K9 − e, so no vertex of V (T ′) is adjacent to any
vertex of U ′ in G, as S10(4, 1) ⊈ G. Since δ(G[V (T ′)]) ≤ 5, G[V (T ′)] contains S5,
and so G contains W8 by Observation 4.3.2, a contradiction.

Finally, suppose that n = 9. Then G has order 17, and so G has a subgraph
T ′ = S9(2, 1) by Theorem 4.3.12. Let V (T ′) = {v′0, . . . , v′6, w′

1, w
′
2} and E(T ′) =

{v′0v′1, . . . , v′0v′6, v′1w′
1, v

′
2w

′
2}. Set V ′ = {v′3, . . . , v′6} and U ′ = V (G) − V (T ′) =

{u′
1, . . . , u

′
8}.

Now, suppose that EG(V
′, U ′) ̸= ∅. Without loss of generality, assume that v′3 is

adjacent to u′
1 in G. Since S9(4, 1) ⊈ G, v′4, v

′
5, v

′
6 are independent and not adjacent

to any vertex of U ′ \ {u′
1} in G.

Suppose that v′0 is adjacent to some vertex of U ′ \ {u′
1}, say u′

2. Then u′
2 is non-

adjacent to {v′4, v′5, v′6}∪U ′ \{u′
1, u

′
2} in G. Since δ(G[{w′

1, w
′
2}∪U ′ \{u′

2}]) ≤ n−5,
G[{w′

1, w
′
2}∪U ′\{u′

2}] contains S5. If v
′
4, v

′
5, v

′
6 and u′

2 are not adjacent to w′
1, w

′
2 or

u′
1 in G, then G contains W8 by Observation 4.3.2, a contradiction. Assume that v′4

is adjacent to w′
1 in G. In this case, v′1 is not adjacent to {v′5, v′6}∪U ′\{u′

1} in G, and
v′1u

′
3v

′
4u

′
4v

′
6u

′
7u

′
2u

′
8v

′
1 and v′5 form W8 in G, a contradiction. Similar contradictions

occur if we assume that v′5, v
′
6 or u′

2 are adjacent to w′
1, w

′
2 or u′

1 in G.
Thus, v′0 is not adjacent to any vertex of U ′ \ {u′

1} in G. Since δ(G[{w′
1, w

′
2} ∪

U ′ \ {u′
1}]) ≤ n− 5, G[{w′

1, w
′
2} ∪U ′ \ {u′

1}] contains S5. If v
′
0, v

′
4, v

′
5 and v′6 are not

adjacent to w′
1 or w

′
2 in G, then G containsW8 by Observation 4.3.2, a contradiction.

There are two cases to be considered.

Case 2a: v′0 is adjacent to w′
1 or w′

2 in G.
Without loss of generality, assume that v′0 is adjacent to w′

1 in G. Note that
v′1 and w′

1 are not adjacent to U ′ \ {u′
1}, since this would revert to the case where

v′0 is adjacent to some vertex of U ′ \ {u′
1}. Again, since δ(G[{w′

2} ∪ U ′]) ≤ n − 5,
G[{w′

2} ∪ U ′}] contains S5. If v
′
1, v

′
4, v

′
5 and v′6 are not adjacent to w′

2 and u′
1 in G,

then G contains W8 by Observation 4.3.2, a contradiction.
Suppose that v′1 is adjacent to w′

2 or u′
1, say w′

2, in G. If w′
1 is not adjacent to

v′4, v
′
5 or v′6, then by Lemma 4.3.4, G[U ′ \ {u′

1}] is K7 or K7 − e, so no vertex of
V (T ′) ∪ {u′

1} is adjacent to any vertex of U ′ \ {u′
1} in G, as S9(4, 1) ⊈ G. Since

δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5, and so G contains W8 by Observa-
tion 4.3.2, a contradiction. Otherwise, w′

1 is adjacent to at least one of v′4, v
′
5, v

′
6

in G, say v′4. Then v′2 is not adjacent to {v′5, v′6} ∪ U ′ \ {u′
1}, since G does not

contain S9(4, 1). Similarly, by Lemma 4.3.4, G[U ′ \ {u′
1}] is K7 or K7 − e, so no

vertex of V (T ′) ∪ {u′
1} is adjacent to any vertex of U ′ \ {u′

1} in G, as S9(4, 1) ⊈ G.
Again, since δ(G[V (T ′)]) ≤ n− 5, G[V (T ′)] contains S5, and so G contains W8 by
Observation 4.3.2, a contradiction.
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Now suppose that v′1 is non-adjacent to both w′
2 and u′

1 in G. Then one of
v′4, v

′
5, v

′
6 is adjacent to w′

2 or u′
1 in G. Without loss of generality, assume that v′4 is

adjacent to w′
2 in G. In this case, v′2 is not adjacent to {v′5, v′6} ∪ U ′ \ {u′

1}. Then
again, by Lemma 4.3.4, G[U ′ \{u′

1}] is K7 or K7− e, so no vertex of V (T ′)∪{u′
1} is

adjacent to any vertex of U ′\{u′
1} in G, as S9(4, 1) ⊈ G. Since δ(G[V (T ′)]) ≤ n−5,

G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3.2, a contradiction.

Case 2b: v′0 is non-adjacent to both w′
1 and w′

2 in G.
In this case, one of v′4, v

′
5, v

′
6 is adjacent to w′

1 or w′
2 in G, say v′4 to w′

1 in G.
Since S9(4, 1) ⊈ G, v′1 is not adjacent to {v′5, v′6}∪U ′ \ {u′

1} in G. By Lemma 4.3.4,
G[U ′ \ {u′

1}] is K7 or K7 − e, so no vertex of V (T ′)∪ {u′
1} is adjacent to any vertex

of U \ {u′
1} in G, as S9(4, 1) ⊈ G. Since δ(G[V (T ′)]) ≤ n− 5, G[V (T ′)] contains S5,

and so G contains W8 by Observation 4.3.2, a contradiction.

Now suppose that EG(V
′, U ′) = ∅. If δ(G[V ′]) = 0, then by Lemma 4.3.4,

G[U ′] is K8 or K8 − e, and no vertex of V (T ′) is adjacent to any vertex of U ′ in
G, as S9(4, 1) ⊈ G. Since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5, and so G
contains W8 by Observation 4.3.2, a contradiction. Hence, δ(G[V ′]) ≥ 1, and since
S9(4, 1) ⊈ G, one of the vertices in V ′ is adjacent to other three in G. Without loss
of generality, assume that v′3 is adjacent to v′4, v

′
5 and v′6 in G. Since G does not

contain S9(4, 1), v
′
4, v

′
5, v

′
6 are independent in G. Furthermore, v′0 is not adjacent

to U ′ in G or else this reverts to the case where v′3 is adjacent to u′
1 and v′0 is

adjacent to any vertex of U ′ \ {u′
1}. Since δ(G[{w′

1} ∪ U ′]) ≤ n − 5, G[{w′
1} ∪ U ′]

contains S5. If v′0, v
′
4, v

′
5 and v′6 are non-adjacent to w′

1 in G, then G contains W8

by Observation 4.3.2, a contradiction. Again, there are two cases to be considered.

Case 3a: v′0 is adjacent to w′
1 in G.

Note that v′1 and w′
1 are not adjacent to U ′, or else this reverts to the case

where v′3 is adjacent to u′
1 and v′0 is adjacent to any vertex of U ′ \ {u′

1}. Now,
since δ(G[{w′

2} ∪ U ′]) ≤ n − 5, G[{w′
2} ∪ U ′}] contains S5. If v′0, v

′
4, v

′
5 and v′6 are

non-adjacent to w′
2 in G, then G contains W8 by Observation 4.3.2, a contradiction.

Suppose that v′0 is adjacent to w′
2 in G. Again, v′2 and w′

2 are non-adjacent to
U ′, or else else this reverts to the case where v′3 is adjacent to u′

1 and v′0 is adjacent
to any vertex of U ′ \{u′

1}. Now, EG(V (T ′), U ′) = ∅, and since δ(G[V (T ′)]) ≤ n− 5,
G[V (T ′)] contains S5, and so G contains W8 by Observation 4.3.2, a contradiction.

Therefore, w′
2 is adjacent to at least one of v′4, v

′
5 and v′6 in G, say v′4. Then v′2

is not adjacent to v′5, v
′
6 or U ′, as S9(4, 1) ⊈ G, a contradiction. By Lemma 4.3.4,

G[U ′] is K8 or K8 − e, so no vertex of V (T ′) is adjacent to any vertex of U ′ in G,
as S9(4, 1) ⊈ G. Again, since δ(G[V (T ′)]) ≤ n− 5, G[V (T ′)] contains S5, and so G
contains W8 by Observation 4.3.2, a contradiction.

Case 3b: v′0 is not adjacent to w′
1 in G.

In this case, one of v′4, v
′
5, v

′
6 is adjacent to w′

1 in G, say v′4. Since S9(4, 1) ⊈ G,
v′1 is not adjacent to v′5, v

′
6 or U ′ in G. By Lemma 4.3.4, G[U ′] is K8 or K8 − e,

so no vertex of V (T ′) ∪ {u′
1} is adjacent to any vertex of U ′ in G, as S9(4, 1) ⊈

G. Since δ(G[V (T ′)]) ≤ n − 5, G[V (T ′)] contains S5, and so G contains W8 by
Observation 4.3.2, a contradiction.

Thus, R(Sn(4, 1),W8) ≤ 2n− 1 for n ≥ 9 which completes the proof.
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Theorem 5.3.9. If n ≥ 8, then

R(TD(n),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no TD(n) subgraph whose complement G does
not contain W8. Suppose that n ≡ 0 (mod 4) and that G has order 2n. By
Theorem 5.2.7, G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U =
V (G)− V (T ); then |V | = n− 5 and |U | = n. Since TD(n) ⊈ G, neither w2 nor w3

is adjacent in G to U ∪ V .
Suppose that n = 8. Since G does not contain TD(n), V must be inde-

pendent and non-adjacent to U in G. Then for any vertices u1, . . . , u4 in U ,
v3u1v4u2w2u3w3u4v3 and v2 form W8 in G, a contradiction. Suppose that that
n ≥ 12. Then |U ∪ V | = 2n− 5. If δ(G[U ∪ V ]) ≥ ⌈2n−5

2
⌉, then G[U ∪ V ] contains

C8 by Lemma 2.2.10 which, with w2 as hub, forms W8, a contradiction. Thus,
δ(G[U ∪ V ]) ≤ ⌈2n−5

2
⌉ − 1 = n− 3, and ∆(G[U ∪ V ]) ≥ n− 3. Now, there are two

cases to consider.

Case 1: One of the vertices of V , say v2, is a vertex of degree at least n − 3 in
G[U ∪ V ].

Since TD(n) ⊈ G, v1 is not adjacent in G to w2, w3 or U ∪ V \ {v2}. Let
U ′ = {w2, w3} ∪ U ∪ V \ {v2}; then |U ′| = 2n − 4. Now, if δ(G[U ′]) ≥ 2n−4

2
=

n− 2, then G[U ′] contains C8 by Lemma 2.2.10 which, with v1 as hub, forms W8, a
contradiction. Hence, δ(G[U ′]) ≤ n − 3, and ∆(G[U ′]) ≥ n − 2. Note that neither
w2 nor w3 have degree ∆(G[U ′]). Therefore, dG[U ′](u

′) ≥ n − 2 for some vertex
u′ ∈ U∪V \{v2}. By the Inclusion-Exclusion Principle, some vertex a ∈ U∪V \{v2}
is adjacent in G to both u′ and v2. Then G has a subgraph TD(n) in which u′ is
the vertex of degree n− 5 and v2 is the vertex of degree 3, a contradiction.

Case 2: Some vertex u ∈ U has degree at least n− 3 in G[U ∪ V ].
Suppose that there is at least one vertex in V that is adjacent to u in G, say v2.

Then G has a subgraph TD(n) in which u is the vertex of degree n− 5 and v0 is the
vertex of degree 3, a contradiction. Similarly, no other vertex of V is adjacent to u.
Now, since TD(n) ⊈ G, we must have dG[NG[U ](u)∪{v}](v) ≤ 1 and dG[V ∪{x}](x) ≤ 1,

for any v ∈ V and x ∈ NG[U ](u). Then by Lemma 4.3.5, G[V ∪ NG[U ](u)] must
contain C8, which with w2 as hub, forms W8 in G, a contradiction.

Now, suppose that n ̸≡ 0 (mod 4) and that G has order 2n − 1. By Theo-
rem 5.2.7, G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and
U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1. Since TD(n) ⊈ G, nei-
ther w2 nor w3 is adjacent to U ∪ V in G. If δ(G[U ∪ V ]) ≥ 2n−6

2
= n − 3, then

G[U ∪ V ] contains C8 by Lemma 2.2.10 which, with w2 as hub, forms W8 in G, a
contradiction. Thus, δ(G[U∪V ]) ≤ n−4, and ∆(G[U∪V ]) ≥ n−3. The arguments
of the preceding cases then lead to contradictions.

Thus, R(TD(n),W8) ≤ 2n, which completes the proof.
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Lemma 5.3.10. Each graph H of order n ≥ 8 with minimal degree at least n − 4
contains TE(n) unless n = 8 and H = K4,4.

Proof. Let V (H) = {u0, . . . , un−1}. First, suppose that ∆(H) ≥ n− 3 and assume
without loss of generality that u1, . . . , un−3 ∈ NH(u0). Suppose that un−2 and
un−1 are adjacent in H. Since δ(H) ≥ n − 4, NH(u0) ∩ NH(un−2) ̸= ∅, so assume
without loss of generality that u1 is adjacent to un−2 in H. Furthermore, u1 must
be adjacent to at least n − 7 vertices from {u2, . . . , un−3} in H. Without loss of
generality, assume that u1 is adjacent to u2, . . . , un−6 in H. Now, if any vertex of
{u2, . . . , un−6} is adjacent to un−5, un−4 or un−3 in H, then we have TE(n) in H.
Suppose that is not the case; then each vertex of {u2, . . . , un−6} must be adjacent
to each other and to u0, u1, un−2 and un−1 in H. Since dH(un−3) ≥ n − 4, un−3

is adjacent to at least one of u1, un−2 and un−1 in H, so H contains TE(n), a
contradiction.

Suppose that un−2 is not adjacent to un−1 in H. Since δ(H) ≥ n− 4, un−2 and
un−1 are each adjacent to at least n − 5 vertices in NH(u0), so at least one vertex
of NH(u0), say u1, is adjacent in H to both un−2 and un−1. If H[{u2, . . . , un−3}]
contains subgraph 2K2, then H contains subgraph TE(n). Note that this will always
happens for n ≥ 11, since δ(H) ≥ n− 4.

