On the Ramsey numbers of tree graphs versus certain
generalised wheel graphs

Author:
Chng, Zhi Yee

Publication Date:
2024

DOI:
https://doi.org/10.26190/unsworks/25518

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/101814 in https://
unsworks.unsw.edu.au on 2024-05-20


http://dx.doi.org/https://doi.org/10.26190/unsworks/25518
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/101814
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

* 1%@‘“;;”’ *

=]
‘i

3

UNSW

SYDNEY

ON THE RAMSEY NUMBERS OF TREE GRAPHS
VERSUS CERTAIN GENERALISED WHEEL GRAPHS

Zhi Yee Chng

Supervisors: Dr Thomas Britz, UNSW Sydney
Dr Ta Sheng Tan, Universiti Malaya
Prof. Dr Kok Bin Wong, Universiti Malaya

School of Mathematics and Statistics
Faculty of Science, UNSW Sydney

February 2024

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF
DocTOR OF PHILOSOPHY






Declarations

ORIGINALITY STATEMENT

& | hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or
substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where
due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom | have worked at UNSW or elsewhere, is explicitly
acknowledged in the thesis. | also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the
project's design and conception or in style, presentation and linguistic expression is acknowledged.

COPYRIGHT STATEMENT

& | hereby grant the University of New South Wales or its agents a non-exclusive licence to archive and to make available (including to members of the public) my
thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known. | acknowledge that I retain all intellectual property rights
which subsist in my thesis or dissertation, such as copyright and patent rights, subject to applicable law. | also retain the right to use all or part of my thesis or
dissertation in future works (such as articles or books).

For any substantial portions of copyright material used in this thesis, written permission for use has been obtained, or the copyright material is removed from the final
public version of the thesis.

AUTHENTICITY STATEMENT

& | certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis.



Publications Statement

UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure
Publications can be used in the candidate's thesis in lieu of a Chapter provided:

« The candidate contributed greater than 50% of the content in the publication and are the "primary author”, i.e. they were responsible primarily for the planning, execution
and preparation of the work for publication.

« The candidate has obtained approval to include the publication in their thesis in lieu of a Chapter from their Supervisor and Postgraduate Coordinator.

« The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis.

& The candidate has declared that some of the work described in their thesis has been published and has been documented in the relevant Chapters with
acknowledgement.

A short statement on where this work appears in the thesis and how this work is acknowledged within chapter/s:

Chapter 3 of this thesis contains work from an article, joint work with my supervisors Dr Ta Sheng Tan and Prof. Dr Kok Bin Wong,
and is published in Discrete Mathematics. Detailed explanation and acknowledgement are provided at the beginning of the
Chapter 3.

Candidate's Declaration

I declare that | have complied with the Thesis Examination Procedure.

11



Acknowledgements

First of all, I would like to deliver my highest gratitude to my supervisors, Dr
Thomas Britz, Dr Ta Sheng Tan and Prof. Dr Kok Bin Wong for their valuable
guidance throughout this research project. I could not even imagine how harder
would the journey be without their advice and encouragement.

Next, I would also like to express my gratitude to the Public Service Department
of Malaysia and UNSW Sydney for the financial assistance and support given during
my PhD studies. I would also like to thank all the members of the School of
Mathematics and Statistics, UNSW Sydney, who have given their support and
helping hands throughout the completion of this thesis.

Last but not least, I also wish to thank my family and my friends, especially
my parents, who gave me support throughout the completion of this thesis. The
days of my PhD studies, especially during the pandemic, would not be any easier
without their love and encouragement.

il



This page has been intentionally left blank.



Abstract

This thesis presents a series of Ramsey results on tree graphs versus generalised
wheel graphs, with the focus on the generalised wheel graphs W, ¢ and W 7 and the
wheel graph Ws.

This thesis consists of 7 chapters. In Chapter 1, we give a brief historical intro-
duction to Ramsey theory and Ramsey’s Theorem, as well as some brief introduction
to the contents of the thesis. Then in Chapter 2, we introduce notation and def-
initions that will be consistently used throughout the thesis, including some basic
knowledge of graph theory which is particularly useful in our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs 7,, of order n versus
the generalised wheel graphs W and W;;. We determine the Ramsey number
R(T,,,W5g) for n > 5. Then we generalise these results to find R(7,,, Wsg) for
s > 2. After that, we also determine the Ramsey number R(T,,, Ws7) for n > 5
and s > 1. In the last section of Chapter 3, we discuss results on the Ramsey
numbers for tree graphs versus generalised wheel graphs, R(T,,, Wy ,,), and propose
a conjecture.

Chapters 4 and 5 present the Ramsey numbers 7, for tree graphs of order n
versus the wheel graph of order 9, Ws. In Chapter 4, we focus on the tree graphs
with maximum degree of at least n — 3. In Chapter 5, we provide results for the
tree graphs with maximum degree of n — 4 and n — 5.

In Chapter 6, we present the Ramsey numbers R(T,,, Ws) for the tree graphs
with maximum degree of at most n — 6 where n is sufficiently large.

Chapter 7 concludes the thesis with suggestions for possible future work.
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CHAPTER 1

Introduction

Ramsey theory is a beautiful but difficult subject, proposed by the British mathe-
matician and philosopher Frank Plumpton Ramsey [44] nearly a century ago. Gen-
erally speaking, Ramsey theory shows how, in certain orderly structure, patterns
and order can never be completely eradicated by randomness or disarray; in other
words, complete randomness is impossible. A typical result in Ramsey theory states
that if some mathematical structure is cut into pieces, then at least one of the parts
must attain a given property. Before Ramsey’s death at the age of 26 in 1930, he
did seminal work in this area; however, the theory was brought to public attention
by the Hungarian mathematician Paul Erdds, who made a huge contribution to
combinatorics and graph theory.

The archetypal Ramsey theory result is Ramsey’s Theorem [44] which states
that in any edge-colouring of a sufficiently large finite complete graph, one can
find some monochromatic complete graph of any given order. The Ramsey number
N = R(m,n) is the minimum integer with the property that the complete graph on
N vertices will, whenever its edges are each coloured by one of two given colours,
either contain a complete subgraph on m vertices whose edges are each coloured in
the first colour, or contain a complete subgraph on n vertices whose edges are each
coloured in the second colour. Equivalently, N = R(m,n) is the minimum integer
for which each simple undirected graph with N vertices either contains a complete
graph of order m or has its graph complement contain a complete graph of order n.

The first lower bound on Ramsey numbers were obtained by Paul Erdos using
probabilistic methods [27]. Together with George Szekeres, Paul Erdds also found
some upper bounds on these numbers [28].

Over the years, much research had been done to improve these bounds; however,
little progress has been made. There are a few interesting results on the lower
bound of general Ramsey numbers, which were proposed by Spencer [48] and Alon
and Pudldk [2]. The best lower bound up to today was given by Bohman and
Keevash [7]:

m+1
n 2
R(m,n) > ¢ T —

(logn) 2 ~m—=2

for some positive c¢. On the other hand, the best upper bound of general Ramsey
numbers up to today was proposed by Ajtai, Komlés and Szemerédi [1]:

nm—l

Pl —
R(m,n) < C(log oy

for some constant c.



Let consider the case where m = 3. This is one of the popular research topics
in the area since it is related to the study of triangle-free graphs. In [37], Kim
had shown that R(3,7n) has order of magnitude %. The best-known upper-bound
constant is due to Shearer [47], who had shown that

TL2

R(33,n) < (1+ 0(1))10gn .

On the other hand, Bohman and Keevash [8] had provided a lower bound constant
and shown that

R(3,m) = (211 - 0(1)> 1OT§H '

A similar result was also proved by Pontiveros, Griffiths and Morris; see [42]. This
lower bound is within a 4 4+ o(1) factor of the upper bound by Shearer and is
currently the best-known lower bound of R(3,n).

Another interesting special type of Ramsey number is called the diagonal Ram-
sey number, denoted by R(n,n), or just R(n). Trivially, R(1) = 1 and R(2) = 2.
Currently, the only known exact numbers R(n) are R(3) = 6 (the famous Party
Problem) and R(4) = 18 [32]. Even the exact result for n = 5 is still unknown,
with the currently best known bounds of 43 < R(5) < 48; see [3, 29]. In the general
case, the first lower bound on R(n) was proposed by Erdds [27] in 1947:

1 n
R(n) > ——=(1+o0(n))n2z.
(n) > {1+ ofm)
This was only improved after 30 years by a factor of 2 by Spencer [49].
On the other hand, the first upper bound of R(n) was from the proof of Erdds

and Szekeres [28]:
2n —2
< < 4",
Rn) < (n —1 ) -

Very little progess was made on improving this bound until the mid-1980s. Some
improvements were then made by Rédl [30] and Thomason [51]. In 2009, Conlon [12]

showed that
R < n-eesbi (217

n—1

for some positive ¢. Very recently, Sah [45] improved this result to

R(n) S e*C(lOgn)2 (2n — 2) .

n—1

Another very recent breakthrough result was provided by Campos, Griffiths, Morris
and Sahasrabudhe [15]. They gave the first exponential improvement over the
upper bound of Erdos and Szekeres and proved that there exists e > 0 such that
R(n) < (4 — ¢)" for all sufficiently large n (e = 277 in their proof).

Looking away from complete graphs, a more general Ramsey number is R(G, H),
which is the minimum number of vertices to ensure that, in any graph with that



number of vertices, either the graph contains a subgraph G or its complement graph
contains a subgraph H.

In this thesis, the Ramsey numbers R(7,,, W ,,,) have been determined for certain
tree graphs 7;, and the generalised wheel graph W ,,,. In [22], Chen et al. determined
the Ramsey numbers R(T,,,W;6) and R(T,,,W;7). We extend these results and
determine the Ramsey numbers R(T,,, W) and R(T,,, Ws7) for s > 2. Next, we
proceed with a discussion on the Ramsey numbers R(7,, W;g). In [18], Chen,
Zhang and Zhang conjectured that R(T,,W,,) = 2n — 1 for all tree graphs T,, of
order n > m—1 when m is even and the maximum degree A(7},) “is not too large”;
see also [20, 21, 22]. Later in [33], Hafidh and Baskoro refined this conjecture by
specifying the bound A(T,,) < n—m+2. When n is large compared to m, A(T},) is
not required to be small; indeed, the refined conjecture implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs {7, : n > m — 1}
satisfy R(T,,, W,,) = 2n — 1. One of the main aims of this thesis is to explore and
partially verify this conjecture. Very briefly described, our main results provide
strong evidence for the conjecture and also show that the conjecture is true for
sufficiently large graphs.

The contents of the thesis are as follows. In Chapter 2, we introduce some
necessary notation and definitions, including some fundamental graph theory, which
will be particularly useful in our discussion. We also introduce some previously
known theorems and lemmas which are essential to our discussion.

In Chapter 3, we present Ramsey numbers for tree graphs 7T,, of order n versus
the generalised wheel graphs W and Ws7. We determine the Ramsey number
R(T,,,W5g) for n > 5. Then we generalise these results to find R(7,,, Wsg) for
s > 2. After that, we also determine the Ramsey number R(7T,, W) for n > 5
and s > 1. In the last section of the chapter, we discuss results on the Ramsey
numbers for tree graphs versus generalised wheel graphs, R(T,,, W), and propose
a conjecture.

Chapters 4, 5 and 6 present the Ramsey numbers for tree graphs 7, versus
the wheel graph Wy of order 9. In Chapter 4, we focus on the tree graphs with
maximum degree of at least n — 3. There are four types of such graphs, namely S,,,
Sn(1,1), Su(1,2) and S,(3). In Chapter 5, we present results for the tree graphs
with maximum degree of n — 4 and n — 5. There are 7 types of tree graphs with
maximum degree n — 4 and 19 types of tree graphs with maximum degree of n — 5,
respectively. In Chapter 6, we discuss the analogous results for the tree graphs with
maximum degree of at most n — 6 where n is sufficiently large.

In Chapter 7, we discuss our results and partially answer our conjecture in
Chapter 3. We end our discussion by proposing possible future work on the topic.



CHAPTER 2

Graph theory

Since graph theory contributes to a major part of our discussion, we will begin the
journey with some introductory graph theory.

2.1  Graph theory

In this section, we will present some fundamental graph theory definitions which
will be used throughout the thesis.

Definition 2.1.1 (Graph). A graph is a pair of sets G = (V, E) where V(G) :=V
is a finite non-empty set of elements called vertices and E(G) := E is a set of
unordered pairs of vertices called edges.

Figure 2.1 shows an example of a graph G = (V,E). It has the vertex set
V = {s,t,u,v,w} and the edge set £ = {{s,t}, {t,u}, {t,v}, {u,w}, {v,w}}.

t U

S
®

v w

Figure 2.1: A graph G

Definition 2.1.2 (Adjacency). Two vertices w and v of a graph G are said to be
adjacent if {u,v} is an edge of G. In this case, e is incident to u and v.

In Figure 2.1, vertices s and t are adjacent to each other, while vertex u is not
adjacent to vertex v.

Definition 2.1.3 (Neighbourhood and degree). The neighbourhood Ng(u) of a
vertex u in graph G is the set of vertices which are adjacent to the vertex u in G.
The degree of vertex u in G is the number dg(u) = |Ng(u)| of vertices adjacent
tou in G. We use A(G) and 6(G) to denote the maximum degree and minimum
degree of the vertices in GG, respectively.

In Figure 2.1, {s,u,v} forms the neighbourhood Ng(t) of the vertex ¢, and the
degree of vertex t is dg(t) = 3.

Definition 2.1.4 (Chromatic number). The chromatic number x(G) of a graph G
is the smallest number of colours needed to colour the vertices of graph G so that
no two adjacent vertices share the same colour.



Definition 2.1.5 (Complete graph).
A complete graph is a graph in which every two vertices are adjacent to each other.
A complete graph with n vertices is denoted by K,,.

Figure 2.2 shows examples of complete graphs.

<1 K%

Figure 2.2: Complete graphs

Definition 2.1.6 (Subgraph).
A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G).
Figure 2.3 shows an example of a subgraph H of a graph G.

Pl

Figure 2.3: H is a subgraph of G

Definition 2.1.7 (Complement of a graph). The complement G of a graph G is

the graph with vertices V(G) = V(G) and edges E(G) = E(K,) — E(G).
Figure 2.4 shows a graph G and its complement G

7

Figure 2.4: A graph G and its complement G

Definition 2.1.8 (Walk, path and cycle). A walk in a graph G is an alternating
sequence of vertices and edges voeiv1€9vs . . . €U, in which the ends of each edge e;
are v;_1 and v; for i € [k]. It is closed if vg = vy, and is open otherwise. A walk in
which all vertices vy, vy, ..., v, are distinct is called a path. A cycle is a closed walk
i which all vertices vy, vy, ...,v, are distinct except for vg = vi. The cycle graph
C, is the graph consisting of a cycle of order n.

5



Definition 2.1.9 (Connected graph). A graph G is connected if there exists a walk
between each pair of vertices in G. If G is not connected, then it is disconnected.

Figure 2.5 shows a connected graph G and a disconnected graph H.

T 7

Figure 2.5: A connected graph G and a disconnected graph H

Definition 2.1.10 (Addition of two graphs). The addition of graphs G; and Gs,
denoted by G1 + G, is the graph obtained by adding to the disjoint union of G
and Gy edges between each vertex of G1 and each vertex of Gs.

Figure 2.6 shows an example of a graph addition.

K3 Py Kz + Py

Figure 2.6: Graph addition K5+ P,

Definition 2.1.11 (Generalised wheel). The generalised wheel graph Wy, is the
graph K¢+ C,, obtained by adding the graphs K, and C,, as defined in Definition
2.1.10. If s = 1, then W, is a wheel graph which we also denote by Wp,.

Figure 2.7 shows examples of generalised wheel graphs.

{0 &

Wi Wi Wy =Wig

Figure 2.7: Generalised wheel graphs



Definition 2.1.12 (Tree). A tree is a connected graph which has no cycle subgraph.
In this thesis, trees with n vertices are denoted by T,.

Here, we introduce some of the tree graphs used in our discussions. Let P, be
the path graph consisting of a path of order n, and let S,, be the star graph of order n
consisting of one vertex that is adjacent to n — 1 vertices which are non-adjacent to
each other. Let S, (¢, m) be the tree of order n obtained from the star graph S,,_sxm
by subdividing each of ¢ chosen edges m times. S, (/) is the tree graph of order
n obtained by adding an edge joining the centres of two star graphs S, and S, _,.
Sn[f] is the tree graph of order n obtained by adding an edge joining the centre of
Sn_¢ to a degree-one vertex of Sy.

Figure 2.8 shows examples of these trees. Other tree graphs will be introduced

throughout the thesis.

B S
P P A S A

Figure 2.8: Examples of P,, S,, S,(¢,m), S,(¢) and S,[/]

Definition 2.1.13 (Multipartite graph). A k-partite graph is a connected graph
whose vertex set can be partition into k disjoint subsets containing no edges as
subsets; that is, each edge contains a vertexr from one subset and a vertex from
another subset. A k-partite graph is complete if each verter from one subset is
adjacent to every vertexr from every other subset. A complete k-partite graph is
denoted by K, . n, where ni,...,n; are the numbers of vertices in each subset,
respectively. The graph is bipartite if k = 2 and tripartite ¢f k = 3.
Figure 2.9 shows examples of complete multipartite graphs.

R

A complete bipartite graph, K34 A complete tripartite graph, K222

Figure 2.9: Complete multipartite graphs



2.2 Auxiliary results

In this section, we will introduce some previously known results and lemmas which
will be particularly useful in our discussions. We do not provide the proofs for
these; interested readers are directed to the respective references.

First, we will introduce some known Ramsey theory results relating to the Ram-
sey numbers of tree graphs versus generalised wheel graphs. These results motivated
us into conducting this research work.

In [54], Wang and Chen determined the Ramsey number for tree graphs versus
generalised wheel graphs W4 and Wy 5. Inspired by their work, we have studied
the Ramsey numbers for tree graphs versus generalised wheel graphs W s and W 7.
We will discuss these numbers in Chapter 3.

Theorem 2.2.1. [54] If n > 3 and s > 2, then R(T,,, Ws4) = (n —1)(s +1) + 1.
Furthermore, if n > 3 and s > 1, then R(T,,,Ws5) = (n—1)(s+2) + 1.

Now, we introduce some known Ramsey theory results concerning the Ramsey
numbers of tree graphs versus the wheel graphs W,,. In [22], Chen, Zhang and
Zhang determined the Ramsey numbers R(T,,, Ws) and R(T,,, W~).

Theorem 2.2.2. [22] R(T,,, W) = 2n — 1+ p for n > 5, where
(a) pu=2, if T, = Sp;
(b) p=1,if T,, = Sp(1,1) or T,, = S,(1,2) and n =0 (mod 3);
(¢) p =0, otherwise.

Theorem 2.2.3. [22] R(T,,, W) = 3n — 2 forn > 6.

Next, we introduce results for path and star graphs. Chen, Zhang and Zhang [19]
and Zhang [55] determined the Ramsey numbers R(P,,W,,) for 3 < m < n+1
and n + 2 < m < 2n, respectively. Combining these results, we have the following
theorem.

Theorem 2.2.4. [19, 55] For 3 < m < 2n, we have

3n — 2, if m is odd;
R(Py,, W) =1 2n—1, if mis even and 3<m<n+1;

m+n—2, ifmisevenandn—+2<m <2n.

For star graphs, Chen, Zhang and Zhang [17] proved the following result.
Theorem 2.2.5. [17] R(S,, W,,) = 3n —2 form odd and n >m —1 > 2.

The exact Ramsey numbers R(S,,, Wg) were determined together in three papers.
Theorem 2.2.6. [56, 57, 58] For n > 5, we have

2n+ 1, ifn is odd,

2n+ 2, ifn is even.

R(S,, Ws) = {

In [11], Burr found an interesting lower bound for the Ramsey number R(G, H)
for any pair of graphs G and H, in terms of |V(G)|, x(H) and t(H).



Theorem 2.2.7. [11] Let G be a connected graph of order n, and let H be a graph
with parameters x(H) and t(H), where t(H) is the minimum number of vertices
in any colour class of any vertex-colouring of H with x(H) colours and n > t(H).

Then R(G,H) > (n—1)(x(H) — 1) + t(H).

Now, we introduce two lemmas that are useful in our discussion.

Lemma 2.2.8 (Handshaking Lemma). The sum of vertex degrees of a graph G is
equal to twice the number of edges in G.

Lemma 2.2.9. [16] Let G be a graph with 6(G) > n — 1. Then G contains all tree
graphs of order n.

Since we are studying the wheel graph, which contains a cycle graph, the fol-
lowing lemmas are particularly useful.

Lemma 2.2.10. [9] Let G be a graph of order n. If 6(G) > %, then either G
contains Cy for all 3 < € <n, orn is even and G = K%,%'

Lemma 2.2.11. [36] Let G(u,v,k) be a simple bipartite graph with bipartition U
and V', where |U| = u > 2 and |V| = v > k, and each vertex of U has degree at
least k. If G(u,v, k) satisfies u < k and v < 2k — 2, then it contains a cycle of
length 2u.



CHAPTER 3

Ramsey numbers for tree graphs versus certain generalised
wheel graphs

In this chapter, we look at the Ramsey numbers for tree graphs versus the gener-
alised wheel graphs W, ¢ and W, 7. The results in this chapter have been published
in [23] during my PhD candidature and are joint work with Dr Ta Sheng Tan and
Prof. Dr Kok Bin Wong. In this article, I am the main author, in charge of devel-
oping and writing the proof of the results, especially those have been incorporated
in the chapter. Similar results were also obtained independently by Wang [53].

3.1 Introduction

In [54], Wang and Chen determined the Ramsey numbers for the tree graphs versus
W4 and W, 5. This inspires us to study the Ramsey numbers of tree graphs versus
generalised wheel graphs beyond W4 and W, 5. We will focus on the results for
Ws,6 and Ws’7.

Note that x(Ws¢) = s+2 and ¢(W,6) = 1. By Theorem 2.2.7, we therefore have
R(T,,Wss) > (s+ 1)(n — 1) + 1. Now, we need to determine the upper bound of
R(T,,, W) for various types of trees. We will do so in the next few sections. But
before that, we want to introduce a useful lemma.

In the paper [11], Burr also established the following definition. Under the
condition of Theorem 2.2.7, the graph G is said to be H-good if

R(G,H)=(n—1)(x(H)—1)+t(H).

Lin, Li and Dong [41] proved that, for a tree graph T" and a graph G with ¢(G) = 1,
if T is G-good, then T is (K + G)-good. This leads us to the following lemma
whose proof follows that of [41].

Lemma 3.1.1. Let G be a finite simple graph and T, be any fized tree graph of
order n. Then R(T,,K;+G) < R(T,,G) +n — 1.

Proof. Let N = R(T,,,G) +n— 1. Consider any graph H of order N. Suppose that
H does not contain T, as a subgraph. Let 7" be a maximal subtree of H that is
(isomorphic to) a subgraph of 7). Here, the term ‘maximal’ is in the sense that if
avertex x € X :=V(H)—V(T") and an edge zu € E(H) for some u € V(1") are
added to T”, then the resulting tree is not a subgraph of T,.

Note that 7" # T,,. This implies that there is a vertex u € V(T") and a vertex
w e V(T,) — V(T") such that uw € E(T,). So, if u is adjacent to a vertex x € X
in H, then the graph obtained by adding the vertex x and the edge ux to 7" is a
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subtree of H and it also forms a subgraph of 7,,. By the maximality of 7", this is
impossible. Hence, v is not adjacent in H to any vertex x € X.

Since T" # T, the order of T" is at most n — 1. Therefore, |X| > R(T,,G).
Note that H[X] must contain G' as H[X] does not contain 7},. From the preceding
paragraph, uz ¢ E(H) for all #z € X. This implies that uz € E(H) for all v € X.
In particular, u is adjacent to all y € V(G) in H. Hence, H contains K; + G, and

so R(T,,, K1 + G) < R(T,,,G) +n — 1. O

Theorem 3.1.2. Let T, be any fized tree graph of order n and W, = K+ C,, be
a generalised wheel graph. Then R(T,, Ws,,) < R(T,,Wy,) + (s —1)(n — 1).

Proof. Note that W, ,, = W, and for s > 2, the generalised wheel graph W, is
Ky + Ws_1,,. Hence, by Lemma 3.1.1, it follows that

R(Tna Ws7m) (Trm Ws—l,m) +n— 1

<R
S R(TTU Ws—2,m) + 2(” - 1)

é R(Ty,Wim)+ (s —1)(n—1).

3.2 The Ramsey number R(7T),, W)

In this section, we investigate the Ramsey numbers R(7),, W) for tree graphs
T,, of order n versus the generalised wheel graph Ws¢. As the very first step, we
determine the Ramsey number R(S,,Wsg) for the star graph S,. To do so, we
prove the following lemma.

Lemma 3.2.1. Let G be a graph of order 3n — 2 and §(G) > 2n — 1 where n > 5.
Then G contains Wy as a subgraph.

Proof. The condition §(G) > 2n — 1 implies that G does not contain S,. Let w(G)
be the number of vertices in a maximum clique of G. By [25], it is known that
R(S,, K4) = 3n — 2, so we have w(G) > 4. If w(G) > 8, then G must contain every
subgraph of order 8, including W56. So, we only need to consider the four cases
4<w(@)<T.

Let w = w(G) and K = K,, C G, and define the set U = V(G) — V(K). Then
|U| = 3n — 2 — w. Since §(G) > 2n — 1, every vertex in K is adjacent to at least

2n —w vertices in U. This implies that there are at least w(2n —w) edges connecting
K and U. Now, let

X={ueU : |[No(w)NV(K)| <3}
Y ={ueU : [No(u)NV(K)| >4} .

Then U = X UY and |X| + |Y| = |U| = 3n — 2 — w. Since K, is not contained
in (G, each vertex in U is adjacent to at most w — 1 vertices in K, so we have

w(2n —w) <3| X+ (w—1)|Y]. (3.2.1)
Case 1: w(G) =T1.

11



By substituting | X| = 3n —9—|Y| into Equation (3.2.1), we get 3|Y'| > 5n—22.
For n > 5, we have |Y| > 1. Hence, there must be a vertex in U, say u, that is
adjacent to at least 4 vertices in K. Therefore, G|V (K) U {u}] must contain Wy.
Case 2: w(G) = 6.

By substituting | X| = 3n —8 — |Y/| into Equation (3.2.1) and noting that n > 5,
we obtained the inequality V] > 2% — 6 > 2.

Suppose there is a vertex in U, say u;, that is adjacent to 5 vertices in K.
Since |Y| > 2, there must be another vertex in U, say us, that is adjacent to
at least 4 vertices in K. As there are only 6 vertices in K, u; and u, must be
adjacent to at least 3 common vertices in K, say ki, ko, k3. Now let ky € V(K) N
Ng(UQ)\{]Cl, ]{32, ]{?3}, k5 c V(K)ﬂNg<U1)\{]{Z1, ce ]{34} and kﬁ S V(K)\{k‘h ey k5}
We see that G[V(K) U {uy,us}| contains Wsg with k; and ke in the centre and
k5U1k3U2k’4k’5k6 as 06-

We may therefore assume that every vertex in U is adjacent to at most 4 vertices
in K. In this case, we have

6(2n — 6) < 3|X|+4|Y|=3|U| +|Y| = 3(3n — 8) + |V,

implying that |Y| > 3n — 12 and | X| < 4. Since n > 5 and 6(G) > 2n —1 > 9, we
deduce that G[Y] has no isolated vertex.

Let u; and us be two adjacent vertices in Y, and note that at least two vertices
ki, ke € K are each adjacent to both u; and us. Now, let

ks € V(K) N Ng(ur) \ {k1, ka}
ki € V(K) O Ng(us) \ {kr, ko, s}
and  {ks, ket =V (K)\{k1,..., ks}.

We again see that G[V (K) U {uy,us}] contains Ws with k; and ks in the centre
and k3U1U2k4k5k’6k’3 as C6.
Case 3: w(G) = 5.

By substituting | X| = 3n —7—|Y| into Equation (3.2.1), we obtain |Y'| > n—4.
We note here that if |Y| = n — 4, then every vertex in X is adjacent to exactly 3

vertices in K.
Write V(K) = {ki,...,ks}. We can partition Y into five sets Ay, ..., A5 where

A;={y €Y : y is not adjacent to k;} .

Since each vertex in Y is adjacent to exactly 4 vertices in K, we see that each vertex
in A; is adjacent to k; for j € {1,...,5} — {i}.

Note that A; is an independent set, for we could otherwise find two vertices
in A;, say a; and ay, such that a; is adjacent to ay. Now, G[S] = Ks where
S ={a,a2,k; : je{l,...,5} —{i}}, a contradiction since w(G) = 5.

Next, note that if any three of the five sets are non-empty, then we have W6 in
G. For illustration purposes, suppose that A; # () for ¢ = 1,2,3. Let a; € A;. Then
GV (K)U{a1,as, as}] contains Wy g with ks and ks in the centre and kyagkoai kzasky
as Cs. Hence, we may assume that A; = () for i = 3,4,5. So, Y = A; U A,. We also
may assume that |A;| > |As|. Since |Y| > n —4 and n > 5, we have |A4;| > 1.
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Case 3.1: Suppose that |A;] > 2.
Let x1,29 € Ay and set U’ = U — {x1,22}. Then |U'| =3n—-7—-2=3n-09.
Also, let

X' ={uelU : |Ngu)NnV(K)| <2};

Since each z; is adjacent to 4 vertices in K and |Eq(U, V(K))| > 5(2n—5), we have
5(2n —5) — 2 x 4 < 2|X'| +4|Y'| = 2|U'| + 2|Y'| = 2(3n — 9) + 2|Y"],
implying that |Y'| > 2n — 7 and | X'| <n — 2. Let

X1 ={ueU : uis adjacent to 1} ;
Xo={ueU : uis adjacent to o} .

Since x; is adjacent to 4 vertices in K and z; and x, are not adjacent to each
other, we have | X;| > 2n — 5. Therefore, | X; N X5| = | X3| + | Xo| — | X1 U Xy| >
2(2n —5) — (3n —9) =n — 1> |X’|, and we deduce that Y' N X; N X, # 0.

Let v’ € X;NX,NY”’. Note that «' is adjacent to x1 and x5, and ¢’ is also adjacent
to at least three vertices in K. Therefore, v’ must be adjacent to at least two of
ki,..., ks, without loss of generality say ko and k3. Then G[V(K) U {z1,z2,u'}]
contains Wy ¢ with ko and k3 in the centre and xiu' xokski ks as C.

Case 3.2: Suppose that |A;| = 1.

Since n — 4 < |Y| = |A; U Ay] < 2, we must have |Y| =2 with 5 <n <6, or
Y| =1 with n = 5.

Case 3.2.1: Suppose that |Y| = 2; that is, |A;| = |As| = 1.

Let 71 € A; and x5 € As. Recall that every vertex in X is adjacent to at most
three vertices in K. If u € X is adjacent to 3 vertices in K and also adjacent to
a vertex in Y, then we may assume |Ng(u) N {ks, k4, k5}| = 1. Suppose otherwise;
then without loss of generality, u is adjacent to x1, k3, k4, and another vertex in K.
It is then straightforward to check that G contains W5 g with ks and k4 in the centre
and CG in G [{k’l, k?g, k?5, u,xry, ZEQ}]

Now if n = 6, then we have equality in Equation (3.2.1), implying that every
vertex in X is adjacent to exactly 3 vertices in K. Since §(G) > 2n — 1 = 11, we
must have z; adjacent to at least 6 vertices in X. Let A be a subset of Ng(x1) N X
with |A] = 6. We see that every vertex in A is adjacent to both k; and ko. It is
straightforward to deduce from the degree conditions that 6(G[A]) > 3, implying
that G[A] contains Cg by Lemma 2.2.10. Therefore, G contains W .

For the case when n = 5, we have |G| = 13, §(G) > 9 and |X| = 6. By the
degree conditions, every vertex in X is adjacent to some vertex in Y. A more
refined analysis similar to those used in obtaining Equation (3.2.1) implies that 5
vertices in X are each adjacent to 3 vertices in K, while the remaining vertex v € X
is adjacent to either 2 or 3 vertices in K. Note that every vertex in X — {v} is
adjacent to both &y and k.
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Suppose that v is adjacent to k; for some j € {1,2}. Then |Ng(k;)| = 11. Since
G does not contain S5, and R(Ws, S5) = 11 by Theorem 2.2.2, we deduce that
G[Ng(kj)] contains Ws which, together with k;, forms Wy in G.

The remaining case is, without loss of generality, when Ng(v)NV (K) = {k3, k4}.
Since 6(G) > 9, v is adjacent to both x; and z5. Therefore, G|V (K) U {v, z1, x2}]
contains Wy ¢ with k3 and k4 in the centre and kjxova koksk as Ce.

Case 3.2.2: Suppose that |Y| = 1.

Since |Y| > n — 4, we must have n = 5 and equality in (3.2.1). So in this case,
the graph G is of order 13 with §(G) > 9 such that, whenever G contains K3, the
following property P on G holds:

there is exactly one vertex in V(G) — V(K5) that is adjacent to exactly 4
vertices in K5 while the remaining vertices are each adjacent to exactly 3
vertices in Kj; and every vertex in V(K5) has degree exactly 9 in G.

Now let x € Y'; then x is adjacent to all vertices except the vertex k; in K. Observe
that G[V(K) U {z} — {k1}] is another K5 in G. Therefore, by property P, x has
degree exactly 9 in G. Setting A = V(G) — (V(K) U {z}), we shall now show that
there is another K5 in G[A].