Suppose that n = 10. Since δ(H) ≥ 6, u2 must be adjacent in H to at least two
vertices of u3, . . . , u7, without loss of generality say u3 and u4. If H[{u4, . . . , u7}]
contains any edge, then H contains TE(10). Otherwise, {u4, . . . , u7} must be inde-
pendent in H and each of these vertices must be adjacent to u0, u1, u2, u3, u8 and
u9; this also gives a subgraph TE(10) in H.

Similarly, for n = 9, u2 must be adjacent to at least one of u3, . . . , u6, say u3,
in H. If H[{u4, u5, u6}] contains any edge, then H contains TE(9). Otherwise,
{u4, u5, u6} is independent in H and since δ(H) ≥ 5, u4 is adjacent to at least one
of u2 and u3, and u5 is adjacent to at least one of u7 and u8. Again, this gives a
subgraph TE(9) in H.

For n = 8, if u2, . . . , u5 are independent in H, then they are each adjacent to
u0, u1, u6 and u7 in H, which gives TE(8) in H. Otherwise, we can assume that
u2 is adjacent to u3 in H. If u4 is adjacent to u5 in H, we will have TE(8) in H;
otherwise, assume that u4 is not adjacent to u5. Now, suppose that u4 is adjacent to
u2 or u3 in H. If u5 is adjacent to u6 or u7 in H, then H contains TE(8). Otherwise,
u5 must be adjacent to u0, u1, u2 and u3 since δ(H) ≥ 4. However, this also gives
TE(8) in H. On the other hand, suppose that u4 is adjacent to neither u2 nor u3 in
H. Similarly, u5 is not adjacent to u2 or to u3 in H. Since δ(H) ≥ 4, both u4 and
u5 are adjacent to u0, u1, u6 and u7 in H, and this also gives TE(8) in H.

Suppose that H is (n − 4)-regular and that NH(u0) = {u1, . . . , un−4}. By the
Handshaking Lemma, this only happens when n is even.

Suppose that n ≥ 10. Note that un−3, un−2 and un−1 are each adjacent to at
least n− 6 vertices of NH(u0) in H. By the Inclusion-Exclusion Principle, at least
one of u1, . . . , un−4 is adjacent to two of un−3, un−2, un−1 in H, say u1 to un−3 and
un−2, and there must be another vertex, say u2, that is adjacent to un−1 in H. Now,
if there is any edge in H[{u3, . . . , un−4}], then TE(n) ⊆ H, and this always happens
for n ≥ 12. For n = 10, since dH(u1) = 6, u1 is non-adjacent in H to at least one
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of u3, . . . , u6, say u3. Since dH(u3) = 6, u3 is adjacent to one of u4, u5, u6, giving
TE(10) in H.

Now suppose that n = 8. If u5, u6 and u7 are independent in H, then H = K4,4.
Otherwise, we can assume that u5 is adjacent to u6 in H. If u5 is also adjacent to
u7 in H, then u5 is adjacent in H to two vertices of NH(u0), say u1 and u2. Suppose
that u6 is adjacent to u1 or u2, say u1, in H. Since dH(u6) = 4, u6 is also adjacent
to at least one of u2, u3, u4, u7, so TE(8) ⊆ H. Otherwise, suppose that neither u6

nor u7 is adjacent to u1 or u2 in H. Since H is a 4-regular graph, u6 and u7 are
both adjacent to u3 and u4 in H, and u1 is adjacent to at least one of u3 and u4

in H. This gives TE(8) in H. On the other hand, suppose that u5 is not adjacent
to u7 in H. Then similarly, u6 is not adjacent to u7 in H, so u7 is adjacent to u1,
u2, u3 and u4 in H, and H contains TE(8).

Theorem 5.3.11. For n ≥ 8,

R(TE(n),W8) =

{
2n− 1 if n ≥ 9 ;

16 if n = 8 .

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1 if n ≥ 9 and of order 16 if n = 8.
Assume that G does not contain TE(n) and that G does not contain W8.

By Theorem 5.2.12, G has a subgraph T = Sn(3, 1). Let

V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v3w3} .

Set V = {v4, . . . , vn−4} and U = V (G)− V (T ). Then |V | = n− 7 and |U | ≥ n− 1.
Since TE(n) ⊈ G, each of v1, v2, v3 is not adjacent to any vertex of V ∪ U in G,
and each vertex of V is adjacent to at most one vertex of U in G. Let W be a set
of n − 2 vertices of U that are not adjacent to v4 in G. By Lemma 4.3.4, G[W ] is
Kn−2 or Kn−2−e. Since TE(n) ⊈ G, every vertex of T is not adjacent to any vertex
of W , and so δ(G[V (T )]) ≥ n− 4 by Observation 4.3.2.

Now Lemma 5.3.10 implies that G[V (T )] contains TE(n) if n ≥ 9, which is a
contradiction, and so we must have n = 8 and G[V (T )] = K4,4. Observe now that
|U | = 8, and as TE(8) ⊈ G, no vertex of U is adjacent to any vertex of G[V (T )].
So again by Lemma 4.3.4, G[U ] is K8 or K8 − e, which clearly contains TE(8), a
contradiction.

Therefore, R(TE(n),W8) ≤ 2n − 1 when n ≥ 9 and R(TE(n),W8) ≤ 16 when
n = 8. This completes the proof of the theorem.

Lemma 5.3.12. Each graph H of order n ≥ 8 with minimal degree at least n − 4
contains TF (n) unless n = 8 and H = K4,4.

Proof. Let V (H) = {u0, u1 . . . , un−1} with d(u0) = δ(H) and V := {u1, . . . , un−4} ⊆
N(u0). Set U = {un−3, un−2, un−1}. By the minimum degree condition, every vertex
of U is adjacent to at least n − 6 vertices of V . It is straightforward to see that
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some pair of vertices in U has a common neighbour in V , and moreover for n ≥ 9,
every pair of vertices in U has a common neighbour in V .

We assume without loss of generality that u1 is adjacent to both un−3 and un−2,
and that u2 is adjacent to un−1. If u2 is adjacent to a vertex of V \ {u1}, which is
the case when n ≥ 10, then H contains TF (n). We may assume now that n ≤ 9
and that u2 is not adjacent to any vertex of V \ {u1}.

For the case when n = 9, we know un−1 is adjacent to at least n−6 = 3 vertices
of V , and so it is adjacent to another vertex, say to u3. As above, we may assume
that u3 is not adjacent to any vertex of V \{u1}. By the minimum degree condition,
each of u2 and u3 is adjacent to every vertex of {u1} ∪ U , giving TF (9) in H.

For the final case when n = 8, the minimum degree condition implies that u2

is adjacent to at least two of u1, u5, u6. If u2 is adjacent to u1, H contains TF (8).
Thus, we are left with the case in which u2 is not adjacent to u1 but is adjacent to
both u5 and u6. Exchanging the roles of u1 and u2, we may further assume that u1

is adjacent to u7 but not to any vertex of V . From the minimum degree condition
on u3 and u4, it is easy to see that either H contains TF (8) or H = K4,4.

Theorem 5.3.13. For n ≥ 8,

R(TF (n),W8) =

{
2n− 1 if n ≥ 9 ;

16 if n = 8 .

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no TF (n) subgraph whose complement G does not
contain W8. Suppose that n = 8 and that G has order 16. By Theorem 5.2.11,
G has a subgraph T = TC(8). Let V (T ) = {v0, . . . , v4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0v4, v1w1, v2w2, v2w3}. Set U = V (G)−V (T ) = {u1, . . . , u8}; then |U | = 8.
Since TF (8) ⊈ G, v1 is not adjacent in G to {v2, v3, v4} ∪ U , and dG[U ](v) ≤ 1 for
v = v3, v4, w2, w3.

Suppose that v1 is adjacent to w2 or w3, without loss of generality say w2. Since
TF (8) ⊈ G, v2 is not adjacent to {v3, v4}∪U . If neither v3 nor v4 are adjacent to U ,
then by Lemma 4.3.4, G[U ] is K8 or K8−e, so G[U ] contains TF (8), a contradiction.
Suppose that only one of the vertices v3 and v4 is adjacent to U in G, say v3. By
Lemma 4.3.4, G[U \ {u1}] is K7 or K7 − e, and G[V (T ) ∪ {u1}] is not adjacent to
G[U \ {u1}]. By Observation 4.3.2, δ(G[V (T ) ∪ {u1}]) ≥ 5, and by Lemma 5.3.12,
G[V (T ) ∪ {u1}] contains TF (9) and hence TF (8), a contradiction. Suppose that
both v3 and v4 are adjacent to U in G and assume that v3 is adjacent to u1 and
that v4 is adjacent to u2. By Lemma 4.3.4, G[U \ {u1, u2}] is K6 or K6 − e. At
most one vertex from G[V (T ) ∪ {u1, u2}] is adjacent to G[U \ {u1, u2}] or else G
will contain TF (8). Therefore, 9 vertices from G[V (T ) ∪ {u1, u2}] form a vertex set
W that is not adjacent to U \ {u1, u2}. By Observation 4.3.2, δ(G[W ]) ≥ 5, and by
Lemma 5.3.12, G[W ] contains TF (9) and hence TF (8), a contradiction.

Suppose then that v1 is not adjacent to w2 or w3. Since dG[U ](v) ≤ 1 for v =
v3, v4, w2, w3, there are 4 vertices from U that are not adjacent to {v3, v4, w2, w3}.
These 8 vertices form C8 in G and thus, with v1 as hub, W8, a contradiction.

Thus, R(TF (8),W8) ≤ 16.
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Now, suppose that n ≥ 9 and that G has order 2n − 1. By Theorem 5.2.11,
G has a subgraph T = TC(n). Let V (T ) = {v0, . . . , vn−4, v4, w1, w2, w3} and
E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set V = {v3, . . . , vn−4} and U =
V (G)−V (T ) = {u1, . . . , un−1}; then |V | = n−6 and |U | = n−1. Since TF (n) ⊈ G,
v1 is not adjacent in G to any vertex of U ∪ V , and dG[U ](v) ≤ 1 for v ∈ V . Since
n ≥ 10, there are 4 vertices from U , 4 vertices from V and v1 that form W8 in G, a
contradiction. Thus, R(TF (n),W8) ≤ 2n− 1 for n ≥ 10.

Suppose that n = 9 and let m be the number of vertices of U that are adjacent
in G to at least one vertex of V . Since dG[U ](v) ≤ 1 for v ∈ V , 0 ≤ m ≤ 3. If m = 0,
then G[U ] is K8 or K8− e by Lemma 4.3.4, so G[V (T )] is not adjacent to G[U ]. By
Observation 4.3.2, δ(G[V (T )]) ≥ 5, and G[V (T )] contains TF (9) by Lemma 5.3.12,
a contradiction. Suppose that m = 1. Assume without loss of generality that u1

is adjacent to some vertex of V , and that EG(V, U \ {u1}) = ∅. By Lemma 4.3.4,
G[U \ {u1}] is K7 or K7 − e, and at most one vertex from G[V (T ) ∪ {u1}] is
adjacent to G[U \ {u1}] or else G contains TF (9). There are then 9 vertices from
G[V (T ) ∪ {u1}] that form a vertex set W1 that is not adjacent to U \ {u1}. By
Observation 4.3.2, δ(G[W1]) ≥ 5, and G[W1] contains TF (9) by Lemma 5.3.12, a
contradiction. Suppose that m = 2. Assume that u1 and u2 are adjacent to some
vertices of V and that EG(V, U \ {u1, u2}) = ∅. By Lemma 4.3.4, G[U \ {u1, u2}] is
K6 or K6 − e. If at least three vertices in U \ {u1, u2} are adjacent to V (T )∪ {u1},
then TF (9) ⊆ G. If at most two vertices in U \{u1, u2} are adjacent to V (T )∪{u1},
then there are 4 vertices in U \ {u1, u2} that are not adjacent to V (T ). Then by
Observation 4.3.2, δ(G[V (T )]) ≥ 5, and G[V (T )] contains TF (9) by Lemma 5.3.12,
a contradiction. Suppose that m = 3. Assume that u1, u2, u3 are each adjacent to
some vertex of V and that EG(V, U \ {u1, u2, u3}) = ∅. Without loss of generality,
assume that ui is adjacent to vi+2 for i = 1, 2, 3. By Lemma 4.3.4, G[U \{u1, u2, u3}]
is K5 or K5− e. Since TF (9) ⊈ G, {v1, v3, v4, v5} is independent and V (T ) \ {w1} is
not adjacent to U \{u1, u2, u3}. Then by Observation 4.3.2, δ(G[V (T )\{w1}]) ≥ 4,
and v1, v3, v4 and v5 are each adjacent to v2, w2 and w3 in G. This gives TF (9)
in G. Therefore, TF (9) ≤ 17 = 2n− 1.

Theorem 5.3.14. If n ≥ 8, then R(TG(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n−1. Assume that G does not contain TG(n) and that
G does not contain W8. By Theorem 5.2.12, G has a subgraph T = Sn(3, 1). Let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v2w2, v3w3}.
Set V = {v4, v5, . . . , vn−4} and U = V (G)−V (T ); then |V | = n−7 and |U | = n−1.
Since TG(n) ⊈ G, w1, w2, w3 are not adjacent to U ∪ V in G, and v1, v2, v3 are not
adjacent to V .

Suppose that n ≥ 9; then |U | ≥ 8. If δ(G[U ]) ≥ n−1
2
, then G[U ] contains

C8 by Lemma 2.2.10 which, with w2 as hub, forms W8, a contradiction. Therefore,
δ(G[U ]) < n−1

2
, and ∆(G[U ∪V ]) ≥ n−1

2
≥ 4. Therefore, some vertex u ∈ U satisfies

|NG[U ](u)| ≥ 4. Since TG(n) ⊈ G, NG[U ](u) is not adjacent in G to NG[V (T )](v0).
Hence, 4 vertices from NG[U ](u), v1, v2, v3, w1 and any vertex from V form W8 in G,
a contradiction. Thus, R(TG(n),W8) ≤ 2n− 1 for n ≥ 9.
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Suppose that n=8 and let U ={u1, . . . , u7} and W ={v4} ∪ U . If δ(G[W ])≥4,
then G contains C8 by Lemma 2.2.10 and thus W8 with w1 as hub, a contradiction.
Hence, δ(G[W ]) ≤ 3, and ∆(G[W ]) ≥ 4. Suppose that dG[W ](v4) ≥ 4. Then without
loss of generality, assume that u1, . . . , u4 ∈ NG(v4). Then u1, . . . , u4, w1, w2, w3 are
independent and are not adjacent to u5, u6 or u7, giving W8, a contradiction. On
the other hand, suppose that some vertex in U , say u1, satisfies dG[W ](u1) ≥ 4.
Then v4 is not adjacent to u1; therefore, assume that u2, . . . , u5 ∈ NG(u1). Then
v1, . . . , v4 are not adjacent to {u1, . . . , u5}, so v1u1v2u2v3u3w1u4v1 and v4 form W8

in G, a contradiction. Thus, R(TG(8),W8) ≤ 15.

Lemma 5.3.15. Each graph H of order n ≥ 8 with minimal degree at least n − 4
contains TH(n), TK(n) and TL(n).

Proof. Let V (H) = {u0, . . . , un−1} where u1, . . . , un−4 ∈ NH(u0). Suppose that
un−3, un−2 or un−1, say un−3, is adjacent in H to the two others.

Since δ(H) ≥ n − 4, un−3 is adjacent to at least one of u1, . . . , un−4, say u1. If
u1 is adjacent to another vertex in {u2, . . . , un−4}, then H contains TK(n). Note
that this always happens for n ≥ 9. Suppose that n = 8 and that u1 is not adjacent
to any of u2, u3, u4. Then u1 is adjacent to u6 and u7. Since δ(H) ≥ n − 4, u2 is
adjacent to at least one of u5, u6, u7, giving TK(n) in H.

Similarly, since δ(H) ≥ n − 4, un−2 is adjacent to at least n − 7 vertices of
{u1, . . . , un−4}. Suppose that un−2 is adjacent to u1. If n ≥ 10, then at least two of
u2, . . . , un−4 are adjacent, so H contains TH(n). If n ≥ 9, then u1 is adjacent to at
least one of u2, . . . , un−4, so H contains TL(n). Now suppose that n = 9. If any of
u2, . . . , u5 are adjacent to each other, then H contains TH(9). Otherwise, u2, . . . , u5

are each adjacent to u6, u7 and u8, and so H contains TH(9). Finally, suppose that
n = 8. If any two of u2, u3, u4 are adjacent, then H contains TH(8); otherwise, they
are each adjacent to u6 or u7. Now, if u1 is adjacent to any of u2, u3, u4, then H
contains TH(8). Otherwise, u1, . . . , u4 are each adjacent to u5, u6 and u7, and H
also contains TH(8). Furthermore, if u1 is adjacent to u2, u3 or u4, then H contains
TL(8). If u1 is not adjacent to u2, u3 or u4, then u6, u7, u8 are adjacent to u2, u3, u4,
and then H contains TL(8). Now if un−2 is adjacent to some u2, . . . , un−4, say u2,
then similar arguments apply by interchanging u1 and u2.

Suppose now that none of un−3, un−2, un−1 is adjacent to both of the others.
Then one of these, say un−3, is adjacent to neither of the others. Since δ(H) ≥ n−4,
un−3 is adjacent to at least n − 5 of the vertices u1, . . . , un−4. Without loss of
generality, assume that u1, . . . , un−5 ∈ NH(un−3). Then un−2 is adjacent to at least
n − 7 of the vertices u1, . . . , un−5 including, without loss of generality, the vertex
u1. Also, un−1 is adjacent to at least one of u2, . . . , un−4, so H contains TH(n). If
un−2 is adjacent to un−1, then H also contains TL(n). If un−2 is not adjacent to
un−1, then un−2 is adjacent to at least n− 6 vertices of u1, . . . , un−5, so H contains
TL(n). Now, suppose that n ≥ 9. Then un−2 and un−1 are each adjacent to at
least 3 of u1, . . . , u5, and one of those vertices must be adjacent to both un−2 and
un−1; thus, H contains TK(n). Finally, suppose that n = 8. If u6 and u7 are each
adjacent to at least two of the vertices u1, u2, u3, then one of those vertices must be
adjacent to both u6 and u7; thus, H contains TK(8). Otherwise, u6 or u7, say u6, is
non-adjacent to at least two of u1, u2, u3, say u1 and u2. Then u6 is adjacent to u0,
u3, u4 and u7, and so H contains TK(8).
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Theorem 5.3.16. If n ≥ 8, then R(TH(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n− 1 and assume that G does not contain TH(n) and
that G does not contain W8. By Theorem 5.3.14, G has a subgraph T = TG(n). Let
V (T )= {v0,..., vn−5, w1,..., w4} and E(T )= {v0v1,..., v0vn−5, v1w1, v2w2, v3w3, w3w4}.
Set U = {u1, . . . , un−1} = V (G) − V (T ); then |U | = n − 1. Since TG(n) ⊈ G,
EG({w1, w2}, {w3, w4}) = ∅ and w4 is not adjacent to U . Now, let W = {w1} ∪ U ;
then |W | = n. If δ(G[W ]) ≥ n

2
, then G[W ] contains C8 by Lemma 2.2.10 which,

with w4 as hub, forms W8, a contradiction. It follows that δ(G[W ]) < n
2
, and

∆(G[W ]) ≥ ⌊n
2
⌋ ≥ 4.

First, suppose that w1 is a vertex with degree at least n
2
in G[W ]. Assume with-

out loss of generality that u1, . . . , u4 ∈ NG[W ](w1). Since TH(n) ⊈ G, u1, . . . , u4 are
independent and are not adjacent to {w2, u5, . . . , un−1} inG. Then w2, u1, . . . , u4, w4

and any 3 vertices from {u5, . . . , un−1} form W8 in G, a contradiction.
Hence, dG[W ](u

′) ≥ n
2
for some vertex u′ ∈ U , say u′ = u1. Note that w1 is not

adjacent to u1, or else G contains TH(n). Without loss of generality, suppose that
u2, . . . , u5 ∈ NG[W ](u1). Since TH(n) ⊈ G, u2, . . . , u5 are not adjacent to V (T )\{v0}
in G. Now, if v0 is not adjacent to {u2, . . . , u5} in G, then by Observation 4.3.2,
δ(G[V (T )]) ≥ n − 4, or else G contains W8. By Lemma 5.3.15, G[V (T )] contains
TH(n), a contradiction. On the other hand, suppose that v0 is adjacent to at
least one of u2, . . . , u5, say u2. Then u3, u4, u5 are independent in G and are not
adjacent to u6 and u7 in G. Furthermore, w4 is not adjacent to v1 or v2. Then
v1u3v2u4u6w1u7u5v1 and w4 form W8 in G, a contradiction.

Thus, R(TH(n),W8) ≤ 2n− 1.

Theorem 5.3.17. If n ≥ 8, then R(TJ(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n− 1 and assume that G does not contain TJ(n) and
that G does not contain W8. By Theorem 5.2.11, G has a subgraph T = TC(n). Let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v2w3}.
Set V = {v3, . . . , vn−4} and U = V (G)− V (T ) = {u1, . . . , un−1}. Since TJ(n) ⊈ G,
neither w1 nor w2 is adjacent in G to any vertex from U ∪ V .

LetW = {v3}∪U ; then |W | = n. If δ(G[W ]) ≥ ⌈n
2
⌉ ≥ n

2
, then G[W ] contains C8

by Lemma 2.2.10 which with w1 forms W8, a contradiction. Thus, δ(G[W ]) < ⌈n
2
⌉,

and ∆(G[W ]) ≥ ⌊n
2
⌋ ≥ 4.

Suppose that dG[W ](v3) ≥ ⌊n
2
⌋ ≥ 4. Without loss of generality, assume that

u1, . . . , u4 ∈ NG(v3). Since TJ(n) ⊈ G, u1, . . . , u4 is independent in G and is not
adjacent to any remaining vertices from U in G. Then u2w1u3u5u4u6w2u7u2 and
u1 form W8 in G, a contradiction. Hence, there is a vertex in U , say u1, such that
dG[W ](u1) ≥ ⌊n

2
⌋ ≥ 4.

Now, suppose that v3 is adjacent to u1 in G[W ]. Then u1 is adjacent to at least
3 other vertices of U in G, say u2, u3 and u4. Since TJ(n) ⊈ G, v3 is not adjacent
to v1, v2, v4, . . . , vn−4, w1, w2, w3, u2, u3, u4 and neither v1 nor v2 is adjacent to u2, u3

or u4 in G. Then v2u2v1u3w1v4w2u4v2 and v3 form W8 in G, a contradiction.
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Thus, v3 is not adjacent to u1 in G. Note that u1 is not adjacent to any other
vertices of V in G or else previous arguments apply. Similarly, v0 is not adjacent to
NG[W ](u1) in G. Since TJ(n) ⊈ G, neither v1 nor v2 is adjacent to u1 or NG[W ](u1)
in G, and so dNG[W ](u1)(v) ≤ 1 for all v ∈ V .

Suppose that n ≥ 10; then |V | ≥ 4 and |NG[W ](u1)| ≥ 5. If dG[V ](u) ≤ 2 for
each u ∈ NG[W ](u1), then G[V ∪ NG[W ](u1)] contains C8 by Lemma 4.3.5 which,
with w1 as hub, forms W8 in G, a contradiction. Thus, dV (u

′) ≥ 3 for some vertex
u′ ∈ NG[W ](u1). Then any 4 vertices from V , of which at least 3 are in NG[V ](u

′),
and any 4 vertices from NG[W ](u1) \ {u′} satisfy the condition in Lemma 4.3.5, so
G[V ∪NG[W ](u1)] contains C8 which with w1 forms W8, a contradiction.

Suppose that n = 9; then V = {v3, v4, v5}. Assume that u2, . . . , u5 ∈ NG[W ](u1).
Suppose that w1 is not adjacent to w2 in G. Let X = {v3, v4, v5, w2} and Y =
{u2, . . . , u5} and note that dG[Y ](x) ≤ 1 for each x ∈ X. If dG[X](y) ≤ 2 for each
y ∈ Y , then G[X ∪ Y ] contains C8 by Lemma 4.3.5 which, with w1 as hub, forms
W8, a contradiction. Thus, dG[X](u

′) ≥ 3 for some u′ ∈ Y , say u′ = u2, so X
is not adjacent to Y \ {u2}. Hence, v3u1v4u3v5u4w2u5v3 and w1 form W8 in G, a
contradiction.

Thus, w1 is adjacent to w2 in G. Then v1 is not adjacent to {v3, v4, v5} ∪U and
suppose that v1 is not adjacent to v2. Set X = {v2, . . . , v5} and Y = {u2, . . . , u5}.
If dG[X](y) ≤ 2 for each y ∈ Y , then G[X ∪ Y ] contains C8 by Lemma 4.3.5 which,
with v1 as hub, forms W8, a contradiction. Thus, dG[X](u

′) ≥ 3 for some u′ ∈ Y , say
u′ = u2, so X is not adjacent to Y \ {u2}, and v2u1v3u3v4u4v5u5v2 and v1 form W8

in G, a contradiction. Thus, v1 is adjacent to v2 in G. Then V is independent and is
not adjacent to U in G. Since W8 ⊈ G, G[U ] is Kn−1 or Kn−1 − e by Lemma 4.3.4.
Since TJ(9) ⊈ G, T is not adjacent to U and, by Observation 4.3.2, δ(G[V (T )]) ≥ 5.
However, this cannot be since V is independent and is not adjacent to v1, w1 or w2.

Finally, suppose that n = 8; then V = {v3, v4}. Assume that u2, . . . , u5 ∈
NG[W ](u1). If v3 is adjacent to any vertex of {u2, . . . , u5}, say u2, then v3 is not
adjacent to {v1, v2, v4, w3}∪U \{u2}, so v1u1v2u3w1u4w2u5v1 and v3 form W8 in G, a
contradiction. Thus, v3 is not adjacent to {u2, . . . , u5}. Similarly, v4 is not adjacent
to {u2, . . . , u5}. Now, if w3 is adjacent to any of the vertices u2, . . . , u5, say u2, then
v2 is not adjacent to {w1, w2, v3, v4}, so v3u1v4u2w1u3w2u4v3 and v2 form W8 in G,
a contradiction. Thus, w3 is not adjacent to {u2, . . . , u5}. By Observation 4.3.2,
δ(G[V (T )]) ≥ 4. Suppose that v2 is adjacent to w1. Since TJ(8) ⊈ G, neither
v3 nor v4 is adjacent to w3. Since δ(G[V (T )]) ≥ 4, v3 and v4 are adjacent to v1
and v2, and {w1, w2, w3} is not independent. However, then TJ(8) ⊆ G[V (T )], a
contradiction. Thus, v2 is not adjacent to w1 and, similarly, v2 is not adjacent
to w2. Since δ(G[V (T )]) ≥ 4, w1 and w2 are adjacent to each other and to w3.
Since TJ(8) ⊈ G, neither v3 nor v4 is adjacent to v1 or v2; however, this contradicts
δ(G[V (T )]) ≥ 4.

In each case, R(TJ(8),W8) ≤ 2n− 1 which completes the proof of the theorem.

Theorem 5.3.18. If n ≥ 8, then R(TK(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph of order 2n − 1 and assume that G does not contain
TK(n) and that G does not contain W8.
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Suppose that n ̸≡ 0 (mod 4). By Theorem 5.2.8, G has a subgraph T = Sn(1, 3).
Let V (T )={v0,..., vn−4, w1, w2, w3} and E(T )={v0v1,..., v0vn−4, v1w1, w1w2, w2w3}.
Set V = {v2, . . . , vn−4} and U = V (G) − V (T ); then |V | = n − 5 and |U | =
n − 1. Since TK(n) ⊈ G, w2 is not adjacent in G to any vertex of U ∪ V . Now,
if δ(G[U ]) ≥ n−1

2
, then G[U ] contains C8 by Lemma 2.2.10 which, with v1 as hub,

forms W8, a contradiction. Therefore, δ(G[U ]) < n−1
2
, and ∆(G[U ]) ≥ ⌊n−1

2
⌋.

Let U = {u1, . . . , un−1} and assume without loss of generality that dG[U ](u1) ≥
⌊n−1

2
⌋ ≥ 4. Since TK(n) ⊈ G, EG(V,NG[U ](u1)) = ∅, so any 4 vertices from V ,

any 4 vertices from NG[U ](u1) and w2 form W8 in G, a contradiction. Therefore,
R(TK(n),W8) ≤ 2n− 1 for n ̸≡ 0 (mod 4).

Let n = 8. By Theorem 5.3.16, G has a subgraph T = TH(8). Let V (T ) =
{v0, . . . , v3, w1, . . . , w4} and E(T ) = {v0v1, v0v2, v0v3, v1w1, w1w2, w2w3, v2w4}. Set
U = V (G)−V (T ) = {u1, . . . , u7}; then |U | = 7. Since TK(8) ⊈ G, w2 is not adjacent
to {w4}∪U . Let W = {w4}∪U ; then |W | = 8. If δ(G[W ]) ≥ 4, then G[W ] contains
C8 by Lemma 2.2.10 which, with w2 as hub, forms W8, a contradiction. Therefore,
δ(G[W ]) < 3, and ∆(G[W ]) ≥ 4.