From the above discussion together with property P, it is straightforward to
check that G[V (K)U{z}| has exactly 14 edges, and the number of edges in G from
V(K)U{z} to Ais exactly 26, implying that G[A] has at least 19 edges. Since G[A]
is a graph of order 7 with at least 19 edges, it is easy to see that G[A] contains K,
either by deducing from Turan’s Theorem [52], or by observing that G[A] can be
obtained by deleting at most two edges from K.

Suppose that K’ is a K5 subgraph of G[A]. From the remaining three vertices
in V(G)— (V(K)UV(K")), property P implies that there must be a vertex, say v,
that is adjacent to exactly three vertices in K and exactly 3 vertices in K’. This
implies that y has degree at most 8, which is a contradiction.

Case 4: w(G) = 4.

Recall that K is a K, subgraph of G and that U = V(G) — V(K). Since
w(G@) = 4, we must have Y = (J; that is, each vertex in U is adjacent to at most 3
vertices in K. Partition U = X' UY" as follows:

X' ={ueU : |Ng(u)NV(K)| <2};
Y'={ueU : |[Ng(u)yNV(K)| =3} .
Since 6(G) > 2n — 1 and |U| = 3n — 6, we have
42n —4) < 21X+ 3|Y'| =2|U| + |Y'| = 2(3n — 6) + |Y|,
implying that |Y'| > 2n — 4 and |X'| < n — 2. We note here that if |Y’| = 2n — 4,
then every vertex in X’ must be adjacent to exactly 2 vertices in K.
Let V(K) = {ki,...,ks}. We can further partition Y’ into four sets Ay,..., Ay

where
A;={y €Y : yisnot adjacent to k; } .
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Since each vertex in Y is adjacent to exactly 3 vertices in K, we see that each
vertex in A; is adjacent to k; for j € {1,2,3,4} — {i}. Furthermore, each A; is an
independent set since w(G) = 4.

Without loss of generality, assume that |[A;| > |As| > |A3] > |A4|. Since
|Y'| > 2n — 4 > 6, we have |A;| > 2.
Case 4.1: Suppose that |Ay] < 1.

Then |A4| < |As| < 1. This implies that |A;| > 2n—4—3 =2n—7. Now, k; is
not adjacent to any of the vertices in Ay, so ky is adjacent to at most

(V@) =1) =A< (Bn—=2)—1) —(2n—T) =n+4

vertices. Thus, 2n — 1 < |Ng(k1)| < n + 4 which implies that n < 5. In this
scenario, we must have n = 5, |V(G)| = 13, |A1| = 3, and |Ay| = |A3| = |A4| = 1;
also, ki is adjacent to all vertices in (V(G) — {k1}) — A1. Let Ay = {1, 29,23},
Ay = {x4}, A3 = {x5} and Ay = {w6}. Since A; is independent, z; is not adjacent
to xo or x3. Now, x; is also not adjacent to ki, so x; must be adjacent to all
vertices in V(G) — {xa, x5, k1 }, since 6(G) > 9. Similarly, x5 and z3 are adjacent to
all vertices in V(G) — (A1 U{k1}). Thus, |Ng(k1)| = |Ng(a)] =9 for all a € A;.

Since |V(G)| = 13, the Handshaking Lemma implies that one of the vertices in
V(G) — (A1 U {k1}) must be of degree at least 10. Let y € V(G) — (A1 U {k1})
and |Ng(y)| > 10. If |[Ng(y)| > 11, Then by Theorem 2.2.2, either G[Ng(y)]
contains S5 or G[Ng(y)] contains Ws. If the former holds, then G contains Ss,
and this contradicts that 6(G) > 9. Hence, the latter must hold; that is, G[Ng(v)]
contains Ws. Since y is adjacent to all vertices in Wy, G[V (Wg)U{y}| contains Ws .
So, we may assume that |Ng(y)| = 10. Then |Na(y) N (V(G) — (41 U {k1}))| =6,
since y is adjacent to all vertices in A; U {k;}.

Let Z = Ng(y) N (V(G) — (A1 U {k1})). Then there are only two vertices
in V(G) — (ZU Ay U{y,ki1}), say u; and uy. Suppose there is a vertex zp € Z
with |[Ng(z0) N Z| > 3. We may assume that z, is adjacent to 2, 29,23 € Z.
Then G[{kl, T1,T9, 21,22, 23, 20, y}] contains WZ’G with ]{7121117122.7)223]{71 as CG and the
vertices y and zp in the centre.

Suppose that |[Ng(2)NZ| < 2forall z € Z. Let z; € Z; then 2 is adjacent to all
vertices in Ay U {ky,y}. Since §(G) > 9, z; must be adjacent to u; and us. In fact,
for each z € Z, z is adjacent to u; and uy. Note that Z cannot be an independent
set, so let z1, 29 € Z be adjacent to each other. Then G[{ky, x1, x2, 21, 22, u1, U2, y }]
contains Wy ¢ with z; and 2z in the centre and kiyz uizousk; as Cs.

Case 4.2: Suppose that |Ay] > 2.

We first claim that we may assume that there are no two independent edges
connecting A; and A; for any ¢ # j. Indeed, if z,y; and sy, are two independent
edges with x1,z9 € A; and y1,y2 € A;, then we see that G contains Wy with
V(K) — {ki, k;} in the centre and k;z1y1kiyox2k; as Co.

Since A; and A, are independent sets, each of size at least 2, and there are no two
independent edges connecting A; and A,, there is an isolated vertex a € G[A; U A,].
We consider the case when a € A;. The other case when a € A, is similar.

Recall that Ng(a) NV (K) = {ks, k3, ks}. We have

(2n—1) =3 < |Ng(a)NU| <3n—6— (JA1| + |As]),

15



so |Ay| 4+ |As] <n —2. Since |Y'| > 2n —4 and |A;| > |As] > |As| > |A4l, this can
only happen when |A;| =2 — 1 for all 1 <7 <4 and n is even.

Note that we now have TV(G)—({k:l}UAIUAg)’ = 2n—1, and so by the minimum
degree condition, a must be adjacent to all vertices in V(G) — ({kl} UA; UAQ) and,
in particular, to all vertices in A3 U A4. Pick a vertex b € A; — {a}; then b must be
adjacent to at least one vertex in Az U A4, as we otherwise would have

om—1 < [Na(b)] < (3n —2) — |{kr} U Ay U A U Ay| = 37”
giving n < 2, which is a contradiction.

Finally, assume without loss of generality that b is adjacent to a vertex in As.
Then as |A3] > 2 and a is adjacent to all vertices in Az, we have two independent
edges connecting A; and Asz. This contradicts the assumption that there are no two
independent edges connecting A; and A; for any ¢ # j.

This completes the proof of the lemma. n

Now, we can determine the Ramsey numbers for star graphs versus the gener-
alised wheel graph Ws.

Theorem 3.2.2. Ifn > 5, then R(S,, Wag) = 3n — 2.

Proof. From Theorem 2.2.7, we know that R(S,, Was) > (2+1)(n—1)+1=3n—2.
From Lemma 3.2.1, we have R(S,, Wag) < 3n—2 for n > 5. We therefore conclude
that R(Sn, Wgﬁ) =3n— 2. ]

Now, we will look at a similar result for two tree graphs, namely S, (1,1) and
Sn(1,2), versus the generalised wheel graph Wo.

Theorem 3.2.3. Ifn > 5, then R(T,, Was) = 3n—2 forT,, € {S,(1,1), S,(1,2)}.

Proof. From Theorem 2.2.7, we know that R(7,,, Wss) > (2+1)(n—1)4+1 =3n—2.
We therefore only need to look at the upper bound.

Case 1: Suppose that T,, = S,,(1,1).

Let G be a graph of order 3n — 2 such that G does not contain Ws 6. Then since
R(S,,Ws6) < 3n — 2, G must contain S,. Let T" be a S,, subgraph of G, let its
centre be vy, and define L = Nr(vy) = {v1,...,0p-1}. Set U =V(G) — V(T'); then
|U| = 2(n —1). If G does not contain S, (1, 1), then L must be an independent set
and E(L,U) = (.

If n > 6, then any 3 vertices from L and 3 vertices from U form Cy in G and,
with another 2 vertices from L as the centre, give Wy in G, a contradiction.

Suppose that n = 5. Then G is of order 13 and |U| = 8. If §(G[U]) > 4, then
G[U] contains Cs by Lemma 2.2.10. So, together with any two vertices in L as the
centre, we have Wy in G, a contradiction. If 6(G[U]) < 3, then A(G[U]) > 4 and
G|U] contains another Sy disjoint from T', say T" = S,,. Let the centre of T” be wg
and define L' = Npv(ug) = {u1,...,us}. If G does not contain S5(1,1), then L' is
an independent set and E(L, L") = (). Then any 8 vertices from L U L’ form Wh
in G, a contradiction.

ThUS, R(Sn(]., 1), W2,6> <3n-—2.

Case 2: Suppose that T,, = 5,,(1,2).
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If n=1,2 (mod 3), then R(S,(1,2), Ws) = 2n — 1 by Theorem 2.2.2. It follows
from Theorem 3.1.2 that R(S,(1,2),Was) < 3n —2.

Suppose that n = 0 (mod 3). Then n > 6. Let G be a graph of order 3n — 2
such that G does not contain Wa6. By Case 1, G contains a subgraph T' = S, (1, 1).
Let V(T) = {vo,...,vn_1} and E(T) = {vov1,...,00Un—2} U {v1v,_1}, and define
U=V(G)—=V(T); then |U| = 2(n—1). If G does not contain S, (1,2), then neither
vy nor v,_1 are adjacent to any of vy,...,v,_ o, and v,_; is not adjacent to any
vertex in U. Now, we consider the following two cases.

Case 2.1: Ng(v2)NU = 0.

If 6(G[U] > n — 1, then by Lemma 2.2.10, G[U] contains Cg. This Cg together
with vy and v,_; as the centre gives Wy in G, a contradiction. If §(G[U]) < n — 2,
then A(G[U]) > n — 1, so G[U] contains a subgraph 7' = S,.. Let ugy be the
centre of 7" and define L' = Np/(ug) = {uy,...,up—1}. Suppose that G does not
contain S,(1,2). Then none of vy, ..., v, 1 is adjacent to any vertex in L' in G. If
L’ is an independent set, then G contains Wy with u; and us in the centre and
VallaU3U3V4 U4V as Cg.

Suppose that L’ is not an independent set. We may assume that u; and u, are
adjacent to each other. Then u; is not adjacent to us, ..., u,_1 since G does not con-
tain S, (1,2). Furthermore, uz is adjacent to at most one vertex in {uy, ..., u,1}.
We may assume that ug is not adjacent to us. Then G contains Wy with u; and
us in the centre and v,v9v,,_1v3usv4v, as Cs.

Case 2.2: v, is adjacent to a vertex in U, say b.

Set U' = V(G) — (V(T) U {b}); then |U’| = 2n — 3. Suppose that G does not
contain S,(1,2). Then neither v, nor b are adjacent to any of vy, v3, vy, ..., U, 1,
and b is not adjacent to any vertex in U’. If §(G[U’]) > n—1, then by Lemma 2.2.10,
G[U’] contains Cg which, together with v, ; and b as the centre, gives W in G,
a contradiction. If §(G[U']) < n — 2, then A(G[U']) > n — 2, so G[U’] contains
a subgraph T = S,,_1. Let ug be the centre of T and define L' = Np/(ug) =
{uy,...,u,_2}. Since G does not contain S,(1,2), none of vq,...,v,_1 is adjacent
to any vertex in L/ in G. If L’ is an independent set, then G contains Wy g with u,
and uy in the centre and veusvsbviusvy as Cs.

Suppose that L’ is not an independent set. We may assume that u; and wuy are
adjacent to each other. Then neither u; nor us is adjacent to any other vertices in
V(U) = V(T") in G. Let w € V(U') — V(T"). Then G contain a Wy with b and
Up—1 in the centre and wj;wusvsusviuy as Cg.

Thus, R(S,(1,2), Wa6) < 3n — 2 which completes the proof. O

Next, we will determine the Ramsey numbers R(T),, Wsg) for all other tree
graphs T;, versus the generalised wheel graph Wy .
Theorem 3.2.4. If n > 5, then R(T,,Was) = 3n — 2 where T,, is any tree graph
of order n apart from Sy, Sn(1,1) and S,(1,2).

Proof. Let T, be any tree graph of order n apart from S, S,(1,1) and S,(1,2). By
Theorem 2.2.7, R(T,,,Ws6) > (2+1)(n— 1)+ 1 = 3n — 2. Also, by Theorems 2.2.2
and 3.1.2, R(T,,, Was) < R(T,,,Ws)+ (2—1)(n—1)=(2n—1)4+ (n—1) =3n— 2.

We conclude that R(T,,, Wa¢) = 3n — 2. O
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By Theorems 3.2.2, 3.2.3 and 3.2.4, we conclude that R(T,, W56) = 3n — 2 for
each tree graph T, of order n. We can now consider the more general Ramsey
numbers for the generalised wheel graphs W ,,.

3.3 The Ramsey number R(7T,, Ws¢) and R(T,, Ws7)

In this section, we investigate the Ramsey numbers for tree graphs 7, of order n
versus the generalised wheel graph W, and W, 7. We start by considering W .

Theorem 3.3.1. Let n > 5 and s > 2. Then R(T,,Ws¢6) = (s+1)(n — 1) + 1.

Proof. By Theorem 3.2.4, R(T,, W) = 3n — 2. By applying Lemma 3.1.1 repeat-
edly, we see that R(T,,, Ws6) < (s+1)(n—1)+1. Furthermore, since x(W;¢) = s+2
and t(W, ) = 1, Theorem 2.2.7 implies that R(T,,, W) > (s+1)(n—1)+1. Hence,
R(T,,Wsg) =(s+1)(n—1)+ 1. O

Next, we consider W, 7.
Theorem 3.3.2. Letn >5 and s > 1. Then R(T,,,Ws7) = (s +2)(n —1) + 1.

Proof. Note that x(Ws7) = s+3 and t(W,7) = 1. Therefore, Theorem 2.2.7 implies
that R(T,, Ws7) > (s+2)(n — 1) + 1 for each tree graph T,, of order n. Also, since
W7 is a subgraph of Wiy16, R(T,, Wsz) < R(T,,,Wst16) = (s +2)(n — 1)+ 1 by
Theorem 3.3.1. Hence, R(T,,,Ws7) = (s +2)(n—1) + 1. O

3.4  Other results and possible future work

In this section, we state a conjecture.
Conjecture 3.4.1. Suppose that m > 3 and s > 2. Then for sufficiently large n,

(s+1)(n—1)+1, if m is even;

RTnawsm =
( m) {(s+2)(n—1)+1, if m is odd.

Brennan [10] determined the Ramsey numbers of large trees versus odd cycles.
Theorem 3.4.2. [10] For all odd m > 3 and n > 25m, R(T,,C,,) = 2n — 1.
Lemma 3.4.3. Suppose that { > 2, n > L%J +1 and

{2 , if m is odd;
r(m) =

1 , if m is even.
If R(T, Wem) < (s+7(m))(n—1)+ ¢, then
R(Ty Weiom) < (s+2+7(m))(n—1)+¢—1.

Proof. Let G be a graph of order (s+2+7r)(n—1)+¢—1 where r = r(m). Suppose
that GG does not contain T,,.

Case 1: Suppose that GG has a vertex of degree at most n — 3, say .
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Let Uy = {vo} U Ng(vg); then |Uy| < n —2. Let Y1 = V(G) — Uy and consider
the graph G[Y;]. Note that G[Y7] is of order at least

V(G| - |Uy| > ((s+2+r)(n—1)+€—1) —(n—=2)=(s+14+r)(n—1)+¢.
Since the generalised wheel graph W4 ,, is K1 + W ,,,, Lemma 3.1.1 implies that
R(Ty, Weiim) S R(T,,Wem) +n—1<(s+r+1)(n—1)+¢.

Therefore, @[Yl] contains Wsy1,,,. Note that v, is adjacent to every vertex of Y;
in G. In particular, vy is adjacent to every vertex of this Wy, ,, in G. Hence, G
contains Wi .

Case 2: Suppose that each vertex of G has degree at least n — 2.

Subcase 2.1: Suppose that each component of G is of order at most n — 1.

Then every component of G is K,_;. This implies that G contains a complete
(s + 3 4 r)-partite graph, where each part has exactly n — 1 > L%J vertices. It is
straightforward to see that this complete (s+ 3 +r)-partite graph contains Wiio .
Indeed, C, is a subgraph of the induced subgraph on r+1 of the vertex classes, and

K5 is a subgraph of the induced subgraph on the remaining s 4 2 vertex classes.
Subcase 2.2: Suppose that G has a component, say Hy, of order at least n.
Claim: There are two vertices u,v € V(Hy) such that

(i) w is not adjacent to v in G, and
(i) |Ng(u)U Ng(v)| < 2n — 5.

Proof. Suppose that T,, = S,,. Then every vertex is of degree n — 2 in GG. Let
u € V(Hp) and consider the graph G[{u} U Ng(u)]. Note that it is of order n — 1
and that it is a subgraph of H,. Since Hj is connected, there is a vertex v €
V(Hy) — ({u} U Ng(u)) that is adjacent to some vertex in Ng(u). Note that u is
not adjacent to v and Ng(u) N Ng(v) # (). Therefore,

|Na(u) U Na(v)| = [Na(u)| + [Ng(v)| — [Na(u) N Ne(v)]
=(n—-2)4+(n-2)—|Ng(u) N Ng(v)]<2n—4—-1=2n-75.

Suppose that T}, # S,,. Then T, can be drawn as a rooted tree with one vertex at
level 1. Let L; denote all the vertices at level 7. Note that

(i) each vertex at level L; is adjacent to a unique vertex at level L; ;; and
(ii) no two vertices at level L; are adjacent to each other.

Since T}, # S,, T,, has at least three levels. Since every vertex in H, has degree at
least n — 2, Hy has a subgraph T of order n — 1, and it is also a subgraph of T,,.
Let ¢ be the total levels of T,,. Then ¢ > 3 and there is a vertex in T, say ug at
level ¢ — 1 such that if a vertex x € X = V(Hy) — V(T') and an edge zuy € E(H))
are added to T', then the resulting tree is 7. This implies that ug is not adjacent
to any vertex in X. Since ug has degree at least n — 2, it must be of degree exactly
n — 2 and it is adjacent to every vertex in V(T') — {ug} in Hy.

Since Hy is connected and of order at least n, there is a vertex in X that is
adjacent to a vertex in V(T'). Let @ be the set of all vertices at level ¢ in T that
are adjacent to ug. Consider the tree T'— (). Either there is an edge connecting
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a vertex in X with a vertex in 7" — () or there is no edge connecting a vertex in
X with a vertex in T'— (). Suppose that the latter holds and let b be a vertex in
T — (. Since b has degree at least n — 2 and is not adjacent to any vertex in X, it
must be of degree exactly n — 2 and is adjacent to every vertex in V(T') — {b}. This
means that Ho[V (T) — Q] is a complete graph and every vertex in @) is adjacent to
every vertex in T — Q).

Since Hj is connected, we can find a vertex a in X and a vertex ¢ in () such
that aq is an edge in Hy. Let ¢ be the unique vertex at level ¢ — 2 that is adjacent
to ug. Now, we interchange the nodes ¢ and ¢ in T" and consider the resulting graph
T'. We can do this because ¢ is adjacent to every vertex in T — (). Note that
V(T)=V(T"). Let @ be the set of all the vertices at level £ in 7" that are adjacent
to ug. Then aq is the edge connecting the vertex a in X with the vertex ¢ in 7" —@)'.
Hence, we may assume from the beginning that there is an edge connecting a vertex
in X, say z, with a vertex v in T'— Q).

Let uguy ... u; = u be the unique path in 7' connecting uy to u;. Note that u
is the unique vertex at level £ — 2 that is adjacent to ug. Since ug is not adjacent
to z, we have ¢ > 1. We may assume that ¢ is the smallest positive integer such
that Ng(u)) N X # 0 and Ng(u;)) N X = 0 for 0 < i <t — 1. This implies that
each ug,...,u;_1 has degree n — 2 in Hy and each u; is adjacent to every vertex in
V(T) — {w;} in H,.

Suppose that z has degree at least n — 1 in Hy. Then Ng(z) = Ny, (2) > n — 1.
Now, we are going to form a new tree T™ which is a subgraph of Hy. Suppose that
t = 1. First, we remove ug and all the vertices that are adjacent to ug at level £ from
T. Second, we add the vertex z at level /—1 and an edge connecting 2z to u;. Let the
resulting graph be T*. Note that the graph T* is of order |V (T')| — |Nr(ug)| + 1 =
n—|Ng(uo)|. So, |V(T*)—{z}| = n—|Nr(up)| —1. Now, z has degree at least n —1
implies that we can find |Np(ug)| vertices in Ng(z) — (V(T*) — {z}). By adding
these vertices to level £ in T and edges connecting these vertices to z, the resulting
tree is T},, a contradiction.

Suppose that ¢ > 2. First, we remove all the vertices that are adjacent to wug
at level ¢ from T. Note that |Nr(ug)| — 1 vertices are removed from 7. Let the
resulting graph be S. Second, we interchange the node u; and ug in S. This can be
done as uy is adjacent to every vertex in V(T') — {ug} in Hy and u, is adjacent to
u; (recall that each wy, ..., u;—1 has degree n — 2 and is adjacent to every vertex in
V(T) — {u;}). Let the resulting graph be S’. If u; has degree at least n — 1 in Hy,
Then following the argument from the previous paragraph, adding some vertices in
N¢(u;) and edges connecting them to u, into the graph S’, we obtain the tree T,
a contradiction.

So, we may assume that u; has degree n — 2. Note also that if u; is not adjacent
to one of the vertices in V(S) — {u:} in Hy, then following the argument as in the
previous paragraph, by adding some vertices in Ng(u;) and edges connecting them
to uy into the graph S’, we obtain the tree T,,. So, we may assume that u, is adjacent
to every vertex in V(S) — {u;} in Hy. In this scenario, let’s consider the graph 7.
We interchange the node u; and uy in 7. This can be done because u, is adjacent
to all vertices that are adjacent to u; in 7. Now, we are in the situation as in the
previous paragraph with ¢ = 1. Hence, we may assume that z has degree n — 2.
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Now, let v = u;—1 and v = z. Then u and v are not adjacent in G and
u; € Ng(u) N Ng(v), which means that |[Ng(u) N Ng(v)| > 1. Since u and v are of
degree n — 2, we have |Ng(u) U Ng(v)| < 2n — 5.

This completes the proof of the claim. O

Let u,v € V/(Hy) be two vertices satisfying the conditions in the Claim and let
Yo = {u,v} U Ng(u) U Ng(v). Then

[Yo| < {u,v}| + [Ng(u) U Ng(v)| <2n — 3.

Let Y7 = V(G) — Yy. Note that w and v are not adjacent to any vertices in Y.
Consider the graph G[Y1]. Note that G[Y}] is of order at least

V(@) — |Yo| > ((s+2+r)(n— 1)+ ¢ — 1) —(2n—=3)=(s+r)(n—1)+¢
> R(Th, Wsm) -

Thus, G[Y1] contains W . Now, u and v are adjacent to each other and to each
vertex in Y7 in G. So, by adding w and v to the hub of W ,,, we obtain Wy 9 ,.
This completes the proof of the lemma. O]

Theorem 3.4.4. Let m > 3. Then
(a) If m is odd and n > 25m, then R(T,, W) = (s +2)(n — 1) + 1.
(b) If m is even, n > 25(m — 1) and s > 4n — 3,
then R(T,, W) = (s+1)(n—1)+ 1.

Proof. (a) For all odd m > 3, x(W;,,) = s+ 3 and ¢t(Wj,,) = 1. By Theorem 2.2.7,
we have R(T,,, W) > (s +2)(n — 1) + 1 for any tree of order n.

For the upper bound, recall that the wheel graph W,, is the graph K; + C,,.

Therefore, R(T,,, W,,,) < R(T,,,Cy,) + (n—1) = 3(n—1) + 1 by Theorem 3.4.2 and
Lemma 3.1.1. Therefore, R(T,,, Wsm) < R(Tp, Wp,)+(s—1)(n—1) < (s+2)(n—1)+1
by Theorem 3.1.2. Hence, R(T,,, W) = (s+2)(n — 1) + 1.
(b) Now, m is even implies that m — 1 is odd and m — 1 > 3. Let G be a graph of
order 3n — 2. Suppose that G does not contain 7},. Then G contains a subtree T”
that is also a subtree of 7;, and is maximal in the sense that it cannot be extended
to a larger tree in T,,. Note that T" # T,,. Thus, T" is at most of order n — 1. This
implies that there is a vertex u € V(T") such that if a new vertex 2z’ and a new edge
uz" are added to T”, then it is a larger subtree of T;,. Thus, u is not adjacent to any
vertex in X = V(G) — V(T") in G.

We now consider the graph G[X]. It is of order at least 3n—2—(n—1)=2n—1. By
Theorem 3.4.2, @[X] contains C,,_1, say a,as . . . a,,_1a1. Since u is adjacent to every
vertex of X in G, aiay . ..an_jua; forms C,, in G. Thus, R(T,,C,,) < 3n — 2. By
Lemma 3.1.1, R(T,,, W,,,) < R(T,, Cy)+(n—1) < 2(n—1)+2n—1. By Lemma 3.4.3,
R(T,, W3,,,) < 4(n—1)+2n—2 and then R(T,,, Ws,,) < 6(n—1)+2n—3. Continuing
this way, we see that R(T5,, Wa@n-1)-1,m) < ((2(2n —1) = 1) +1)(n — 1) + 1. So,
R(T,,Wsm) <(s+1)(n—1)+1forall s >2(2n—1)—1 = 4n — 3 by Lemma 3.1.1
and induction.

For the lower bound, x(Ws,,) = s + 2 and ¢(Ws,,) = 1. By Theorem 2.2.7,
R(T,,Wsm) > (s+1)(n—1)+ 1,80 R(T),, Ws ) = (s +1)(n—1) + 1. O
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CHAPTER 4

Ramsey numbers for tree graphs with maximum degree of
n — 1, n — 2 and n — 3 versus the wheel graph of order 9

In this chapter, we will look at the Ramsey numbers for tree graphs 7, of order
n versus the wheel graph Wy of order 9, focusing on tree graphs with maximum
degree of at least n — 3. Similar results have been determined independently by
Hafidh and Baskoro [33].

4.1 Introduction

In 2006, Chen, Zhang and Zhang [22] determined R(T,,, Ws) and showed that this
number is not generally 2n — 1, especially when T,, is one of the graphs S,,, S,(1,1)
or S,(1,2). So as the first step to analyse the Ramsey numbers for tree graphs of
order n versus the wheel graphs Wy of order 9, we first look at these trees. So,
in this chapter, we will present results for tree graphs 7}, with maximum degree of

n—1,n—2 and n — 3 or, more specifically, on S,,, S,,(1,1), S,(1,2) and S,(3).

4.2 Ramsey numbers for tree graphs with maximum degree of
n — 1 and n — 2 versus the wheel graph of order 9

In this section, we investigate the Ramsey numbers for tree graphs with maximum
degree of n — 1 and n — 2 versus the wheel graph of order 9. There are only
two types of graph need to be studied, namely S, and S,(1,1). In a series of
papers [56, 57, 58|, Zhang et al. determined the Ramsey numbers R(S,,, Ws) for the
star graph S,, versus the wheel graph Wy, as stated in Theorem 2.2.6. Now, we only
need to consider S, (1,1).

Theorem 4.2.1. Forn > 5,

2n+1 if n is odd,

2n if n is even.

R(Sn(1,1), Ws) = {

Proof. Consider the graph G = K,,_1 U H where

PR2K UKy ifn=1 (mod 4);

i Ky ifn=3 (mod 4);
2K, if n =28;
Cn if n is even and n # 8.

Note that GG is a graph of order 2n when n is odd and of order 2n — 1 when n is even.
Also, G does not contain S, (1, 1) since K,_; does not contain S,(1,1) and since H
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is (n — 3)-regular when n # 8 and 4-regular when n = 8. Assume that G contains
Wy with hub 2. Then x ¢ V(K,_1) as H does not contain Cs, and so x € V(H).
Since x is adjacent to at most 3 vertices in H, at least 5 vertices in V(K,_;) are
vertices of a cycle Cg in G, a contradiction since K,_; has no edges. Therefore, G
does not contain Wy, so R(S,(1,1), Wg) > |V(G)|+ 1 = 2n + (n mod 2).

Now let G be a graph that does not contain S,(1,1) and assume that G does
not contain Ws. Let n > 5 be odd and suppose that G has order 2n + 1. By
Theorem 2.2.6, R(S,, Ws) =2n+ 1, so G contains S,,. Let v be a vertex in G that
is adjacent to all vertices in a set L of n —1 > 4 vertices. Since G does not contain
S,(1,1), L must be an independent set and no vertex in L is adjacent to any vertex
inU=V(G)— ({v}UL). Now |[U| =n+1 and G[U] does not contain S,(1,1), so,
by Lemma 2.2.9, some vertex u; in U is not adjacent to at least two other vertices
in U, say ug and us. Let us and wuy be two other vertices in U and consider any
vertices v1,...,v4 € L. Then L U {uy, ..., us} spans Ws in G with hub v; and rim
VgUgU1 UV3U3V4 U4V, & contradiction. Therefore, R(S,(1,1), Ws) < 2n + 1.

For even n > 6, suppose that G has order 2n. If G has a vertex v that is adjacent
to all vertices in a set L of n—1 > 5 vertices, Then as above, G must contain W, a
contradiction. Therefore, A(G) < n —2. By Theorem 2.2.6, R(S,—1, Ws) = 2n —1,
so G contains a vertex-disjoint star S,,_;. Let u be its centre vertex. Since G — {u}
is of order 2n — 1, it must contain another star S,,_;. These two stars are vertex-
disjoint since A(G) < n — 2 and G does not contain S,(1,1). Let X; and X5
be the vertex sets of these two stars. Then for each ¢ € {1,2}, no vertex of X;
is adjacent to any vertex outside X;. Therefore, G contains Wy with a vertex
z € V(G) — (X1 U X3) as hub and its Cy rim spanned by X; U X5, a contradiction.
Therefore, R(S,(1,1), Ws) < 2n. O

4.3 Ramsey numbers for tree graphs with maximum degree of
n — 3 versus the wheel graph of order 9

In this section, we study the Ramsey numbers R(T,,, Ws) for tree graphs T, with
maximum degree of n — 3 versus the wheel graph Wy of order 9. There are three
types of graph to be studied, namely S5,(1,2) and S5,(3) and S,(2,1). Before we
continue, there are several observations and lemmas have to be introduced.

First note two very simple observations for the existence of S, (1,2) in a graph
and the existence of Wy in the complement of a graph. These observations will be
used repeatedly in deriving the exact Ramsey numbers for S,,(1,2) versus Ws.
Observation 4.3.1. If a graph G contains S,_1 and there is a vertex v € V(G) —
V(Sn—1) such that v is adjacent to at least two leaves of S,_1, then G contains
Sn(1,2).

Observation 4.3.2. If G = H; U Hy is the disjoint union of graphs H, and H,
where Hy contains S and Hy is a graph of order at least 4, then G contains W.
Lemma 4.3.3. Let n > 6. If H is a graph of order n+ 1 with 6(H) > n — 3, then
either H contains S,(1,2), or n = 3 (mod 4) and H is the disjoint union of ntl
copies of Ky; i.e., H = "THK4.

Proof. Suppose that some vertex in H has degree at least n — 2; then H contains
Sp—1. Since §(H) > n — 3 > 3, the two vertices in V(H) — V(S,,_1) are either
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adjacent and must each be adjacent to at least one leaf of S,,_1, or they are not
adjacent and must each be adjacent to at least two leaves of S,,_;. In either case,
H contains S,(1,2).

Now suppose that H is (n — 3)-regular and let vy be any vertex of H. The
set U = V(H) — Ng(vg) has exactly 3 vertices, each with degree n — 3 > 3 and
cach therefore adjacent to at least one vertex in Ny (vp). If H[U] has an edge, then
H contains S,,(1,2); otherwise, U is an independent set, and so {vg} U U is an
independent set of size 4. Furthermore, Ny(u) = Ny (vg) for all u € U, as every
vertex has degree n — 3. Hence, H[{vy} U U] = K, and is a component in H.
Applying the above arguments to each vertex vy € V(H) shows that either that H
contains S,(1,2) or that H is the disjoint union of "T“ copies of Ky, in which case
n =3 (mod 4). O

Lemma 4.3.4. Let Hy be a graph whose complement H, contains Sy, and let Ho
be a graph of order m > 5. If G = Hy U Hy, then either G contains Wy, or Hy is
K, or K, — e, where e is an edge in IK,,.

Proof. If H, has at most one edge, then H, is the complete graph K, or the graph
K,, — e obtained from removing an edge e from K,,. Suppose now that H, has at
least two edges. Consider a star Sy in H; and let vy be its centre and vy, v, v its
leaves. Note that each v; is adjacent to each a € V(H,) in G. Choose 5 vertices
a,b,c,d,e € V(Hs) such that either ab and cd are independent edges, or abc is
a path, in H,. In both cases, G contains Wy with hub vy. In the former case,
viabvacdvsevy forms the Cyg rim; in the latter, viabcvodvsev, forms the Cg rim.  [J

The following lemmas provides sufficient conditions for a graph or its comple-
ment to contain Cy.
Lemma 4.3.5. Suppose that U = {uy,...,us} and V = {vy,...,v4} are two dis-
joint subsets of vertices of a graph G for which |Ngpy(u)| < 1 for each u € U and
|Ngoy(v)| <2 for eachv € V. Then G[U U V] contains Cs.