Now, suppose that dG[W ](w4) ≥ 4 and assume without loss of generality that
w4 is adjacent to u1, u2, u3 and u4. Then v1 is not adjacent to {v3, w2, w3} ∪ U
and neither v2 nor v3 is adjacent to {u1, . . . , u4}, since TK(8) ⊈ G. Now, suppose
that EG({u1, . . . , u4}, {u5, u6, u7}) ̸= ∅ and assume that u1 is adjacent to u5. Then
u1 is not adjacent to {w1, w2, w3, u2, . . . , u7} in G, and v1u2v2u3v3u4w2u6v1 and
u1 form W8 in G, a contradiction. Thus, EG({u1, . . . , u4}, {u5, u6, u7}) = ∅, so
u1u5u2u6u3u7u4v3u1 and v1 form W8 in G, a contradiction.

Now suppose that dG[W ](u
′) ≥ 4 for some vertex u′ ∈ U , say u′ = u1. Since,

TK(8) ⊈ G, w4 is not adjacent to u1. Then without loss of generality, suppose that
u2, . . . , u5 ∈ NG(u1). Since TK(8) ⊈ G, EG({v1, v2, v3}, {u2, . . . , u5}) = ∅. If u2 is
adjacent to w1, then u2 is not adjacent to {u3, . . . , u7} and v1 is not adjacent to u6.
Then w2u3v2u4v3u5v1u6w2 and u2 form W8 in G, a contradiction. Thus, u2 is not
adjacent to w1. Similarly, u3, u4 and u5 are not adjacent to w1. If u2 is adjacent to
v0, then v2 is not adjacent to {v1, v3, w1, w2, w3, u2, . . . , u7}, and v1u2v3u3w1u4w2u5v1
and v2 form W8 in G, a contradiction. Thus, u2 is not adjacent to v0. Similarly,
u3, u4 and u5 are not adjacent to v0. By similar arguments, u3, u4 and u5 are not
adjacent to w3 or w4.

Hence, u2, . . . , u5 are not adjacent to V (T ) in G, so δ(G[V (T )]) ≥ 4 by Obser-
vation 4.3.2. By Lemma 5.3.15, G[V (T )] contains TK(8), a contradiction. Thus,
R(TK(8),W8) ≤ 15.

Now suppose that n ≡ 0 (mod 4) and that n ≥ 12. If G has an Sn(1, 3) sub-
graph, then the arguments above lead to contradictions. Thus, G does not contain
Sn(1, 3) as a subgraph. Now, by Theorem 5.3.16, G has a subgraph T = TH(n). Let
V (T )={v0,..., vn−5, w1,..., w4} and E(T )={v0v1,..., v0vn−5, v1w1, w1w2, w2w3, v2w4}.
Set V = {v3, . . . , vn−5} and let U = V (G) − V (T ) = {u1, . . . , un−1}. Then
|V | = n − 7 and |U | = n − 1. Since TK(n) ⊈ G, w2 is not adjacent in G to
{w4} ∪ U . Since Sn(1, 3) ⊈ G, v0 is not adjacent to {w4} ∪ U .

If δ(G[U ]) ≥ n−1
2
, then G[U ] contains C8 by Lemma 2.2.10 which, with w2, forms

W8, a contradiction. Thus, δ(G[U ]) < n−1
2
, and ∆(G[U ]) ≥ ⌊n−1

2
⌋ ≥ 5. Without
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loss of generality, assume that u2, . . . , u6 ∈ NG(u1). Since TK(n) ⊈ G, v1, v2 and V
are not adjacent to {u2, . . . , u6}, and w1 and w2 are not adjacent to u1.

Now, if u2 is adjacent to w1, then u2 is not adjacent to {w3, w4}∪U \{u1}, since
TK(n) ⊈ G, so v0u3v1u4v2u5v3u6v0 and u2 form W8 in G, a contradiction. Thus, u2

is not adjacent to w1. Similarly, u3, . . . , u6 are not adjacent to w1. If u2 is adjacent
to w3 in G, then v0 is not adjacent to w1, w2, w3, and dG[U\{u1,u2}](ui) ≤ n − 6 for
i = 3, . . . , 6, since Sn(1, 3) ⊈ G. Since TK(n) ⊈ G, w3 is not adjacent to w1 or w4.
Since dG[U\{u1,u2}](u3) ≤ n− 6 and dG[U\{u1,u2}](u4) ≤ n− 6, u3 and u4 are adjacent
in G to at least 2 vertices in {u7, . . . , un−1}. Without loss of generality, assume that
u3 is adjacent in G to u7 and that u4 is adjacent to u8. Then u3u7w2u8u4w1w3w4u3

and v0 form W8 in G, a contradiction. Thus, u2 is not adjacent to w3. Similarly,
u3, . . . , u6 are not adjacent to w4.

Thus, u2, . . . , u6 are not adjacent to V (T ). By Observation 4.3.2, δ(G[V (T )])≥4,
so G[V (T )] contains TK(n) by Lemma 5.3.15, a contradiction.

Hence, R(TK(n),W8) ≤ 2n−1 for n ≡ 0 (mod 4). This completes the proof.

Theorem 5.3.19. If n ≥ 8, then R(TL(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no TL(n) subgraph whose complement G does not
contain W8. Suppose that n ̸≡ 0 (mod 4) and that G has order 2n − 1. By The-
orem 5.2.8, G has a subgraph T = Sn(1, 3). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, w1w2, w2w3}. Set V = {v2, . . . , vn−4} and
U = V (G)− V (T ); then |V | = n− 5 and |U | = n− 1. Since TL(n) ⊈ G, v1 is not
adjacent to U ∪ V , and dG[U ](vi) ≤ n − 7 for each vi ∈ V . Now, if δ(G[U ]) ≥ n−1

2
,

then G[U ] contains C8 by Lemma 2.2.10 which, with v1, forms W8, a contradiction.
Thus, δ(G[U ]) < n−1

2
, and ∆(G[U ]) ≥ ⌊n−1

2
⌋.

Let U = {u1, . . . , un−1} and without loss of generality assume that dG[U ](u1) ≥
⌊n−1

2
⌋ ≥ 4 and that u2, . . . , u5 ∈ NG[U ](u1). Now if EG(V,NG[U ](u1)) = ∅, then 4

vertices from V , 4 vertices from NG[U ](u1) and v1 form W8 in G, a contradiction.
Thus, EG(V,NG[U ](u1)) ̸= ∅. Assume without loss of generality that v2 is adjacent
to u2. Since TL(n) ⊈ G, v2 is not adjacent to U \ {u1, u2}. Since dG[U ](vi) ≤ n− 7
for each vi ∈ V , v5 is non-adjacent to at least one of u6, . . . , un−1, say u6. Now if
EG({v3, v4, v5}, {u3, u4, u5}) = ∅, then v2u3v3u4v4u5v5u6v2 and v1 form W8 in G, a
contradiction. Thus assume, say, that v3 is adjacent to u3 in G; then v3 is not ad-
jacent to U \{u1, u3}. Again, if EG({v4, v5}, {u4, u5}) = ∅, then v2u7v3u4v4u5v5u6v2
and v1 form W8 in G, a contradiction. Thus assume, say, that v4 is adjacent
to u4, then v4 is not adjacent to U \ {u1, u4}. If v5 is not adjacent to u5, then
v2u7v3u2v4u5v5u6v2 and v1 form W8 in G, a contradiction. Thus, v5 is adjacent
to u5, so v5 is not adjacent to U \ {u1, u5}, and v2u7v3u2v4u3v5u6v2 and v1 form W8

in G, a contradiction.
Hence, R(TL(n),W8) ≤ 2n− 1 for n ̸≡ 0 (mod 4).
Now, suppose that n ≡ 0 (mod 4) and that G has order 2n − 1. Suppose first

that n = 8. By Theorem 5.3.16, G has a subgraph T = TH(8). Let V (T ) =
{v0, . . . , v3, w1, . . . , w4} and E(T ) = {v0v1, . . . , v0v3, v1w1, w1w2, w2w3, v2w4}. Set
U = V (G) − V (T ) = {u1, . . . , u7}; then |U | = 7. Since TL(8) ⊈ G, neither v1 nor
v2 are adjacent to U , and dG[U ](v3) ≤ 1. Furthermore, v1 is not adjacent to w4, and
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v2 is not adjacent to w1 or w3. Let W = w4 ∪ U ; then |W | = 8. If δ(G[W ]) ≥ 4,
then G[W ] contains C8 by Lemma 2.2.10 which, with v1, forms W8, a contradiction.
Thus, δ(G[W ]) < 3 and ∆(G[W ]) ≥ 4.

Now, suppose that dG[W ](w4) ≥ 4 and assume without loss of generality that
u1, . . . , u4 ∈ NG(w4). Then v2 is not adjacent to v1, v3, w1, w2 and dG[U ](ui) ≤ 1
for 1 ≤ i ≤ 4, or else TL(8) ⊆ G, a contradiction. Since dG[U ](v3) ≤ 1, assume
without loss of generality that v3 is not adjacent to u3 or u4. Now, suppose that
EG({u1, . . . , u4}, {u5, u6, u7}) ̸= ∅ and assume, say, that u1 is adjacent to u5. Then
u1 is not adjacent to {v3, w1, w2, w3, u2, . . . , u7}. Since TL(8) ⊈ G, at least one of
w1 and w2 is adjacent in G to u2, u3 and u4, say w1, so v1u2w1u3v3u4v2u6v1 and
u1 form W8 in G, a contradiction. Thus, EG({u1, . . . , u4}, {u5, u6, u7}) = ∅. Then
u1u5u2u6u3u7u4v2u1 and v1 form W8 in G, a contradiction. Therefore, dG[W ](u

′) ≥ 4
for some vertex of u′ ∈ U , say u′ = u1.

Suppose that w4 is adjacent to u1. Then without loss of generality, we as-
sume that u1 is adjacent to u2, u3 and u4. Since TL(8) ⊈ G, neither v0 nor
w4 is adjacent to w1 or w2, and w4 is not adjacent to {v1, v3} ∪ U \ {u1}. If
EG({u2, u3, u4}, {u5, u6, u7}) ̸= ∅, Then say, u2 is adjacent to u5 and is thus not adja-
cent to {v0, v3, w1, w2, w3, u3, u4, u6, u7}, so w1v0w2w4u3v1u4v2w1 and u2 form W8 in
G, a contradiction. Thus EG({u1, . . . , u4}, {u5, u6, u7} = ∅. Let X = {v1, u2, u3, u4}
and Y = {v3, u5, u6, u7}. Since dG[U ](v3) ≤ 1, G[X∪Y ] contains C8 by Lemma 4.3.5
which, with w4, forms W8, a contradiction.

Thus, u1 is not adjacent to w4 so we can assume without loss of generality that
u2, . . . , u5 ∈ NG(u1). Since G does not contain TL(8), dG[V (T )](ui) ≤ 1 for 2 ≤ i ≤ 5.
If u2 is adjacent to w4, then u2 is not adjacent to V (G) \ {u1, w4} in G. Since
dG[U ](v3) ≤ 1, that v3 is not adjacent to, say, u3 or u4. Since dG[V (T )](ui) ≤ 1 for
2 ≤ i ≤ 5, u4 and u5 are each adjacent in G to at least 2 of w1, w2, w3, so some
wi ∈ {w1, w2, w3} is adjacent in G to both u4 and u5. Therefore, u3v3u4wiu5v2u6v1u3

and u2 form W8 in G, a contradiction. Thus, u2 is not adjacent to w4. Similarly,
u3, u4, u5 are not adjacent to w4. Similar arguments show that u2, . . . , u5 are not
adjacent to w1 or w2.

Now, if u2 is adjacent to any other vertex of V (T ), then u2 is not adjacent to
{u3, u4, u5}, so u3w1u4w4u5v2u6v1u3 and u2 form W8 in G, a contradiction. Hence,
u2 is not adjacent to V (T ) and, similarly, u3, u4, u5 are not adjacent to V (T ).
Therefore, by Observation 4.3.2, δ(G[V (T )]) ≥ 4. By Lemma 5.3.15, G[V (T )]
contains TL(8), a contradiction. Thus, R(TL(8),W8) ≤ 15.

Now suppose that n ≥ 12. If G contains Sn(1, 3), then the previous arguments
above lead to contradictions. Thus, G does not contain Sn(1, 3). By Theorem 5.2.11,
G has a subgraph T = TC(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set U = V (G) − V (T ) = {u1, . . . , un−1}; then
|U | = n− 1.

Suppose that w2 is not adjacent to U . If δ(G[U ]) ≥ n−1
2
, then G contains

C8 by Lemma 2.2.10 and, with w2 as hub, forms W8, a contradiction. Therefore,
δ(G[U ]) < n−1

2
and so ∆(G[U ]) ≥ ⌊n−1

2
⌋ ≥ 5. Without loss of generality, assume

that u2, . . . , u6 ∈ NG(u1). Since Sn(1, 3) ⊈ G, u2, . . . , u6 are not adjacent to V (T ) \
{v0}. If u2 is adjacent to v0, then since Sn(1, 3) ⊈ G, u3, . . . , u6 are not adjacent
to {u7, . . . , un−1}, so u3u7u4u8u5u9u6u10u3 and w2 form W8 in G, a contradiction.
Thus, u2 is not adjacent to v0 and, similarly, u3, . . . , u6 are also not adjacent to
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v0. Hence, u2, . . . , u6 are not adjacent to V (T ). Therefore, by Observation 4.3.2,
δ(G[V (T )]) ≥ n− 4, so G[V (T )] contains TL(n) by Lemma 5.3.15, a contradiction.

Thus some vertex of U , say un−1, is adjacent to w2. Set U ′ = U \ {un−1};
then |U ′| = n − 2. Since TL(n) ⊈ G, un−1 is not adjacent to U ′ in G. Now, if
δ(G[U ′]) ≥ n−2

2
, then G[U ′] contains C8 by Lemma 2.2.10 which, with un−1, forms

W8, a contradiction. Thus, δ(G[U ′]) ≤ n−2
2

− 1, and ∆(G[U ′]) ≥ n−2
2

≥ 5. Without
loss of generality, assume that u2, . . . , u6 ∈ NG(u1) and repeat the above arguments
to prove that u2, . . . , u6 are not adjacent to V (T ) . Therefore, δ(G[V (T )]) ≥ n− 4
by Observation 4.3.2, so G[V (T )] contains TL(n) by Lemma 5.3.15, a contradiction.

Thus, R(TL(n),W8) ≤ 2n−1 for n ≡ 0 (mod 4) which completes the proof.

Theorem 5.3.20. If n ≥ 9, then R(TM(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n−1. Assume that G does not contain TM(n) and that
G does not contain W8. By Theorem 5.2.5, G has a subgraph T = Sn(4). Now, let
V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}.
Set V = {v2, . . . , vn−4} and U = V (G)− V (T ) = {u1, . . . , un−1}; then |V | = n− 5
and |U | = n − 1. Since TM(n) ⊈ G, w1, w2 and w3 are not adjacent to any vertex
of U ∪ V in G.

Now, suppose that some vertex in V is adjacent to at least 4 vertices of U in G,
say v2 to u1, . . . , u4. Then u1, . . . , u4 are not adjacent to other vertices in U . Then
u1u5u2u6u3u7u4u8u1 and w1 form W8 in G, a contradiction. Therefore, each vertex
in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U .
By Corollary 5.3.2, G[U ∪ V ] contains C8 which together with w1 gives W8 in G, a
contradiction.

Thus, R(TM(n),W8) ≤ 2n− 1 for n ≥ 9. This completes the proof.

Theorem 5.3.21. If n ≥ 9, then

R(TN(n),W8) =

{
2n− 1 if n ̸≡ 0 (mod 4) ;

2n otherwise .

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n if n ≡ 0 (mod 4) and of order 2n − 1 if n ̸≡ 0
(mod 4). Assume that G does not contain TN(n) and that G does not contain W8.
By Theorem 5.2.9, G has a subgraph T =TA(n). Let V (T )={v0,..., vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, w1w3}. Set V = {v2, . . . , vn−4} and U =
V (G)−V (T ) = {u1, . . . , uj}, where j = n−1 if n ̸≡ 0 (mod 4) and j = n otherwise.
Since TN(n) ⊈ G, w2 is not adjacent to U ∪ V in G. If each vi ∈ V is adjacent
to at most three vertices of U in G, then by Corollary 5.3.2, G[U ∪ V ] contains C8

which with w2 gives W8 in G, a contradiction. Therefore, some vertex in V , say
v2, is adjacent to at least four vertices of U in G, say u1, . . . , u4. If none of these is
adjacent to other vertices of U in G, then u1u5u2u6u3u7u4u8u1 and w2 form W8 in
G, a contradiction.

Therefore, assume that u1 is adjacent to u5 in G. Since TN(n) ⊈ G, u2, u3, u4

are not adjacent to {u6, . . . , uj} in G. For n = 9 and n = 10, {v3, . . . , vn−4} is not
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adjacent to {u5, . . . , un−1} or else G will contain TN(n) with v2 and v0 being the
vertices of degree n − 5 and 3, respectively. However, v3u5v4u6u2u7u3u8v3 and w2

form W8 in G, a contradiction. For n ≥ 11, if v2 is not adjacent to {u6, . . . , uj}
in G, then v2u6u2u7u3u8u4u9v2 and w2 form W8 in G, a contradiction. Therefore,
assume that v2 is adjacent to u6 in G. Then u6 is not adjacent to {u7, . . . , uj} in G,
and u2u7u3u8u4u9u6u10u2 and w2 form W8 in G, again a contradiction.

Thus, R(TN(n),W8) ≤ 2n for n ≡ 0 (mod 4) and R(TN(n),W8) ≤ 2n − 1 for
n ̸≡ 0 (mod 4).

Theorem 5.3.22. If n ≥ 9, then R(TP (n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n − 1. Assume that G does not contain
TP (n) and that G does not contain W8. Suppose that n ̸≡ 0 (mod 4). By Theo-
rem 5.2.9, G has a subgraph T = TA(n). Let V (T ) = {v0, . . . , vn−4, w1, w2, w3}
and E(T ) = {v0v1, . . . , v0vn−4, v1w1, v1w2, w1w3}. Set V = {v2, . . . , vn−4} and
U = V (G) − V (T ); then |V | = n − 5 and |U | = n − 1. Since TP (n) ⊈ G, w1

is not adjacent to any vertex of U ∪ V in G. If each vi in V is adjacent to at most
three vertices of U in G, then by Corollary 5.3.2, G[U ∪ V ] contains C8 which with
w1 gives W8 in G, a contradiction. Therefore, some vertex in V , say v2, is adjacent
to at least four vertices of U in G, say u1, . . . , u4. For n = 9 and n = 10, G con-
tains TP (9) and TP (10) with edge set {u1v2, u2v2, u3v2, v2v0, v0v1, v0v3, v1w1, v1w2}
and {u1v2, u2v2, u3v2, u4v2, v2v0, v0v1, v0v3, v1w1, v1w2}, respectively. For n ≥ 11,
each of u1, . . . , u4 is adjacent to at most two remaining vertices in U . Then by
Corollary 5.3.1, G[U ] contains C8 which with w1 gives W8 in G, a contradiction.

On the other hand, suppose that n ≡ 0 (mod 4). By Theorem 5.3.20, G contains
a subgraph T = TM(n). Now, we let V (T ) = {v0, . . . , vn−5, w1, . . . , w4} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, v1w2, v1w3, w1w4}. Let V = {v2, . . . , vn−5} and U = V (G)−
V (T ); then |V | = n − 6 and |U | = n − 1. Since TP (n) ⊈ G, w1 is not adjacent to
{v0, w2, w3} ∪ U in G, and so dG[U ](w2) ≤ 1, dG[U ](w3) ≤ 1 and dG[U ](v) ≤ n − 7
for any vertex v ∈ V . Now, if G contains a subgraph TA(n), then we can use
arguments similar to those used for the case n ̸≡ 0 (mod 4) above. Therefore, G
does not contain TA(n). Then v0 is not adjacent to {w2, w3} ∪ U in G.

Suppose that some vertex v ∈ V is not adjacent to w1 in G. Let X be any
four vertices in U that are not adjacent to v in G and set Y = {v, v0, w2, w3}. By
Lemma 4.3.5, G[X ∪ Y ] contains C8 which with w1 gives W8 in G, a contradiction.
Therefore, each vertex of V is adjacent to w1 in G. Since TP (n) ⊈ G, w4 is adjacent
to at most n− 7 vertices of U in G. Since TA(n) ⊈ G, w2 and w3 are not adjacent
in G. Now, if w4 is adjacent to both w2 and w3 in G, then w4 is not adjacent to
v0 in G since TP (n) ⊈ G. Let X be any four vertices of U that are not adjacent
to w4 in G and let V = {w1, . . . , w4}. By Lemma 4.3.5, G[X ∪ Y ] contains C8

which with w1 gives W8 in G, a contradiction. Therefore, w4 is non-adjacent to
either w2 or w3 in G, say w2. Since dG[U ](w2) ≤ 1 and dG[U ](w4) ≤ n − 7, there is
a set X of four vertices in U that are not adjacent to both w2 and w4 in G. Let
Y = {v0, w1, w3, w4}. By Lemma 4.3.5, G[X ∪ Y ] contains C8 which with w1 gives
W8 in G, again a contradiction.

In either case, R(TP (n),W8) ≤ 2n−1 for n ≥ 9 and this completes the proof.
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Theorem 5.3.23. If n ≥ 9, then R(TQ(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Let G be any graph of order 2n − 1. Assume that G does not
contain TQ(n) and that G does not contain W8. By Theorem 5.2.5, G has a
subgraph T = Sn(4). We let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, v1w2, v1w3}. Set V = {v2, . . . , vn−4} and U = V (G)−V (T );
then |V | = n− 5 and |U | = n− 1. Since TQ(n) ⊈ G, G[V ] are independent vertices
and not adjacent to U .

Suppose that n ≥ 10. Then |V | ≥ 5 and |U | ≥ 9, so by Observation 4.3.2, G
contains W8, a contradiction. If n = 9, then |V | = 4 and |U | = 8. By Lemma 4.3.4,
G[U ] is K8 or K8−e. Since TQ(9) ⊈ G, T is not adjacent to U , and δ(G[V (T )] ≥ 5.
As v2, . . . , v5 are independent in G, they are each adjacent to all other vertices in
G[V (T )], Hence, G[V (T )] contains TQ(9) with v2 and v0 as the vertices of degree 4,
a contradiction.

Thus, R(TQ(n),W8) ≤ 2n− 1 for n ≥ 9 which completes the proof.

Theorem 5.3.24. If n ≥ 9, then R(TR(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Let G be any graph of order 2n − 1. Assume that G does not
contain TR(n) and that G does not contain W8. By Theorem 5.2.11, G has a
subgraph T = TC(n). Now, let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, v2w2, v2w3}. Set V = {v3, . . . , vn−4} and U = V (G) −
V (T ) = {u1, . . . , un−1}; then |V | = n − 6 and |U | = n − 1. Since TR(n) ⊈ G,
w1 is not adjacent in G to any vertex of U ∪ V . If δ(G[U ∪ V ]) ≥ ⌈2n−7

2
⌉, then

G[U ∪V ] contains C8 by Lemma 2.2.10 which, with w3 as hub, forms W8, a contra-
diction. Therefore, δ(G[U ∪ V ]) ≤ ⌈2n−7

2
⌉ − 1, and ∆(G[U ∪ V ]) ≥ ⌊2n−7

2
⌋ = n− 4.

Now, there are two cases to be considered.

Case 1: One of the vertices of V , say v3, is a vertex of degree at least n − 4 in
G[U ∪ V ].

Note that in this case, there are at least 3 vertices from U , say u1, . . . , u3, that
are adjacent to v3 in G. Suppose that v3 is also adjacent to a in G, where a can be
a vertex in U or V . Since TR(n) ⊈ G, these 4 vertices are independent and are not
adjacent to any other vertices of U . Since n ≥ 9, U contains at least 4 other vertices,
say u5, . . . , u8, so u1u5u2u6u3u7au8u1 and w3 forms W8 in G, a contradiction.

Case 2: Some vertex u ∈ U has degree at least n− 4 in G[U ∪ V ].
Since TR(n) ⊈ G, u is not adjacent to any vertex of V in G. Therefore, u

must be adjacent to at least n − 4 vertices of U in G. Without loss of generality,
suppose that u1, . . . , un−4 ∈ NG[U ](u). Note that V is not adjacent to NG[U ](u), or
else it will form TR(n) in G, a contradiction. If n ≥ 10, then any 4 vertices from
NG[U ](u) and any 4 vertices from V form C8 in G which, with w3 as hub, forms W8,
a contradiction. Suppose that n = 9 and let the remaining two vertices be u6 and
u7. If either u6 or u7 is not adjacent to any two vertices of {u1, . . . , u5} in G, say u6

is not adjacent to u1 or u2 in G, then u1u6u2v3u3v4u4v5u1 and w3 forms W8 in G, a
contradiction. So, both u6 and u7 is adjacent to at least 4 vertices of {u1, . . . , u5}
in G. Since TR(9) ⊈ G, T cannot be adjacent to U , and δ(G[V (T )] ≥ 5. As both v2
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and w3 are not adjacent to v3, v4 and v5 in G, they is adjacent to all other vertices
in G[V (T )]. Similarly, since v3 does not adjacent to v2 and w3 in G, v3 is adjacent to
w1 or w2 in G, Without loss of generality, we assume that v3 is adjacent to w1. Then
G[V (T )] contains TR(9) with edge set {v2w2, v2v1, v2v0, v0v4, v0v5, v2w3, v2w1, w1v3},
a contradiction.

In either case, R(TR(n),W8) ≤ 2n− 1.

Theorem 5.3.25. If n ≥ 9, then R(TS(n),W8) = 2n− 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n−1. Assume that G does not contain TS(n)
and that G does not contain W8. Suppose that n ̸≡ 0 (mod 4). By Theorem 5.2.7,
G has a subgraph T = Sn[4]. Let V (T ) = {v0, . . . , vn−4, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−4, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−4} and U = V (G)−V (T );
then |V | = n − 5 and |U | = n − 1. Since TS(n) ⊈ G, G[V ] are independent
vertices and are not adjacent to U . If n ≥ 10, then |V | ≥ 5 and |U | ≥ 9, so by
Observation 4.3.2, G contains W8, a contradiction. Suppose that n = 9. Then
|V | = 4 and |U | = 8. By Lemma 4.3.4, G[U ] is K8 or K8 − e. Since TS(9) ⊈ G, T
is not adjacent to U , and δ(G[V (T )] ≥ 5. As v2, . . . , v5 are independent in G, they
are adjacent to all other vertices in G[V (T )], and so G[V (T )] contains TS(9) with
edge set {v0v1, v0v2, v1v4, v1v5, v2w1, v2w2, v2w3, v3w1}.

On the other hand, suppose that n ≡ 0 (mod 4). By Theorem 5.2.7, G has
a subgraph T = Sn−1[4]. Let V (T ) = {v0, . . . , vn−5, w1, w2, w3} and E(T ) =
{v0v1, . . . , v0vn−5, v1w1, w1w2, w1w3}. Set V = {v2, . . . , vn−5} and U = V (G)−V (T );
then |V | = n− 6 and |U | = n. Since TS(n) ⊈ G, G[V ] is not adjacent to U . Since
|V | = n − 6 > 4, by Observation 4.3.2, ∆(G[U ]) ≤ 3 and δ(G[U ]) ≥ n − 4 since
W8 ⊈ G. By Lemma 5.2.6, either G[U ] isK4,...,4 and contains TS(n) or G[U ] contains
Sn[4] and the arguments from the n ̸≡ 0 (mod 4) case above lead to a contradiction.

Thus, R(TS(n),W8) ≤ 2n− 1 for n ≥ 9 which completes the proof.
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Chapter 6

Ramsey numbers for large tree graphs versus the wheel

graphs of order 9

In this chapter, we provide some insight on the Ramsey numbers for tree graphs
of order n versus the wheel graph W8 of order 9, focusing on the tree graphs with
maximum degree at most n− 6 for large values of n.

6.1 Introduction

Before looking into the Ramsey numbers, we define a particular tree as follows.

Definition 6.1.1. Let Q1, . . . , Qt be disjoint trees with |V (Q1)|, . . . , |V (Qt)| ≥ 2.
Define k = |V (Q1)| + · · · + |V (Qt)| − t, and let vi ∈ V (Qi) for each i = 1, . . . , t.
Finally, let T = Tn,k(v1, . . . , vt;Q1, . . . , Qt) be the tree on n vertices with

V (T ) = {v0, u1, . . . , un−k−t−1} ∪ V (Q1) ∪ · · · ∪ V (Qt) ;

E(T ) = {v0u1, . . . , v0un−k−t−1} ∪ {v0v1, . . . , v0vt} ∪ E(Q1) ∪ · · · ∪ E(Qt) ,

as illustrated below:
u1

un−k−t−1

v0
v1

vt

...
...

...

Q1

Qt

Tn,k(v1, . . . , vt;Q1, . . . , Qt)

6.2 Some lemmas

In this section, we introduce some lemmas that are helpful in our discussion on the
Ramsey numbers for large trees Tn with maximum degree at most n− 6 versus the
wheel graph W8 of order 9.

Lemma 6.2.1. Suppose that k ≥ 5 and that T = Tn,k(v1;Q) for some tree Q with
|V (Q)| = k + 1. Then Q has at least one of the following graphs as a subgraph:
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v1

Z1

v1

Z2

v1

Z3

v1

Z4

v1

Z5

v1

Z6

v1

Z7

v1

Z8

v1

Z9

v1

Z10

Proof. Note that Q contains v1 and has at least 6 vertices. If degT (v1) ≥ 4, then Q
contains Z1. If degT (v1) = 3, then Q contains Z2. If degT (v1) = 2, then Q contains
Z3 or Z4. If degT (v1) = 1, then Q contains Z5, Z6, Z7, Z8, Z9 or Z10.