Proof. Suppose that Ngpj(v) < 1 for each v € V. Then G[U U V] contains a
subgraph obtained by removing a matching from K, 4 and therefore contains Cg.
Suppose now that Nep)(vi) = {u1, u2}, and assume without loss of generality that
v3 & Nepvi(us) and vg € Nepvy(us). Neither u; nor up is adjacent to vy, v3 or vy, so
V1U3V3U Valp VU forms Cg in G[U U V. O

Lemma 4.3.6. Let U = {uy,us,uz} and V. = {a,b,c,d,e, f} be disjoint sets of
vertices of a graph G. Suppose that, for each v € V, either v is adjacent to all

vertices in U, or v 1s adjacent to exactly two vertices in U and every vertex in
V —A{wv}. If G[V] has at least two edges, then G[U U V] contains Cs.

Proof. Consider the set X = {v € V : v is not adjacent to some vertex in U}.

Case 1: Suppose that |X| = 0. The graph G[V] contains either a path of length
two, say abc, or two disjoint edges, say ab and cd. Then either eujabcusduge or
eurabuscduse forms Cg in G.

Case 2: Suppose that 1 < |X| < 4. Without loss of generality, assume that
e,f €V —X and a € X. Then a is adjacent to each vertex in V' — {a}. Now, b is
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adjacent to some vertex in U, say u1, and c is adjacent to at least one other vertex
in U, say us. Then ujbacuseusfuy forms Cy.

Case 3: Suppose that |X| = 5. Then V — X contains a single vertex, say f, and
GV —{f}] = K5. Without loss of generality, a is adjacent to u; and e is adjacent
to us. Then ujabedeus fuy forms Cy.

Case 4: Suppose that | X| = 6. Then G[V]| = Kg. Each vertex in V' is adjacent to
2 vertices in U, so 12 edges connect the 3 vertices in U with the 6 vertices in V.
Thus, some vertex u; is adjacent to at least 4 vertices in V' and some other vertex
u; is adjacent to at least 3 vertices in V. Suppose that u; is adjacent to a and b,
and that u; is adjacent to ¢ and d. Then aw;bcu;defa forms Cs.

In each case, G[U U V] contains Cs. O

The next two lemmas consider a graph of order 2n obtained from the disjoint
union of two graphs whose orders differ by at most two.

Lemma 4.3.7. Let G = H; U HQ,_where H, and Hs are graphs of order n > 6.
Then either G contains S,,(1,2) or G contains Ws.

Proof. Suppose that G does not contain S, (1,2). Then neither H; nor Hj is K,
or K, — e, where e is an edge in K,. By Lemma 4.3.4, neither G[H;] nor G[H,)]
contains Sy, so each vertex in G has degree at most two; hence, each vertex in G
has degree at least n — 3. If some vertex in GG has degree at least n — 2, then H; or
H, contains S,(1,2), a contradiction.

Therefore, G is (n — 3)-regular. Then G[H;] and G[H,| are 2-regular graphs
and must each be a union of cycles. Since |V (H;)| = |[V(Hy)| = n > 6, there are
vertex-disjoint paths of length two in G[H,], say abc and def, and a path zyz in
G[H,). Now, as every vertex in V(H,) is adjacent to every vertex in V(H,) in G,
the graph G contains Wy with hub y and rim zabczde fx. ]

Lemma 4.3.8. Forn > 6, let G = H; U Hy, where Hy and Hy are graphs of order
n—1 and n+1, respectively. If G does not contain S,(1,2) and G does not contain
Wy, thenn =3 (mod 4) and Hy = K,,_1 or H = K,,_1 — e where e is an edge in
K,_1, while Hy = ”T“K4.

Proof. The graph H, does not contain S since G would otherwise contain Ws. Each
vertex of Hy therefore has degree at least n — 3 in Hy (and in GG). By Lemma 4.3.3,
n = 3 (mod 4) and Hs is the disjoint union of 2L copies of Ky. Therefore, Hy
contains Sy, and since H; has order n—1 > 5, Lemma 4.3.4 implies that H; = K,,_;
or K,,_1 — e where e is an edge in K,,_;. O

The following theorem implies that, for most graphs G of order 2n, either G
contains S,(1,2) or G contains Wj.
Theorem 4.3.9. Forn > 6, let G be a graph of order 2n. Suppose that G does not
contain S,(1,2) and G does not contain Ws. Thenn =3 (mod 4) and G = H,UH,
where Hy = K,,_y or Hi = K,,_1 — e where e is an edge in K,,_1, and Hy = ”THK4.

Proof. Since n — 1 > 5, G has a subgraph T' = S,,_1(1,1) by Theorem 4.2.1. Let
V(T) ={a,vo,...,vn_3} and E(T) = {vovy, ..., 00n_3,v1a}.
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Assume that v, is adjacent to a vertex v,_o in V(G) — V(T'). Then the graph
Ty = S,(1,1) is obtained from T by adding the vertex v,_o and the edge vov,_».
Since G does not contain S,(1,2), a is not adjacent to any vertex in V/(G) —{vg, vy }.
Let U = V(G) — V(T}) and note that |[U| = n > 6. If each vertex of U has degree
at least n — 2 in G[U], then G[U] contains S, (1,2), a contradiction. There is then
a vertex of U with degree at most n — 3 in G[U], so G[U] contains a path of length
two. Since G does not contain S,(1,2), each vertex u € U is adjacent to at most
one vertex in {vy,...,v, 2} and if u is adjacent to one of these vertices, then u is
not adjacent to any vertex in U. Let Y} = {vy,v3,v4} and Y3 C U be a set of six
vertices such that G[Y5] contains a path of length two. Then the graph G[Y; U Y5
satisfies the conditions in Lemma 4.3.6 and therefore contains Cg which, with a as
hub, forms Wy, a contradiction.

Hence, vy is not adjacent to any vertex in V(G) — V(T'). Let G = Hy U Ha,
where H; is the component of G containing 7" and where V(Hy) may be empty.
Set U = V(H;) — V(T') and note that a is not adjacent to any vertex in U since G
does not contain S, (1,2). If G[U] contains an edge uv, then since H; is connected,
either u or v is adjacent to v; for some 1 < i < n — 3, and G contains S,(1,2), a
contradiction. Therefore, U is independent; indeed, {vo} UU and {a} U U are two
independent sets in G. Assume that |U| > 3. Since |UUV (H)| =n+1> 7, there
are at least 3 vertices b,c,d € U and 4 vertices x,y,z,w € U UV (Hs) — {b,c,d}.
Together with vy and a, these vertices span Wy in G with hub b and rim azvoyczdwa,
a contradiction. Therefore, |U| < 2, so the orders of H; and H, differ by at most
two, and the theorem follows from Lemmas 4.3.7 and 4.3.8. n

We are now ready to determine the exact Ramsey number for S, (1, 2) versus W.
Theorem 4.3.10. Forn > 6,

R(S,(1.2), W) = {2n—|— 1 ifn= 3 (mod 4),
2n otherwise.

Proof. For the upper bound, Theorem 4.3.9 implies that R(S,(1,2), Ws) < 2n
unless n =3 (mod 4). Suppose that n =3 (mod 4), and let G be a graph of order
2n+1 such that G does not contain Wy. Then G contains S, by Theorem 2.2.6. For
any vertex a ¢ V(S,,), the graph G; = G — {a} has order 2n and contains a vertex
of degree at least n—1, so Gy cannot equal H{UHs for Hy = K,,_jor Hy =K,,_1—e
and Hy = ”T“K4. By Theorem 4.3.9, G; and thus G contains S, (1,2).

For the lower bound, let m and ¢ be any non-negative integers with 4m-+3¢ = n;
such integers exist since n > 6. Consider the graph G = K, U H, where H =
"THK4 if n = 3 (mod 4) and H = mK, U (K3 otherwise. Now, K,_; does not
contain S, (1,2); nor does H, since each vertex v of H has degree at most n — 3
and the set of vertices in H that are not adjacent to v is an independent set in G.
Thus, G does not contain S,(1,2). Assume that G contains Wy with hub z. Then
x ¢ V(K,_1) since H does not contain Cs, so x € V(H). Since x is adjacent to
at most 3 vertices in G[V (H)], at least 5 vertices in V(K,_;) are vertices of Cg
subgraph of G, a contradiction since K,_; has no edges. Therefore, G does not
contain Wg, completing the proof of the theorem. O
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Theorem 4.3.11. Ifn > 6, then

2n—1 |, for oddn >9;

R(5a(3), Ws) {Qn , otherwise.

Proof. First, consider the case where n > 9 is odd. The graph 2K, _; does not
contain S,(3) and its complement does not contain Wg, so R(S,(3), W) > 2n — 1.
To prove that R(5,(3), Ws) < 2n—1, let G be any graph of order 2n—1 and assume
that G does not contain S,,(3) and that G does not contain Wy. By Theorem 2.2.6,
G contains S,, 5. Let vy be the centre of S, 5 and let L = {vy,...,v, 3} be its
leaves. Set U = V(G) =V (S,—2); then |U| = n+1. Since G does not contain S,(3),
vy, ...,U,_3 are each adjacent to at most one vertex in U.

Claim 1: If some vertex in U is adjacent in G to at least 4 vertices in L, then G
contains Wjy.

Proof of Claim 1. Let vy, vs, v3 and vy be vertices in L that are adjacent in G to
some vertex u € U. Set U' = U — {u} and write U’ = {uy,...,u,}. Then vy, vy,
vz and vy are not adjacent in G to any vertex of U’. Assume that A(G[U']) < 3;
then 0(G[U']) > n — 4. Since n is odd, the Handshaking Lemma implies that
A(G[U']) > n — 3, so some vertex of U’, say u;, must be adjacent in G to at
least other n — 3 vertices of U, say us,...,u,_s. Note that u,_; and u, are both
adjacent to at least n — 6 vertices of {ug,...,u, 2} in G. If n > 11, then at least
one of uy, ..., u, o is adjacent to both u,_; and u,, forming S,,(3), a contradiction.
Suppose that n = 9. The vertices ug and ug cannot both be adjacent in G to some
vertex in {us, ..., ur} since that would form S,,(3); therefore, ug and ug are adjacent
to each other as well as to u;; also, ug is adjacent to three of the vertices ug, ..., ur
and ug is adjacent to other the three, again forming So(3) in G, a contradiction.

Therefore, A(G[U’]) > 4 and, by Observation 4.3.2, G contains Ws. O

Claim 2: If each vertex in U is non-adjacent in GG to at least 5 vertices of L, then
GG contains Wy.

Proof of Claim 2. Assume that A(G[U]) < 3. Then §(G[U]) > n — 3. Write U =
{ug, ..., upsr1}. Without loss of generality, u; is adjacent in G to every vertex of
U = {ug,...,up_o}. Now, u, 1, u, and u,,; are each adjacent to at least n — 6
vertices of U’. Since n > 9, at least two of u,_1, u, and u,; are adjacent to some
vertex in U’, forming S,,(3) in G, a contradiction.

Therefore, A(G[U]) > 4. Then some vertex u € U is adjacent in G to at

least 4 other vertices of U, say wuy,...,us. Let vy,...,v5 be b vertices of L that
are not adjacent to v in G. If any of uy,...,uy is adjacent in G to 4 vertices
from {vy,...,vs}, then G contains Wg by Claim 1. Otherwise, uy,...,uy are each
adjacent in G to at least two of vy,...,vs5. Since each vertex v; is adjacent to at
most one vertex in U, it is adjacent in G to at least 3 vertices from {uy,...,us}.
Then 4 vertices v; together with us, ..., us form Cg in G, and thus Wy with vertex
u as hub, a contradiction. O
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Proof of Theorem 4.3.11 (continued). For n > 11, |L| > 8. By Claim 1, each vertex
in U is adjacent in G to at most 3 vertices of L. Then by Claim 2, G contains Wi,
a contradiction.

Suppose that n = 9; then |L| = 6. By Claim 1, each vertex in U is adjacent in
G to at most 3 vertices in L. Therefore, by Claim 2, at least one vertex u € U must
be adjacent in GG to either 2 or 3 vertices of L. Assume that u is adjacent in G to
exactly 3 vertices of L, say v, v" and v”. Set U' = U — {u} and note that no vertex
in U’ is adjacent in G to v, v' or v”. If each vertex in U’ is adjacent to at most two
vertices in L, then every vertex in U’ is non-adjacent to at least 4 vertices in L. If
A(G[U"]) > 4, then some vertex u' € U’ is non-adjacent to at least 4 vertices of
L and 4 vertices of U’ in G. Since 3 of the vertices in L are non-adjacent to each
vertex in U’ and dy(v) < 1 for all v € L, these 8 vertices form Cg in G which, with
u' as hub, forms Wy in G, a contradiction. If A(G[U']) < 3, then §(G[U’]) > 5. By a
similar argument to that in the proof of Claim 1, G contains So(3), a contradiction.
Therefore, suppose that some vertex in U’ is non-adjacent to exactly 3 vertices of
L in G. Let v’ and u” be the two vertices that are adjacent to exactly 3 vertices of
L in G. Note that no vertex of L is adjacent in G to the vertices in U — {u/, u"}. If
A(G[L]) > 4, then G contains Wy by Observation 4.3.2, a contradiction. Therefore,
A(G[L] < 3 and so §(G[L]) > 2. Since Sy(3) € G, vy is not adjacent in G to any
vertex of U. Now, if §(G[U]) > 6, by the similar argument to that in the proof
of Claim 2, G contains Sy(3), a contradiction. On the other hand, suppose that
§(G[U]) < 5. Then A(G[U]) > 4, so some vertex u € U is adjacent in G to at least
4 other vertices of U. Together with vy and 3 other vertices from L, these 5 vertices
from U form Wy in G with u as hub, a contradiction.

Now, consider the case where u € U is adjacent in G to exactly two vertices of L,
say v and v'. Set U’ = U — {u} and note that every vertex in U is adjacent in G to
at most two vertices of L; for otherwise, relabel the vertex u and apply the previous
case. If u is non-adjacent to at least 4 vertices in U’, then since dgp(w) < 1
for all w € L, these 4 vertices and the remaining 4 vertices of L form Cs in G
by Lemma 4.3.5 and, with u as hub, form Wjg, a contradiction. Therefore, u is
adjacent to at least 6 vertices of U’ in G. Then neither v and v’ are adjacent to
the remaining 4 vertices in L, since G does not contain Sg(3). Then 4 vertices of
U’ and the 4 vertices of L form Cg in G by Lemma 4.3.5 and, with v as hub, form
W5, a contradiction.

Hence, R(S,(3),Ws) < 2n — 1, so R(S,(3),Ws) =2n — 1 for all odd n > 9.

Now, consider the cases in which n = 7 and n > 6 is even. Define the graph
G = K,_1 UH, where H is as shown in Figure 4.1 if n = 7; H = 1Ky ifn=0
(mod 4); and H = 8K, U2K5 if n =2 (mod 4). Since G has no S,(3) subgraph
and G does not contain Wy, R(S,(3), Wg) > 2n.

Figure 4.1: The graph H when n =T7.
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For the upper bound, let G be any graph of order 2n. Suppose to the contrary
that G does not contain S,(3) and G does not contain Ws. By Theorem 2.2.6, G has
a subgraph T'= S,,_1. Let vy be the centre of T and L = Np(vg) = {v1,...,n_2}.
Set U =V (G) — V(T); then |U| =n + 1.

Case 1: Eg(L,U) # 0.

Without loss of generality, assume that v; is adjacent to u € U, and set U’ =
U — {u}. Since G does not contain S,(3), Ng(vi) = {vo,u} and dy(v;) < 1 for
2 < i <n—2. Then for n > 7, there are 4 vertices from L—{v;} and 4 vertices from
U’ that together form Cs in G and, with v; as hub, form Wy in G, a contradiction.

Suppose that n = 6. If A(G[U’]) > 3, then some vertex v’ € U’ is adjacent in G
to at least 3 other vertices of U’ say uy, us, us. Since dy/(v;) < 1 for 2 <i<n-—2,
each v; is adjacent in G to at least two of uq, us, us, and so G contains Wy. To
illustrate this, suppose that vy is adjacent to u;. Since vz is adjacent to two of
Uy, Uz, u3 in G, vs must be adjacent to another vertex other than w;, say us, in
G. Let uy and us be the two remaining vertices of U’. Then vouqu usvzusvsusvs
and v; Wy in G, a contradiction. Therefore, A(G[U']) < 2, and 6(G[U']) > 3. Let
U' ={uy,...,ug}. Suppose that U’ has a vertex, say uy, that is adjacent in G to at
least 4 other vertices, say us, us, ug, u5. Then ug is adjacent to u; and u; is adjacent
to u; for some 2 < i # j <5, so G[U'] contains S¢(3), a contradiction. Therefore,
G[U'] is 3-regular. Suppose that u; is adjacent to ug, ug and ug. Since uz and ug are
adjacent to at least two of us, us, uyg, u; is adjacent to us and ug for some 2 < i < 4.
Then G[U’'] contains Sg(3), a contradiction.

Case 2: Eg(L,U) = 0.

If n is even, then R(S,(1,1),Ws) = 2n by Theorem 4.2.1, and Case 1 applies.
Hence, it suffices to consider n = 7. If A(G[U]) > 4, then some vertex u € U
is adjacent in G to at least 4 vertices of U. Together with any 4 vertices from
L, these vertices form Wy, with u as hub, in G, a contradiction. Suppose that
A(G[U]) < 3. Then 6(G[U]) > 4. Write U = {uy,...,us} where u; is adjacent

to {uz,...,us}. Since 6(G[U]) > 4, each of the vertices ug, ur, us is adjacent to at
least one of us, ..., us. If uy is not adjacent in G to ug, uy or ug in G, then one of
Us, ..., us is adjacent to at least two of these 3 vertices and G therefore contains
S7(3), a contradiction. Now, suppose that u; is adjacent to one of wug, ur, us, say
ug. Since §(G[U]) > 4, uy is adjacent to at least two vertices of uy, ..., ug, say us
and ug. Since 6(G[U]) > 4, uy is adjacent to another vertex from wus, ..., us. Then
G therefore contains S7(3), a contradiction.

In either case, R(S,(3),Ws) < 2n for n =7 and even n > 6. O

Theorem 4.3.12. Ifn > 6, then

2n—1 , if n is odd.

2n , otherwise.

R(S,(2,1),Wg) = {

Proof. When n is odd, note that G = 2K,,_; has no S,(2, 1) subgraph and G does
not contain Wg. Hence, R(S,(2,1), Wg) > 2n—1. When n is even, define H = 2 K4

if n =0 (mod4) and H = 27°K,U2K3 if n = 2 (mod 4); then G = K,y UH
does not contain S, (2,1) and G does not contain Wy. Hence, R(S,(2,1), Wg) > 2n.
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Now let G be a graph of order n 4+ 2|n/2] and assume that G does not con-
tain S,(2,1) and that G does not contain Wy. Suppose that n > 8. Then by
Theorem 4.3.11, G has a subgraph T' = S,(3). Let V(T) = {vo,...,v,—1} and
E(T) = {vv1,...,00n_3,010p—2,010p_1}. Set U = V(G) — V(T) and U' =
{vn—2,0p-1} U U; then |U| = 2|n/2]. Since S,(2,1) € G, none of vy, ..., v,_3
is adjacent to any vertex in U’. Then A(G[U’]) < 3 by Observation 4.3.2. This
implies that §(G[U’]) > |U’| —4 > n — 3. Choose a S|y—3 subgraph in G[U’] and
note that each of the remaining 3 vertices in U’ must be adjacent to at least two
leaves of this S|y/|—3, forming S,,(2,1), a contradiction.

Suppose now that n = 7. Then G is a graph of order 13. Two cases are now
considered.

Case la: Suppose that A(G) > 5.

Let T be an Sg subgraph in G with centre vy and leaves L = {vy,...,v5}. Set
U = V(G) — V(T). Since G[U] does not contain S7(2,1), it is straightforward
to verify that §(G[U]) < 2. Therefore, A(G[U]) > 4. If at least 4 vertices in L
are not adjacent to any vertex in U, then G contains Wy by Observation 4.3.2, a
contradiction. Since G does not contain S7(2,1), the only possible case avoiding
the above scenario is when two of the vertices in L, say v; and v,, are adjacent to
a common vertex u € U. Again as G does not contain S7(2,1), vs is not adjacent
to any vertex in L — {vs}, and no vertex in L is adjacent to any vertex in U — {u}.
Then G contains Wy with hub vs and Cg formed by L — {vs} and any 4 vertices in
U — {u}, a contradiction.

Case 1b: Suppose that A(G) < 4.

By Theorem 4.2.1, G has a subgraph T = Sg(1,1). Let V/(T') = {vy,...,vs} and
E(T) = {vov1, . .., vovs, 1105 }. Set U = V(G) —V(T). As in Case la, A(G[U]) > 4.
Since A(G) < 4, vy is not adjacent to any vertex in U, and none of the vertices
vy, U3, vy is adjacent to any vertex in U since G does not contain S;(2,1). Again, G
contains Wy by Observation 4.3.2, a contradiction.

In either case, R(S,(2,1),Ws) < 2n — 1. Hence, R(S,(2,1),Ws) = 2n — 1 for
all odd n > 7.

Suppose that n = 6. If some vertex u € U is adjacent to v; in G, then since
GG does not contain Sg(2, 1), neither vs nor u is adjacent to vy, v, v4 Or any vertex
in U. Then vg, vy, vs, w and any other 4 vertices of U form Cg in G which, with v,
as hub, forms Wy, a contradiction.

Suppose then that v; is not adjacent in G to any vertex of U. Consider the
following two cases.

Case 2a: Suppose that v; is not adjacent to v, v3 or vy.

Let U = {uy,...,ug}. If A(G[U]) > 2, then some vertex in U, say u;, is adjacent
to another two vertices in U, say us and ug, in G. Then uguiuzvusvousv3us and vy
form Wg in G, a contradiction. If A(G[U]) < 1, then §(G[U]) > 4. Suppose that
uy is adjacent to us, ..., us in G. Since us and ug are each adjacent to at least two
vertices of {ug, us,uys}, G[U] contains S,(2,1), a contradiction.

Case 2b: v; is adjacent to another vertex of T' other than vy and v in G.

Without loss of generality, suppose that v; is adjacent to vy in G. Since G
does not contain Sg(2,1), vs is not adjacent to vs, vg or any vertex in U. Let
U= {uy,...,us}. If A(G[U]) > 2, then some vertex in U, say uy, is adjacent in G
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to a_nother two vertices in U, say Us and us, SO Ul U3V5U4V2U5V3Us and vy form Wy
in G, a contradiction. Thus, A(G[U]) < 1, and 6(G[U]) > 4. As in Case 1, G[U]
must contain S,(2, 1), a contradiction.

In either case, R(S,(2,1),Ws) < 2n. Thus, R(S,(2,1), W) = 2n for all even
n > 6. O
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CHAPTER 5

Ramsey numbers for tree graphs with maximum degree of
n — 4 and n — 5 versus the wheel graph of order 9

In this chapter, we will continue to look at the Ramsey numbers for tree graphs
of order n versus the wheel graph Wy of order 9, focusing on tree graphs 7,, with
maximum degree n — 4 and n — 5.

5.1 Introduction

Before we start to look into the Ramsey results, in this section, we introduce the
trees that will appear in our discussion. First, we introduce all tree graphs T, of
order n > 6 with A(7},,) = n—4. For n = 6, there is just one such graph, namely the
path graph Tg = Ps. Theorem 2.2.4 provides the Ramsey number R(FPs, W) = 12.
For n = 7, there are 5 tree graphs with A(77) =7 — 4 = 3, which are A, B, C, D
and E shown in Figure 5.1.

D E

Figure 5.1: Tree graphs of order 7

For n > 8, there are 7 tree graphs T,, of order n with A(7,,) = n — 4, namely
Sn(4), Spl4], Sn(1,3), S,(3,1) as defined in Definition 2.1.12, as well as T4 (n),
Tp(n) and Te(n) shown in 5.2.

R

TA (n) TB (n)

Figure 5.2: Three tree graphs with A(7,,) = n — 4.

Next, we introduce all the tree graphs 7T, of order n > 7 with maximum degree
of n — 5. For n = 7, there is just one such graph, namely the path graph T, = P.
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Theorem 2.2.4 provides the Ramsey number R(P;, Wg) = 13. For n > 8, there are
19 tree graphs T,, of order n with A(T,,) = n — 5, namely S,(1,4), S.(5), S.[5],
Sn(2,2), Sn(4,1) and the tree graphs shown in Figure 5.3.

Figure 5.3: Tree graphs T,, with A(T},) =n — 5.

5.2 Ramsey numbers for tree graphs with maximum degree of
n — 4 versus the wheel graph of order 9

In this section, we discuss the Ramsey numbers for tree graphs with maximum
degree of n — 4 versus the wheel graph of order 9. We will start by looking at the
results for tree graph of order 7. As mentioned in previous section, there will be 5
tree graphs to be discussed, which are A, B, C', D and E as shown in Figure 5.1.

Theorem 5.2.1. R(T,Wg) =13 for T € {A, B,C}.
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Proof. Note that G = 2K does not contain A, B or C' and that G does not contain
Ws. Therefore, R(T,Wg) > 13 for T = A, B, C.

Let G be a graph of order 13 whose complement G does not contain Ws. By
Theorem 4.3.12, G has a subgraph 7" = S7(2,1). Label V(T') as in Figure 5.4. Set
U=V(G)—V(T); then |U| = 6.

First suppose that A Q G. Then v, is not adjacent to vy or vg, and vy and vy
are not adjacent.

Figure 5.4: S7(2,1) and U in G.

Case la: There is a vertex in U, say u, that is adjacent to v;.

Since A is not contained in G, vy is not adjacent to vs, v4 or any vertex of U other
than u. Let W = {vy, v3,v4, v, u1, ..., us} for any 4 vertices uy,...,uy in U other
than w. If 5(G[W]) > 4, then G[W] contains Cg by Lemma 2.2.10 and, together
with v; as hub, forms Wg, a contradiction. Thus, §(G[W]) < 3 and A(G[W]) > 4.
Note that |Nggu,,..usv(vi)| < 1 for i = 2,3,4,6 since G does not contain A. It
is now straightforward to check that vy, v3, v4 and vg cannot be the vertex with
degree at least 4. Without loss of generality, assume that u; has degree at least 4
in G[W]. Then u; is adjacent to at least one of vg, v3,v4,v6, SO G contains A, a
contradiction.

Case 1b: v; is not adjacent to any vertex in U.

By arguments similar to those in Case 1a, vy is not adjacent to any vertex in U.
Let W = {vy,v6} UU. If §(G[W]) > 4, then G[W] contains Cg by Lemma 2.2.10
which, with v; as hub, forms Wg in G[W], a contradiction. Thus, §(G[W]) < 3 and
A(G[W]) > 4. Since vy is not adjacent to any vertex in U, there are only three

subcases to be considered.
Subcase 1b.1: dguw(ve) > 4.
Label U = {uy,...,ug} so that vg is adjacent to uy, us and ug in G[W]. Since
(G does not contain A, vertices uq, us, u3, vo are not adjacent to vz or vy in GG. Note
that by arguments as in Case la, uj, up and ug are isolated vertices in G[U]. Then
V1 U UV VU5 UsUgU; and uy, form Wy in G, a contradiction.
Subcase 1b.2: dguw(vs) < 3 and v is adjacent to some u € U with dgpyi(u) > 4.
The graph G contains A, with u as the vertex of degree 3 in A, a contradiction.

Subcase 1b.3: dgw (vg) < 3 and wvg is not adjacent to any vertex u € U with

dG[W] (u) Z 4.
Label V(U) = {uy, ..., us} so that ug is adjacent to us, us, uy and us in G. Since
A ¢ G, none of vy, ..., vr is adjacent in G to any of us, ..., us. If vy is not adjacent

in G to any two of the vertices vs, vy, v7, then G contains Wy by Observation 4.3.2,
a contradiction. Therefore, Ngu, v,07(v1) > 2 and, similarly, Nep, v, (v2) > 2.
Hence, one of v3, vy, v7 is adjacent in G to both v; and v,. If v3 or vy is adjacent to
both v; and vy, then G contains A, with v; as vertex of degree 3, a contradiction.
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Finally, if both v; and vy are adjacent in G to v; and each of them is adjacent to
a different vertex in v3 and vy, then G also contains A, where either v; or vy is the
vertex of degree 3, a contradiction.

Therefore, R(A, Wg) < 13, so R(A, Ws) = 13.

Now, suppose that B ¢ G. Then vy, v9, vs, vg are not adjacent to vs or vy in G,
and v; and vy are not adjacent to U in G. Label the vertices U = {uy, ..., us} and
let W = {vs, v} UU. If 6(G[W]) > 4, then G[W] contains Cg by Lemma 2.2.10
which, with v; as hub, forms Wg, a contradiction. Therefore, §(G[W]) < 3 and
A(G[W]) > 4. If vy or vy is adjacent to the vertex of degree at least 4 in G[IV],
then B is contained in GG, with v; as the vertex of degree 3. Hence, only two cases

need to be considered.

Case 2a: vz or vy is the vertex of degree at least 4 in G[W].

Without loss of generality, assume that wvs is the vertex of degree at least 4
in G[W]. As previously shown, v3 is not adjacent to vy. Therefore, it may be
assumed that vs is adjacent to uy, ug, uz and uy in G. Since B € G, uy, ..., uy are
independent in G and are not adjacent to {vy, va, vy, U5, v6}. Also, vy is not adjacent
to vg and vy is not adjacent to vs. Then vivgusvvsuUsV4u4v; and uy form Wy in G,
a contradiction.

Case 2b: One of the vertices in U, say uq, is the vertex of degree at least 4 in
G[W].

As above, u; is not adjacent to vs or vy in G. It may then be assumed that
up is adjacent to us, us, uy and us. Since B ,@ G, v1,...,v; are not adjacent to
{ug, ..., us}. Note that vz is not adjacent to {vy,vq, vs,v6}. By Observation 4.3.2,
G contains W, a contradiction.

Therefore, R(B, Wg) < 13.

Lastly, suppose that C ¢ G. Then vs and vg are not adjacent in G to each
other or to vz, vy or U. Furthermore, vs is not adjacent to vy and vg is not adjacent
to v;. Label the vertices U = {uy,...,ug} and let W = {v3, vq, v, u1, ..., us}. If
§(G[W]) > 4, then G[W] contains Cs by Lemma 2.2.10 which, with v5 as hub, forms
Ws, a contradiction. Then 6(G[W]) < 3 and A(G[W]) > 4. Since vg is not adjacent
to v3, vy or U, vg is not the vertex of degree at least 4 in G[W] and is not adjacent
to that vertex. Note that if vs or vy is the vertex of degree 4, then G contains C,
with v3 or vy and v; as the vertices of degree 3. Thus, one of the vertices in U, say
uy, is the vertex of degree at least 4 in G[W]. Now, consider the following three

cases.

Case 3a: Both v3 and vy are adjacent to u; in G[W].

Suppose that u; is also adjacent to us and uz in G[W]. Since C' € G, v3 is not
adjacent in G to vy and neither vg nor vy is adjacent to {vy, va, vs, Vg, ug, . .., Ug}.
Note that | Negurumu(wi)] < 1 for i = 2,3 since C' € G. If v; is adjacent to uy and
us in G, then vyusvsusvsusvguzvy and vy form Wy in G, a contradiction. Therefore,
vy is adjacent in G to at least one of us and uz. Similarly, vy is adjacent to at least
one of uy and ug. Since |Ngifv, vs,u1) ()] < 1 for i = 2,3, vy is adjacent to up and v,
is adjacent to ug, or vice versa. Then neither uy nor ug is adjacent in G to uy, us, ug,
since C' gz G. Therefore, v;03v2V5ususu3V6V, and vy form Wy in G, a contradiction.

Case 3b: One of v3 and vy, say vs, is adjacent to u; in G[W].
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Suppose that u; is adjacent to ug, uz and uy in G[W]. Then v; is not adjacent
to vy, V2, Uy, Us, Vg, Uz, us, g in G and |Ngugususua)(Va)] < 1. Without loss of
generality, assume that v, is not adjacent to uy or uz in G. Now, suppose that vy
is adjacent to uy in G. Since C SZ G, uy is not adjacent to vy or v in GG. Then
V1 U V2V U2 Vs U3V, and vg form Wy in G, a contradiction. Otherwise, suppose that
vy is not adjacent to uy in G. Then |Ng{u, v v ()] < 1 for i =2,3,4 and at least
two of us, uz and uy are not adjacent to vy or vy in GG. Without loss of generality,
assume that us and ug are not adjacent to vy in G. In this case, VUV UL V5U5VEU3V7
and v; form Wy in G, again a contradiction.

Case 3c: v3 and vy are both non-adjacent in G[W] to ;.
Assume that u; is adjacent to each of wuy,...,us in G[W]. Since C ¢ G,
|NG[{017~-~,U77Ui}](ui)| <lfore:=2,...,5 and |NG[{u2,...,U5,vj}](vj)| < 1forj = 3,4

Since |NG{{o vy (ui)| < 1 for @ = 2,...,5, one of v; and vy, say vy, satisfies
| NGigus,...usm (1) < 2. By Lemma 4.3.5, Glvy,v3, V4, Vs, Us, . . ., us] contains Cg
which, with hub vg, forms Wg in G.

Therefore, R(C,Wg) < 13. This completes the proof of the theorem. O

Theorem 5.2.2. R(D,Ws) = 14.