Lemma 6.2.2. Suppose that k ≥ 5 and that T = Tn,k(v1, v2;Q1, Q2) for trees Q1

and Q2 with |V (Q1)|+|V (Q2)| = k+2. If |V (Q1)| ≥ |V (Q2)|, then Q1∪Q2 contains
at least one of the following graphs as subgraph:

v1

v2

Z11

v1

v2

Z12

v1

v2

Z13

v1

v2

Z14

Proof. Note that Q1 ∪Q2 contains {v1, v2} and has |V (Q1)|+ |V (Q2)| = k + 2 ≥ 7
vertices. Suppose that |V (Q1)| ≥ |V (Q2)| ; then Q1 has at least 4 vertices. If
degT (v1) ≥ 3, then Q1 ∪ Q2 contains Z11. If degT (v1) = 2, then Q1 ∪ Q2 contains
Z12. Finally, if degT (v1) = 1, then Q1 ∪Q2 contains Z13 or Z14.

Lemma 6.2.3. Suppose that k ≥ 5 and that T = Tn,k(v1, . . . , vt;Q1, . . . , Qt) for
trees Q1, . . . , Qt for which |V (Q1)|+· · ·+|V (Qt)| = k+t. If t ≥ 3, then Q1∪Q2∪Q3

contains the subgraph
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v1

v2

v3

Z15

Proof. Based on Definition 6.1.1, each vi in Qi has degree at least 1.

Lemma 6.2.4. Let G be a graph, let U ⊆ V (G) with |U | = m and let y1, y2, y3 ∈
V (G) \ U . If |NU(yi)| ≥ m− ℓ for all i, then

(a) for all 1 ≤ i < j ≤ 3, |NU(yi) ∩NU(yj)| ≥ m− 2ℓ;
(b) |NU(y1) ∩NU(y2) ∩NU(y3)| ≥ m− 3ℓ.

Proof. (a) |NU(yi)∩NU(yj)| = |NU(yi)|+ |NU(yj)|−|NU(yi)∪NU(yj)| ≥ 2(m−ℓ)−
|U | = m− 2ℓ. (b) By part (a), |NU(y1) ∩NU(y2) ∩NU(y3)| ≥ |NU(y1) ∩NU(y2)|+
|NU(y3)| − |U | ≥ m− 3ℓ.

Lemma 6.2.5. Let G be a graph with V (G) = {x1, . . . , xn−t, y1, y2, y3}. Suppose
that each vertex in G has degree at least n − t − ℓ. Let Z1, . . . , Z10 be defined
as in Lemma 6.2.1. If n ≥ t + 3ℓ + 7, then for each i ∈ {1, . . . , 10}, there are
xi1, xi2, xi3 ∈ {x1, . . . , xn−t} such that G[{xi1, xi2, xi3, y1, y2, y3}] contains a subgraph
Ui which is isomorphic to Zi. Furthermore, the isomorphism can be chosen so that
xi1 is mapped to v1 in Zi.

Proof. Let X = {x1, . . . , xn−t} and note that |NX(yj)| ≥ n− t− ℓ−2 for j = 1, 2, 3.
Also, define d = n − t − ℓ − 3 and note that d ≥ 2ℓ + 4 ≥ 4. Finally, define
G′ = G[{xi1, xi2, xi3, y1, y2, y3}]. By Lemma 6.2.4(b), |NX(y1)∩NX(y2)∩NX(y3)| ≥
n− t− 3(ℓ+ 2) ≥ 1, so NX(y1) ∩NX(y2) ∩NX(y3) is non-empty.

Case i = 1. Let xi1 ∈ NX(y1) ∩NX(y2) ∩NX(y3). Since xi1 is adjacent to at least
d vertices in V (G) \ {y1, y2, y3}, it is adjacent to some xi2 ∈ X \ {xi1}. Choose
xi3 ∈ X \ {xi1, xi2}; then G′ has a subgraph isomorphic to Zi and xi1 is mapped to
v1 by this isomorphism.

Case i = 2. Let xi1 ∈ NX(y1) ∩ NX(y2). Since y1 is adjacent to at least d
vertices in V (G) \ {xi1, y2, y3}, it is adjacent to a vertex xi2 ∈ X \ {xi1}. Choose
xi3 ∈ X \ {xi1, xi2}; then G′ has a subgraph isomorphic to Zi and xi1 is mapped to
v1 by this isomorphism.

Case i = 3. Let xi2 ∈ NX(y1)∩NX(y2) and let X ′ = X\{xi2}. Then |NX′(xi2)| ≥ d
and |NX′(y3)| ≥ d. By Lemma 6.2.4(a), |NX′(y3)∩NX′(xi2)| ≥ n− t− 2(ℓ+3) ≥ 1,
so there is some xi1 ∈ NX′(y3) ∩ NX′(xi2). Choose xi3 ∈ X ′ \ {xi1}; then G′ has a
subgraph isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

Case i = 4. Let xi2 ∈ NX(y1)∩NX(y2) and let X ′ = X \{xi2}. Then |NX′(y1)| ≥ d
and |NX′(y3)| ≥ d. By Lemma 6.2.4(a), |NX′(y1)∩NX′(y3)| ≥ n− t− 2(ℓ+3) ≥ 1,
so there is some xi1 ∈ NX′(y1) ∩NX′(y3). Choose xi3 ∈ X \ {xi1, xi2}; then G′ has
a subgraph isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

Case i = 5. Let xi2 ∈ NX(y1) ∩ NX(y2) ∩ NX(y3) and let X ′ = X \ {xi2}. Since
|NX′(xi2)| ≥ d ≥ 1, some xi1 ∈ X ′ is adjacent to xi2. Choose xi3 ∈ X \ {xi1, xi2};
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then G′ has a subgraph isomorphic to Zi and xi1 is mapped to v1 by this isomor-
phism.

Case i = 6. As in Case i = 4, there is some xi2 ∈ NX(y1)∩NX(y2) and |NX′(y1)∩
NX′(y3)| ≥ 1 where X ′ = X \ {xi2}. Let xi3 ∈ NX′(y1) ∩ NX′(y3) and set X ′′ =
X \ {xi2, xi3}. Since |NX′′(y1)| ≥ d− 1 ≥ 1, some xi1 ∈ X ′′ is adjacent to y1. Thus,
G′ has a subgraph isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

Case i = 7. As in Case i = 6, there is some xi2 ∈ NX(y1) ∩ NX(y2) and some
xi3 ∈ NX′(y1) ∩ NX′(y3) where X ′ = X \ {xi2}. Let X ′′ = X \ {xi2, xi3}. Since
|NX′′(xi2)| ≥ d − 1 ≥ 1, some xi1 ∈ X ′′ is adjacent to xi2, so G′ has a subgraph
isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

Case i = 8. Let xi2 ∈ NX(y1) ∩ NX(y2) ∩ NX(y3) and let X ′ = X \ {xi2}. Since
|NX′(y1)| ≥ d ≥ 1, some vertex xi1 ∈ X ′ is adjacent to y1. Choose xi3 ∈ X \
{xi1, xi2}; then G′ has a subgraph isomorphic to Zi and xi1 is mapped to v1 by this
isomorphism.

Case i = 9. Let xi2 ∈ NX(y1) ∩ NX(y2) ∩ NX(y3) and let X ′ = X \ {xi2}. Since
|NX′(y1)| ≥ d ≥ 1, some xi3 ∈ X ′ is adjacent to y1. Let X ′′ = X \ {xi2}. Since
|NX′′(xi3)| ≥ d− 1 ≥ 1, xi3 is adjacent to some xi1 ∈ X ′′. Thus, G′ has a subgraph
isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

Case i = 10. As in Case i = 6, there is some xi2 ∈ NX(y1) ∩ NX(y2) and some
xi3 ∈ NX′(y1) ∩ NX′(y3) where X ′ = X \ {xi2}. Let X ′′ = X \ {xi2, xi3}. Since
|NX′′(y2)| ≥ d − 1 ≥ 1, some xi1 ∈ X ′′ is adjacent to y2, so G′ has a subgraph
isomorphic to Zi and xi1 is mapped to v1 by this isomorphism.

This completes the proof of the lemma.

Lemma 6.2.6. Let G be a graph with V (G) = {x1, . . . , xn−t, y1, y2, y3} in which
each vertex has degree at least n − t − ℓ. For 11 ≤ i ≤ 14, let Zi be defined
as in Lemma 6.2.2. If n ≥ t + 3ℓ + 7, then for each i ∈ {11, . . . , 14}, there
are xi,1, xi,2, xi,3 ∈ {x1, . . . , xn−t} such that G[{xi,1, xi,2, xi,3, y1, y2, y3}] contains a
subgraph Ui which is isomorphic to Zi. Furthermore, the isomorphism can be chosen
so that xi,1 is mapped to v1 and xi,2 is mapped to v2 in Zi.

Proof. Let X = {x1, . . . , xn−t} and note that |NX(yj)| ≥ n− t− ℓ−2 for j = 1, 2, 3.
Also, define d = n − t − ℓ − 3 and note that d ≥ 2ℓ + 4 ≥ 4. Finally, define
G′ = G[{xi,1, xi,2, xi,3, y1, y2, y3}]. By Lemma 6.2.4(b), |NX(y1)∩NX(y2)∩NX(y3)| ≥
n− t− 3(ℓ+ 2) ≥ 1, so NX(y1) ∩NX(y2) ∩NX(y3) ̸= ∅.
Case i = 11. Let x11,j1 ∈ NX(y1)∩NX(y2)∩NX(y3) and x11,j2 ∈ X \{x11,j1}. Since
x11,j2 is adjacent to at least d− 1 vertices in V (G) \ {x11,j1 , y1, y2, y3}, it is adjacent
to some x11,j3 ∈ X \ {x11,j1}. Thus, G′ has a subgraph isomorphic to Z11, and x11,j1

is mapped to v1 and x11,j2 is mapped to v2.

Case i = 12. Note that y1 is adjacent to some x12,j3 ∈ X. Let X ′ = X \
{x12,j3}; then |NX′(y2)| ≥ d and |NX′(x12,j3)| ≥ d. By Lemma 6.2.4(a), |NX′(y2) ∩
NX′(x12,j3)| ≥ n − t − 1 − 2(ℓ + 2) ≥ 1, so there is some x12,j1 ∈ X ′. Let X ′′ =
X \ {x12,j1 , x12,j3}. Since |NX′′(y3)| ≥ d− 1 ≥ 1, some x12,j2 ∈ X ′′ is adjacent to y3.
Hence, G′ has a subgraph isomorphic to Z12, and x12,j1 is mapped to v1 and x12,j2

is mapped to v2.
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Case i = 13. Let x13,j3 ∈ NX(y1) ∩ NX(y2) and let X ′ = X \ {x13,j3}. Since
|NX′(x13,j3)| ≥ d − 1, some x13,j1 ∈ X ′ is adjacent to x13,j3 . Let X ′′ = X \
{x13,j1 , x13,j3}. Since |NX′′(y3)| ≥ d − 1 ≥ 1, some x13,j2 ∈ X ′′ is adjacent to
y3. Thus, G′ has a subgraph isomorphic to Z13, and x13,j1 is mapped to v1 and
x13,j2 is mapped to v2.

Case i = 14. Let x14,j3 ∈ NX(y1) ∩ NX(y2) and let X ′ = X \ {x14,j3}. Since
|NX′(y1)| ≥ d ≥ 1, some x14,j1 ∈ X ′ is adjacent to y1. Let X

′′ = X \ {x14,j1 , x14,j3}.
Since |NX′′(y3)| ≥ d − 1 ≥ 1, some x14,j2 ∈ X ′′ is adjacent to y3. Thus, G′ has a
subgraph isomorphic to Z14, and x14,j1 is mapped to v1 and x14,j2 is mapped to v2.

This completes the proof of the lemma.

Lemma 6.2.7. Let G be a graph with V (G) = {x1, . . . , xn−t, y1, y2, y3} in which each
vertex has degree at least n− t−ℓ. Let Z15 be defined as in Lemma 6.2.3. If n ≥ t+
ℓ+5, then there are xi1 , xi2 , xi3 ∈ {x1, . . . , xn−t} such that G[{xi1 , xi2 , xi3 , y1, y2, y3}]
contains a subgraph U which is isomorphic to Z15. Furthermore, the isomorphism
can be chosen so that xi1 is mapped to v1, xi2 is mapped to v2 and xi3 is mapped to
v3 in Z15.

Proof. Let X = {x1, . . . , xn−t}; then |NX(y1)| ≥ n−t−ℓ−2 ≥ 1, so y1 is adjacent to
some xi1 ∈ X. Let X ′ = X \{xi1}. Since |NX′(y2)| ≥ n−t−ℓ−3 ≥ 1, y2 is adjacent
to some xi2 ∈ X ′. Let X ′′ = X \ {xi1 , xi2}. Since |NX′′(y3)| ≥ n − t − ℓ − 4 ≥ 1,
y3 is adjacent to some xi3 ∈ X ′′. Hence, G[{xi1 , xi2 , xi3 , y1, y2, y3}] has a subgraph
isomorphic to Z15 and xi1 is mapped to v1, xi2 is mapped to v2 and xi3 is mapped
to v3 in Z15.

Lemma 6.2.8. Let G be a graph with V (G) = Z1 ∪ Z2 for sets Z1 and Z2 with
|Z2| ≥ n − 1 where n ≥ 5n1 + 5 for some positive integer n1. If each vertex in Z1

is adjacent in G to at most n1 vertices in Z2 and G[Z1] contains the star graph S5,
then G contains W8.

Proof. Suppose that G[Z1] contains S5 and write V (S5) = {z0, . . . , z4} and E(S5) =
{z0z1, . . . , z0z4}. Since each vertex in Z1 is adjacent in G to at most n1 vertices in
Z2, Z2 \

(
NZ2(z0) ∪ · · · ∪ NZ2(z4)

)
contains at least n − 1 − 5n1 ≥ 4 vertices, so

choose four such vertices, say a1, . . . , a4. Then G contains W8 with hub z0 and
z1a1z2a2z3a3z4a4z1 as C8.