Proof. Let G = K¢ U H where H is the graph shown in Figure 4.1 in the proof
of Theorem 4.3.11. Since G does not contain D and G does not contain Wi,
R(D,Wg) > 14.

Now, let G' be any graph of order 14. Suppose neither G contains D as a
subgraph, nor G contains Wy as a subgraph. By Theorem 5.2.1, B C G. Label
the vertices of B as shown in Figure 5.5 and set U = {uy,...,ur} = V(G) — V(B).
Since D € G, v7 is non-adjacent to vg and U, and v, is non-adjacent to v; and vs.

U7 U

V1 V2 V3 Vg Vs Vg

Figure 5.5: BC G

Let W = {vs} UU. If 6(G[W]) > 4, then G[W] contains Cg by Lemma 2.2.10
which, with v; as hub, forms Wy, a contradiction. Thus, §(G[W]) < 3 and
A(G[W]) > 4. Three cases will now be considered.

Case 1: v is the vertex of degree at least 4 in G[W].
Assume that vg is adjacent to uy, ug, us and uy in G[W]. Then v is adjacent
to v; and vy in G and vy is adjacent in G to vg, Uy, Us, us and uy.

Subcase 1.1: Eg({uy, ..., u4}, {us, ug, ur}) # 0.

Without loss of generality, assume that v, is adjacent to us in G. Since D € G,
{ug, u3,us} is independent in G and is adjacent to vy, va, ug and u7 in G; vg is
adjacent in G to v; and vy; vy and vs are adjacent in G to uy and wus; and vy is
adjacent in G to us. If vy is adjacent to us in G, then vs is adjacent in G to us and w.,
SO V1 U5Vl UGUrUrUsV; and uy form Wy in G, a contradiction. Thus, v, is adjacent
to uy in G, and vV VU UgUTUUsY; and us form Wy in G, again a contradiction.

36



Subcase 1.2: {uy,...,us} is not adjacent to {us, ug, u;} in G[W].

Suppose that vs is adjacent in G' to v7; then v; is not adjacent to vy or vy. If
ING{ur, sy (v2)| < 2, then Glus, ..., us,vo] contains Cs by Lemma 4.3.5 which
with vz forms Wy in G, a contradiction. Thus, |Neiqu, ... us,u1 (V2)] > 3, so vy is not
adjacent to uy,...,us in G. By Lemma 4.3.5, Gluy, ..., ur, vy, v7] contains Wy, a
contradiction.

Hence, vs is not adjacent to vy in G. Now, if [Ngqqu,,...usws(v5)] < 2, then
Gluy, ..., u7,vs] contains Cg by Lemma 4.3.5 which with v; forms Wy in G, a con-
tradiction. Thus |Ng(gu,,...usws}) (Us)] = 3, s0 v4 is not adjacent to {uy,...,us} in
G, or else G will contain D with v, be the vertex of degree 3. By Lemma 4.3.5,
@[ul, ..., u7,v1] contains Cs. If vy is not adjacent to v; in G, then G contains
Ws, a contradiction. Thus, v4 is adjacent to vz, and since D ¢ G, vy is not
adjacent to vr. If |Ngguy,.usey(v1)] < 2, then Glug, ..., uz,v1] contains Cs by
Lemma 4.3.5 which with v; forms Wy, a contradiction, so |Neu,,...use(v1)] = 3.
Thus, |Neur,...us,0 3 (V1) VNG, a0 (V5)] = 2, and G contains D with vs as the
vertex of degree 3, a contradiction.

Case 2: u; is the vertex of degree at least 4 in G[W] and vs is adjacent to u;.
Without loss of generality, suppose that u; is adjacent to us, ug and uy in G[W].
If v5 is adjacent to uy, then Case 1 applies with vg replaced by u;. Suppose then
that vs is not adjacent to u;. Since D ,CZ G, v; and vy are not adjacent in G to vy,
Vs Or vg; v3 is not adjacent to vg, uy, ..., us; and v4 is not adjacent to uy, ..., uy.

Subcase 2.1: Eq({us,us,us}, {us, ug, ur}) # 0.

Without loss of generality, assume that usy is adjacent to us in G. Then uz and
uy are not adjacent to each other or to vy, vs, ug, uy. Also, u; is not adjacent to v;
or v9, and neither uy nor us is adjacent to vs, vy, vs, v.

Suppose that v; is adjacent to vy in G. If u; is adjacent to vy, us, ug or uyz, then
Case 1 can be applied through a slight adjustment of the vertex labelings. Suppose
that u; is not adjacent to any of these vertices. Since D € G, v7 is not adjacent
to v1. If vg is not adjacent to ug, then vyuusvgugusurusvy and vy form Wy in G, a
contradiction. Similarly, G contains Wy if vg is not adjacent to uz, a contradiction.
Therefore, vg is adjacent to both ug and w7 in G. Since D Q G, ug is not adjacent
to uy, and neither ug nor u; is adjacent to ws. Then viuyusvgusugurusv, and vy
form Wy in G, a contradiction.

Suppose now that v; is not adjacent to vy in G. If v; is adjacent to vs, then
vy is not adjacent to vy or vy, and wv4 is not adjacent to wvg, ug or u;. Then
ViU VU3 UGV U U4V and vy form Wy in G, a contradiction. Therefore, v; is not
adjacent to vs in G. If vg is not adjacent to usz, then usvgusvsusvsusugus and vy
form Wy in G, a contradiction. Similarly, G contains Wy if vg is not adjacent to .,
a contradiction. Then vg is adjacent to both uz and uy in G, so vg is not adjacent
to ug and uy, or else Case 1 applies. Hence, vjusvsusvgugususvy and vy form Wy in
G, a contradiction.

Subcase 2.2: {us, us, uys} is not adjacent to {us, ug, ur} in G[W].

It |NG[{u2,U3,u4,fu6}]<U6)| > 3 or |NG’[{u5,u6,u7,v6}] (U6>| > 3, then Case 1 applies, so
I NG {us,usuawel] (V6)| < 2 and | Negqus,uurwel) (V6)] < 2. Without loss of generality,
assume that vg is not adjacent in G to us or us.
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Suppose that v, is not adjacent to v; in G. If us is adjacent to ug or urz, say ug,
then vy is not adjacent to us or ug, SO ViUsVGUsUsUrUsugVs and vy form Wy in G,
a contradiction. If us is not adjacent to ug or uy, then v usvgusugusurusvy and vy
form Wy in G, a contradiction. Suppose that v4 is adjacent to v; in G. By similar
arguments to those in Subcase 2.1, u; is not adjacent to vy, us, ug or uy, and vy is
not adjacent to v1. Then vjvgususugusuru vy and vy form Wy in G, a contradiction.
Case 3: u; is the vertex of degree at least 4 in G[W] and v is not adjacent to u;.

Assume that u; is adjacent to us, us, us and us in G[W]. Since D Q G, vs and
vy are not adjacent to uq, ug, ug, uy or us in G. If either v; or vy are adjacent to
uy in G, then Case 1 applies, so suppose that v; and v5 are not adjacent to u;. In
addition, v; and vs is not adjacent to uq, us, ug or us in G, or else Case 2 applies.
Subcase 3.1: Ngju,,. us)(v6) # 0.

Assume that vg is adjacent to us in GG. Note that v, is not adjacent to vg, vy,
ug or uy in GG, and vz is not adjacent to vs in G, or else Case 2 applies by slight
adjustment of vertex labels. Since D ¢ G, v; and vy are not adjacent in G to vs,
Ug OT U9, and v3 is not adjacent to vg in G.

If uy and ug are not adjacent in G, then viuvgvausugvrusv; and vy form Wy
in G, a contradiction. A similar contradiction arises if u, and u; not adjacent.
Therefore, us is adjacent to both ug and u7 in G, and us, us and us are not adjacent
to ug or uy in G since D ¢ G. Then vyuvgvausvruguzvy and vy form Wy in G, a
contradiction.

Subcase 3.2: Ngju,, . us)(vs) = 0.

Suppose that v is adjacent to v; in G. Then vy is not adjacent to vy, vg
Glug, ug, uy, us, vy, Vs, Vg, Ug) contains Cg in G which with vy forms Wy, a contra-
diction. Therefore, |Ng{us,...us}(t6)| = 3. Similarly, |Ngifus,..usury(u7)] > 3. By
the Inclusion-exclusion Principle, |Ngifus,...us) (Us) N Ne(fus,....us,ur3 (U7)| = 2. With-
out loss of generality, ug is adjacent to us, uz and uy in G, and u; is adjacent to ug
and u4, and Glug, ..., uy] contains D with ug or uy being the vertex of degree 3, a
contradiction.

Now suppose that vy is not adjacent to v7 in G. If v7 is adjacent to v, in G, then
vy 18 not adjacent to any of uy,...,us in G, or else either Case 1 or Case 2 applies.
Also, | Ne{us,vs,003)(v7)] < 1since D € G. Assume that v; is not adjacent to v, in G.
If | NGigus,...ugh (U6)| < 2, then Lemma 4.3.5 implies that Glug, us, uy, us, V1, Vo, Vg, Ug)
contains Cg which with v; forms Wy, a contradiction. Thus, |Ngjfu,,....us (U6)] > 3.
Similarly, [No(fus,...us.ury] (W7)| = 3, 50 [Na(fus.... uay) (46) VNG {us,...us ury) (ur)| > 2. By
arguments similar to those in the previous paragraph, G' will contain a subgraph
D, a contradiction.

Thus, R(D, W) < 14 which completes the proof of the theorem. O
Theorem 5.2.3. R(E, Ws) = 15.

Proof. The graph G = K U K44 does not contain E and G does not contain
Ws. Thus, R(E,Ws) > 15. For the upper bound, let G be any graph of order
15. Suppose that G does not contain £ and that G does not contain Ws. By
Theorem 4.3.11, G contains T' = S7(3) subgraph. Label the vertices of this subgraph
as in Figure 5.6 and set U = V(G) — V(T'). Note that |U| = 8.
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Vo V4
Us
U7 U

Figure 5.6: S7(3) and U in G.

Case 1: Some vertex u in U is adjacent to vg.

Since E ¢ G, vg is not adjacent to vy, va, vs, v7 or any vertex of U other than
u. Let W = {wvy,v9,v3,07,u1,...,u4}, for any vertices uq,...,uy in U other than
u. If §(G[W]) > 4, then G[W] contains Cg by Lemma 2.2.10 which with vs forms
Ws, a contradiction. Therefore, §(GW]) < 3 and A(G[W]) > 4. Since E ¢ G,
Ne({ur,uzus ua,01,07)] (v7) <1 and NG[{U17U27u37u47U7M}](Ui) <1 for:=1,2,3, so none of
vy, U9, U3, U7 has degree at least 4. Without loss of generality, assume that u; has
degree at least 4. If u; is adjacent to v7, then G contains F with u; and v5 as the
vertices of degree 3, a contradiction. Similarly, if u; is adjacent to vy, vy or vs, then
G contains E with u; and vy as the vertices of degree 3, a contradiction. Therefore,
uy is not adjacent to vy, vy, vs or v;. However, then u; has degree at most 3 in
G[W], a contradiction.

Case 2: vg is not adjacent to any vertex in U.

If v; is adjacent to some vertex in U, then Case 1 applies with v; replacing vg,
so suppose that vy is not adjacent to any vertex in U. Now, if §(G[U]) > 4, then
G[U] contains Cg by Lemma 2.2.10 which, with vg or vy, forms Wy, a contradiction.
Thus, §(G[U]) < 3 and A(G[U]) > 4. Let V(U) = {uy,...,us}. Without loss of
generality, assume that u; is adjacent to us, usz, us and us. Since E SZ G, vy is not
adjacent in G to any of uq, ..., us; vs is not adjacent to any of vy, vg, v, uy, ..., us;
and w; is not adjacent to vy, vy or vs. Furthermore, |Ngifus,. . uswi(vi)] < 1 for
i =1,2,3 and | Na(fo, was,3) (ug)| < 1 for j=2,...,5.
~ Now, suppose that Neigwsuourust)(V5) = 0. I [Netus,...uy ()] < 1, then
Glua, ..., us, vy, v, v3, ug] contains Cg by Lemma 4.3.5 which with vs forms Wy, a
and |Ne({us,....us,us}] (Us)| > 2. By the Inclusion-Exclusion Principle, ua, us, ug or
us is adjacent in G to at least two of ug, ur, ug. Without loss of generality, assume
that us is adjacent to ug and u7. Then us is not adjacent to us, uyg or us, Therefore,
Lemma 4.3.5 implies that Gluy, us, uy, us, v1, Vo, U3, ug] contains Cg which with vs
forms Wy, a contradiction.

On the other hand, if Ngjug,ur,us(vs) 7 0, then without loss of generality assume
that ug is adjacent to vs in G. Since FE SZ G, vy is not adjacent to vg, v7 or ug in G.
Also, {v1,v9,v3} and {vs,v7,ue} are independent in G, and vy, vq, vs, Vg, V7, Ug ¢
Ng(u;) for i = 1,...,5,7,8, or else Case 1 applies with vertex label adjustments.
Now, if u; is not adjacent to both u; and ug in G, then vivvzursvgv7UguUgV; and
uy form Wy in G, a contradiction. Therefore, NG[{m,m,us}}(“l) # (. Without
loss of generality, assume that u; is adjacent to u; in G. Note that for E ¢
G, |Ncivsws,ush(us)| < 1. Now, suppose that ug is not adjacent to vy in G. If
| NG{us,...usus)) (Us)| < 3, then assume without loss of generality that wug is not
adjacent to us or us in G. Then vgusvrusuguougusvg and vy form Wy in G, a
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contradiction. Similar arguments work if ug is not adjacent to vs in G, by replacing
However, GG then contains FE with u; and ug of degree 3, a contradiction.
Thus, R(E, Ws) < 15. This completes the proof of the theorem. O

Next, we will proceed to the results for the tree graphs 7}, with n > 8. There
are 7 types of tree graphs to be discussed, namely S,(4), S,[4], Sn(1,3), S.(3,1),
T4(n), Tp(n) and T(n) as shown in Figure 5.2.

Lemma 5.2.4. Let n > 8. Then for each tree graph T, € {S,(4),5,(3,1),Tc(n)},
R(T,,Ws) > 2n — 1. Also, for each tree graph T, € {S,[4], S.(1,3),Ta(n), Tp(n)},
R(T,,,Ws) >2n—1ifn#0 (mod 4) and R(T,,Ws) > 2n otherwise.

Proof. The graph G = 2K,,_; does not contain any tree graphs of order n, and G
does not contain Wy. Finally, if n =0 (mod 4), then the graph G = K,,_; UKy 4
of order 2n — 1 does not contain S,[4], S,(1,3), Ta(n) or Tg(n); nor does the
complement G contain Wy, O

Theorem 5.2.5. If n > 8, then

om—1 ifn>9;
R(S,(4), W) = =

16 ifn=2~8.
Proof. By Lemma 5.2.4, R(S,(4), Wg) > 2n — 1 for n > 8. For n = 8, observe that
the graph G = K7; U Hg, where Hg is the graph of order 8 as shown in Figure 5.7

does not contain Sg(4) and its complement G does not contain Wy. Therefore, for
n = 8, we have a better bound of R(Sg(4), Ws) > 16.

Figure 5.7: The graphs Hsg.

For the upper bound, let G be any graph of order 2n — 1 if n > 9, and of order
16 if n = 8. Assume that G does not contain S,,(4) and that G does not contain Wy.

If n > 9is odd or n = 8, then G has a subgraph 7' = S,,(3) by Theorem 4.3.11.
Let V(T) = {vo, ..., Un_3,wi,ws} and E(T) = {vuvy, ..., vg0s_3, Vw1, v1wsa }. Also,
let V.= {uvy,...,v,—3} and U = V(G) — V(T); then |V| =n—4 > 5 and |U| =
n—1>8if nis odd, while |U| =8 if n = 8. Since S,(4) € G, v; is not adjacent in
G to any vertex of U UV in G. Furthermore, for each 2 < i <n — 3, v; is adjacent
to at most two vertices of U in G. By Corollary 5.3.1, G[U U V] contains Cg, and
together with v, gives us Wy in G, a contradiction.

For the remaining case when n > 10 is even, 5,1 € G by Theorem 2.2.6.
Let vy be the centre of S,,_1 and set L = Ng,_,(vo) = {v1,...,0p—2} and U =
V(G) = V(Sp-1). Then |U| = n. Since G does not contain S, (4), each vertex of L
is adjacent to at most two vertices of U. We consider two cases here.
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Case 1: E(L,U) =10.

If A(G[U]) > 4, then some vertex u in U is adjacent to at least four vertices in
G[U]. These four vertices and any four vertices from L form Cg in G which, with
hub u, form Wy, a contradiction. Therefore, A(G[U]) < 3 and §(G[U]) > n — 4.
Suppose that 6(G[U]) = n — 4 — ¢ for some ¢ > 0, and let ug be a vertex in U
with minimum degree in G[U]. Label the remaining vertices in U as uy, ..., u,_1
such that Us = {uq,...,un—a} € Ng(ug), and let Ugp = {uy_3,Up_2,u,_1}. Since
Sn(4) € G, each vertex in Uy is adjacent to at most two vertices in Ug, and so
|Eq(Ua,Up)| < 2(n —4). On the other hand, noting that ug is adjacent to exactly
¢ vertices in Up and letting ep < 3 be the number of edges in G[Ug], we see that
|Eq(Ua,Up)| > 36(G[U]) — € —2ep = 3(n—4 —{) —{ — 2ep. Therefore, 2(n —4) >
|Eq(Ua,Up)| > 3n — 12 + 20 — 2ep, implying that n 4+ 2¢ < 4 + 2ep < 10, which is
only possible when n =10, £ =0, eg = 3, and |Eg(Ua,Up)| = 2(n —4) = 12. For
such scenario where n = 10, noting that uy was an arbitrary vertex with minimum
degree in G[U], it is straightforward to deduce that the only possible edge set of

G|U] (up to isomorphism) with Sio(4) € G[U] is

{urug, . .., ugup} U {ujus, ... usur} U {ujus, ugus, usus, ugus } U {ugug, . . ., ugug }

U {wgug, usug, usugt U {ugus, ugus, usus U {usuy, ugue, ugug } U {urus, urug, ugtg} .

Observe now that G[U] contains Cg, which forms a Wy in G with any vertex in L
as hub, a contradiction.
Case 2: E(L,U) # 0.

Without loss of generality, assume that v, is adjacent to u; in G. Since S, (4) €
G, vy is adjacent to at most one vertex of U U L \ {u1} in G. Therefore, we can
find a 4-vertex set V/ C V' \ {v;} and an 8-vertex set U’ C U \ {u;1} such that v; is
not adjacent in G to any vertex of U’ UV’. Note that each vertex of V' is adjacent
to at most two vertices of U’ in G, so |E(V',U’)| < 8. This implies that there are
four vertices in U’ that are each adjacent in G to at most one vertex of V'’ and so
G contains Cs by Lemma 4.3.5 and, with v; as hub, form Wy, a contradiction.

Thus, R(S,(4), Ws) < 2n — 1 when n > 9 and R(S,(4), Ws) < 16 when n = 8.
This completes the proof of the theorem. O]

Lemma 5.2.6. Let H be a graph of order n > 8 with minimum degree 0(H) > n—4.
Then either H contains Su[4] and T4(n), orn =0 (mod 4) and H is the disjoint

union of § copies of Ky, i.e., H = 7 Ky.

Proof. Let V(H) = {ug, ..., un—1}. We first consider the case that H has a vertex
of degree at least n — 3, which we may assume without loss of generality that this
vertex is ug, and that {uy, ..., u,_3} C Ng(uo).

Suppose that u,_s is adjacent to u,_; in H. Since 6(H) > n—4, u,_» is adjacent
to at least n — 6 > 2 vertices of {uy,...,u,_3}, say u; and us, and so H contains
Sp[4]. Furthermore, also by the minimum degree condition, u; is adjacent to at
least n — 7 > 1 vertices of {uy,...,u, 3}, and so H contains Tx(n).

Suppose now that u, s is not adjacent to u,_; in H. Then by the minimum
degree condition, there is a vertex in {uy, ..., u, 3}, say uj, that is adjacent to both
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Up_o and u,_1. The vertices u; and wu,_» must also each be adjacent to a vertex of
{ug, ..., u,_3}, and so H contains both S,,[4] and T4(n).

For the remaining case, suppose that H is (n — 4)-regular and that Ny (ug) =
{uy, ..., up—yg}. Let U = {uy,_3, up_2, u,—1} and suppose that H|[U] has an edge, say
Up—3Up_o. Since u,_3 must be adjacent in H to some vertex of Ng(uy), it follows
that H contains S, [4] if u,,_3 or u,_o is adjacent to u,_;. Suppose then that neither
Up—3 NOT U,_9 is adjacent to u,_1. Then u,_; is adjacent to every vertex of Ny (up).
Note that dgn, (uo)ufun_s} (Un—3) = n — 5 and let u be the vertex of Ny (ug) that is
not adjacent in H to u,_3. Since dy(u) = n—4, u is adjacent in H to some vertex in
Ny (upn—3), so H contains S, [4]. Also, note that u, 3 is adjacent in H to at least n—6
vertices of Ny (ug). If u,—1 is adjacent to some vertex of Ny, (ue)ufun_s1(Un—3),
then H contains T'x(n). Note that this will always happen for n > 9. For n = 8,
there is a case where |Ngny, (uo)ufun—s}] (Un—3)| = [NH[Ny (wo)ufun_11] (Un—1)| = 2 and
NH[NH(uU)U{un_g}](un—S) N NH[NH(uo)U{un_l}](un—l) = @, SO U,_1 is adjacent to u, 3
and u,_o, giving T4(n) in H.

Now, suppose that H[U] contains no edge. Then U; = UU{ug} is an independent
set in H. Furthermore, Ny(u) = {us,...,u,_4} for every u € U, as every vertex
has degree n — 4. Therefore, H[U1] is a K, component in H. Repeating the above
proof for each vertex u of H shows that either u is contained in a K, component of
H, or H contains both S,[4] or T4(n). In other words, either H contains both S, [4]
and Ty4(n), or H is the disjoint union of 2 copies of Ky, and son =0 (mod 4). [

Theorem 5.2.7. Ifn > 8§, then

R(S, 4], We) = {Qn 1 ifn# 0 (mod 4) ;

2n otherwise.
Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Now let G be a graph that does not contain S,,[4] and assume that G does
not contain Wiy.

We first suppose that G has order 2n if n = 0 (mod 4) and G has order
2n — 1 if n is odd. By Theorem 4.3.11, G has a subgraph 7" = S,(3). Let
V(T) = {vo,...,Un_3,wi,we} and E(T) = {vovy, ..., vovn—3} U {vwy,vyws}. Set
U=V(G)—V(T)and V = {vg,...,v,3}. Then |U| =n—j,for j=0ifn=0
(mod 4) and j = 1 if n is odd, and |V| = n — 4. Since G does not contain S, [4],
vy is not adjacent to any vertex of V' in (G, and each vertex of V is adjacent to at
most n — 6 vertices of U UV in GG. Noting also that w; and w, each is adjacent to
at most one vertex of {wy,ws} UU in G, we consider two cases.

Case 1: At least one of w; and ws is not an isolated vertex in G[{wy,ws} U U].
Without loss of generality, assume that w; is adjacent to some vertex u € {wy}U
Uin G. Let Z = (VUU U {w,}) \ {u} and note that |Z| = 2n — 4 — j. Since
Snl4] € G, wy is not adjacent to any vertex of Z in G. If §(G[Z]) > [2251], then
G|Z] contains Cg by Lemma 2.2.10 which with wy, forms Wy in G, a contradiction.
Therefore, §(G[Z]) < [2251] — 1 and A(G[Z]) > [225L] =n—2—j. Since each
v of V is adjacent to at most n — 6 vertices of U UV in G, and wy is adjacent to
at most one vertex of U in G, a vertex with maximum degree in G[Z] must be a
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vertex of U\ {u}. So let us be a vertex of U with dgjz)(us) > n—2. As S,[4] € G,
observe that Ngpz(ug2) € U; each vertex of V' is adjacent to at most one vertex of
Neiz)(uz) in G and each vertex of Ngiz)(u2) is adjacent to at most one vertex of V'
in G. Then by Lemma 4.3.5, any four vertices from V' and any four vertices from
Ngiz)(ug) form Cg in G which with w, forms Wy in G, a contradiction.

Case 2: w; and w, are isolated vertices in G[{wy, ws} U U].

If §(G[U]) > 2L, then G[U] contains Cs by Lemma 2.2.10 which with w; forms
Ws, a contradiction. Thus, 6(G[U]) < 25 — 1, and A(G[U]) > 52 Let u; be a
vertex of U with dgy > % Since S,[4] € G, vy is not adjacent to any vertex
of Nguj(u1) in G. Now, if vy is adjacent to some vertex u of Ne(uy) in G, then
apply Case 1 with w; and u interchanged. So we may assume that v; is not adjacent
to any vertex of Ng(u1) in G.

If E(V, Ne)(u1)) = 0 in G, then any four vertices of V' and any four vertices of
Nejuy(ur) form Cg in G, and with vy, form Wy in G, a contradiction. So without loss
of generality, assume that v, is adjacent to some vertex uy of Ngyj(u;) in G. Since
Snl4] € G, us is not adjacent to any vertex of U\ {u;}. Then vy, vy, wy, we and any
four vertices from U \ {u;,us}, at least three of which are from Nguj(ur) \ {ua},
form Cg in G and, with us, form Wy in G, a contradiction.

In either case, R(S,[4], Ws) < 2n for n =0 (mod 4) and R(S,[4], Ws) <2n—1
for odd n.

Next, suppose that n = 2 (mod 4) and G has order 2n — 1. If G contains
Sn(3), then we can use the previous arguments to show that R(S,[4], Ws) < 2n—1.
Hence, we only need to consider the case where G does not contain S,,(3). Now, by
Theorem 5.2.5, G has a subgraph T' = S,,(4). Let V(T') = {vg, ..., Up_4, w1, we, w3}
and E(T) = {vgv1,...,00n_4, 01w1, V1w, v1w3}. Let U = V(G) — V(T); then
|U| = n — 1. Since G does not contain S, (3) and S,[4], vy is not adjacent in G to
wi, we, wz or U. Now, set U’ = NG[UU{wl}] (wl) U NG[UU{wg}}(w2) U NG[UU{U}g}] (w3).
Then |U’| < 3 and wy, ws and w3 are not adjacent in G to any vertex of U\ U’. By
Lemma 4.3.4, G[U \ U'] is either K,,_1_p or Ky_1-pr) — e. If dgynpq(u') > 2 for
some vertex u’ in U’, then at least two vertices of U \ U’ are not adjacent to v’ in G.
Let X be a set containing these two vertices and any other two vertices in U \ U,
and set Y = {w;,wy, w3, u'}. Note that G[X U Y] contains Cg by Lemma 4.3.5
which, with vy as hub, forms W5, a contradiction. Therefore, every vertex of U’ is
adjacent in G to at least n —2 —|U’| vertices of U \ U’. Hence, §(G[U]) > n—>5, and
since Su[4] € G, Eq(T,U) = 0. Now, if G[V(T)] contains Ss, then G contains Wy
by Observation 4.3.2, a contradiction. Thus, 6(G[V(T)]) > n—4. By Lemma 5.2.6,
G contains S, [4], a contradiction. Hence, R(S,[4], Ws) < 2n—1 for n =2 (mod 4).

This completes the proof. O

Theorem 5.2.8. Ifn > 8§, then

2n—1 ifn#0 (mod4);
2n otherwise.

R(Sn(1,3), Ws) = {

Proof. Lemma 5.2.4 provides the lower bounds. It therefore remains to prove the
upper bounds. Let G be any graph of order 2n if n = 0 (mod 4) and of order
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2n — 1 if n # 0 (mod 4). Assume that G does not contain S,(1,3) and that
G does not contain Wg. By Theorem 5.2.7, G has a subgraph T = S,[4]. Let
V(T) ={vo, ..., Un_a,ws,ws,ws} and E(T) = {vgvy, ..., 0g0n_4, w101, Wy wWe, wyws }.
Set V = {vg,..., 054} and U = V(G) — V(T). Since S,(1,3) € G, wy and ws are
not adjacent to each other, or to any vertex in U U V. Since Cs € G[U U V] as
Ws ¢ G, Lemma 2.2.10 implies that G[U U V] has a vertex u of degree at least
n—3in GIUUV]. Since S,,(1,3) € G, v € U and u is not adjacent to any vertex
in V. Furthermore, E(V, Ng(u)) = 0. Finally, note that ws, any 3 vertices in V/
and any 4 vertices in Ng(u) form Cy in G which, with wy as hub, form W, a

contradiction. O

Theorem 5.2.9. If n > 8, then

R(Ta(n), W) {Zn 1 ifn# O (mod 4);

2n otherwise .
Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Let G be any graph of order 2n if n = 0 (mod 4) and of order 2n — 1
if n 2 0 (mod 4). Assume that G does not contain T4(n) and that G does not
contain Wis.

Suppose that G has a subgraph T' = S,,(3). Let V(T') = {vo, ..., v, 3, w1, wa}
and E(T) = {vovy, . .., VoUn_3, V1w, vywa}. Set V = {vq,..., 0,3} and U = V(G)—
V(T). Since G does not contain T4(n), wy and w,y are not adjacent to any vertex of
UUV in G. Let V' be the set of any n—>5 vertices in V', and U’ be the set of any n—1
vertices in U. If §(G[U'UV']) > n—3, then G[U’UV"] contains Cg by Lemma 2.2.10
which, with w; as hub, form Wy, a contradiction. Therefore, §(G[U'UV']) <n —4
and A(G[U'UV']) > n—3. Since Ta(n) € G, dgpuv(v) < n—6 for each v € V.
Hence, some vertex u € U’ satisfies dgyruy(u) > n — 3, which also implies that u
is adjacent to at least two vertices of U.

Since T4(n) € G, each vertex of V' is adjacent to at most one vertex of Ngjuj(u).
If |Ngj(u)| > n — 4, then we also have that each vertex of Ngj(u) is adjacent
to at most one vertex of V, and so G[V U Ngj(u)] contains Cg by Lemma 2.2.10
which, with w; as hub, form Wjs, a contradiction. Thus, at least three vertices of
V' (and so of V), vy, v3, and v4, are adjacent to u in G. Let a and b be any two
vertices in Ngpj(u). As Ta(n) € G, each of ve, v3, vy is not adjacent to any vertex
of V(G)\ {u,vo}. Then wivswovzavibvgw; and vy form Wy in G, a contradiction.

By Theorem 4.3.11, we have shown that R(S,(3), Ws) < 2n for n =0 (mod 4).
So we may now assume that G has order 2n — 1 with n # 0 (mod 4), and that
G does not contain S, (3). By Theorem 5.2.5, G has a subgraph T' = S,,(4). Let
V(T) = {vo, ..., 0p_4, w1, we, w3} and E(T) = {vovy, .. vovn 4, VW1, U1 W, V1W3 }.
Then U = V(G) — V(T) and |U| = n — 1. Since TA ) ¢ G Wy, Wy, W3 are
not adjacent to each other in G or to any vertex of U. Since S3(n) € G, vy is not
adjacent any vertex of UU{w;, ws,ws}. By Lemma 4.3.4, G[U] is K,,_; or K,,_1 —e.
Since T4(n) € G, each vertex of T is not adjacent to any vertex of U in G, and
so 6(G[V(T)]) > n — 4 by Observation 4.3.2, which in turn implies that G[V(T)]
contains T4(n) by Lemma 5.2.6, a contradiction.

This completes the proof of the theorem. O
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Theorem 5.2.10. Ifn > 8, then

R(T(n), Wy) = {Qn 1 ifn# O (mod 4) ;

2n otherwise.
Proof. Lemma 5.2.4 provides the lower bounds, so it remains to prove the upper
bounds. Let G be a graph with no T(n) subgraph whose complement G' does not
contain Wxg.

Suppose that n = 0 (mod 4) and that G has order 2n. By Theorem 5.2.7,
G has a subgraph T' = S,,[4]. Let V(T) = {vo,...,Vp_4, w1, ws, w3} and E(T) =
{vov, . .+, VoUn_g, VW1, W W, wiw3 }. Set V =A{vy, ... v, 4} and U = V(G)-V(T);
then |V| = n —5 and |U| = n. Since Tp(n) € G, E¢(U,V) = 0 and neither w,
nor ws is adjacent in G to V. Suppose that n > 12. If w, is non-adjacent to some
4 vertices from U, then these 4 vertices and any 4 vertices from V form Cys in G
that with wy forms Wy, a contradiction. Otherwise, we must be adjacent to at least
n — 3 vertices of U in G. Since Tg(n) € G, w3 must not be adjacent to these n — 3
vertices; then any 4 vertices from these n — 3 vertices and 4 vertices from V' form Cy
in G and, with w3 as hub, form Wy, again a contradiction. For n = 8, |V/| = 3 and
|U| = 8. If wy is not adjacent to any vertex of U in G, then by Lemma 4.3.4, G[U]
is K3 or Kg — e which contains T5(8), a contradiction. Otherwise, suppose that wsy
is adjacent to u € U. Since T5(8) € G, wy must not be adjacent to (U U V) \ {u}
in G. Now, if wy is not adjacent to vy in G, then by Observation 4.3.2, G contains
Wy, a contradiction. Else, u is not adjacent to V' U{ws}, and again by Observation
4.3.2, G contains Wy, another contradiction. Thus, R(Tg(n), Ws) < 2n for n = 0
(mod 4).

Next, suppose that n # 0 (mod 4) and that G has order 2n — 1. By The-
orem 5.2.7, G has a subgraph 7" = S,,[4]. Let V(T) = {vg,..., Up_q, w1, ws, w3}
and E(T) = {vov, ..., 000n—4, vwy, wywe, wyws}. Set V. = {vqg,..., 0,4} and
U =V(G) —V(T); then V| = n—5 and [U| = n— 1. Since T(n) ¢ G,
Eq(U,V) = 0 and neither wy nor ws is adjacent in G to V. For n > 9, if we
is non-adjacent to some 4 vertices from U, then these 4 vertices and any 4 vertices
from V form Cy in G and, with ws as hub, form Wy, a contradiction. Otherwise, w,
is adjacent to at least n — 4 vertices of U in G. Since Tg(n) € G, ws is not adjacent
to these n — 4 vertices, so any 4 vertices from these n — 4 vertices and 4 vertices
from V form Cys in G that, with ws, form Wy, again a contradiction. Therefore,
R(Tg(n),Ws) <2n—1for n #0 (mod 4).

This completes the proof. O

Theorem 5.2.11. Forn > 8, R(Tx(n), W) =2n — 1.

Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1 and assume that G does not contain
To(n) and that G does not contain W.

Suppose first that there is a subset X C V(G) of size n with §(G[X]) > n — 4.
If §(G[X]) = n — 4, then let + € X be such that dgx)(z) = n — 4, and set
Y = X\ ({2} U Ngxj(x)) where |Y'| = 3. Noting that 3(n —6) > n — 4 for n > 8,
there must be two vertices of Y that are adjacent to a common vertex of Ngixj(x)
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in G, say to 2’ € Ngxj(x). Then the remaining vertex of Y is not adjacent to any
vertex of Ngixj(z) \ {2’} as Te(n) € G, a contradiction to 6(G[X]) > n — 4. Thus,
§(G[X]) > n — 3. Pick any vertex x € X and pick a subset X’ C Ngx)(x) of size
n—3. Set Y = X\ ({z}UX’) where |Y| = 2. As 2(n—5) > n—3 for n > 8, the two
vertices of Y must be adjacent to a common of X’ in G, say to 2’. Then G| X'\ {2'}]
is an empty graph since Te(n) € G, a contradiction to §(G[X]) > n — 3.

We may now assume that 6(G[X]) < n—>5 whenever X C V(G) is of size n. By
Theorem 4.3.11, G has a subgraph 7' = S,,_1(3). Let V(T') = {vo, . .., VUp—4, w1, wa}
and E(T) = {vovy, . .., VoUn_g, V1w, v1wa}. Set V = {vq, ..., vp4}and U = V(G)—
V(T); then |V| =n —5 and |U| = n. Since Te(n) € G, Eq(U,V) = 0.

For the case n = 8 such that v; is not adjacent to any vertex of U in G, or
the case n > 9, there are four vertices of V(7T') that are not adjacent to any vertex
of U in G. Since 6(G[U]) < n — 5, G[U] contains S5, and so G contains Wy by
Observation 4.3.2, a contradiction.

For the final case n = 8 with v; adjacent to some vertex u of U in G, observe
that since T:(8) € G, the vertex u is not adjacent to any vertex of {ve, vs,v4} UU.
By Lemma 4.3.4, G[U \ {u}] is K7 or K7 — e, which implies that every vertex of
V(T) U {u} is not adjacent to any vertex of U \ {u} in G as T¢(8) € G. Since
S(GIV(T)U {u}]) < n—>5, G[V(T) U {u}] contains S5, and so G contains Wx by
Observation 4.3.2, a contradiction.

This completes the proof of the theorem. O

Theorem 5.2.12. Forn > 8, R(S,(3,1), Ws) =2n — 1.

Proof. Lemma 5.2.4 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain
S,(3,1) and that G does not contain Ws.

Suppose first that there is a subset X C V(G) of size n with §(G[X]) > n — 4.
Let zo be any vertex of X, and pick a subset X’ C Ngx(zo) of size n — 4. Set
Y = X\ ({zo} UX'), and so |Y| = 3. Since §(G[X]) > n — 4, each vertex of Y
is adjacent to at least n — 7 vertices of X’ in G. For n > 10, it is straightforward
to see that there is a matching from Y to X’ in G; hence, G contains S, (3,1),
a contradiction. For n = 9, if dgx)(x9) = n — 4 = 5, we can similarly deduce
the contradiction that G contains Sg(3,1), since in this case, each vertex of Y is
adjacent to at least n — 6 = 3 vertices of X’ in G. As xy was arbitrary, we may
assume for the case when n = 9, we have §(G[X]) > n — 3 = 6, which again leads
to the contradiction that G contains So(3,1).

Now for n = 8, suppose that dgixj(wo) = 4. Let X' = {x1,29, 23,24} and
Y = {5, 24, 27}. Noting that §(G[X]) > n — 4 and Ss(3,1) € G, we deduce that
G[Y] is Kj; all three vertices of Y are adjacent to exactly two common vertices of
X'in G, say to x; and xo; and each of x3 and x4 is not adjacent to any vertex of Y
in G. By the minimum degree condition, x3 and z4 are then adjacent in GG, and each
of them is also adjacent to both x; and x5. This implies that G contains Sg(3, 1),
with z; being the vertex with degree four, a contradiction. As xy was arbitrary, we
may assume for the case when n = 8, we have §(G[X]) > 5, which again leads to
the contradiction that G contains Sg(3,1).

46



We may now assume that §(G[X]) < n—5 whenever X C V(G) is of size n. Re-
call that G has order 2n—1, so by Theorem 4.3.12, G has a subgraph T' = S,,_1(2, 1).
Let V(T) = {vo, ..., 0n_4, w1, ws} and E(T) = {vgvy, ..., UoUy_4, V101, Vows}. Set
V ={v3,v4,...,05_4} and U = V(G) — V(T); then |V| = n—6 and |U| = n. Since
S.(3,1) € G, Eg(U,V) = 0. Now as §(G[U]) <n — 5, G[U] contains S5, and so for
n > 10, G contains Wy by Observation 4.3.2, a contradiction.

For n = 9, Theorem 4.3.12 shows that G has a subgraph T = S9(2,1), so
without loss of generality, assume that v, is adjacent to some vertex u in U. Since
So(3,1) € G, GV U{u}] is an empty graph and u is not adjacent to any vertex of
U in G. By Lemma 4.3.4, G[U \{u}] is K3 or Kg—e, which implies that each vertex
of V(T) U {u} is not adjacent to any vertex of U \ {u} in G since S¢(3,1) € G.
Since §(G[V(T)U{u}]) <n—5, G[V(T) U {u}] contains S5, and so G contains Wy
by Observation 4.3.2, a contradiction.

Finally for n = 8, recall that G has order 15, and so G has a subgraph 7" = S;
by Theorem 2.2.6. Let V(T") = {v],...,v5} and E(T") = {vjvy,...,vovg}. Set
V' ={v],...,v5} and U" = V(G) — V(T"), then |U’'| = 8. Suppose that v} and v}
are adjacent to a common vertex u of U’ in GG, while v] is adjacent to another vertex
u' #wof U in G. Then as S3(3,1) € G, every vertex of {v},v5,vg} U (U \ {u,u'})
is not adjacent to any vertex of V' \ {v1} in G. Now G[V’\ {v]}] contains S5 and
\U’ \ {u,u'}| = 6, and so G contains Wy by Observation 4.3.2, a contradiction.
Similar arguments lead to the same contradiction when the roles of v}, v5, and v}
are replaced by any three vertices of V'. So we may assume that no two vertices of
V' are adjacent to a common vertex of U’ in GG while a third vertex of V' is adjacent
to another vertex of U’ in G.

Fori=1,...,6,let d; = |Eg({v},U)| be the number of vertices of U’ that are
adjacent to v.. Without loss of generality, assume that d; > dy > -+ > dg. Since
§(G[U')) < 3 and so S5 C G[U’], Observation 4.3.2 implies that ds > 1. If d; > 3
and dy > 2, then it is trivial that G contains Sg(3,1), a contradiction. By our
assumption on the adjacencies of vertices in V' to vertices of U’ in G, it is also clear
that when (dy, ds, d3) is of the form (2,2, 1), (2,2,2) or (k,1,1) for k > 3, there is a
matching from {v], v}, v} to U in G, as v} and v} are adjacent to different vertices
of U’ in G. Then G contains Sg(3, 1), a contradiction. If (dy, ds, d3) = (2,1, 1), then
we similarly have that v, and v are adjacent to different vertices of U’ in G, say to
u and v, respectively, which in turn implies that v} is adjacent to two vertices in
U'\ {u,u'}. So G contains Sg(3, 1), again a contradiction.

For the final case when d; = dy = d3 = 1, our assumption implies that v, v, and
v4 are adjacent to a common vertex v € U’ in G to avoid a matching from {v], v}, v5}
to U’ in G. Furthermore, none of v}, vi, vy is adjacent to any vertex of U’ \ {u}
in G. Now if S5 C G[V"], then G contains Wg by Observation 4.3.2, a contradiction.
So 6(G[V']) > 2, and in particular, v} is adjacent to some vertex of V' in G.
Without loss of generality, vy is adjacent to either v; or vs in G. Since Sg(3,1) € G,
G[{vL, vh, vy, v5}] contains S, if v} is adjacent to v} in G, while G[{v}, v}, v}, v5}]
contains Sy if v} is adjacent to vf in G. By Lemma 4.3.4, G[U’ \ {u}] is K7 or
K7 — e, which implies that every vertex of V(T") U{u} is not adjacent to any vertex
of U'\ {u} in G since Sg(3,1) € G. Since §(G[V(T") U {u}]) < 3, GIV(T) U {u}]
contains S5, and so G contains Wy by Observation 4.3.2, a contradiction.

Thus, R(S,(3,1),Ws) < 2n — 1 for n > 8 which completes the proof. O
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5.3 Ramsey numbers for tree graphs with maximum degree of
n — 5 versus the wheel graph of order 9

In this section, we discuss the Ramsey numbers R(7,,, Ws) for tree graphs T,, with
maximum degree of n — 5 versus the wheel graph of order 9. As introduced in the
previous section, there will be 19 tree graphs to be discussed, which are S, (1,4),
Sn(5), Sn[b], Sn(4,1) and all the tree graphs shown in Figure 5.3. Before that, we
introduce two corollaries about the existence of the cycle graph Cs.

Corollary 5.3.1. Suppose that U and V' are two disjoint subsets of vertices of a
graph G for which |Ngpupy(w)| < 2 for each w € U. If |U| > 4 and |V| > 6, then

G[U U V] contains Cs.

Proof. Since |U| > 4 and |V| > 6, we can choose any 4 vertices from U to form
U’ and any 6 vertices from V' to form V'. We have that Ngpugu(u) < 2 for each
u € U'. Then each vertex of U’ is adjacent to at least 4 vertices of V' in G and

G[U'UV'] contains a graph with the properties of (4,6, 4) in Lemma 2.2.11. Hence
by that lemma, G[U U V] must contain Cs. O

Corollary 5.3.2. Suppose that U and V are two disjoint subsets of vertices of a
graph G for which |Ngpyupy(w)| <3 for each w e U. If |U| > 4 and |V| > 8, then

G[U U V] contains Cs.

Proof. Since |U| > 4 and |V| > 8, we can choose any 4 vertices from U to form
U’ and any 8 vertices from V' to form V'. We have that Ny ugu(u) < 3 foi each
u € U'. Then each vertex of U’ is adjacent to at least 5 vertices of V' in G and

G[U'UV'] contains a graph with the properties of (4,8, 5) in Lemma 2.2.11. Hence
by that lemma, G[U U V] must contain Cs. O

We are now ready to present the Ramsey numbers for tree graphs with maximum
degree of n — 5 versus the wheel graph of order 9.
Lemma 5.3.3. Letn > 8. Then R(T,,Ws) > 2n—1 for each T,, € {S,(1,4),S.(5),
Sul5],Sn(4,1), Tp(n), ..., Ts(n)}. Also, R(T,,Wg) > 2n if n = 0 (mod 4) and
T, € {S.(1,4),Tp(n), Sn(2,2),Tn(n)} or if T,, € {Tr(8),Tr(8)}.

Proof. The graph G = 2K, clearly does not contain any tree graphs of order
n, and G does not contain Wg. Furthermore, if n = 0 (mod 4), then the graph
G = K,—1 UK, 4 of order 2n — 1 does not contain S,(1,4), Tp(n) or S,(2,2); nor
does the complement G contain Wg. Finally, the graph G = K7 U K, 4 does not
contain Tx(8) or Tr(8) and G does not contain Wy. O

Theorem 5.3.4. Ifn > 8§, then

2n—1 ifn#0 (mod4);

2n otherwise.

R(Sn(1,4), Ws) = {

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove _the upper
bound. Let G be a graph with no S,,(1,4) subgraph whose complement G does not
contain Wy. Suppose that G has order 2n if n = 0 (mod 4) and that G has order
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2n — 1 if n # 0 (mod 4). By Theorem 5.2.8, G has a subgraph 7' = S,(1,3). Let
V(T) ={vo, ..., Un_a,wr,ws,ws} and E(T) = {vgvy, ..., 00n_4, V1w, Wy We, Wows }.
Set V- ={vq,...,vp—4} and U = V(G) — V(T); then |V| = n—>5 and |U| = j where
j=nifn=0 (mod4) and j =n—1if n#£0 (mod 4). Since S,(1,4) € G, ws is
not adjacent in G to any vertex of UUV and dguvy(vi) < n—7 for each v; € V. If
§(GIUUV]) > [2=25] > 2224 then G[U U V] contains Cs by Lemma 2.2.10 and
thus Wy with ws as hub, a contradiction. Therefore, §(G[UUV]) < [®=2H] —1 and
AGIUUV]) >n—5+j— [=2H] = |22 | > n — 3. Since dgpovy(v;) <n—7
for each v; € V, dguuvy(u) > n — 3 for some vertex u € U. Since S,(1,4) € G, no
vertex of V' is adjacent to {u} U Ngyuy(u) in G.

For n > 9, any 4 vertices from V' and any 4 vertices from {u} U Ngpuv)(u) form
Cs in G and, with ws as hub, form Ws, a contradiction. Suppose that n = 8; then
V = {vs,vs,v4}. Let {uy, ..., us} be 4 vertices in Ngpuy)(u). Since Ss(1,4) € G, wy
is not adjacent to Nguv) (u). If wy is not adjacent to ws, then wyuveusvzUzVLULWY
and ws form Wy in G, a contradiction. Therefore, w; is adjacent to ws in G.
Then w, is not adjacent to any vertex of U UV in G. Since dgp(v;) < 1 for
i = 2,3,4, one of the vertices of V', say v, is not adjacent to the other two vertices
of V. Then wjwsuswsusvsusvsu; and vy form Wy in G, a contradiction. Thus,
R(S,(1,4),Wg) < 2n for n = 0 (mod 4) and R(S,(1,4),Wg) < 2n —1 for n Z 0
(mod 4).

This completes the proof. n

Theorem 5.3.5. If n > 9, then R(S,(5), Ws) =2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G' does not contain S,,(5)
and that G does not contain Ws. By Theorem 5.2.5, G has a subgraph T = S,,(4).
Let V(T) = {vo,..., Vn_4, w1, wo, w3} and E(T) = {vovy,..., VgUp_4, V1W1, V1Wa, V1W3 }.
Set V. =A{vy,...,v,—4} and U = V(G) — V(T); then |V| =n —5and |[U| =n — 1.
Since S,,(5) € G, vy is not adjacent to any vertex of U UV in G. Furthermore, for
each v; in V| v; is adjacent to at most three vertices of U in G.

For n > 9, we have |V| > 4 and |U| > 8. By Corollary 5.3.2, G[UUV] contains Cg
which together with v; gives Wy in G, a contradiction. Thus, R(S,(5), Wg) < 2n—1
which completes the proof. ]

Theorem 5.3.6. Ifn > 9, then R(S,[5], W) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G' does not contain S, [5]
and that G does not contain Ws. By Theorem 5.3.5, G has a subgraph T = S,,(5).
Let V(T) = {vo,..., 0 5,w1,...,ws} and E(T) = {vgvy, ..., VoUp_5, V1W1, ..., V1W4 }.
Set V =A{vy,...,v,—5} and U = V(G) — V(T); then |V|=n —6 and |[U| =n — 1.
Since S,[5] € G, vy is not adjacent to wy,...,ws in G and wy,...,w, are each
adjacent to at most two vertices of U in G. Now, suppose that vy is non-adjacent
to at least six vertices of U in GG. By Corollary 5.3.1, six of these vertices together
with wy, . .., w4 contain Cy in G which with vy gives Wy in G, a contradiction. Then
suppose that vy is adjacent to at least n — 6 vertices of U in G. Choose a set U’
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of n — 6 of these vertices. Since S,[5] € G, vy is not adjacent to any vertex of
VUU'in G. If 5(G[VUU']) > n— 6, then by Lemma 2.2.10, G[V UU’] contains Cg
which with v, gives Wy in G, a contradiction. Therefore, §(G[V UU’]) < n — 7 and
A(GIV UU']) > n — 6. However, this gives S,,[5] in G with v and v, as the centre
of S,—5 and S5, respectively, where u is a vertex in V U U’ with depupn(u) > n—6,

a contradiction. Thus, R(S,[5], Ws) < 2n — 1 which completes the proof. O
Theorem 5.3.7. Ifn > 8§, then

R(S,(2,2), W) = {Qn—l zfn;‘éO (mod 4);
2n otherwise.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Assume that G is a graph with no S,(2,2) subgraph whose com-
plement G does not contain Ws. Suppose that n = 0 (mod 4) and that G has
order 2n. By Theorem 5.2.10, G has a subgraph 7' = Tg(n). Let V(T) =
{vo, ..., Up_a, wy, we,ws} and E(T) = {vgvy, ..., VUp_4, V1w, WiWa, Vowsz }. Set V =
{vs,...,vp_4} and U = V(G) — V(T); then |V| = n — 6 and |U| = n. Since
Sn(2,2) € G, ws is not adjacent in G to U UV and v, is not adjacent to V.
If 6(GUUV]) > 225 = n — 3, then G[U U V] contains Cs by Lemma 2.2.10
which with w, forms Ws, a contradiction. Therefore, §(G[U U V]) < n — 4, and
A(GIU UV]) > n — 3. Now, there are two cases to be considered.

Case 1la: One of the vertices of V', say vs, is a vertex of degree at least n — 3 in
GlU U V].

Note that in this case, there are at least 4 vertices from U, say uq, ..., uy, that
are adjacent to vz in G. Since S,(2,2) € G, these 4 vertices are independent and
are not adjacent to any other vertices of U. Since n > 8, U contains at least
4 other vertices, say us, ..., Us, SO UjUsUslgstrustist, and ws forms Wy in G, a
contradiction.

Case 1b: Some vertex u € U has degree at least n — 3 in G[U U V.

Since S,,(2,2) € G, u is not adjacent to any vertex of V in G. Therefore, u
must be adjacent to at least n — 3 vertices of U in G. Without loss of generality,
suppose that wy, ..., u,—3 € Ngj(u). Note that V' is not adjacent to Ngjyj(u), or
else there will be S,,(2,2) in G, a contradiction. If n > 12, then any 4 vertices from
Nap (u) and any 4 vertices from V form Cjg in G which, with ws as hub, forms
Wy, a contradiction. Suppose that n = 8 and let the remaining two vertices be
ug and ur. If |Ngyuy,.usuy ()] < 1 for i = 6,7, then let X = {u,...,us} and
Y = {v3, vy, u6,u7}. By Lemma 4.3.5, G[X U Y] contains Cg and, with ws as hub,
forms Wy in G, a contradiction. Therefore, one of ug and uz, say ug, is adjacent

to at least two of uy,...,us, say u; and us. Since S3(2,2) € G, uy is adjacent in
G to at least two of ug, ug, us, say uz and uy, and vy, ..., vs, w; are not adjacent in
G to u,uy,...,us. Now, if ws is not adjacent to some vertex a € {vg, vy, w }, then

Uy V3UaVsugurusauy and wy form Wy in G, a contradiction. Hence, ws is adjacent to
v, v1 and wy in G. Similarly, vy is not adjacent to u; and v, is adjacent to v; and
wy. Since S5(2,2) € G, ws is not adjacent to U UV, and w; is not adjacent to V.
Then u;vausw; uswouswsuy and vs forms Wy in G, a contradiction.
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In either case, R(S,(2,2), Ws) < 2n.

Suppose that n # 0 (mod 4) and that G has order 2n — 1. By Theorem 5.2.10,
G has a subgraph 7' = T(n). Let V(T) = {vo, ..., vp—a, w1, wa, w3} and E(T) =
{vov1, . .., VoUn_s, V1w, Wiwa, vows}. Set V = {vs,...,v,4}and U = V(G) -V (T);
then |[V]| =n —6 and |U| = n — 1. Since S,(2,2) € G, ws is not adjacent in G to

UUV. If §(GIUUV]) > [222], then G[U UV] contains Cs by Lemma 2.2.10 which
with ws forms W, a contradiction. Therefore, §(G[U UV]) < [225] — 1 =n — 3,
and A(G[U UV]) > n — 3. Again, there are two cases to be considered.
Case 2a: A vertex of V, say vs, has degree at least n — 3 in G[U U V],

There must be at least 4 vertices from U, say uq,...,us that are adjacent to
v3 in G. Since S,(2,2) € G, uy,...,us are independent and are not adjacent to
any other vertex of U. Since n > 9, there are at least 4 other vertices of U, say
Us, . .., ug, and ujususugusurusuguy and ws form Wy in G, a contradiction.

Case 2b: A vertex u € U has degree at least n — 3 in G[U U V.

Since S,(2,2) € G, no vertex of V is adjacent to u or to Ngpj(u). Then w is
adjacent to at least n — 3 vertices of U in G; suppose without loss of generality that
U, ..., Un—3 C Ngpj(w). If n > 10, then any 4 vertices from Ngu)(u), any 4 vertices
from V and ws form Wy in G, a contradiction. Suppose that n = 9 and let u; be the
vertex in U \ {u,u1,...,u,_3}. If uy is adjacent in G to at least two of uy, ..., us,
say uy and ug, then ujurusvzugvsugvsu; and ws form Wy in G, a contradiction.
Therefore, u; is adjacent in G to at least 5 of the vertices uq, ..., ug, say uy, ..., us.
Since S9(2,2) € G, U is not adjacent in G to {vg, vy, v, w1} UV and ws is not
adjacent to w or uz. If ws is not adjacent to some vertex a € {vg, v, wy, ws}, then
v vausvsuran and ws form Wy in G, a contradiction. Hence, ws is adjacent to vy,
vy, wy and wy in G. Similarly, vy is adjacent to vy, wy and ws. Since Sy(2,2) € G,
wo is non-adjacent to at least one of vz, vy, vs5, say vs without loss of generality.
If vy is also not adjacent to vz, then uwwsurviuvuswsu and ws form Wy in G, a
contradiction. Thus, v; is adjacent to vz, then vs is not adjacent to both v and
vs, or else G contains Sy(2,2). Without loss of generality, assume that vz is not
adjacent to vy in G. Then uwsurv4uVousw3u and ws form Wy in G, a contradiction.

In either case, R(S,(2,2), Ws) <2n —1 for n # 0 (mod 4). O

Theorem 5.3.8. Ifn > 9, then R(S,(4,1),Ws) =2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain
S,(4,1) and that G does not contain Wj.

Suppose first that there is a subset X C V(G) of size n with §(G[X]) > n — 4.
Let 2y be any vertex of X, and pick a subset X’ C Ngixj(xo) of size n — 5. Set
Y =X\ ({20} UX'), and so |Y| = 4. Since 0(G[X]) > n — 4, each vertex of Y is
adjacent to at least n — 8 vertices of X’ in G and each vertex of X’ is adjacent to
at least one vertex of Y in G. Hence, for n > 11, it is straightforward to see that
there is a matching from Y to X’ in G; hence, G contains S, (4, 1), a contradiction.

For n =10 and §(G[X]) > n —4 =6, let X = {xg,..., 29} and {z1,...,26} C
Neix)(xo). Since §(G[X]) > 6, vertices 27, xs and x9 must each be adjacent to at
least 3 vertices of x1,...,x¢. It is straightforward to see that there is a matching
from {x7, 28,29} to {z1,...,26} in G; without loss of generality, assume that x; is
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adjacent to x;46 in G for ¢ = 1,2, 3. Now, if there is any edge in G[{z4, x5, x6}|, then
S10(4,1) C G, a contradiction. Otherwise, G[{z4, x5, z6}| is independent and each
of x4, x5, 6 must be adjacent to at least two vertices of x7,xg, 29 in G. Without
loss of generality, assume that x4 is adjacent to 27 and zg in G. Since S1o(4,1) € G,
x5 cannot be adjacent to z; and xo in G, but this is impossible since §(G[X]) > 6.

Now for n = 9, suppose that dgxj(xo) = n—4 = 5. Let Ngx)(z0) = {z1,..., 25}
and Y = {xg, z7, xs}. Then three vertices of Y are each adjacent to at least n—6 = 3
vertices of Ngixj(0) in G. Without loss of generality, assume that z; is adjacent to
xg, T2 is adjacent to x7 and x3 is adjacent to xg, respectively. Now, if 24 is adjacent
to x5, then G contains Sg(4,1), a contradiction. Otherwise, x4 and x5 must each be
adjacent to at least one of x4, x7 and xg. Assume that x4 is adjacent to xg. Then
x5 is not adjacent to x1 and x4 in G, or else G contains Sy(4, 1). If z5 is adjacent to
xg, then x1, x4, 5 must be independent in G, and they are each adjacent to x7 or g
in G; assume that x; is adjacent to 7. Then x4 and x5 are not adjacent to x5 in G,
and since §(G[X]) > 5, they are adjacent to z7 and x5 in G, and G contains Sy (4, 1),
a contradiction. If x5 is not adjacent to xs, then since dgx] (vo) > 5, x5 is adjacent
to x9, x3, 7 and xg in G. Then x4 is not adjacent to x5 and x3 in G, and x4 is
adjacent to z1, zg, 7 and xg in G, and this gives us So(4, 1) in G, a contradiction.
As xy was arbitrary, assume for the case when n = 9 that §(G[X]) > n — 3 = 6,
which again leads to the contradiction that G contains Sg(4,1).

Now assume that 6(G[X]) < n — 5 whenever X C V(G) is of size n. Recall
that G has order 2n — 1, and so by Theorem 5.2.12, G has a subgraph S,(3,1)
and thus a subgraph T' = S,_1(3,1). Let V(T) = {vo,...,vn_5, w1, wq, w3} and
E(T) = {vovy, ..., 000 5, w1, Vowe, v3ws}. Set V. = {vy,...,v,5} and U =
V(G) = V(T) = {u1,...,u,}; then |V| =n — 8 and |U| = n. Since S,(4,1) € G,
V is not adjacent to any vertex of U in G. Now as 6(G[U]) < n — 5, G[U] contains
S5, and so for n > 12, G contains Wy by Observation 4.3.2, a contradiction.

Suppose that n = 11. If vy is not adjacent to any vertex of U in G, then G
contains Wy by Observation 4.3.2, a contradiction. Assume that vy is adjacent to
some vertex u € U. Since Si1(4,1) € G, G[V U{u}] is an empty graph and w is not
adjacent to any vertex of U in G. By Lemma 4.3.4, G[U \ {u}] is K10 or K19 —e, so
no vertex of V(7)) U{u} is adjacent to any vertex of U\ {u} in G, as S1:(4,1) € G.
Since §(G[V(T) U {u}]) <n —5, G[V(T) U {u}] contains S5, so G contains Wy by
Observation 4.3.2, a contradiction.

Now, suppose that n = 10. Then G has order 19, and by Theorem 5.2.12, G
has a subgraph 7" = S1¢(3,1). Let V(T") = {vy,..., v, wi, wy, wi} and E(T") =
{vguy, ..., vhug, viw], viwh, viws}. Set V! = {v), vt vi} and U = V(G) — V(T') =
{uf, ..., uy}. Since Sip(4,1) € G, V' must be independent in G and is not adjacent
to any vertex of U’ in G. If v, is adjacent to some vertices in U’ in G, say u}. Since
S10(4,1) € G, u} is not adjacent to any vertex of V/ or U’ \ {«;} in G. Then by
Lemma 4.3.4, G[U"\ {u}}] is K3 or K3 — e, so no vertex of V(T”) is adjacent to any
vertex of U'\ {u}} in G, as S19(4,1) € G. Since §(G[V (T")]) < 5, G[V(T")] contains
Ss, so G contains Wy by Observation 4.3.2, a contradiction. Now, suppose that v}
is not adjacent to any vertex of U’ in G. Note that |U’ U {w|}| = n; therefore,
S(G[U U {w}}]) <5, and so G[U' U {w}}] contains Ss. If w} is not adjacent to any
vertex from V' U {v}}, then by Observation 4.3.2, G contains Wy, a contradiction.
Otherwise, there are two cases to be considered.

92



Case la: w) is adjacent to some vertices of V' in G.

Without loss of generality, assume that w) is adjacent to v} in G. In this case,
v} is not adjacent to U' U {v,v5}. Then by Lemma 4.3.4, G[U'] is Ky or Ko — e,
so no vertex of V(T”) is adjacent to any vertex of U’ in G, as Sio(4,1) € G. Since
S(GV(T")]) <5, GIV(T")] contains Ss, and so G contains Wy by Observation 4.3.2,

a contradiction.

Case 1b: w) is non-adjacent to each vertex of V’ in G.

In this case, w] is adjacent to v in G. Note that w) is not adjacent to U’, since
this would revert to the case where vf is adjacent to some vertex of U’. Then again
by Lemma 4.3.4, G[U'] is Kq or Ky — e, so no vertex of V(7") is adjacent to any
vertex of U’ in G, as Syo(4,1) € G. Since §(G[V(T")]) < 5, G[V(T")] contains S,

and so G contains Wy by Observation 4.3.2, a contradiction.

Finally, suppose that n = 9. Then G has order 17, and so G has a subgraph
T" = S9(2,1) by Theorem 4.3.12. Let V(T") = {w(,...,v5, wi, wh} and E(T") =
{vpvl, . .., v, viwy, vhwh . Set Vo= {vh, ... v} and U = V(G) — V(T') =
{ul, ... ui}.

Now, suppose that Fq(V’,U") # (). Without loss of generality, assume that v} is
adjacent to v} in G. Since Sy(4,1) € G, v, vk, vg are independent and not adjacent
to any vertex of U\ {u}} in G.

Suppose that v} is adjacent to some vertex of U"\ {u}}, say ). Then ) is non-
adjacent to {v}, vi, vg yUU\ {u], u)} in G. Since §(G[{w], wh}UU\ {us}]) < n—5,
G{w, wh} UU"\{uy}] contains S5. If v}, v5, vg and uy are not adjacent to w}, wy or
u) in G, then G contains Wy by Observation 4.3.2, a contradiction. Assume that v}
is adjacent to w| in G. In this case, v is not adjacent to {v}, vg}UU’\{u}} in G, and
v ubviuvgububugy) and v form Wy in G, a contradiction. Similar contradictions
occur if we assume that vg, v or uf, are adjacent to w}, wj or v} in G.

Thus, v} is not adjacent to any vertex of U’'\ {u}} in G. Since §(G[{w], w)} U
U'\{u}}]) <n-5, 6[{w;,wg}_u U'\ {u}}] contains Ss. If v, v}, vi and vj are not
adjacent to wj or wj in G, then G contains W by Observation 4.3.2, a contradiction.
There are two cases to be considered.

Case 2a: v is adjacent to w] or w) in G.

Without loss of generality, assume that vj is adjacent to w} in G. Note that
v} and w] are not adjacent to U’ \ {u}}, since this would revert to the case where
vg is adjacent to some vertex of U’ \ {u}}. Again, since 6(G[{ws} UU’]) < n — 5,
G{w)} UU'}] contains Ss. If v}, v}, v and v} are not adjacent to wh and u} in G,
then G contains Wy by Observation 4.3.2, a contradiction.

Suppose that v] is adjacent to wj or u}, say wh, in G. If w] is not adjacent to
vy, vi or vg, then by Lemma 4.3.4, G[U’ \ {u}}] is K7 or K7 — e, so no vertex of
V(T") U {u}} is adjacent to any vertex of U’ \ {u}} in G, as Sy(4,1) € G. Since
S(GIV(T)]) < n—5, G[V(T")] contains S5, and so G contains Wy by Observa-
tion 4.3.2, a contradiction. Otherwise, w] is adjacent to at least one of v}, vi, vy
in G, say vj. Then v} is not adjacent to {vf,vg} U U’ \ {u}}, since G does not
contain Sg(4,1). Similarly, by Lemma 4.3.4, G[U’ \ {u}}] is K7 or K7 — e, so no
vertex of V(T") U {u}} is adjacent to any vertex of U’ \ {u}} in G, as Sy(4,1) € G.
Again, since §(G[V(T")]) < n — 5, G[V(T")] contains S5, and so G contains Wy by
Observation 4.3.2, a contradiction.
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Now suppose that v] is non-adjacent to both wj and w} in G. Then one of
vy, U5, v is adjacent to wy or uj in G. Without loss of generality, assume that v} is
adjacent to w) in G. In this case, v} is not adjacent to {vi,vg} U U’ \ {u}}. Then
again, by Lemma 4.3.4, G[U"\ {u}}] is K7 or K7 — e, so no vertex of V(T")U{u}} is
adjacent to any vertex of U'\{u}} in G, as Sg(4,1) € G. Since 6(G[V(T")]) < n—5,

G[V (T")] contains S5, and so G contains Wy by Observation 4.3.2, a contradiction.