Lemma 6.2.9. Suppose that k is a fixed positive integer and let T1 be a tree
graph Tn,k(v1, . . . , vt;Q1, . . . , Qt) of order n as defined in Definition 6.1.1. Sup-
pose that |V (Q1)| ≥ 2 and that q ∈ V (Q1) \ {v1} has degree 1 in Q1. Let Q′

1

be the tree obtained from Q1 by removing q and its incident edge. Let T2 =
Tn,k−1(v1, . . . , vt;Q

′
1, Q2, . . . , Qt). There is a positive integer n0(k) such that, for

each integer n ≥ n0(k), if G is a graph with 2n − 1 vertices that contains T2 but
whose complement G does not contain W8, then G contains T1.
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Proof. Let q0 be the vertex in V (Q1) adjacent to q. Note that q0 is also a vertex in
V (Q′

1). Let Tk be the family of non-isomorphic forests with at most k vertices. Set

n1(k) = max
T∈Tk

R(T,W8) .

Suppose that G is a graph on 2n− 1 vertices, that T2 is a subgraph of G, and that
G does not contain W8. Let V (T2) = {v0}∪U1∪V (Q′

1)∪V (Q2)∪· · ·∪V (Qt) where
U1 = {u1, . . . , un−k−t} and

E(T2) = {v0v1, . . . , v0vt} ∪ {v0u1, . . . , v0un−k−t} ∪ E(Q′
1) ∪ E(Q2) ∪ · · · ∪ E(Qt) .

Note that u1, . . . , un−k−t each has degree 1 in T2. Let U2 = V (G) \ V (T2); then
|U2| = n− 1.

If q0 is adjacent to a vertex in U1 ∪ U2, then G contains T1. Therefore, assume
that q0 is not adjacent to any vertex in U1 ∪ U2. Note that Q1 is a tree with
|V (Q1)| ≤ k+1. Now, Q1− v1 is a forest Q11 ∪ · · · ∪Q1ℓ of ℓ disjoint trees for some
ℓ ≥ 1. Clearly, R(Q1 − v1,W8) is at most n1(k).

Suppose that u1 is adjacent in G to at least n1(k) vertices in U2. Since G does
not contain W8, the subgraph G[NU2(u1)] contains Q1 − v1 = Q11 ∪ · · · ∪Q1ℓ. Now,
u1 is adjacent to each vertex in Q1 − v1. Adding all of these vertices to T2 gives
the subgraph T1 in G. Therefore, assume that u1 is adjacent to at most n1(k) − 1
vertices in U2. Similarly, assume that uj is adjacent to at most n1(k) − 1 vertices
in U2 for j = 2, 3, 4.

Let Z1 = {q0, u1, . . . , u4}. Since q0 is not adjacent to u1, . . . , u4, G[Z1] con-
tains S5. Now, each vertex in Z1 is adjacent in G to at most n1(k) − 1 vertices
in U2. By Lemma 6.2.8, G contains W8, provided that n ≥ 5n1(k). This is not
possible as G does not contain W8. Hence, G contains T1.

Corollary 6.2.10. Let k be a fixed positive integer and let T1 be a tree graph
Tn,k(v1, . . . , vt;Q1, . . . , Qt) of order n as defined in Definition 6.1.1. Suppose that
0 ≤ k′ < k and 1 ≤ t′ ≤ t. Let

T2 = Tn,k′(v
′
1, . . . , v

′
t′ ;Q

′
1, . . . , Q

′
t′)

where, for each i ∈ {1, . . . , t′}, Q′
i is isomorphic to a subgraph of Qi where v′i ∈

V (Q′
i) is mapped to vi ∈ V (Qi) under the isomorphism. There is a positive integer

n0(k) such that, for each integer n ≥ n0(k), if G is a graph with 2n−1 vertices that
contains T2 but whose complement G does not contain W8, then G contains T1.

Proof. Without loss of generality, assume that |V (Q1)| ≥ |V (Q2)| ≥ · · · ≥ |V (Qt)|.
By Definition 6.1.1, |V (Qt)| ≥ 2. Now, by repeatedly adding vertices to Q′

t′

to obtain Qt′ and then applying Lemma 6.2.9, we can conclude that G contains
Tn,k′′(v

′
1, . . . , vt′ ;Q

′
1, . . . , Qt′) where

k′′ =
(
|V (Q′

1)|+ · · ·+ |V (Q′
t′−1)|

)
+ |V (Qt′)| − t′ .
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Repeat the same process to each Q′
j, by adding vertices to obtain Qj. Then G

contains the subgraph T3 = Tn,k′′′(v1, . . . , vt′ ;Q1, . . . , Qt′) where

k′′′ =
(
|V (Q1)|+ · · ·+ |V (Qt′)|

)
− t′ .

If t′ = t, then G contains T3 = T1. Suppose that t′ < t. Now,

V (T3) = {v0, u1, . . . , un−k′′′−t′−1} ∪ V (Q1) ∪ · · · ∪ V (Qt′) ;

E(T3) = {v0u1, . . . , v0un−k′′′−t′−1} ∪ {v0v1, . . . , v0vt′} ∪ E(Q1) ∪ · · · ∪ E(Qt′) .

Since |Qt| ≥ 2, we have t ≤ k. Let Tk be the family of non-isomorphic forests with
at most 2k vertices. Set

n0 = max
T∈Tk

R(T,W8) .

Now, n− k′′′ − t′ − 1 ≥ n− 2k− 1. If n− 2k− 1 ≥ n0, then G[{u1, . . . , un−k′′′−t′−1}]
contains the forest Qt′+1 ∪ · · · ∪Qt which with T3 gives the subgraph T1 in G.

Lemma 6.2.11. Let G be a graph with V (G) = {v1, . . . , v4}∪U where |U | = n and
none of v1, . . . , v4 is adjacent to any vertex in U . Let Z1, . . . , Z15 be defined as in
Lemmas 6.2.1-6.2.3. For sufficiently large n, if G does not contain W8, then

(a) G[U ] contains Tn,|V (Zi)|−1(v1;Zi) for each i = 1, . . . , 10;
(b) G[U ] contains Tn,4(v1, v2;Xi1, Xi2) for each i = 11, . . . , 14 with Xi1∪Xi2 = Zi;
(c) G[U ] contains Tn,3(v1, v2, v3;X1, X2, X3) where X1 ∪X2 ∪X3 = Z15.

Proof. Suppose that G[U ] contains S5, and write V (S5) = {z0, . . . , z4} and E(S5) =
{z0z1, . . . , z0z4}. Then G contains W8 with hub z0 and z1v1z2v2z3v3z4v4z1 as C8.
Therefore, assume that G[U ] does not contain S5; then every vertex in G[U ] has
degree at most 3. Thus, each vertex in G[U ] has degree at least n − 4. Write
U = {a0, . . . , an−4, b1, b2, b3} so that each of a0a1, . . . , a0an−4 is an edge of G[U ].
Now, consider the graph G[U \ {a0}]. Every vertex in G[U \ {a0}] has degree at
least n− 5.

(a) By Lemma 6.2.5, there are elements ai1, ai2, ai3 ∈ {a1, . . . , an−4} such that
G[{ai1, ai2, ai3, b1, b2, b3}] contains a subgraph U ′

i isomorphic to Zi. Furthermore,
the isomorphism can be chosen so that ai1 is mapped to v1 in Zi. Therefore, G
contains Tn,|V (Zi)|−1(v1;Zi).

(b) By Lemma 6.2.6, there are elements ai1, ai2, ai3 ∈ {a1, . . . , an−4} such that
G[{ai1, ai2, ai3, b1, b2, b3}] contains a subgraph U ′

i isomorphic to Zi. Furthermore,
the isomorphism can be chosen so that ai1 is mapped to v1 and ai2 is mapped to v2
in Zi. Therefore, G contains Tn,4(v1, v2;Xi1, Xi2).

(c) By Lemma 6.2.7, there are elements aj1 , aj2 , aj3 ∈ {a1, . . . , an−4} such that
G[{aj1 , aj2 , aj3 , b1, b2, b3}] contains a subgraph U isomorphic to Z15. Furthermore,
the isomorphism can be chosen so that aj1 is mapped to v1, aj2 is mapped to v2 and
aj3 is mapped to v3 in Z15. Therefore, G contains Tn,3(v1, v2, v3;X1, X2, X3).
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Lemma 6.2.12. Let Z1, . . . , Z15 be defined as in Lemmas 6.2.1-6.2.3. For each
i = 11, . . . , 14, let Zi = Xi1 ∪ Xi2 where Xi1 is a tree and Xi2 is an edge disjoint
from Xi2. Let Z15 = X1 ∪X2 ∪X3 where X1, X2, X3 are disjoint edges. Then

(a) R(Tn,|V (Zi)|−1(v1;Zi),W8) = 2n− 1 when n is sufficiently large;
(b) R(Tn,4(v1, v2;Xi1, Xi2),W8) = 2n− 1 when n is sufficiently large;
(c) R(Tn,3(v1, v2, v3;X1, X2, X3),W8) = 2n− 1 when n is sufficiently large.

Proof. The union of two complete graphs G′ = Kn−1 ∪ Kn−1 does not contain
Tn,|V (Zi)|−1(v1;Zi) andG′ does not containW8, soR(Tn,|V (Zi)|−1(v1;Zi),W8) ≥ 2n−1.
Similarly, we are able to prove that R(Tn,4(v1, v2;Xi1, Xi2),W8) ≥ 2n− 1 and that
R(Tn,3(v1, v2, v3;X1, X2, X3),W8) ≥ 2n− 1.

Let G be a graph with 2n − 1 vertices such that G does not contain W8. By
Theorem 2.2.6, G contains Sn−2. If G contains Sn, then by Corollary 6.2.10, G
contains Tn,|V (Zi)|−1(v1;Zi) for each i ∈ {1, . . . , 10}, Tn,4(v1, v2;Xi1, Xi2) for each
i ∈ {11, . . . , 14} and Tn,3(v1, v2, v3;X1, X2, X3). Therefore, assume that G does not
contain Sn. We consider two cases.

Case 1. G contains Sn−1.
Write V (Sn−1) = {x0, . . . , xn−2} and E(Sn−1) = {x0x1, . . . , x0xn−2}, and let U2 =
V (G) \ V (Sn−1). Since G does not contain Sn, x0 is not adjacent to any vertex
in U2. If x1 is adjacent to a vertex in U2, then G contains Tn,2(x1;P2) where P2

is a path with two vertices and x1 ∈ V (P2). Clearly, for each i = 1, . . . , 10, P2 is
isomorphic to a subgraph of Zi and x1 is mapped to v1 ∈ V (Zi) by this isomorphism.
By Corollary 6.2.10, G contains Tn,|V (Zi)|−1(v1;Zi). For each i = 11, . . . , 14, P2

is isomorphic to a subgraph of Xi1 and x1 is mapped to v1 ∈ V (Xi1) by this
isomorphism. Again by Corollary 6.2.10, G contains Tn,4(v1, v2;Xi1, Xi2). Similarly,
G contains Tn,3(v1, v2, v3;X1, X2, X3). Therefore, assume that x1 is not adjacent to
any vertex in U2. Similarly, assume that none of x2, . . . , xn−2 is adjacent to any
vertex in U2.

Now |U2| = n and x1, . . . , x4 are not adjacent to any vertex in U2. It fol-
lows from Lemma 6.2.11 that G[U2] contains Tn,|V (Zi)|−1(v1;Zi) for i = 1, . . . , 10,
Tn,4(v1, v2;Xi1, Xi2) for i = 11, . . . , 14 and Tn,3(v1, v2, v3;X1, X2, X3).

Case 2. G contains Sn−2 but does not contain Sn−1.
Write V (Sn−2) = {x0, . . . , xn−3} and E(Sn−2) = {x0x1, . . . , x0xn−3}, and let U2 =
V (G) \ V (Sn−2). Then |U2| = n + 1 and x0 is not adjacent to any vertex in U2.
Let u ∈ U and suppose that there are vertices xl1 , xl2 , xl3 ∈ {x1, . . . , xn−3} that are
not adjacent to any vertex in U2 \ {u}. Since |U2 \ {u}| = n and x0 is also not
adjacent to any vertex in U2 \ {u}, it follows from Lemma 6.2.11 that G[U2 \ {u}]
contains Tn,|V (Zi)|−1(v1;Zi) for 1 ≤ i ≤ 10, Tn,4(v1, v2;Xi1, Xi2) for 11 ≤ i ≤ 14 and
Tn,3(v1, v2, v3;X1, X2, X3). Therefore, assume that for each u ∈ U2 and all subsets
Y ⊆ {x1, . . . , xn−3} with |Y | = 3, at least one vertex of U2 \{u} is adjacent of some
vertex of Y .

Let T5 be the family of non-isomorphic forests with at most 5 vertices. Set

n0 = max
T∈T5

R(T,W8) .

and note that n0 ≥ 2. Suppose that x1 is adjacent to at least n0 + 1 vertices in
U2 and let i ∈ {1, . . . , 10}. Since G does not contain W8 and Zi − v1 is a forest
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of size at most 5, the subgraph G[NU2(x1)] contains Zi − v1. Hence, G contains
Tn,|V (Zi)|−1(v1;Zi).

Next, we show that G contains Tn,4(v1, v2;Xi1, Xi2). At least one of x2, x3, x4

is adjacent to some vertex u2 ∈ U2, without loss of generality say x2. Let U ′
2 =

U2\{u2}. Now, x1 is adjacent to at least n0 vertices in U ′
2. Since G does not contain

W8 and Xi1 − v1 is a forest of size 3, the subgraph G[NU ′
2
(x1)] contains Xi1 − v1.

Thus, G contains Tn,4(v1, v2;Xi1, Xi2) where Xi2 is the path x2u2.
As above, we can assume that x2 is adjacent to a vertex u2 ∈ U2. Also, at

least one of x3, x4, x5 is adjacent to some vertex in u3 ∈ U2, without loss of gen-
erality, say x3. Since x1 is adjacent to at least n0 − 1 vertices in U2 \ {u2, u3},
there is a vertex u1 ∈ U2 \ {u2, u3} for which x1u1 ∈ E(G). Thus, G contains
Tn,3(v1, v2, v3;X1, X2, X3).

Thus, we may assume that x1 is adjacent to at most n0 vertices in U2. Similarly,
we may assume that each of x2, . . . , xn−3 is adjacent to at most n0 vertices in U2.

By Lemma 6.2.8, we may assume thatG[V (Sn−2)] does not contain S5. Each ver-
tex of G[V (Sn−2)] therefore has degree at most 3. Thus, each vertex of G[V (Sn−2)]
has degree at least n− 6.

At least one of x1, x2, x3 is adjacent to some vertex w1 ∈ U2, say x1. Recall that
x1 is adjacent to at least n − 6 vertices in G[V (Sn−2)], say b1, . . . , bn−6. Suppose
that w1 is adjacent to at least n0 vertices in U2 \ {w1}. Since G does not contain
W8 and Zi − v1 is a forest of size at most 5, the subgraph G[NU2\{w1}(w1)] contains
Zi−v1. Let U3 ⊆ NU2\{w1}(w1) be such that G[U3] contains the forest Zi−v1. Then
G[U3 ∪ {b1, . . . , bn−6, x1, w1}] contains Tn,|V (Zi)|−1(v1;Zi).