Case 2b: v is non-adjacent to both wj and w) in G.

In this case, one of v}, vi, v is adjacent to w| or w) in G, say v} to w} in G.
Since So(4,1) € G, v} is not adjacent to {vf, vg}UU’\ {u}} in G. By Lemma 4.3.4,
GlU"\ {u}}] is K7 or K7 — e, so no vertex of V(T") U {u}} is adjacent to any vertex
of U\ {u}} in G, as S9(4,1) € G. Since §(G[V(T")]) < n—>5, GV (T")] contains Ss,
and so G contains Wy by Observation 4.3.2, a contradiction.

Now suppose that Eqg(V',U") = 0. If 6(G[V']) = 0, then by Lemma 4.3.4,
G[U'] is Kg or Kg — e, and no vertex of V(T") is adjacent to any vertex of U’ in
G, as Sy(4,1) € G. Since §(G[V(T")]) < n—5, G[V(T")] contains S5, and so G
contains Wy by Observation 4.3.2, a contradiction. Hence, 6(G[V’]) > 1, and since
So(4,1) € G, one of the vertices in V' is adjacent to other three in G. Without loss
of generality, assume that v} is adjacent to v}, v; and v in G. Since G does not
contain Sy(4,1), v}, v, v are independent in G. Furthermore, v is not adjacent
to U' in G or else this reverts to the case where v} is adjacent to v} and vy is
adjacent to any vertex of U’ \ {u}}. Since §(G[{w|} UU']) <n -5, G[{w|} UU’|
contains Ss. If v, v}, v and vj are non-adjacent to w} in G, then G contains Wy
by Observation 4.3.2, a contradiction. Again, there are two cases to be considered.

Case 3a: v is adjacent to w] in G.

Note that v} and wj are not adjacent to U’, or else this reverts to the case
where v} is adjacent to wj and vf is adjacent to any vertex of U"\ {u}}. Now,
since 6(G[{w,y} UU']) < n —5, G[{wy} UU'}] contains Ss. If v)), v, v5 and v} are
non-adjacent to w) in G, then G contains Wy by Observation 4.3.2, a contradiction.

Suppose that vj is adjacent to w) in G. Again, v} and w), are non-adjacent to
U’, or else else this reverts to the case where v} is adjacent to u} and v is adjacent
to any vertex of U’ \ {u}}. Now, Eq(V(T"),U’) = 0, and since §(G[V(T")]) < n—5,
G[V(T")] contains Ss, and so G contains Wy by Observation 4.3.2, a contradiction.

Therefore, w} is adjacent to at least one of v}, vf and vj in G, say v}. Then v}
is not adjacent to vf, vg or U’, as So(4,1) € G, a contradiction. By Lemma 4.3.4,
G[U'] is Kg or Kg — e, so no vertex of V(71") is adjacent to any vertex of U’ in G,
as So(4,1) ¢ G. Again, since 6(G[V(T")]) < n—5, GV (T")] contains S5, and so G
contains Wg by Observation 4.3.2, a contradiction.

Case 3b: v is not adjacent to wj in G.

In this case, one of v}, v}, v§ is adjacent to w) in G, say vj. Since S9(4,1) € G,
v} is not adjacent to vi, vg or U’ in G. By Lemma 4.3.4, G[U'] is Kg or K3 — e,
so no vertex of V(1") U {u}} is adjacent to any vertex of U’ in G, as So(4,1) ¢
G. Since §(G[V(T")]) < n — 5, G[V(T")] contains S5, and so G contains Wy by
Observation 4.3.2, a contradiction.

Thus, R(S,(4,1), Ws) < 2n — 1 for n > 9 which completes the proof. ]
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Theorem 5.3.9. If n > 8, then

R(Tp(n), Wy) = {2n 1 ifn# O (mod 4);
2n otherwise.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no Tp(n) subgraph whose complement G does
not contain Ws. Suppose that n = 0 (mod 4) and that G has order 2n. By
Theorem 5.2.7, G has a subgraph T' = S, [4]. Let V(T') = {vg, ..., Up_4, w1, ws, w3}
and FE(T) = {vovy, . .., VoUp_4, Vw1, wiwe, wiwz}. Set V = {wvy, ... v, 4} and U =
V(G) = V(T); then |V| =n — 5 and |U| = n. Since Tp(n) € G, neither wy nor w;
is adjacent in G to U U V.

Suppose that n = 8. Since G does not contain Tp(n), V must be inde-
pendent and non-adjacent to U in G. Then for any vertices ui,...,uy in U,
V3U VU Wo Uz w3 U5 and vy form Wy in G, a contradiction. Suppose that that

n>12. Then [UUV|=2n—5. If §(G[U UV]) > [25], then G[U U V] contains
Cs by Lemma 2.2.10 which, with wy as hub, forms Wy, a contradiction. Thus,
S(GIUUV]) < [22] —1=n—3,and A(G[UUV]) >n— 3. Now, there are two

cases to consider.

Case 1: One of the vertices of V', say vg, is a vertex of degree at least n — 3 in
GlU U V].
Since Tp(n) € G, vy is not adjacent in G to wy, wy or U UV \ {va}. Let

U’ = {wy,ws} UU UV \ {vg}; then |U'| = 2n — 4. Now, if §(G[U]) > 221 =

2
n — 2, then G[U'] contains Cg by Lemma 2.2.10 which, with v; as hub, forms Wy, a
contradiction. Hence, §(G[U']) < n — 3, and A(G[U’]) > n — 2. Note that neither
wy nor ws have degree A(G[U']). Therefore, dgp(uw') > n — 2 for some vertex
uw € UUV\{vy}. By the Inclusion-Exclusion Principle, some vertex a € UUV \ {vs}
is adjacent in G to both «' and vy. Then G has a subgraph Th(n) in which o’ is

the vertex of degree n — 5 and vy is the vertex of degree 3, a contradiction.

Case 2: Some vertex u € U has degree at least n — 3 in G[U U V].

Suppose that there is at least one vertex in V' that is adjacent to v in G, say v,.
Then G has a subgraph Tp(n) in which u is the vertex of degree n — 5 and vy is the
vertex of degree 3, a contradiction. Similarly, no other vertex of V' is adjacent to u.
Now, since Tp(n) € G, we must have AG[Nap (w)Ufo}] (v) <1 and dgupy(e) <1,
for any v € V and © € Ngpj(u). Then by Lemma 4.3.5, G[V U Ngj(u)] must
contain Cg, which with ws as hub, forms Wy in GG, a contradiction.

Now, suppose that n # 0 (mod 4) and that G has order 2n — 1. By Theo-
rem 5.2.7, G has a subgraph T' = S,[4]. Let V(T) = {vg,..., Upn_4, w1, ws, w3}
and E(T) = {vov, ..., 000n_4, 1wy, w we, wiws}. Set V. = {vg,...,v,_4} and
U =V(G) —V(T); then |V| = n—5and |U| = n — 1. Since Tp(n) € G, nei-
ther w, nor ws is adjacent to U UV in G. If §(G[U U V]) > 228 = n — 3, then
G[U U V] contains Cg by Lemma 2.2.10 which, with w, as hub, forms Wg in G, a
contradiction. Thus, 6(G[UUV]) < n—4, and A(G[UUV]) > n—3. The arguments
of the preceding cases then lead to contradictions.

Thus, R(Tp(n), Ws) < 2n, which completes the proof. ]
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Lemma 5.3.10. Each graph H of order n > 8 with minimal degree at least n — 4
contains Tg(n) unlessn =8 and H = Ky 4.

Proof. Let V(H) = {uo,...,u,—1}. First, suppose that A(H) > n — 3 and assume
without loss of generality that wy,...,u,—3 € Ng(ug). Suppose that wu, o and
un—1 are adjacent in H. Since 6(H) > n — 4, Ny(ug) N Ny (un—2) # 0, so assume
without loss of generality that u, is adjacent to w,_s in H. Furthermore, u; must
be adjacent to at least n — 7 vertices from {uo,...,u,—3} in H. Without loss of
generality, assume that u; is adjacent to us,...,u,_¢ in H. Now, if any vertex of
{ug, ..., u,—¢} is adjacent to u,_s, U,_4 or u,_3 in H, then we have Tgr(n) in H.
Suppose that is not the case; then each vertex of {us, ..., u, ¢} must be adjacent
to each other and to ug, u1, u, 2 and u, ;1 in H. Since dy(u,_3) > n —4, u,_3
is adjacent to at least one of uy, u, o and w,_; in H, so H contains Tg(n), a
contradiction.

Suppose that u,_» is not adjacent to u,—; in H. Since §(H) > n — 4, u,_» and
u,—1 are each adjacent to at least n — 5 vertices in Ng(up), so at least one vertex
of Ny (up), say uq, is adjacent in H to both w, o and w,_1. If H[{ug, ..., u,_3}]
contains subgraph 2K, then H contains subgraph Tz (n). Note that this will always
happens for n > 11, since §(H) > n — 4.

Suppose that n = 10. Since §(H) > 6, us must be adjacent in H to at least two
vertices of ug, ..., uy, without loss of generality say us and ug. If H[{uy,...,us}]|
contains any edge, then H contains Tx(10). Otherwise, {uy, ..., ur} must be inde-
pendent in H and each of these vertices must be adjacent to ug, uy, us, us, ug and
ug; this also gives a subgraph Tg(10) in H.

Similarly, for n = 9, us, must be adjacent to at least one of ugs, ..., ug, say us,
in H. If H[{uy,us,ug}] contains any edge, then H contains Tg(9). Otherwise,
{u4,us,ug} is independent in H and since 6(H) > 5, uy is adjacent to at least one
of us and us, and us is adjacent to at least one of u; and ug. Again, this gives a
subgraph Tx(9) in H.

For n = 8, if us,...,us are independent in H, then they are each adjacent to
ug, u1, ug and uy in H, which gives Tg(8) in H. Otherwise, we can assume that
ug is adjacent to ug in H. If uy is adjacent to us in H, we will have Tg(8) in H;
otherwise, assume that uy4 is not adjacent to us. Now, suppose that uy is adjacent to
ug or ug in H. If us is adjacent to ug or uy in H, then H contains Tg(8). Otherwise,
us must be adjacent to ug, uy, us and uz since 6(H) > 4. However, this also gives
Tg(8) in H. On the other hand, suppose that u, is adjacent to neither uy nor ug in
H. Similarly, us is not adjacent to us or to ug in H. Since 6(H) > 4, both uy and
us are adjacent to ug, u1, ug and u; in H, and this also gives Tg(8) in H.

Suppose that H is (n — 4)-regular and that Ny (ug) = {u1,...,un—a}. By the
Handshaking Lemma, this only happens when n is even.

Suppose that n > 10. Note that u,_3, u,_» and u,_; are each adjacent to at
least n — 6 vertices of Ny (up) in H. By the Inclusion-Exclusion Principle, at least
one of uy, ..., u, 4 is adjacent to two of u,_3,u, o, u,_1 in H, say u; to u,_3 and
Un_2, and there must be another vertex, say us, that is adjacent to u,,_; in H. Now,
if there is any edge in H[{us,...,u,—4}], then Tr(n) C H, and this always happens
for n > 12. For n = 10, since dg(u;) = 6, uy is non-adjacent in H to at least one
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of ug,...,ug, say us. Since dy(uz) = 6, uz is adjacent to one of wuy, us, ug, giving
Tg(10) in H.

Now suppose that n = 8. If us, ug and u; are independent in H, then H = K, 4.
Otherwise, we can assume that us is adjacent to ug in H. If us is also adjacent to
w7 in H, then us is adjacent in H to two vertices of Ny (ug), say u; and uy. Suppose
that wug is adjacent to uy or ug, say uj, in H. Since dg(ug) = 4, ug is also adjacent
to at least one of uy, ug, ug, uy, so Tp(8) C H. Otherwise, suppose that neither wug
nor uy is adjacent to uy or us in H. Since H is a 4-regular graph, ug and wu; are
both adjacent to uz and uy in H, and u; is adjacent to at least one of uz and uy
in H. This gives Tg(8) in H. On the other hand, suppose that us is not adjacent
to u7; in H. Then similarly, ug is not adjacent to u; in H, so uy; is adjacent to uq,
ug, ug and uy in H, and H contains Tg(8). O

Theorem 5.3.11. Forn > 8,

2n—1 ifn>9;
R(T, ,Wg) = -
(Ts(n), W) {16 ifn=S8.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1 if n > 9 and of order 16 if n = 8.
Assume that G does not contain Tr(n) and that G does not contain Ws.
By Theorem 5.2.12, G has a subgraph 7' = S,,(3,1). Let

V(T) = {UO7 ceoy Up—yg, W1, Wa, w?)}

and E(T) = {vovy, . . ., VoUp_4, V1W1, VaoWs, V3W3 } .

Set V.={vy,...,vpa} and U =V(G) = V(T). Then |V| =n—"7and |U| > n — 1.
Since Tg(n) ¢ G, each of vy, vy, v5 is not adjacent to any vertex of VU U in G,
and each vertex of V is adjacent to at most one vertex of U in GG. Let W be a set
of n — 2 vertices of U that are not adjacent to v4 in G. By Lemma 4.3.4, G[W] is
K, 5 or K, s—e. Since Tg(n) SZ G, every vertex of T' is not adjacent to any vertex
of W, and so 6(G[V(T')]) > n — 4 by Observation 4.3.2.

Now Lemma 5.3.10 implies that G[V (T')] contains Tg(n) if n > 9, which is a
contradiction, and so we must have n = 8 and G[V (T")] = K, 4. Observe now that
|U| = 8, and as T;(8) € G, no vertex of U is adjacent to any vertex of G[V(T)].
So again by Lemma 4.3.4, G[U] is Kg or Kg — e, which clearly contains Tg(8), a
contradiction.

Therefore, R(Tg(n),Ws) < 2n — 1 when n > 9 and R(Tg(n), Ws) < 16 when
n = 8. This completes the proof of the theorem. n

Lemma 5.3.12. Fach graph H of order n > 8 with minimal degree at least n — 4

contains Tp(n) unlessn =8 and H = Ky 4.

Proof. Let V(H) = {ug,uy ..., up—1} with d(ug) = 6(H) and V := {uy,...,up—4} C
N(ug). Set U = {up_3,Up_2,up_1}. By the minimum degree condition, every vertex
of U is adjacent to at least n — 6 vertices of V. It is straightforward to see that
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some pair of vertices in U has a common neighbour in V', and moreover for n > 9,
every pair of vertices in U has a common neighbour in V.

We assume without loss of generality that u, is adjacent to both u,_35 and u,_»,
and that uy is adjacent to u, 1. If usy is adjacent to a vertex of V'\ {u;}, which is
the case when n > 10, then H contains Tr(n). We may assume now that n < 9
and that usy is not adjacent to any vertex of V' \ {uy}.

For the case when n = 9, we know u,,_ is adjacent to at least n —6 = 3 vertices
of V, and so it is adjacent to another vertex, say to us. As above, we may assume
that us is not adjacent to any vertex of V'\ {u;}. By the minimum degree condition,
each of up and ug is adjacent to every vertex of {u;} U U, giving Tr(9) in H.

For the final case when n = 8, the minimum degree condition implies that wus
is adjacent to at least two of wy,us, ug. If uy is adjacent to uy, H contains Tx(8).
Thus, we are left with the case in which us is not adjacent to u; but is adjacent to
both us and ug. Exchanging the roles of u; and uy, we may further assume that u,
is adjacent to u; but not to any vertex of V. From the minimum degree condition
on uz and uy, it is easy to see that either H contains Tr(8) or H = Ky 4. O

Theorem 5.3.13. Forn > 8,

2n—1 ifn>9;
R(Tp(n), We) = {16 ifn=8.
Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no Tx(n) subgraph whose complement G does not
contain Ws. Suppose that n = 8 and that G has order 16. By Theorem 5.2.11,
G has a subgraph 7" = T¢(8). Let V(T') = {vo,...,vs, w1, we, w3} and E(T) =
{vov1, ..., vovg, Vw1, Vowg, vows }. Set U = V(G)-V(T) = {uy,...,us}; then |U| = 8.
Since Tr(8) € G, v; is not adjacent in G to {va,v3,v4} UU, and dgy(v) < 1 for
UV = Vs, U4, Wa, W3.

Suppose that v; is adjacent to wo or ws, without loss of generality say ws. Since
Tr(8) € G, vy is not adjacent to {vs, vs} UU. If neither vz nor vy are adjacent to U,
then by Lemma 4.3.4, G[U] is K or Kg—e, so G[U] contains Tr(8), a contradiction.
Suppose that only one of the vertices v3 and v, is adjacent to U in G, say vs. By
Lemma 4.3.4, G[U \ {u1}] is K7 or K7 — e, and G[V(T) U {u}] is not adjacent to
G[U \ {u1}]. By Observation 4.3.2, §(G[V(T) U {us}]) > 5, and by Lemma 5.3.12,
GIV(T) U {u}] contains Tr(9) and hence Tx(8), a contradiction. Suppose that
both v3 and vy are adjacent to U in G and assume that vz is adjacent to u; and
that v, is adjacent to uy. By Lemma 4.3.4, G[U \ {uy,us}] is K¢ or Kg —e. At
most one vertex from G[V(T) U {uy,us2}] is adjacent to G[U \ {uy,us}] or else G
will contain Tx(8). Therefore, 9 vertices from G[V (T") U {uy, us}| form a vertex set
W that is not adjacent to U \ {u1,us}. By Observation 4.3.2, 6(G[W]) > 5, and by
Lemma 5.3.12, G[W] contains Tr(9) and hence Tr(8), a contradiction.

Suppose then that v, is not adjacent to wy or ws. Since dgi(v) < 1 for v =
U3, Uy, Wo, w3, there are 4 vertices from U that are not adjacent to {vs, vy, wa, w3}.
These 8 vertices form Cg in G and thus, with v; as hub, W5, a contradiction.

Thus, R(Tr(8), Ws) < 16.
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Now, suppose that n > 9 and that G has order 2n — 1. By Theorem 5.2.11,
G has a subgraph T' = Te(n). Let V(T) = {vo,...,vn_4,vs4, w1, we, w3} and
E(T) = {vovy, ..., 00Un_4q, w1, Vowe, Uows}. Set V. = {vs,...,v, 4} and U =
V(G)=V(T) ={u1, ... ,up_1}; then |V| =n—6and |U| = n—1. Since Tp(n) € G,
vy is not adjacent in G' to any vertex of U UV, and dgp(v) < 1 for v € V. Since
n > 10, there are 4 vertices from U, 4 vertices from V and v, that form Wy in G, a
contradiction. Thus, R(Tr(n), Ws) < 2n — 1 for n > 10.

Suppose that n = 9 and let m be the number of vertices of U that are adjacent
in G to at least one vertex of V. Since dg(v) < 1forv e V,0<m < 3. Ilf m =0,
then G[U] is K5 or Kg—e by Lemma 4.3.4, so G[V/(T')] is not adjacent to G[U]. By
Observation 4.3.2, 6(G[V(T)]) > 5, and G[V(T)] contains Tr(9) by Lemma 5.3.12,
a contradiction. Suppose that m = 1. Assume without loss of generality that u,
is adjacent to some vertex of V', and that Eg(V,U \ {u1}) = 0. By Lemma 4.3.4,
GIU \ {w1}] is K7 or K7 — e, and at most one vertex from G[V(T) U {u1}] is
adjacent to G[U \ {u1}] or else G contains Tr(9). There are then 9 vertices from
G[V(T) U {u1}] that form a vertex set W, that is not adjacent to U \ {u;}. By
Observation 4.3.2, §(G[W;]) > 5, and G[W;] contains Tr(9) by Lemma 5.3.12, a
contradiction. Suppose that m = 2. Assume that u; and us are adjacent to some
vertices of V and that Eg(V,U \ {u1,us}) = 0. By Lemma 4.3.4, G[U \ {u1,us}] is
K or K¢ —e. If at least three vertices in U \ {uy, us} are adjacent to V(T') U {u },
then Tr(9) C G. If at most two vertices in U \ {uy, us} are adjacent to V(T')U{u },
then there are 4 vertices in U \ {uy,us} that are not adjacent to V(7'). Then by
Observation 4.3.2, §(G[V(T')]) > 5, and G[V (T')] contains T#(9) by Lemma 5.3.12,
a contradiction. Suppose that m = 3. Assume that u;, us, us are each adjacent to
some vertex of V' and that Eq(V,U \ {u, uz,us}) = 0. Without loss of generality,
assume that u; is adjacent to v, o for i = 1,2,3. By Lemma 4.3.4, G[U \ {u1, ua, us}]
is K5 or K5 —e. Since Tp(9) € G, {v1,v3, v4, 5} is independent and V(T') \ {w; } is
not adjacent to U \ {uy, ug, uz}. Then by Observation 4.3.2, 6(G[V(T)\ {w1}]) > 4,
and vy, v3, vy and vs are each adjacent to vy, wy and wsz in G. This gives Tr(9)
in G. Therefore, Tr(9) < 17 =2n — 1. O

Theorem 5.3.14. If n > 8, then R(Tz(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n—1. Assume that G' does not contain 7 (n) and that
G does not contain Wg. By Theorem 5.2.12, G has a subgraph T = S,,(3,1). Let
V(T) = {vo, ..., Vp_g,wr,we, w3} and E(T) = {vgvy, ..., VUn_4, V1W1, VoWs, V3W3 }.
Set V = {v4,v5,...,0p_4} and U = V(G) =V (T); then |V| =n—T7and |U| =n—1.
Since Tg(n) € G, wy, wy, wy are not adjacent to U UV in G, and vy, v9, v3 are not
adjacent to V.

Suppose that n > 9; then |U| > 8. If §(G[U]) > "5, then G[U] contains
Cg by Lemma 2.2.10 which, with ws as hub, forms Wy, a contradiction. Therefore,
§(GIU)) < 51, and A(G[UUV]) > 221 > 4. Therefore, some vertex u € U satisfies
|Ne(u)] > 4. Since Tg(n) € G, Ngpy(u) is not adjacent in G to Nepvry(vo).
Hence, 4 vertices from Ngp(u), v1, v2,v3, w; and any vertex from V' form Wy in G,
a contradiction. Thus, R(T¢(n), Ws) <2n —1 for n > 9.
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Suppose that n=8 and let U={uy,...,ur} and W={v,} UU. If §(G]W]) >4,
then G contains Cs by Lemma 2.2.10 and thus Wy with w; as hub, a contradiction.
Hence, 6(G[W]) < 3, and A(G[W]) > 4. Suppose that dgpyi(va) > 4. Then without
loss of generality, assume that wuy,...,uy € Ng(vy). Then wuy, ..., uy, wy, we, ws are
independent and are not adjacent to us, ug or u7, giving Wy, a contradiction. On

the other hand, suppose that some vertex in U, say w, satisfies dgpyi(u1) > 4.

Then vy is not adjacent to uy; therefore, assume that us,...,us € Ng(ui). Then
v1,...,04 are not adjacent to {uq, ..., us}, S0 viuVUVsUzWU4Y, and vy form Wy
in G, a contradiction. Thus, R(T¢(8), Ws) < 15. O

Lemma 5.3.15. Each graph H of order n > 8 with minimal degree at least n — 4
contains Ty (n), Tk (n) and Tr(n).

Proof. Let V(H) = {ug,...,u,_1} where uy,...,u,_4 € Ngy(ug). Suppose that
Up_3, Up_9 O U,_1, SAY U,_3, 1S adjacent in H to the two others.

Since §(H) > n — 4, u,_3 is adjacent to at least one of uy, ..., u, 4, say uy. If
uy is adjacent to another vertex in {us,...,u,_4}, then H contains Tk (n). Note
that this always happens for n > 9. Suppose that n = 8 and that u; is not adjacent
to any of ug, us,uy. Then uy is adjacent to ug and uz. Since §(H) > n — 4, ug is
adjacent to at least one of us, ug, ur, giving Tk (n) in H.

Similarly, since §(H) > n — 4, u,_» is adjacent to at least n — 7 vertices of

{uy, ..., u,—s}. Suppose that u, 5 is adjacent to uy. If n > 10, then at least two of
Usg, ..., U4 are adjacent, so H contains Ty (n). If n > 9, then u, is adjacent to at
least one of us, ..., u, 4, S0 H contains T (n). Now suppose that n = 9. If any of
Usg, . .., us are adjacent to each other, then H contains Ty (9). Otherwise, us, . .., us

are each adjacent to ug, ur and ug, and so H contains Ty (9). Finally, suppose that
n = 8. If any two of s, us, uy are adjacent, then H contains T (8); otherwise, they
are each adjacent to ug or u;. Now, if uy is adjacent to any of wug, us, us, then H
contains Ty (8). Otherwise, uy,...,us are each adjacent to us, ug and w7, and H
also contains Ty (8). Furthermore, if u; is adjacent to uy, uz or uy, then H contains
T (8). If uy is not adjacent to us, uz or ug, then ug, ur, ug are adjacent to ug, us, uy,
and then H contains T7(8). Now if u, o is adjacent to some uy, ..., U, 4, Say Us,
then similar arguments apply by interchanging u; and w,.

Suppose now that none of u,_3,u,_2,u,_1 is adjacent to both of the others.
Then one of these, say u,_3, is adjacent to neither of the others. Since 6(H) > n—4,
u,_3 is adjacent to at least n — 5 of the vertices uy,...,u,_4. Without loss of
generality, assume that wuq, ..., u,—5 € Ny(u,_3). Then u,_ is adjacent to at least
n — 7 of the vertices uq,...,u,_5 including, without loss of generality, the vertex
uy. Also, u,_q is adjacent to at least one of us, ..., u, 4, so H contains Ty (n). If
un_o is adjacent to w,_1, then H also contains T (n). If w, 5 is not adjacent to
Un_1, then u, s is adjacent to at least n — 6 vertices of uq,...,u,_5, so H contains
Tr(n). Now, suppose that n > 9. Then u, 5 and w,_; are each adjacent to at
least 3 of uy,...,us, and one of those vertices must be adjacent to both w,_o and
Upn—1; thus, H contains Tkx(n). Finally, suppose that n = 8. If ug and u; are each
adjacent to at least two of the vertices uq, us, u3, then one of those vertices must be
adjacent to both ug and ur; thus, H contains Tk (8). Otherwise, ug or uy, say ug, is
non-adjacent to at least two of uy, us, uz, say u; and us. Then ug is adjacent to ug,
ug, uy and uy, and so H contains Tk (8). O
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Theorem 5.3.16. Ifn > 8, then R(Ty(n), Ws) =2n — 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n — 1 and assume that G does not contain Ty (n) and
that G does not contain Wg. By Theorem 5.3.14, G has a subgraph T' = T;(n). Let
V(T)={vo,..., Vn_5, W,..., ws } and E(T)={vgvy,..., VgUp_5, V1W1, VoWs, V3Ws3, W3y }.
Set U = {uy,...,up_1} = V(G) — V(T); then |U| = n — 1. Since Tg(n) € G,
Eg({w1,ws}, {ws,ws}) = 0 and wy is not adjacent to U. Now, let W = {w;} U U,
then |W| = n. If 6(GW]) > 2, then G[W] contains Cg by Lemma 2.2.10 which,
with w, as hub, forms Ws, a contradiction. It follows that 6(G[W]) < %, and
AGIW) = 2] = 4

First, suppose that w, is a vertex with degree at least § in G[W]. Assume with-

out loss of generality that w,, ..., us € Ng)(w:). Since Tx(n) ¢ G, uy,...,uy are
independent and are not adjacent to {ws, us, ..., up—1} in G. Then wo, uy, ..., ug, wy
and any 3 vertices from {us, ..., u,_1} form Wg in G, a contradiction.

Hence, dgpw)(u') > 5 for some vertex v’ € U, say v’ = u;. Note that w; is not
adjacent to uy, or else G contains Ty (n). Without loss of generality, suppose that
Us, ..., us € Ngmwi(ur). Since Ty (n) € G, us, ..., us are not adjacent to V(T')\ {vo }
in G. Now, if vy is not adjacent to {us,...,us} in G, then by Observation 4.3.2,
S(G[V(T)]) > n — 4, or else G contains Wys. By Lemma 5.3.15, G[V(T)] contains
Ty (n), a contradiction. On the other hand, suppose that vy is adjacent to at
least one of us, ..., us, say us. Then ug, uy, us are independent in G and are not
adjacent to ug and u7; in G. Furthermore, w, is not adjacent to v; or vy. Then
V1 U3V UgUgW U7 UsY, and wy form Wy in G, a contradiction.

Thus, R(Tg(n), Ws) < 2n — 1. ]

Theorem 5.3.17. Ifn > 8, then R(T;(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n — 1 and assume that G does not contain 7;(n) and
that G does not contain Wy. By Theorem 5.2.11, G has a subgraph T' = Tr:(n). Let
V(T) = {vo,. .., Un_a,wr,we,ws} and E(T) = {vgvy,..., VoUp_4, V1W1, V1Ws, VoWs3 }.
Set V = {vs,...,vp_a} and U = V(G) = V(T) = {u1, ..., up_1}. Since Ty(n) € G,
neither w; nor wy is adjacent in G to any vertex from U U V.

Let W = {v3}UU; then |[W| = n. If §(G[W]) > [%] > %, then G[W] contains Cs
by Lemma 2.2.10 which with w; forms Ws, a contradiction. Thus, 6(G[W]) < [2],
and A(GW)) > 2] > 4.

Suppose that demwy(vs) > [5] > 4. Without loss of generality, assume that
Uy, ..., us € Ng(vs). Since Ty(n) € G, ui,...,uy is independent in G and is not
adjacent to any remaining vertices from U in G. Then uswyuzususugwsurus and
uy form Wy in G, a contradiction. Hence, there is a vertex in U, say u;, such that
dow)(u1) > |5] > 4.

Now, suppose that vs is adjacent to u; in G[W]. Then u, is adjacent to at least
3 other vertices of U in G, say us, uz and uy. Since T;(n) € G, vs is not adjacent
to V1, Vg, Vg, « . ., Up_g, W1, W, W3, Uz, Uz, Uy and neither vy nor vy is adjacent to usg, us
or uy in G. Then vousv; uswyvswsu vy and vy form Wy in G, a contradiction.
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Thus, vz is not adjacent to u; in GG. Note that u; is not adjacent to any other
vertices of V in G or else previous arguments apply. Similarly, vy is not adjacent to
Nemwi(ur) in G. Since Ty(n) € G, neither vy nor v, is adjacent to uy or Nepw(uq)
in G, and 80 dyg gy (un) (V) < 1 forallv e V.

Suppose that n > 10; then |V| > 4 and |Ngw)(u1)| > 5. If depy(u) < 2 for
each u € Ngm(u1), then G[V U Ngprj(uq)] contains Cs by Lemma 4.3.5 which,
with w; as hub, forms Wy in G, a contradiction. Thus, dy (u') > 3 for some vertex
u' € New)(u1). Then any 4 vertices from V, of which at least 3 are in Nep(u'),
and any 4 vertices from Ngpyj(uq) \ {v'} satisfy the condition in Lemma 4.3.5, so
GV U New(u1)] contains Cyg which with w; forms Ws, a contradiction.

Suppose that n = 9; then V' = {vs, v4,vs}. Assume that us, ..., us € Nemwy(u1).
Suppose that w; is not adjacent to wy in G. Let X = {v3,vy4,v5, w2} and YV =
{ug, ..., us} and note that dgpyj(x) < 1 for each v € X. If dgx)(y) < 2 for each
y € Y, then G[X UY] contains Cg by Lemma 4.3.5 which, with w; as hub, forms
Ws, a contradiction. Thus, dgx)(u') > 3 for some v’ € Y, say v/ = ug, so X
is not adjacent to Y \ {uy}. Hence, vsuvsusvsugwousvs and w; form Wy in G, a
contradiction.

Thus, w; is adjacent to wy in G. Then vy is not adjacent to {vs, vy, v5} UU and
suppose that v; is not adjacent to vy. Set X = {wvy, ..., v5} and Y = {uo, ..., us}.
If dgpx(y) < 2 for each y € Y, then G[X UY] contains Cs by Lemma 4.3.5 which,
with v; as hub, forms Wy, a contradiction. Thus, dgxj(v') > 3 for some v’ € Y, say
U = ugy, so X is not adjacent to Y \ {us}, and voujvsugvsusvsusvy and vy form Wy
in G, a contradiction. Thus, v; is adjacent to vy in G. Then V is independent and is
not adjacent to U in G. Since Wy € G, G[U] is K,,_; or K,,_1 — e by Lemma 4.3.4.
Since T;(9) € G, T is not adjacent to U and, by Observation 4.3.2, 6(G[V (T)]) > 5.
However, this cannot be since V' is independent and is not adjacent to vy, wy or ws.

Finally, suppose that n = 8; then V = {vs,vs}. Assume that us,...,u; €
Nemwy(u1). If vs is adjacent to any vertex of {us,...,us}, say us, then vs is not
adjacent to {vy, va, vy, w3} UU \ {uz}, 80 v1uivaugwiugwousvy and vy form Wy in G, a
contradiction. Thus, vs is not adjacent to {us,...,us}. Similarly, v, is not adjacent
to {us,...,us}. Now, if ws is adjacent to any of the vertices uo, . .., us, say ug, then
vg is not adjacent to {wy, ws, v3, v}, SO V3UIV ULW I UzWoU4V3 and vy form Wy in G,
a contradiction. Thus, ws is not adjacent to {usg,...,us}. By Observation 4.3.2,
§(G[V(T)]) > 4. Suppose that vy is adjacent to w;. Since T;(8) ¢ G, neither
vg nor vy is adjacent to ws. Since §(G[V(T)]) > 4, vs and vy are adjacent to vy
and vy, and {wy, we, w3} is not independent. However, then 7;(8) C G[V(T)], a
contradiction. Thus, vy is not adjacent to w; and, similarly, vy is not adjacent
to wy. Since 6(G[V(T)]) > 4, wy and wy are adjacent to each other and to ws.
Since T;(8) € G, neither v3 nor vy is adjacent to vy or vs; however, this contradicts
S(GV(T)]) = 4.