Next, recall that w1 is adjacent to at least n0 vertices in U2 \ {w1}. Since G
does not contain W8 and Xi1−v1 is a forest of size 3, the subgraph G[NU2\{w1}(w1)]
contains Xi1 − v1. Choose an element c ∈ V (Sn−2) \ {x1, b1, . . . , bn−6}. Since c
has degree at least n − 6 in G[V (Sn−2)], it is adjacent to at least n − 9 vertices in
{b1, . . . , bn−6}, including, say, b1. Thus, G contains Tn,4(v1, v2;Xi1, Xi2) where Xi2

is the path cb1.
Now note that w1 is adjacent to a vertex in U2 \ {w1}. Choose two elements

c1, c2 ∈ V (Sn−2) \ {x1, b1, . . . , bn−6}. Since each ci has degree at least n − 6 in
G[V (Sn−2)], there are two vertices d1, d2 ∈ {b1, . . . , bn−6} such that c1d1 and c2d2
are edges in G. Hence, G contains Tn,3(v1, v2, v3;X1, X2, X3).

We may therefore assume that w1 is adjacent to at most n0 − 1 vertices in U2 \
{w1}. Consider the graph G[V (Sn−2)∪{w1}]. Now, each vertex in V (Sn−2)∪{w1} is
adjacent in G to at most n0 vertices in U2 \{w1}. By Lemma 6.2.8, we may assume
that G[V (Sn−2)∪{w1}] does not contain S5. Thus, each vertex in G[V (Sn−2)∪{w1}]
has degree at most 3, so each vertex in G[V (Sn−2)∪{w1}] has degree at least n−5.

Now, |U2 \ {w1}| = n. Choose a vertex a0 ∈ V (Sn−2) ∪ {w1} and write
V (Sn−2) ∪ {w1} = {a0, . . . , an−5, c1, c2, c3} so that each of a0a1, . . . , a0an−5 is an
edge in G[V (Sn−2) ∪ {w1}]. Each vertex in G[{a1, . . . , an−5, c1, c2, c3}] has degree
at least n − 6. By Lemma 6.2.5, for each i ∈ {1, . . . , 10}, there are ai1, ai2, ai3 ∈
{a1, a2, . . . , an−5} such that G[{ai1, ai2, ai3, c1, c2, c3}] contains a subgraph isomor-
phic to Zi. Furthermore, the isomorphism can be chosen so that ai1 is mapped to
v1 in Zi. Thus, G[V (Sn−2) ∪ {w1}] contains Tn−1,|V (Zi)|−1(v1;Zi). If a0 is adjacent
to a vertex in U2 \ {w1}, then G[V (Sn−2) ∪ {w1}] contains Tn,|V (Zi)|−1(v1;Zi).
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Next, by Lemma 6.2.6, for each integer i = 11, . . . , 14, there are elements
ai1, ai2, ai3 ∈ {a1, a2, . . . , an−5} such that G[{ai1, ai2, ai3, c1, c2, c3}] contains a sub-
graph isomorphic to Zi. Furthermore, the isomorphism can be chosen so that
ai1 is mapped to v1 and ai2 is mapped to v2 in Zi. Thus, G[V (Sn−2) ∪ {w1}]
contains Tn−1,4(v1, v2;Xi1, Xi2). If a0 is adjacent to a vertex in U2 \ {w1}, then
G[V (Sn−2) ∪ {w1}] contains Tn,4(v1, v2;Xi1, Xi2).

By Lemma 6.2.7, there are elements aj1 , aj2 , aj3 ∈ {a1, . . . , an−5} such that
G[{aj1 , aj2 , aj3 , c1, c2, c3}] contains a subgraph U isomorphic to Z15. Furthermore,
the isomorphism can be chosen so that aj1 is mapped to v1, aj2 is mapped to v2
and aj3 is mapped to v3 in Z15. Therefore, G[V (Sn−2) ∪ {w1}] contains the sub-
graph Tn−1,3(v1, v2, v3;X1, X2, X3). If a0 is adjacent to a vertex in U2 \ {w1}, then
G[V (Sn−2) ∪ {w1}] contains Tn,3(v1, v2, v3;X1, X2, X3).

Hence, we may assume that a0 is not adjacent to any vertex in U2 \ {w1}.
Since a0 was chosen arbitrarily, no vertex in V (Sn−2) ∪ {w1} is adjacent to any
vertex in U2 \ {w1}. Choose any vertices d1, . . . , d4 ∈ V (Sn−2) ∪ {w1}. Now,
|U2 \ {w1}| = n and none of d1, . . . , d4 is adjacent to any vertex in U2 \ {w1}. Thus
by Lemma 6.2.11, G[U2\{w1}] contains Tn,|V (Zi)|−1(v1;Zi) for 1 ≤ i ≤ 10, G contains
Tn,4(v1, v2;Xi1, Xi2) for 11 ≤ i ≤ 14 and G contains Tn,3(v1, v2, v3;X1, X2, X3).

This completes the proof of the lemma.

6.3 Ramsey numbers for large tree graphs with maximum degree of
at most n− 6 versus the wheel graph of order 9

Now, we present the Ramsey number R(Tn,W8) for large tree with ∆(Tn) ≤ n− 6.

Theorem 6.3.1. Let k ≥ 5 be a positive integer and T = Tn,k(v1, . . . , vt;Q1, . . . , Qt)
be the tree defined in Definition 6.1.1. Then there is a positive integer n0(k) such
that, for each integer n ≥ n0(k), R(T,W8) = 2n− 1.

Proof. Clearly, G′ = Kn−1 ∪Kn−1 does not contain T and G′ does not contain W8.
So, R(T,W8) ≥ 2n− 1.

Let G be a graph with 2n − 1 vertices such that G does not contain W8. Let
Z1, . . . , Z15 be defined as in Lemmas 6.2.1-6.2.3. For 11 ≤ i ≤ 14, let Zi = Xi1∪Xi2

where Xi1 is a tree and Xi2 is an edge disjoint from Xi2. Let Z15 = X1 ∪X2 ∪X3

whereX1, X2, X3 are disjoint edges. By Lemma 6.2.12, G contains Tn,|V (Zi)|−1(v1;Zi)
for 1 ≤ i ≤ 10, Tn,4(v1, v2;Xi1, Xi2) for 11 ≤ i ≤ 14 and Tn,3(v1, v2, v3;X1, X2, X3).

Without loss of generality, assume that |V (Q1)| ≥ |V (Q2)| ≥ · · · ≥ |V (Qt)| ≥ 2.
Suppose that t = 1. By Lemma 6.2.1, the subtree Q in T = Tn,k(v1;Q) contains

Zi for some i ∈ {1, . . . , 10}. By Lemma 6.2.12(a), G contains Tn,|V (Zi)|−1(v1;Zi).
By Corollary 6.2.10, G contains T .

Suppose that t = 2. By Lemma 6.2.2, the subforest Q1 ∪ Q2 in the graph
T = Tn,k(v1, v2;Q1, Q2) contains Zi for some i ∈ {11, . . . , 14}. By Lemma 6.2.12(b),
G contains Tn,4(v1, v2;Xi1, Xi2). By Corollary 6.2.10, G contains T .

Suppose that t ≥ 3. By Lemma 6.2.3, the subforest Q1 ∪ Q2 ∪ Q3 in T con-
tains Z15. By Lemma 6.2.12(b), G contains Tn,3(v1, v2, v3;X1, X2, X3). By Corol-
lary 6.2.10, G contains T .

This completes the proof of the theorem.
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Corollary 6.3.2. Let k ≥ 5 be a positive integer and T be a tree with n vertices
and ∆(T ) = n − k − 1. Then there is a positive integer n0(k) such that, for each
integer n ≥ n0(k), R(T,W8) = 2n− 1.

Proof. Note that T = Tn,k(v1, . . . , vt;Q1, . . . , Qt) for some disjoint trees Q1, . . . , Qt.
The corollary then follows from Theorem 6.3.1.

Note that if T is one of the graphs Sn(ℓ, k), Sn(k) or Sn[k], and ∆(T ) = n−k−1,
then the following corollary follows from Corollary 6.3.2.

Corollary 6.3.3. Let k ≥ 5 be a fixed positive integer. For sufficiently large n,
R(T,W8) = 2n− 1 for each T = Sn(ℓ, k), Sn(k), Sn[k].
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Chapter 7

Conclusion and possible future work

7.1 Conclusion

Chen, Zhang and Zhang [18] conjectured that R(Tn,Wm) = 2n − 1 for all tree
graphs Tn of order n ≥ m− 1 when m is even and the maximum degree ∆(Tn) “is
not too large”. This conjecture was further refined by Hafidh and Baskoro [33] who
specified the bound ∆(Tn) ≤ n −m + 2. When n is large compared to m, ∆(Tn)
is not required to be small: the refined conjecture then implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs Tn with n ≥ m−1
satisfy R(Tn,Wm) = 2n− 1.

Throughout this thesis, the aim has been to explore and partially verify this
conjecture. We determined the Ramsey numbers R(Tn,W8) for all tree graphs Tn

of order n ≥ 5 with maximal degree ∆(Tn) ≥ n− 5; see Chapters 4 and 5.
These Ramsey numbers show that the proportion of tree graphs Tn satisfying the

equality R(Tn,W8) = 2n− 1 quickly grows as the maximal degree ∆(Tn) decreases.
When ∆(Tn) ≥ n − 2, no tree graph Tn satisfies the equality. In contrast when
∆(Tn) = n − 3, roughly one third of all tree graphs Tn satisfy the equality. When
∆(Tn) = n− 4, more than 85% of all tree graphs Tn satisfy the equality. And when
∆(Tn) = n− 5, roughly 94.7% of all tree graphs Tn satisfy the equality. Moreover,
in Chapter 6, we proved that the Ramsey number R(Tn,W8) equals 2n − 1 for all
tree graphs of sufficiently large order n. These results lend strong support for the
conjecture described above by Chen et al. and Hafidh and Baskoro.

In Chapter 3, we used Theorem 2.2.2 to find the Ramsey number R(Tn,Ws,6)
by applying Lemma 3.1.1 repeatedly. We can apply Lemma 3.1.1 similarly for
R(Tn,Ws,8), especially for those tree graphs with R(Tn,W8) = 2n− 1.

Definition 7.1.1. Let T be the family consisting of the following tree graphs:

1. Sn(2, 1) for odd n ≥ 7;
2. Sn(3) for odd n ≥ 9;
3. Sn(1, 3), TA(n) or TB(n) for n ≥ 7 and n ̸≡ 0 (mod 4);
4. Sn[4], Sn(1, 4), Sn(2, 2), TD(n) or TN(n) for n ≥ 9 and n ̸≡ 0 (mod 4);
5. TC(n), Sn(3, 1), Sn(5), Sn[5], Sn(4, 1), TG(n), TH(n), TJ(n), TK(n), TL(n),

TM(n), TP (n), TQ(n), TR(n) or TS(n) for all n ≥ 8;
6. Sn(4), TE(n) or TF (n) for all n ≥ 9;
7. Tn with ∆(Tn) ≤ n− 6 and sufficiently large n.

Theorem 7.1.2. Let n ≥ 7 and s ≥ 2. For all T ∈ T ,

R(T,Ws,8) = (s+ 1)(n− 1) + 1 .
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Proof. By the various theorems in Chapters 4, 5 and 6, R(T,W1,8) = 2n − 1. By
applying Lemma 3.1.1 repeatedly, we conclude that R(T,Ws,8) ≤ (s+1)(n−1)+1.
Furthermore, since χ(Ws,8) = s + 2 and t(Ws,8) = 1, Theorem 2.2.7 implies that
R(T,Ws,8) ≥ (s+ 1)(n− 1) + 1. Hence, R(T,Ws,8) = (s+ 1)(n− 1) + 1.

Similarly, we have the following result for Ws,9.

Theorem 7.1.3. Let n ≥ 7 and s ≥ 1. For all T ∈ T ,

R(T,Ws,9) = (s+ 2)(n− 1) + 1 .

Proof. By Theorem 2.2.7, χ(Ws,9) = s+ 3 and t(Ws,9) = 1. Therefore, for any tree
graph T of order n, R(T,Ws,9) ≥ (s + 2)(n − 1) + 1. Since Ws,9 is a subgraph of
Ws+1,8, Theorem 3.3.1 implies that R(T,Ws,9) ≤ R(T,Ws+1,8) = (s+2)(n− 1) + 1.
Hence, R(T,Ws,9) = (s+ 2)(n− 1) + 1.

7.2 Possible future work

As described in Section 3.4, we propose Conjecture 3.4.1, here restated as follows.

Conjecture. Suppose that m ≥ 3 and s ≥ 2. Then for sufficiently large n,

R(Tn,Ws,m) =

{
(s+ 1)(n− 1) + 1, if m is even;

(s+ 2)(n− 1) + 1, if m is odd.

For m = 8 and m = 9, we have proved that this conjecture is true for all tree
graphs T ∈ T . To complete all of the cases, we need to find the analogous results
for all other trees separately.

Furthermore, in Chapters 4 and 5, we have determined the Ramsey numbers
R(Tn,W8) for all tree graphs Tn with maximum degree of at least n− 5 versus the
wheel graph W8. In Chapter 6, we have determined the Ramsey numbers R(Tn,W8)
for all tree graphs Tn with maximum degree of at most n− 6 where n is sufficiently
large versus W8. To determine the remaining Ramsey numbers R(Tn,W8), the next
step would be to focus on the smaller tree graphs with maximum degree of at most
n− 6.
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[14] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, R.J. Gould
and M.S. Jacobson, Goodness of trees for generalized books, Graphs Combin. 3
(1987), 1–6.

[15] M. Campos, S. Griffiths, R. Morris and J. Sahasrabudhe, An exponential im-
provement for diagonal Ramsey (2023), arXiv:2303.09521.

[16] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th edition,
Chapman and Hall/CRC, 2015.

[17] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels,
European J. Combin. 25 (2004), 1067–1075.

[18] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbersR(Tn,W6) for ∆(Tn) ≥
n− 3, Appl. Math. Lett. 17 (2004), 281–285.

83



[19] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of paths versus wheels,
Discrete Math. 290 (2005), 85–87.

[20] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers R(Tn,W6) for small
n, Util. Math. 67 (2005), 269–284.

[21] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers R(Tn,W6) for Tn

without certain deletable sets, J. Syst. Sci. Complex. 18 (2005), 95–101.
[22] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of trees versus W6 or

W7, European J. Combin. 27 (2006), 558–564.
[23] Z.Y. Chng, T.S. Tan and K.B. Wong, On the Ramsey numbers for the tree

graphs versus certain generalised wheel graphs, Discrete Math. 344 (2021),
112440.
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[25] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977),
93.
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[27] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53
(1947), 292–294.
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