In each case, R(T(8),Ws) < 2n — 1 which completes the proof of the theorem.

]

Theorem 5.3.18. Ifn > 8, then R(Tk(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph of order 2n — 1 and assume that G does not contain
Tk (n) and that G does not contain Wg.

62



Suppose that n Z 0 (mod 4). By Theorem 5.2.8, G has a subgraph 7' = S, (1, 3).
Let V(T)={vo,..., Vn_4, w1, wa, w3} and E(T)={vgv1,..., VoUn_4, VW1, W1 W3, WolW3 }.
Set V= {va,..., 0,4} and U = V(G) — V(T); then |V]| = n —5 and |U| =
n — 1. Since Tx(n) € G, ws is not adjacent in G to any vertex of U U V. Now,
if 5(G[U]) > 251, then G[U] contains Cs by Lemma 2.2.10 which, with v; as hub,

forms Wy, a contradiction. Therefore, §(G[U]) < %5+, and A(G[U]) > %]
Let U = {u1,...,up—1} and assume without loss of generality that dep(ui) >
|25%] > 4. Since Tk(n) € G, Eq(V, New)(u1)) = 0, so any 4 vertices from V,
any 4 vertices from Ngp(u1) and wy form Wy in G, a contradiction. Therefore,
R(Tk(n),Ws) <2n —1 for n #0 (mod 4).

Let n = 8. By Theorem 5.3.16, G has a subgraph T' = Ty (8). Let V(T) =
{vo, ..., v3,wy,...,wy} and E(T) = {vov1, vovs, Vov3, V1W1, WiWa, WoW3, VoW }. Set
U=V(G)=V(T)={u,...,ur}; then |U| = 7. Since Tx(8) € G, ws is not adjacent
to {wsJUU. Let W = {w4}UU; then |W| = 8. If §(G[W]) > 4, then G[W] contains
Cg by Lemma 2.2.10 which, with ws as hub, forms Wy, a contradiction. Therefore,
§(G[W]) < 3, and A(G[W]) > 4.

Now, suppose that dgpyi(ws) > 4 and assume without loss of generality that
wy is adjacent to up, ug, uz and wuy. Then vy is not adjacent to {vs, wq, w3} U U
and neither vy nor vy is adjacent to {uy,...,us}, since Tx(8) € G. Now, suppose
that Eq({u1,...,us}, {us, ug,ur}) # 0 and assume that u; is adjacent to us. Then
uy is not adjacent to {wq,wq, w3, ug,...,ur} in G, and vyuxVUzVzU WUV and
u; form Wy in G, a contradiction. Thus, Eg({uy,...,us}, {us, us, uz}) = 0, so
U UsUsUGUsUTU4U3u, and vq form Wy in G, a contradiction.

Now suppose that depy)(u') > 4 for some vertex v’ € U, say u' = u;. Since,
Tk (8) € G, wy is not adjacent to u;. Then without loss of generality, suppose that
Ug, ..., us € Ng(up). Since T (8) € G, Eq({v1,va, v3}, {ua,...,us}) = 0. If uy is
adjacent to wy, then wuy is not adjacent to {us, ..., us} and v; is not adjacent to ug.
Then wausv2UsvV3usv Ugws and us form Wy in G, a contradiction. Thus, us is not
adjacent to wy. Similarly, us, us and us are not adjacent to w;. If us is adjacent to
Vg, then vy is not adjacent to {vy, vs, wy, wa, w3, Uy, . . ., Uz}, and vy ULV3UZW] ULWU5V]
and vy form Wy in G, a contradiction. Thus, uy is not adjacent to vy. Similarly,
us, ug and us are not adjacent to vy. By similar arguments, us, us and us are not
adjacent to ws or wy.

Hence, ug, ..., u; are not adjacent to V(7)) in G, so §(G[V(T)]) > 4 by Obser-
vation 4.3.2. By Lemma 5.3.15, G[V(T')] contains Tk (8), a contradiction. Thus,
R(Tk(8), Ws) < 15.

Now suppose that n = 0 (mod 4) and that n > 12. If G has an S,(1, 3) sub-
graph, then the arguments above lead to contradictions. Thus, G does not contain
Sn(1,3) as a subgraph. Now, by Theorem 5.3.16, G has a subgraph 7' = T (n). Let
V(T)={vo,., Un_5, W1,..., ws } and E(T)={vgvy,..., VoUn_5, V1W1, W1Ws, Wals, Vol }.
Set V= {vs,...,vp5} and let U = V(G) — V(T) = {u,...,up—1}. Then
V| = n—7and |[U =n—1. Since Tx(n) € G, ws is not adjacent in G to
{ws} UU. Since S,(1,3) € G, v is not adjacent to {wy} UU.

If §(G[U]) > 251, then G[U] contains Cs by Lemma 2.2.10 which, with w,, forms

Ws, a contradiction. Thus, 6(G[U]) < %52, and A(G[U]) > [%1] > 5. Without
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loss of generality, assume that ua, ..., us € Ng(u1). Since Tk (n) € G, vy, vy and V
are not adjacent to {us, ..., us}, and w; and wy are not adjacent to u;.

Now, if us is adjacent to wy, then wuy is not adjacent to {ws,w,}UU \ {us}, since
Tk(n) g_ G, SO VU3V UgV2UsV3UV and us form Wy in G, a contradiction. Thus, usy
is not adjacent to w;. Similarly, us, ..., ug are not adjacent to wq. If uy is adjacent
to wg in G, then vy is not adjacent to wi, wa, ws, and dapn furuy () < n — 6 for
i=3,...,6,since S,,(1,3) € G. Since Tx(n) € G, ws is not adjacent to w; or wy.
Since dan fur,us) (Us) < n — 6 and dgu fu; us)) (Ua) < 1 — 6, us and uy are adjacent
in G to at least 2 vertices in {ur, ..., u,_1}. Without loss of generality, assume that
u3 is adjacent in G to u; and that wuy is adjacent to ug. Then usurwotgus Wy W3WAUs
and vy form Wy in G, a contradiction. Thus, u, is not adjacent to ws. Similarly,
us, ..., ug are not adjacent to wy.

Thus, ug, . . ., ug are not adjacent to V(T"). By Observation 4.3.2, 6(G[V (T')]) >4,
so G[V(T')] contains Tk (n) by Lemma 5.3.15, a contradiction.

Hence, R(Tx(n),Ws) < 2n—1forn =0 (mod 4). This completes the proof. [

Theorem 5.3.19. Ifn > 8, then R(TL(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be a graph with no T} (n) subgraph whose complement G does not
contain Ws. Suppose that n Z 0 (mod 4) and that G has order 2n — 1. By The-
orem 5.2.8, G has a subgraph T' = S,,(1,3). Let V(T) = {vg, ..., Up_4, w1, ws, w3}
and E(T) = {vov, ..., 000y 4, Vw1, W we, wows}. Set V. = {vg,..., v, 4} and
U=V(G)—V(T); then |[V| =n—5and |U| =n — 1. Since Ty(n) € G, v; is not
adjacent to U UV, and dgy)(v;) < n — 7 for each v; € V. Now, if §(G[U]) > 1,
then G[U] contains Cg by Lemma 2.2.10 which, with vy, forms Wy, a contradiction.
Thus, §(G[U]) < %52, and A(G[U]) > [ ].

Let U = {uy, ..., up—1} and without loss of generality assume that dg)(u) >
|25+ ] > 4 and that us,...,us € Ngpy)(w1). Now if Eq(V, Ngwj(u1)) = 0, then 4
vertices from V', 4 vertices from NG[U](ul) and v; form Wy in G, a contradiction.
Thus, Eq(V, Ngui(u1)) # 0. Assume without loss of generality that v, is adjacent
to ug. Since Tp(n) € G, vy is not adjacent to U \ {u1, us}. Since dgp(v;) <n—7
for each v; € V, v5 is non-adjacent to at least one of wug, ..., u,_1, say ug. Now if
Eq({vs, vg, vs}, {us, ug, us}) = 0, then vousvsusvsusvsugvs and v, form Wy in G, a
contradiction. Thus assume, say, that v is adjacent to uz in G; then vz is not ad-
jacent to U\ {uy,uz}. Again, if Eq({vs, vs}, {ug, us}) = 0, then vourvsugviusvsugus
and v, form Wy in G, a contradiction. Thus assume, say, that v, is adjacent
to uy, then vy is not adjacent to U \ {uy,us}. If vs is not adjacent to us, then
VaUTU3U VU5V UgU2 and vy form Wy in G, a contradiction. Thus, v is adjacent
to us, so vs is not adjacent to U \ {u1, us}, and vauzvsusvsuzvsugvy and vy form Wy
in G, a contradiction.

Hence, R(TL(n), Ws) <2n —1 for n 0 (mod 4).

Now, suppose that n = 0 (mod 4) and that G has order 2n — 1. Suppose first
that n = 8. By Theorem 5.3.16, G has a subgraph T = Ty (8). Let V(T) =
{vo, ..., v3,wy,...,wy} and E(T) = {vgvy, ..., 003, V1w, wywe, wows, Vawy }. Set
U=V(G)—-V(T) ={us,...,ur}; then |U| = 7. Since T1(8) € G, neither v; nor
vy are adjacent to U, and dguj(vs) < 1. Furthermore, v; is not adjacent to wy, and
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v is not adjacent to wy or ws. Let W = wyq U U; then |W| = 8. If §(G[W]) > 4,
then G[W] contains Cg by Lemma 2.2.10 which, with vy, forms W, a contradiction.
Thus, 6(G[W]) < 3 and A(G[W]) > 4.

Now, suppose that dgy)(ws) > 4 and assume without loss of generality that
Ui, ..., uy € Ng(wy). Then v, is not adjacent to vy, vs, wi,ws and dg(u;) <1
for 1 <7 < 4, or else T1,(8) C G, a contradiction. Since dgj(vs) < 1, assume
without loss of generality that v3 is not adjacent to uz or uy. Now, suppose that
Ec({uq, ..., us}, {us, ug,ur}) # 0 and assume, say, that u; is adjacent to us. Then
uy is not adjacent to {vs, wy, we, ws, us, ..., ur}. Since T (8) € G, at least one of
wy and wsy is adjacent in G to uy, ug and wug, Say Wy, SO V1 UW1 UsV3ULVaUgV; and
uy form Wy in G, a contradiction. Thus, Eq({uy,...,us}, {us, us, ur}) = 0. Then
Uq U5 U UGUsUTU4Uouq and vy form Wy in G, a contradiction. Therefore, dew(u') > 4
for some vertex of u' € U, say v’ = u;.

Suppose that w, is adjacent to u;. Then without loss of generality, we as-
sume that w; is adjacent to us, us and wuy. Since T(8) g_ G, neither vy nor
wy is adjacent to w; or wy, and wy is not adjacent to {vy,vs} UU \ {ui}. If
Eq({us,us,us}, {us, us, ur}) # 0, Then say, us is adjacent to us and is thus not adja-
cent to {vg, vs, w1, Wa, W3, Uz, Uy, Ug, Uz }, SO WIVeWW4U3V1 UgVw and ug form Wy in
G, a contradiction. Thus Eg({ui, ..., us}, {us, ug, ur} = 0. Let X = {v1, ug, ug, us}
and Y = {vs, us, ug, ur }. Since dgp)(vs) < 1, G[X UY] contains Cg by Lemma 4.3.5
which, with wy, forms Wy, a contradiction.

Thus, u; is not adjacent to wy so we can assume without loss of generality that
Ug, ..., us € Ng(up). Since G does not contain T7,(8), dav(ry(u;) < 1for 2 <i <5.
If uy is adjacent to wy, then wuy is not adjacent to V(G) \ {u1,ws} in G. Since
de(vs) < 1, that vg is not adjacent to, say, ug or us. Since dgpy(ry(u;) < 1 for
2 < i <5, us and us are each adjacent in G to at least 2 of wy,ws,, w3, SO some
w; € {wy, ws, w3} is adjacent in G to both uy and uz. Therefore, usvsusw;usvoteUUs
and uy form Wy in G, a contradiction. Thus, u, is not adjacent to w,. Similarly,
us, ug, us are not adjacent to wy. Similar arguments show that wus, ..., us are not
adjacent to wy or ws.

Now, if uy is adjacent to any other vertex of V(T'), then wus is not adjacent to
{us, ug, us}, s0 ugwiugwWausvougvug and uy form Wy in G, a contradiction. Hence,
ug is not adjacent to V(T') and, similarly, wus,us, us are not adjacent to V(T).
Therefore, by Observation 4.3.2, 6(G[V(T)]) > 4. By Lemma 5.3.15, G[V(T)]
contains T7,(8), a contradiction. Thus, R(7(8), Ws) < 15.

Now suppose that n > 12. If G contains S, (1, 3), then the previous arguments
above lead to contradictions. Thus, G' does not contain S, (1, 3). By Theorem 5.2.11,
G has a subgraph T' = T(n). Let V(T) = {vo, ..., Vn_4, w1, wa, w3} and E(T) =
{vov, . .., VoUs_g, VW1, Vowe, vows }. Set U = V(G) — V(T) = {uq,...,u,_1}; then
Ul =n—1.

Suppose that ws, is not adjacent to U. If §(G[U]) > 271, then G contains
Cg by Lemma 2.2.10 and, with ws as hub, forms Wy, a contradiction. Therefore,
§(GIU]) < %5 and so A(G[U]) > |251] > 5. Without loss of generality, assume
that ug, ..., us € Ng(u1). Since S,(1,3) € G, us, ..., ug are not adjacent to V(T') \
{vo}. If uy is adjacent to v, then since S,(1,3) € G, us, ..., us are not adjacent
to {ur, ..., up 1}, SO uguzusugUusUguguiguz and wy form Wy in G, a contradiction.
Thus, us is not adjacent to vy and, similarly, us, ..., ugs are also not adjacent to
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vo. Hence, us, ..., us are not adjacent to V(7T'). Therefore, by Observation 4.3.2,
NGV (T)]) > n—4, so G[V(T)] contains T, (n) by Lemma 5.3.15, a contradiction.

Thus some vertex of U, say u,_1, is adjacent to wy. Set U’ = U \ {u,_1};
then |U'| = n — 2. Since T,(n) € G, u,—1 is not adjacent to U" in G. Now, if
§(G[U"]) > 2, then G[U'] contains Cs by Lemma 2.2.10 which, with w,_;, forms
Ws, a contradiction. Thus, 6(G[U’]) < 252 — 1, and A(G[U']) > %52 > 5. Without
loss of generality, assume that us, ..., us € Ng(u1) and repeat the above arguments
to prove that us, ..., us are not adjacent to V(T') . Therefore, 6(G[V(T)]) >n —4
by Observation 4.3.2, so G[V (T')] contains 77,(n) by Lemma 5.3.15, a contradiction.

Thus, R(Tr(n),Ws) <2n—1for n =0 (mod 4) which completes the proof. [

Theorem 5.3.20. Ifn > 9, then R(Ty(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n—1. Assume that G does not contain Tj;(n) and that
G does not contain Ws. By Theorem 5.2.5, G has a subgraph T' = S,,(4). Now, let
V(T) = {vo, -, Vp_q,wr,we, w3} and E(T) = {vgvy, ..., VoUpn_4, V1W1, V1Wa, V1W3 }.
Set V =Avy,...,vp_4} and U = V(G) = V(T) = {uy,...,up_1}; then |V| =n -5
and |U| = n — 1. Since Ty(n) € G, wy, wy and w; are not adjacent to any vertex
of UUV in G.

Now, suppose that some vertex in V' is adjacent to at least 4 vertices of U in G,
say v to uq,...,us. Then uq,... uy are not adjacent to other vertices in U. Then
U UsUsUGUsUrUgusty and wy form Wy in G, a contradiction. Therefore, each vertex
in V is adjacent to at most three vertices of U in G. Choose any 8 vertices of U.
By Corollary 5.3.2, G[U U V] contains Cg which together with w,; gives W in G, a
contradiction.

Thus, R(Ty(n), Ws) < 2n — 1 for n > 9. This completes the proof. O

Theorem 5.3.21. Ifn > 9, then

R(Tw (n), W) = {Qn 1 ifn ;7_30 (mod 4);
2n otherwise .

Proof. Lemma 5.3.3 provides the lower bound; it remains to prove the upper bound.
Let G be any graph of order 2n if n = 0 (mod 4) and of order 2n — 1 if n # 0
(mod 4). Assume that G does not contain Ty (n) and that G' does not contain Ws.
By Theorem 5.2.9, G has a subgraph T'=Tx(n). Let V(T)={vo,..., Vp_4, w1, wo, w3}
and E(T) = {vovy, ..., 00Un_4, Vw1, V1wa, wiws}. Set V- ={vq,..., v, 4} and U =
V(G)=V(T) ={w,...,u;}, where j =n—1ifn # 0 (mod 4) and j = n otherwise.
Since Ty(n) € G, wsy is not adjacent to U UV in G. If each v; € V is adjacent
to at most three vertices of U in G, then by Corollary 5.3.2, G[U U V] contains Cy
which with w, gives Wy in G, a contradiction. Therefore, some vertex in V, say
Vg, is adjacent to at least four vertices of U in G, say uq, ..., uys. If none of these is
adjacent to other vertices of U in G, then ujususugusurusugu, and wy form Wy in
G, a contradiction.

Therefore, assume that u; is adjacent to us in G. Since T (n) ,CZ G, ug, us, Uy
are not adjacent to {ue,...,u;} in G. For n =9 and n = 10, {vs,...,v,_4} is not
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adjacent to {us,...,u,—1} or else G will contain T(n) with v and vy being the
vertices of degree n — 5 and 3, respectively. However, vsusvjugusuruszugvy and we

form Wy in G, a contradiction. For n > 11, if vy is not adjacent to {ug,...,u;}
in G, then vyugusurusugusugvs and wy form Wy in GG, a contradiction. Therefore,
assume that v, is adjacent to ug in G. Then wug is not adjacent to {ur,...,u;} in G,

and usuruzugusUggiiotis and wy form Wy in G, again a contradiction.
Thus, R(Tx(n), Ws) < 2n for n = 0 (mod 4) and R(Tn(n), Ws) < 2n — 1 for
n# 0 (mod 4). O

Theorem 5.3.22. Ifn > 9, then R(Tp(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain
Tp(n) and that G does not contain Wg. Suppose that n # 0 (mod 4). By Theo-
rem 5.2.9, G has a subgraph T" = Ts(n). Let V(T) = {vg,..., Up_q, w1, ws, w3}
and E(T) = {wvovy,..., 000, 4, Vw1, v1wa, wiws}. Set V. = {vq,...,v,_4} and
U=V(G)—V(T); then V| = n—>5and |[Ul =n—1. Since Tp(n) € G, w;
is not adjacent to any vertex of U UV in G. If each v; in V is adjacent to at most
three vertices of U in G, then by Corollary 5.3.2, G[U U V] contains Cg which with
w, gives Wy in G, a contradiction. Therefore, some vertex in V, say vs, is adjacent
to at least four vertices of U in G, say uy,...,us. For n =9 and n = 10, G con-
tains Tp(9) and Tp(10) with edge set {uqvq, ugve, uzvs, VoV, VeUT, VoU3, V1WT, V1 W3 }
and {u1vs, Uy, Uzvy, UsVe, Vo, VoU1, Vg3, VW1, V1We }, Tespectively. For n > 11,
each of wuy,...,us is adjacent to at most two remaining vertices in U. Then by
Corollary 5.3.1, G[U] contains Cg which with w; gives Wy in G, a contradiction.

On the other hand, suppose that n = 0 (mod 4). By Theorem 5.3.20, G contains
a subgraph T' = Ty (n). Now, we let V(1) = {vo, ..., vp—5, w1, ..., ws} and E(T) =
{vov1, . . ., VoUs_5, VW1, V1 We, V1W3, Wiwy t. Let V= {vg, ... v, s} and U = V(G) —
V(T); then |[V| =n —6 and |U| = n — 1. Since Tp(n) € G, w; is not adjacent to
{vo, we, w3} UU in G, and so dgu(we) < 1, dgp(ws) < 1 and dg(v) <n—7
for any vertex v € V. Now, if G contains a subgraph T4(n), then we can use
arguments similar to those used for the case n # 0 (mod 4) above. Therefore, G
does not contain T4(n). Then vy is not adjacent to {ws, w3} UU in G.

Suppose that some vertex v € V' is not adjacent to w; in G. Let X be any
four vertices in U that are not adjacent to v in G and set Y = {v, vy, wq, w3}. By
Lemma 4.3.5, G[X UY] contains Cg which with w; gives Wy in G, a contradiction.
Therefore, each vertex of V' is adjacent to wy in G. Since Tp(n) € G, wy is adjacent
to at most n — 7 vertices of U in G. Since Ta(n) € G, wy and ws are not adjacent
in G. Now, if w, is adjacent to both wy and w3 in G, then wy is not adjacent to
vp in G since Tp(n) € G. Let X be any four vertices of U that are not adjacent
to wy in G and let V = {wy,...,ws}. By Lemma 4.3.5, G[X U Y] contains Cy
which with w; gives Wy in G, a contradiction. Therefore, w4 is non-adjacent to
either wy or w3 in G, say wy. Since dg)(w2) < 1 and dgp)(ws) < n — 7, there is
a set X of four vertices in U that are not adjacent to both wy and wy in G. Let
Y = {vg, w1, w3, ws}. By Lemma 4.3.5, G[X UY] contains Cg which with w; gives
Wy in G, again a contradiction.

In either case, R(Tp(n), Ws) < 2n—1 for n > 9 and this completes the proof. [
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Theorem 5.3.23. If n > 9, then R(Ty(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Let G be any graph of order 2n — 1. Assume that G does not
contain T(n) and that G does not contain Ws. By Theorem 5.2.5, G has a
subgraph T' = S,(4). We let V(T') = {v,..., Vg, w1, we, w3} and E(T) =
{vov1, . . ., VoUs_4g, VW1, V1We, v1w3}. Set V = {vy, ..., v, 4} and U = V(G) -V (T);
then |V| =n—5 and |U| = n— 1. Since Tp(n) € G, G[V] are independent vertices
and not adjacent to U.

Suppose that n > 10. Then |V| > 5 and |U| > 9, so by Observation 4.3.2, G
contains Wg, a contradiction. If n =9, then |V| =4 and |U| = 8. By Lemma 4.3.4,
G|U] is Kg or Kg—e. Since T(9) € G, T is not adjacent to U, and §(G[V(T')] > 5.
As vq,...,v5 are independent in GG, they are each adjacent to all other vertices in
G[V(T)], Hence, G[V (T')] contains Ty (9) with ve and vy as the vertices of degree 4,
a contradiction.

Thus, R(Tp(n), Ws) < 2n — 1 for n > 9 which completes the proof. O

Theorem 5.3.24. Ifn > 9, then R(Tr(n), Ws) =2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the up-
per bound. Let G be any graph of order 2n — 1. Assume that G does not
contain Tr(n) and that G does not contain Wg. By Theorem 5.2.11, G has a
subgraph T' = T¢(n). Now, let V(T) = {vo,..., Up—g, w1, we,ws} and E(T) =
{vov1, ..., VoUp—_g, VW1, VoWe, vows}. Set V. = {vs,...,v,_4} and U = V(G) —
V(T) = {u1,...,up—1}; then |V| = n —6 and |U| = n — 1. Since Tr(n) ¢ G,

w; is not adjacent in G to any vertex of UU V. If §(G[U UV]) > [221], then
G[UUV] contains Cg by Lemma 2.2.10 which, with ws as hub, forms W5, a contra-
diction. Therefore, 6(G[U UV]) < [#7] — 1, and A(G[UUV]) > |27 ] = n — 4.

Now, there are two cases to be considered.

Case 1: One of the vertices of V', say vs, is a vertex of degree at least n — 4 in
GlU U V].

Note that in this case, there are at least 3 vertices from U, say uq, ..., us, that
are adjacent to vs in GG. Suppose that vs is also adjacent to a in GG, where a can be
a vertex in U or V. Since Tr(n) € G, these 4 vertices are independent and are not
adjacent to any other vertices of U. Since n > 9, U contains at least 4 other vertices,
say Us, . .., Us, SO UjUsUsUgUstraust, and ws forms Wy in G, a contradiction.
Case 2: Some vertex u € U has degree at least n — 4 in G[U U V].

Since Tr(n) ¢ G, u is not adjacent to any vertex of V in G. Therefore, u
must be adjacent to at least n — 4 vertices of U in G. Without loss of generality,
suppose that wy, ..., up—4 € Ngpj(u). Note that V' is not adjacent to Ngjyj(u), or
else it will form Tg(n) in G, a contradiction. If n > 10, then any 4 vertices from
Nap (u) and any 4 vertices from V form Cy in G which, with w; as hub, forms W,
a contradiction. Suppose that n = 9 and let the remaining two vertices be ug and
uy. If either ug or u; is not adjacent to any two vertices of {us, ..., us} in G, say ug
is not adjacent to u; or us in G, then ujuguavsusvsusvsu; and ws forms Wy in G, a
contradiction. So, both ug and u; is adjacent to at least 4 vertices of {us,...,us}
in G. Since Tr(9) € G, T cannot be adjacent to U, and §(G[V(T)] > 5. As both v,
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and ws are not adjacent to vz, vy and v5 in G, they is adjacent to all other vertices
in G[V(T)]. Similarly, since v does not adjacent to vy and ws in G, vs is adjacent to
wy or wy in G, Without loss of generality, we assume that vs is adjacent to w;. Then
G[V(T)] contains Tr(9) with edge set {vows, Vav1, VoV, Vo4, VoUs, VaW3, VoW1, W1V3 },
a contradiction.

In either case, R(Tr(n), Ws) < 2n — 1. O

Theorem 5.3.25. Ifn > 9, then R(Ts(n), Ws) = 2n — 1.

Proof. Lemma 5.3.3 provides the lower bound, so it remains to prove the upper
bound. Let G be any graph of order 2n — 1. Assume that G does not contain Tg(n)
and that G does not contain Ws. Suppose that n # 0 (mod 4). By Theorem 5.2.7,
G has a subgraph T' = S,,[4]. Let V(T') = {vo,..., V4, w1, wa, w3} and E(T) =
{vov1, . .., VoUp—_g, VW1, Wy W, wiws}. Set V = {vy, ... v, 4} and U = V(G)-V(T);
then |[V| = n—5 and |U| = n — 1. Since Ts(n) ¢ G, G[V] are independent
vertices and are not adjacent to U. If n > 10, then |V| > 5 and |U| > 9, so by
Observation 4.3.2, G contains Wy, a contradiction. Suppose that n = 9. Then
|V| =4 and |U| = 8. By Lemma 4.3.4, G[U] is Kg or Kg —e. Since T5(9) £ G, T
is not adjacent to U, and 6(G[V(T")] > 5. As va, ..., vs are independent in G, they
are adjacent to all other vertices in G[V(T)], and so G[V (T')] contains Ts(9) with
edge set {vgv1, Vog, V104, V15, VoW1, VaWs, VW3, V3W1 }.

On the other hand, suppose that n = 0 (mod 4). By Theorem 5.2.7, G has
a subgraph T = S, _1[4]. Let V(T) = {vo,...,vn_5, w1, wo, w3} and E(T) =
{vov1, . .., VoU_5, VW1, W we, w3 }. Set V ={vy, ... v, s} and U = V(G)-V(T);
then [V| =n — 6 and |U| = n. Since Ts(n) € G, G[V] is not adjacent to U. Since

|[V| = n—6 > 4, by Observation 4.3.2, A(G[U]) < 3 and 6(G[U]) > n — 4 since

.....

Sn[4] and the arguments from the n Z 0 (mod 4) case above lead to a contradiction.
Thus, R(Ts(n), Ws) < 2n — 1 for n > 9 which completes the proof. O
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CHAPTER 6

Ramsey numbers for large tree graphs versus the wheel
graphs of order 9

In this chapter, we provide some insight on the Ramsey numbers for tree graphs
of order n versus the wheel graph Wy of order 9, focusing on the tree graphs with
maximum degree at most n — 6 for large values of n.

6.1 Introduction

Before looking into the Ramsey numbers, we define a particular tree as follows.

Definition 6.1.1. Let Qy,...,Q; be disjoint trees with |V (Q1)|,...,|V(Q:)| > 2.
Define k = |V(Q1)| + -+ + |V(Qu)| — t, and let v; € V(Q;) for each i = 1,...,t.
Finally, let T =T, g(v1,...,v5;Qu, ..., Q) be the tree on n vertices with

V(T) ={vo,u1, ..y Up_ppy 1y UV(Q1)U---UV(Qy);
E(T) = {’Uoul, RN ,voun,k,t,l} U {Uo’l)l, e ,Uo’Ut} U E(Ql) J---uU E(Qt) s

as tllustrated below:
Uy

Up—k—t—1

Toje(vi, - 05Q1,. ., Q)

6.2 Some lemmas

In this section, we introduce some lemmas that are helpful in our discussion on the
Ramsey numbers for large trees 7,, with maximum degree at most n — 6 versus the
wheel graph Wy of order 9.

Lemma 6.2.1. Suppose that k > 5 and that T = T,, ;(v1; Q) for some tree Q with
V(Q)| =k + 1. Then Q has at least one of the following graphs as a subgraph:
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(4] (] U1 6 @
Z

U1
Zl Z2 Z3 4

U1 U1 U1 U1
Zs Zs Z7 Zs
U1 U1
OO 0 0 0 o
Zy Z1o

Proof. Note that () contains v; and has at least 6 vertices. If deg;(vy) > 4, then Q)
contains Z;. If degy(vy) = 3, then @ contains Z. If deg;(v1) = 2, then @) contains
Zy or Zy. If degp(vy) = 1, then Q) contains Zs, Zg, Z7, Zg, Zg or Z. O

Lemma 6.2.2. Suppose that k > 5 and that T = T, (v1,v9; Q1, Q2) for trees @y
and Qo with |V (Q1)|+|V(Q2)| = k+2. If [V (Q1)| > [V (Q2)|, then Q1UQ4 contains
at least one of the following graphs as subgraph.:

(] < (4] % U1 4 U1 '/E
"e®—0 10—@ "e®—0 1O—0
ZH 212 Z13 Zl4

Proof. Note that Q1 U Qs contains {vy,ve} and has [V(Q1)| + |V(Qq)| =k +2>7
vertices. Suppose that |V(Q1)| > |V(Q2)|; then @, has at least 4 vertices. If
degr(v1) > 3, then Q1 U @y contains Z;. If degy(v) = 2, then @1 U Q2 contains
Z1o. Finally, if deg,(v1) = 1, then Q7 U Q) contains Zy3 or Z14. O

Lemma 6.2.3. Suppose that k > 5 and that T = T, ;(v1,...,v;Q1,...,Q¢) for
trees Q1, ..., Qy for which |V (Qq1)|+---+|V(Q¢)| = k+t. Ift > 3, then Q1UQ2UQ3

contains the subgraph
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11 0—@
20—@
3 @—@

AT

Proof. Based on Definition 6.1.1, each v; in ); has degree at least 1. n

Lemma 6.2.4. Let G be a graph, let U C V(G) with |[U| = m and let y1,y2,ys €
V(G)\U. If [Ny (y;)| > m — £ for all i, then

(a) foralll <i<j <3, |Ny(y)NNyly;)| >m—2¢(;

(b) [Nu(y1) N Nu(y2) N Nu(ys)| = m — 3L

Proof. (a) [Ny (yi) N Nu(y;)| = [Nu(ya)|+ | Nu(y;)| —[Nu(yi) UNu (y;)] > 2(m—€) —
|U| =m —2¢. (b) By part (a), |Nu(y1) N Nu(y2) N Nu(ys)| > [Nu(yr) N Nu(ye)| +
[Nu(ys)| — U] = m — 3¢ O

Lemma 6.2.5. Let G be a graph with V(G) = {x1,...,n_4,y1,Y2,y3}. Suppose
that each vertex in G has degree at least n —t — {. Let Zy,...,Z1o be defined
as in Lemma 6.2.1. If n > t+ 30 + 7, then for each i € {1,...,10}, there are
Ti1, Tio, Tig € {1, ..., Tt} such that Gl{z1, T2, Tis, Y1, Y2, Y3 }| contains a subgraph
U; which is isomorphic to Z;. Furthermore, the isomorphism can be chosen so that
i1 1S mapped to vy in Z;.

Proof. Let X = {x1,...,x,_,} and note that [Nx(y;)| >n—t—{—2for j =1,2,3.
Also, define d = n —t — ¢ — 3 and note that d > 2¢ 4+ 4 > 4. Finally, define
G' = G[{zi1, Ti2, i3, Y1, Y2, Y3 }]. By Lemma 6.2.4(b), |[Nx(y1) " Nx(y2) " Nx(y3)| >
n—t—3C+2)>1,s0 Nx(y1) N Nx(y2) N Nx(y3) is non-empty.

Case i = 1. Let ;3 € Nx(y1) N Nx(y2) N Nx(ys3). Since z;; is adjacent to at least
d vertices in V(G) \ {y1, 2,93}, it is adjacent to some x5 € X \ {z;;}. Choose
zi3 € X \ {1, }; then G’ has a subgraph isomorphic to Z; and x;; is mapped to
vy by this isomorphism.

Case i = 2. Let ;3 € Nx(y1) N Nx(y2). Since 1, is adjacent to at least d
vertices in V(G) \ {x1,v2,ys3}, it is adjacent to a vertex z; € X \ {x;1}. Choose
zi3 € X \ {21, T }; then G’ has a subgraph isomorphic to Z; and x;; is mapped to
vy by this isomorphism.

Case i = 3. Let x;2 € Nx(y1)NNx(y2) and let X' = X \{x;2}. Then |Nx/(x;2)| > d
and |Nx/(y3)| > d. By Lemma 6.2.4(a), |Nx/(y3) " Nx/(x2)| > n—t—2({+3) > 1,
so there is some z;;1 € Nx/(y3) N Nx/(xs). Choose x;3 € X'\ {z;1}; then G’ has a
subgraph isomorphic to Z; and z;; is mapped to v; by this isomorphism.

Case i = 4. Let 245 € Nx(y1) N Nx(y2) and let X' = X\ {x;2}. Then |Nx/(y1)| > d
and |Nx/(ys)| > d. By Lemma 6.2.4(a), |[Nx/(y1) " Nx:(y3)| >n—t—2({+3) > 1,
so there is some x;;1 € Nx/(y1) N Nx/(y3). Choose x;3 € X \ {1, z;2}; then G’ has
a subgraph isomorphic to Z; and z;; is mapped to v; by this isomorphism.

Case i = 5. Let x;3 € Nx(y1) N Nx(y2) N Nx(y3) and let X’ = X \ {z;2}. Since
|INx/(x:2)] > d > 1, some z;; € X' is adjacent to ;2. Choose ;3 € X \ {xi1, 2 };
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then G’ has a subgraph isomorphic to Z; and x;; is mapped to v; by this isomor-
phism.

Case i = 6. As in Case ¢ = 4, there is some x;3 € Nx(y1) N Nx(y2) and |[Nx/(y1) N
Nxi(y3)] > 1 where X' = X \ {z2}. Let 253 € Nx/(y1) N Nx/(y3) and set X" =
X\ {x, x;3}. Since |[Nxn(y1)| > d—1> 1, some z;; € X” is adjacent to y;. Thus,
G’ has a subgraph isomorphic to Z; and x;; is mapped to v; by this isomorphism.
Case i = 7. As in Case i = 6, there is some x;3 € Nx(y1) N Nx(y2) and some
T3 € NX’(yl) N NX/(y3) where X' = X \ {LL’ZQ} Let X" = X \ {Iig,l’ig}. Since
INxn(xi0)| > d—1 2> 1, some x;; € X” is adjacent to x;5, so G’ has a subgraph
isomorphic to Z; and z;; is mapped to v; by this isomorphism.
Case i = 8. Let z;5 € Nx(y1) N Nx(y2) N Nx(y3) and let X' = X \ {z;2}. Since
INx/(y1)| > d > 1, some vertex x;; € X' is adjacent to y;. Choose x;3 € X \
{1, ;2 }; then G’ has a subgraph isomorphic to Z; and x;; is mapped to v; by this
isomorphism.
Case i = 9. Let z;0 € Nx(y1) N Nx(y2) N Nx(y3) and let X' = X \ {z;2}. Since
INx/(y1)| > d > 1, some z;3 € X' is adjacent to y;. Let X" = X \ {z;2}. Since
|Nxn(x;3)| > d—12>1, x5 is adjacent to some z;; € X”. Thus, G’ has a subgraph
isomorphic to Z; and z;; is mapped to v by this isomorphism.
Case i = 10. As in Case i = 6, there is some x;5 € Nx(y1) N Nx(y2) and some
zi3 € Nxi(y1) N Nx:(y3) where X' = X \ {z;n}. Let X" = X \ {x;2, 23} Since
INx»(y2)| > d—1 > 1, some x;; € X" is adjacent to ys, so G’ has a subgraph
isomorphic to Z; and z;; is mapped to v; by this isomorphism.

This completes the proof of the lemma. O

Lemma 6.2.6. Let G be a graph with V(G) = {z1,...,Zn_t,Y1,Y2, Y3} in which
each vertex has degree at least n —t — £. For 11 < ¢ < 14, let Z; be defined
as in Lemma 6.2.2. If n > t+ 30 + 7, then for each i € {11,...,14}, there
are Ti1,Tio, Tig € {T1,...,Tnt} such that G[{xi1,%i2, Ti3, Y1, Y2, Y3} contains a
subgraph U; which is isomorphic to Z;. Furthermore, the isomorphism can be chosen
so that x; 1 s mapped to v; and x;2 s mapped to vy in Z;.

Proof. Let X = {x,...,%,_+} and note that |[Nx(y;)| > n—t—¢—2for j =1,2,3.
Also, define d = n —t — ¢ — 3 and note that d > 2¢ + 4 > 4. Finally, define
G' = G[{zi1,%i2, Ti3, Y1, Y2, ys}]. By Lemma 6.2.4(b), |[Nx(y1)Nx(y2)"\Nx(y3)| >
n—t—3l+2)>1,s0 Nx(y1) N Nx(y2) N Nx(y3) # 0.

Case i = 11. Let z11;, € Nx(y1) N Nx(y2) "Nx(y3) and 115, € X \ {x11,}. Since
T11,j, 1s adjacent to at least d — 1 vertices in V(G) \ {z11,4,, Y1, Y2, y3}, it is adjacent
to some 115, € X \ {z11,5, }. Thus, G’ has a subgraph isomorphic to Zi1, and 11 5,
is mapped to v; and 13 j, is mapped to vs.

Case ¢ = 12. Note that y; is adjacent to some z15; € X. Let X' = X\
{z12,5}; then |[Nx:(y2)| > d and |[Nx/(x12,5,)| > d. By Lemma 6.2.4(a), |[Nx/(y2) N
Nx/(x124,)] > n—t—1—2(0+2) > 1, so there is some w15, € X'. Let X" =
X \{z12,,, %12, }. Since |Nx»(y3)| > d—1> 1, some x5, € X" is adjacent to ys.
Hence, G’ has a subgraph isomorphic to Zi2, and 12, is mapped to v; and x5 j,
is mapped to vs.
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Case i = 13. Let 2135, € Nx(y1) N Nx(y2) and let X' = X \ {z13;,}. Since
|INx:/(x134,)] > d — 1, some 13, € X' is adjacent to xy3j,. Let X" = X \
{Z13,, T1345}. Since |Nx»(ys)] > d —1 > 1, some z13;, € X" is adjacent to
ys. Thus, G’ has a subgraph isomorphic to Zi3, and x;3;, is mapped to v; and
x13, is mapped to vs.
Case i = 14. Let 145 € Nx(y1) N Nx(y2) and let X' = X \ {z14;}. Since
|INx:/(y1)] > d > 1, some w145, € X' is adjacent to y;. Let X" = X \ {Z14,, T14,j, }-
Since |Nxn(ys)| > d—1> 1, some x4, € X" is adjacent to y3. Thus, G’ has a
subgraph isomorphic to Zi4, and x4, is mapped to v; and w145, is mapped to v,.
This completes the proof of the lemma. n

Lemma 6.2.7. Let G be a graph with V(G) = {x1, ..., Tn_t, Y1, Yo, Y3} in which each
vertex has degree at least n—t— (. Let Zi5 be defined as in Lemma 6.2.5. Ifn > t+
045, then there are x;, Ty, Tiy € {x1,. .., Tn_¢} such that G[{x;,, Ti,, Tiy, Y1, Y2, Y3 }]
contains a subgraph U which is isomorphic to Zi5. Furthermore, the isomorphism
can be chosen so that x;, is mapped to vy, x;, is mapped to ve and x;, 15 mapped to
U3 m Zl5.

Proof. Let X = {xy,..., 2,4 }; then |[Nx(y1)| > n—t—¢—2 > 1, so y; is adjacent to
some x;, € X. Let X’ = X\ {x;,}. Since |[Nx/(y2)] > n—t—{(—3 > 1, y, is adjacent
to some xz;, € X'. Let X" = X \ {z;,,x;,}. Since |[Nxn(ys)| >n—t—£0—4>1,
ys is adjacent to some x;; € X”. Hence, G[{z;,, Ti,, Tis, Y1, Y2, y3}| has a subgraph
isomorphic to Z;5 and x;, is mapped to vy, z;, is mapped to ve and z;, is mapped
to v3 in Zs. O

Lemma 6.2.8. Let G be a graph with V(G) = Z1 U Zy for sets Zy and Zy with
|Za| > n — 1 where n > 5ny + 5 for some positive integer ny. If each vertex in Z;
1s adjacent in G to at most ny vertices in Zy and @[Zl] contains the star graph S,
then G contains Wy.

Proof. Suppose that G[Z,] contains S5 and write V (S5) = {20, ..., 2} and E(S5) =
{2021, ...,2024}. Since each vertex in Z; is adjacent in G to at most n; vertices in
Zy, Zs \ (Nzy(20) U -+ U Ng,(z4)) contains at least n — 1 — 5ny > 4 vertices, so
choose four such vertices, say ai,...,as. Then G contains Wy with hub z, and
2101 290923032404%1 as Cg. O

Lemma 6.2.9. Suppose that k is a fized positive integer and let T} be a tree
graph Ty, p(vi, ..., v Q1, ..., Q) of order n as defined in Definition 6.1.1. Sup-
pose that |[V(Q1)| > 2 and that ¢ € V(Q1) \ {vi} has degree 1 in (1. Let Q)
be the tree obtained from Q1 by removing q and its incident edge. Let T =
Tog—1(v1,...,v5Q%, Qo,...,Q). There is a positive integer ny(k) such that, for
each integer n > ngy(k), if G is a graph with 2n — 1 vertices that contains Ty but

whose complement G does not contain Wy, then G contains T}.
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Proof. Let qo be the vertex in V(@) adjacent to gq. Note that ¢q is also a vertex in
V(Q}). Let Ti be the family of non-isomorphic forests with at most k vertices. Set

m (k) = max R(T, Ws).
Suppose that G is a graph on 2n — 1 vertices, that 75 is a subgraph of GG, and that
G does not contain Wy. Let V(Ty) = {vo}UU; UV (Q))UV(Q2)U---UV(Q,) where
Uy ={uy,...,up_k+} and

E(Tg) = {UoUl, c. ,Uo'Ut} U {Uoul, c ,Uoun,k,t} U E(Qll) U E(QQ) J---u E(Qt> .

Note that w,...,u, g each has degree 1 in Tp. Let Uy = V(G) \ V(T3); then
|U2’ =n-—1.

If qo is adjacent to a vertex in U; U Us, then G contains T;. Therefore, assume
that g is not adjacent to any vertex in U; U U,. Note that @) is a tree with
IV(Q1)] < k+1. Now, Q1 — vy is a forest Q11 U- - U Q1 of ¢ disjoint trees for some
¢ > 1. Clearly, R(Q1 — v1, Ws) is at most n; (k).

Suppose that u; is adjacent in G to at least n; (k) vertices in Us. Since G does
not contain Wy, the subgraph G[Ny,(u;)] contains Q1 —v; = Q11 U -+ - U Q1e. Now,
uy is adjacent to each vertex in (J; — v;. Adding all of these vertices to T, gives
the subgraph 77 in G. Therefore, assume that u; is adjacent to at most n;(k) — 1
vertices in Us. Similarly, assume that w; is adjacent to at most n;(k) — 1 vertices
in U; for j = 2,3, 4.

Let Z; = {qo,u1,...,us}. Since gy is not adjacent to wui,...,us, G[Z;] con-
tains S;. Now, each vertex in Z; is adjacent in G to at most ny(k) — 1 vertices
in U,. By Lemma 6.2.8, G contains Wy, provided that n > 5n;(k). This is not
possible as G does not contain Ws. Hence, G contains 7. O]

Corollary 6.2.10. Let k be a fized positive integer and let Ty be a tree graph
Top(vi,...,v5Q1,...,Q) of order n as defined in Definition 6.1.1. Suppose that
0<k <kandl <t <t. Let

T2 = Tn,k’(via---vvg’;Qllv"wQ;’)

where, for each i € {1,...,t'}, Q. is isomorphic to a subgraph of Q; where v, €
V(Q}) is mapped to v; € V(Q;) under the isomorphism. There is a positive integer
no(k) such that, for each integer n > ny(k), if G is a graph with 2n—1 vertices that
contains Ty but whose complement G does not contain Wy, then G contains T} .

Proof. Without loss of generality, assume that [V (Q1)| > |V(Q2)| = -+ > [V(Q4)|.
By Definition 6.1.1, |V(Q:)| > 2. Now, by repeatedly adding vertices to @)
to obtain @y and then applying Lemma 6.2.9, we can conclude that G contains

Toxr(vy, .. 0 Q. .., Qu) where

K= (V@) + -+ + [V(Qu_)l) + IV(Qe) = .
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Repeat the same process to each @}, by adding vertices to obtain ;. Then G
contains the subgraph T3 = T}, g (vy, ..., vp;Q1, ..., Qp) where

F = (IV(Qu)] + -+ +V(Q)]) ="
If ¢ = ¢, then G contains T3 = T. Suppose that t' < t. Now,

V(T3) = {vo, 1, .y Upprr—p 1 U V(Qr) U--- UV (Qy);
E(T3) = {vour, ..., 0oUup_pm—y—1} U{vgv1, ..., 00y } U E(Q1) U---UE(Qy) .

Since |Q:| > 2, we have t < k. Let Ty be the family of non-isomorphic forests with
at most 2k vertices. Set
= R(T,Wg).
no = max R(T, Ws)
Now, n— k" —t' —1>n—2k—1. Ilf n—2k —1 > nyg, then G[{u, ..., up_prw_y_1}]
contains the forest Qp 1 U --- U Q; which with 75 gives the subgraph 77 in G. [

Lemma 6.2.11. Let G be a graph with V(G) = {vy,...,vs} UU where |U| =n and
none of vi,...,vs 1S adjacent to any vertex in U. Let Zy,...,Z15 be defined as in
Lemmas 6.2.1-6.2.3. For sufficiently large n, if G does not contain Wy, then

(a) GU] contains T, v (z))-1(v1; Z;) for each i =1,...,10;

(b) G[U] contains Ty, 4(v1,v2; Xi1, Xi2) for eachi =11,...,14 with Xy UX;» = Z;;

(¢) GIU] contains T,, 3(vy, va, v3; X1, Xo, X3) where X1 U Xy U X3 = Zy5.

Proof. Suppose that G[U] contains S5, and write V (S5) = {20, ..., 2} and E(S5) =
{2021, ...,2024}. Then G contains Wy with hub zy and z,v129092503240421 as Cs.
Therefore, assume that G[U] does not contain Ss; then every vertex in G[U] has
degree at most 3. Thus, each vertex in G[U] has degree at least n — 4. Write
U = {ag,...,a,_4,b1,b2,b3} so that each of agay,...,apa,_4 is an edge of G[U].
Now, consider the graph G[U \ {ao}]. Every vertex in G[U \ {ao}] has degree at
least n — 5.

(a) By Lemma 6.2.5, there are elements a;1,as,a;3 € {ai,...,a, 4} such that
Gl{ai1, aze, a;3, by, ba, b} contains a subgraph U] isomorphic to Z;. Furthermore,
the isomorphism can be chosen so that a;; is mapped to v; in Z;. Therefore, G
contains T, v (z,)|-1(v1; Z;).

(b) By Lemma 6.2.6, there are elements a;,a;2,a;3 € {ai,...,a, 4} such that
Gl{ai1, aiz, aiz, by, by, b3}| contains a subgraph U/ isomorphic to Z;. Furthermore,
the isomorphism can be chosen so that a;; is mapped to v; and a;o is mapped to v,
in Z;. Therefore, G contains T}, 4(vy, v2; Xi1, Xio).

(c) By Lemma 6.2.7, there are elements a;,,aj,,a;, € {ai,...,a,-4} such that
Gl{aj,,aj,,aj,,b1,be,b3}] contains a subgraph U isomorphic to Z;5. Furthermore,
the isomorphism can be chosen so that a;, is mapped to vy, a;, is mapped to v, and
aj, is mapped to vs in Zy5. Therefore, G contains T;, 3(vy, v, v3; X1, Xa, X3). ]
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Lemma 6.2.12. Let Zy,...,7Z15 be defined as in Lemmas 6.2.1-6.2.53. For each
1= 11,...,14, let Z; = X;1 U X0 where X;1 is a tree and X;o is an edge disjoint
from Xio. Let Z15 = X1 U Xo U X3 where X1, Xy, X3 are disjoint edges. Then

(a) R(Th v z)-1(v1; Z;), Ws) = 2n — 1 when n is sufficiently large;

(b) R(T,4(v1,v2; Xi1, Xin), W) = 2n — 1 when n is sufficiently large;

(¢) R(T,3(v1,v2,v3; X3, Xo, X3), Ws) = 2n — 1 when n is sufficiently large.

Proof. The union of two complete graphs G' = K, ; U K,,_; does not contain
T v(z)-1(v1; Z;) and G’ does not contain W, so R(T v (zy-1(v15 Z;), W) > 2n—1.
Similarly, we are able to prove that R(T, 4(v1,va; X1, Xi2), Ws) > 2n — 1 and that
R(Tn’3<'l}1, Va2, U3, Xl, X2, X3>, Wg) > 2n — 1.

Let G be a graph with 2n — 1 vertices such that G does not contain Wy. By
Theorem 2.2.6, GG contains S,,_». If G contains S,,, then by Corollary 6.2.10, G
contains T, v (z,)|-1(v1; Z;) for each i € {1,...,10}, T, 4(v1, ve; Xi1, Xi2) for each
ie{11,...,14} and T, 3(vy1, v2, v3; X1, X9, X3). Therefore, assume that G does not
contain S,,. We consider two cases.

Case 1. (G contains S,,_1.

Write V(S,—-1) = {xo,...,Tn—2} and E(S,-1) = {zoz1,...,T0xn_2}, and let Uy =
V(G) \ V(S,_-1). Since G does not contain S,, xy is not adjacent to any vertex
in Us. If x; is adjacent to a vertex in Us, then G contains T, o(z1; P2) where Py
is a path with two vertices and z; € V(P;). Clearly, for each i = 1,...,10, P, is
isomorphic to a subgraph of Z; and z; is mapped to v; € V(Z;) by this isomorphism.
By Corollary 6.2.10, G contains T, v (z,)-1(v1; Z;). For each i = 11,...,14, P,
is isomorphic to a subgraph of X;; and x; is mapped to v; € V(X;;) by this
isomorphism. Again by Corollary 6.2.10, G contains T}, 4(v1, v2; Xi1, Xi2). Similarly,
G contains T, 3(v1, va, v3; X1, X2, X3). Therefore, assume that z; is not adjacent to

any vertex in U;. Similarly, assume that none of x,,...,x, o is adjacent to any
vertex in U,.
Now |Us| = n and zy,...,z4 are not adjacent to any vertex in U,. It fol-

lows from Lemma 6.2.11 that G[U,] contains T}, v (z,-1(v1; Z;) for i = 1,...,10,
Tna(v1,v9; Xi1, Xio) for i = 11,...,14 and T}, 3(vy, ve, v3; X1, Xa, X3).
Case 2. (G contains S, _s but does not contain .S,,_1.
Write V (S, _2) = {zo,..., 2,3} and E(S,_2) = {zoz1,...,20T,_3}, and let Uy =
V(G)\ V(Sn—2). Then |Us| = n+ 1 and z( is not adjacent to any vertex in Us.
Let w € U and suppose that there are vertices z;,, x,, x;, € {x1,...,2,_3} that are
not adjacent to any vertex in U, \ {u}. Since |Us \ {u}| = n and ¢ is also not
adjacent to any vertex in U, \ {u}, it follows from Lemma 6.2.11 that G[Us \ {u}]
contains T, v (z,)—1(v1; Z;) for 1 <4 <10, T}, 4(v1,v2; Xi1, Xjo) for 11 < i < 14 and
T, 3(v1, v2,v3; X7, Xo, X3). Therefore, assume that for each v € U, and all subsets
Y C{xy,...,x,_3} with |Y| = 3, at least one vertex of Us \ {u} is adjacent of some
vertex of Y.

Let 75 be the family of non-isomorphic forests with at most 5 vertices. Set

no = max R(T, W) .

T€eTs

and note that ny > 2. Suppose that x; is adjacent to at least ng + 1 vertices in
Uy and let ¢ € {1,...,10}. Since G does not contain Wg and Z; — v; is a forest
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of size at most 5, the subgraph G[Ny,(x1)] contains Z; — v;. Hence, G' contains
Lo jvz-1(v1; Zi).

Next, we show that G contains T), 4(v1, ve; Xi1, Xi2). At least one of xq,x3, x4
is adjacent to some vertex us € Us,, without loss of generality say z,. Let Uj =
Us\ {us}. Now, 71 is adjacent to at least ng vertices in Uj. Since G does not contain
Wy and X — vy is a forest of size 3, the subgraph G[Ny;(z1)] contains Xj — vy.
Thus, G contains T}, 4(v1, ve; Xi1, Xi2) where X5 is the path xous.

As above, we can assume that x, is adjacent to a vertex ug € U,. Also, at
least one of x3, x4, x5 is adjacent to some vertex in uz € Uy, without loss of gen-
erality, say x3. Since x; is adjacent to at least ng — 1 vertices in Us \ {uso,us},
there is a vertex uy € Uy \ {ug,us} for which zyu; € E(G). Thus, G contains
T 3(v1, v2,v3; X1, Xo, X3).

Thus, we may assume that x; is adjacent to at most ng vertices in U,. Similarly,
we may assume that each of xs, ..., z, 3 is adjacent to at most ng vertices in Us,.

By Lemma 6.2.8, we may assume that G[V (S,,_2)] does not contain Ss. Each ver-
tex of G[V(S,_»)] therefore has degree at most 3. Thus, each vertex of G[V(S,_3)]
has degree at least n — 6.

At least one of x1, xo, r3 is adjacent to some vertex w; € Us, say x1. Recall that
x1 is adjacent to at least n — 6 vertices in G[V(S,_2)], say b1,...,b,_¢. Suppose
that w; is adjacent to at least ng vertices in Uy \ {w;}. Since G does not contain
Wg and Z; — v, is a forest of size at most 5, the subgraph G[Ny,\ {w,}(w1)] contains
Z; —v1. Let Us € Ny, fuwy (w1) be such that G[Us] contains the forest Z; —v;. Then
G[Us U {b1, ..., by—¢, 1, w1 }] contains T}, vz, -1(v1; Z;). B

Next, recall that w; is adjacent to at least ng vertices in Us \ {w;}. Since G
does not contain Wy and X;; — vy is a forest of size 3, the subgraph G[Ny,\ fu,} (w1)]
contains X;; — v;. Choose an element ¢ € V(S,_2) \ {z1,b1,...,b,_6}. Since ¢
has degree at least n — 6 in G[V(S,,_2)], it is adjacent to at least n — 9 vertices in
{b1,...,by_¢}, including, say, b;. Thus, G contains T}, 4(v1, ve; Xi1, Xi2) where Xy
is the path cb;.

Now note that w; is adjacent to a vertex in Us \ {w;}. Choose two elements
c1,¢0 € V(Sn_2) \ {x1,b1,...,b,_¢}. Since each ¢; has degree at least n — 6 in
G[V (S,—2)], there are two vertices dy,dy € {b1,...,b,_g} such that ¢;d; and cyds
are edges in G. Hence, G contains T}, 3(vy, ve, v3; X1, Xa, X3).

We may therefore assume that wy is adjacent to at most ng — 1 vertices in Us \
{w,}. Consider the graph G[V(S,_2)U{w:}]. Now, each vertex in V/(S,_o)U{w,} is
adjacent in G to at most ng vertices in Us \ {w; }. By Lemma 6.2.8, we may assume
that G[V(S,_2)U{w; }] does not contain S5. Thus, each vertex in G[V (S,_o)U{w; }]
has degree at most 3, so each vertex in G[V(S,,_o) U{w; }] has degree at least n — 5.

Now, |Uy \ {w1}| = n. Choose a vertex a9 € V(S,—2) U {w;} and write
V(Sp_2) U{wi} = {ao,...,a,_5,c1,c2,c3} so that each of agay,...,apa, 5 is an
edge in G[V(S,_2) U {w;}]. Each vertex in G[{ai,...,a,_5,c1,c2,c3}] has degree
at least n — 6. By Lemma 6.2.5, for each ¢ € {1,...,10}, there are a;1, a2, a;3 €
{a1,as,...,a,_5} such that G[{a;1, ai, a3, c1,ce,c3}] contains a subgraph isomor-
phic to Z;. Furthermore, the isomorphism can be chosen so that a;; is mapped to
U1 in Zl ThU_S, G[V(Sn_2> U {U)l}] contains Tn—1,|V(ZZ-)|—1(U1; Zl) If Qo is adjacent
to a vertex in U, \ {w1}, then G[V (S,—2) U {w1}] contains T, v (z,y-1(v1; Z;)-
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Next, by Lemma 6.2.6, for each integer + = 11,...,14, there are elements
a1, iz, a;3 € {a1,a9,...,a,_5} such that G[{as, as, a3, c1, c2, c3}| contains a sub-
graph isomorphic to Z;. Furthermore, the isomorphism can be chosen so that
a; is mapped to vy and a; is mapped to ve in Z;. Thus, G[V(S,—2) U {w:}]
contains 1,1 4(vy, vo; Xin, Xio). If ap is adjacent to a vertex in U, \ {w;}, then
GV (Sp—2) U {w1}] contains T}, 4(v1, va; Xi1, Xia).

By Lemma 6.2.7, there are elements a;,,aj,,aj, € {ai,...,a,—5} such that
Gl{a;,,a;,,aj,,c1, 2, c3}] contains a subgraph U isomorphic to Z;5. Furthermore,
the isomorphism can be chosen so that a;, is mapped to v, a;, is mapped to v,
and a;, is mapped to vs in Zy5. Therefore, G[V(S,—2) U {w;}| contains the sub-
graph T,,_; 5(v1, va, v3; X1, Xo, X3). If aq is adjacent to a vertex in Us \ {w;}, then
GV (Sp—2) U {w1}] contains T, 5(v1, va, v3; X1, Xo, X3).

Hence, we may assume that ag is not adjacent to any vertex in U, \ {w}.
Since ag was chosen arbitrarily, no vertex in V(S,_2) U {w;} is adjacent to any
vertex in U \ {w;}. Choose any vertices dy,...,ds € V(S,_2) U {w;}. Now,
|Us \ {w1}| = n and none of dy, ..., dys is adjacent to any vertex in Us \ {w;}. Thus
by Lemma 6.2.11, G[Us\ {w1 }| contains T}, jv(z,y-1(v1; Z;) for 1 <4 < 10, G contains
Tn’4(U1,U2; Xil’XiQ) for 11 S 1 S 14 and G contains Tn73(U1,U2,U3;X1,X2, X3)

This completes the proof of the lemma. O

6.3 Ramsey numbers for large tree graphs with maximum degree of
at most n — 6 versus the wheel graph of order 9

Now, we present the Ramsey number R(7,,, W) for large tree with A(7,,) < n — 6.

Theorem 6.3.1. Let k > 5 be a positive integer and T = T,, (v, ..., v Q1, ..., Qt)
be the tree defined in Definition 6.1.1. Then there is a positive integer ng(k) such
that, for each integer n > no(k), R(T,Wg) = 2n — 1.

Proof. Clearly, G' = K,,_1 U K,,_; does not contain 7" and G’ does not contain Ws.
SO, R(T, Wg) >2n—1.

Let G be a graph with 2n — 1 vertices such that G does not contain Ws. Let
Z1,..., 215 be defined as in Lemmas 6.2.1-6.2.3. For 11 < < 14, let Z; = X;;1 U X9
where X;; is a tree and X is an edge disjoint from X;o. Let Z15 = X; U Xo U X3
where X1, X5, X3 are disjoint edges. By Lemma 6.2.12, G contains T}, v (z,)|-1(v1; Z;)
for 1 <4 <10, T, 4(v1, v2; X1, Xyo) for 11 <4 < 14 and T), 3(v1, v, v3; X1, Xa, X3).

Without loss of generality, assume that |V (Q1)] > [V(Q2)| > -+ > |[V(Qy)| > 2.

Suppose that t = 1. By Lemma 6.2.1, the subtree Q in T' = T}, x(v;; )) contains
Z; for some i € {1,...,10}. By Lemma 6.2.12(a), G contains T}, v (z)-1(v1; Z;)-
By Corollary 6.2.10, G' contains 7.

Suppose that ¢ = 2. By Lemma 6.2.2, the subforest (); U ()2 in the graph
T =T, x(v1,v2; Q1,Q2) contains Z; for some i € {11,...,14}. By Lemma 6.2.12(b),
G contains T}, 4(v1, v2; Xi1, Xi2). By Corollary 6.2.10, G contains T'.

Suppose that ¢ > 3. By Lemma 6.2.3, the subforest ()1 U Q2 U @3 in T con-
tains Z15. By Lemma 6.2.12(b), G contains T}, 3(v1, ve, v3; X1, X2, X3). By Corol-
lary 6.2.10, G contains T'.

This completes the proof of the theorem. O]
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Corollary 6.3.2. Let k > 5 be a positive integer and T be a tree with n vertices
and A(T) = n —k — 1. Then there is a positive integer no(k) such that, for each
integer n > no(k), R(T,Ws) = 2n — 1.

Proof. Note that T' = T,, x(v1, ..., v Q1, ..., Q) for some disjoint trees Qy, . .., Q.
The corollary then follows from Theorem 6.3.1. O]

Note that if 7" is one of the graphs S,,(¢, k), S,.(k) or S,[k|, and A(T) = n—k—1,
then the following corollary follows from Corollary 6.3.2.

Corollary 6.3.3. Let k > 5 be a fixed positive integer. For sufficiently large n,
R(T,Wg) =2n —1 for each T = S, (¢, k), Sp(k), Sn[k].
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CHAPTER 7

Conclusion and possible future work

7.1 Conclusion
Chen, Zhang and Zhang [18] conjectured that R(T,,,W,,) = 2n — 1 for all tree

graphs T,, of order n > m — 1 when m is even and the maximum degree A(T},) “is
not too large”. This conjecture was further refined by Hafidh and Baskoro [33] who
specified the bound A(7},) < n —m + 2. When n is large compared to m, A(T,,)
is not required to be small: the refined conjecture then implies that, for each fixed
even integer m, all but a vanishing proportion of the tree graphs 7,, with n > m—1
satisfy R(T,,, W,,) = 2n — 1.

Throughout this thesis, the aim has been to explore and partially verify this
conjecture. We determined the Ramsey numbers R(7T,,, Ws) for all tree graphs T,
of order n > 5 with maximal degree A(7T,,) > n — 5; see Chapters 4 and 5.

These Ramsey numbers show that the proportion of tree graphs T, satisfying the
equality R(7T,, Ws) = 2n — 1 quickly grows as the maximal degree A(T,,) decreases.
When A(T,) > n — 2, no tree graph T,, satisfies the equality. In contrast when
A(T,) = n — 3, roughly one third of all tree graphs T,, satisfy the equality. When
A(T,) = n—4, more than 85% of all tree graphs T, satisfy the equality. And when
A(T,) = n — 5, roughly 94.7% of all tree graphs T,, satisfy the equality. Moreover,
in Chapter 6, we proved that the Ramsey number R(7,, W) equals 2n — 1 for all
tree graphs of sufficiently large order n. These results lend strong support for the
conjecture described above by Chen et al. and Hafidh and Baskoro.

In Chapter 3, we used Theorem 2.2.2 to find the Ramsey number R(T,,, W)
by applying Lemma 3.1.1 repeatedly. We can apply Lemma 3.1.1 similarly for
R(T,,,Wss), especially for those tree graphs with R(7,,, Wg) = 2n — 1.

Definition 7.1.1. Let T be the family consisting of the following tree graphs:
1. 5,(2,1) for oddn > 7;
S, (3) for odd n > 9;
Sn(1,3), Ta(n) or Tg(n) forn >7 and n #Z 0 (mod 4);
Snl4], Sn(1,4), Sn(2,2), Tp(n) or Tn(n) forn >9 and n Z 0 (mod 4);
Te(n), Sn(3,1), Su(5), Su[b], Sn(4,1), Ta(n), Ty(n), Ty(n), Tk(n), Tr(n),
Ty(n), Tp(n), To(n), Tr(n) or Ts(n) for all n > 8;
6. Sp(4), Tg(n) or Tp(n) for alln >9;
7. T, with A(T,) <n — 6 and sufficiently large n.
Theorem 7.1.2. Letn>7 and s > 2. For allT €T,

Crds Lo o

R(T,Wss)=(s+1)(n—1)+1.
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Proof. By the various theorems in Chapters 4, 5 and 6, R(T,W;5) = 2n — 1. By
applying Lemma 3.1.1 repeatedly, we conclude that R(T, Ws) < (s+1)(n—1)+1.
Furthermore, since x(W,g) = s+ 2 and t(W,g) = 1, Theorem 2.2.7 implies that
R(T,Wsg) > (s+1)(n — 1) + 1. Hence, R(T,W,5) = (s+1)(n—1) + 1. O

Similarly, we have the following result for W .
Theorem 7.1.3. Letn>T and s > 1. For all T € T,

R(T,W,g) = (s +2)(n—1) + 1.

Proof. By Theorem 2.2.7, x(Ws9) = s+ 3 and t(Ws9) = 1. Therefore, for any tree
graph T of order n, R(T,Ws9) > (s +2)(n — 1) + 1. Since Wy is a subgraph of
W11, Theorem 3.3.1 implies that R(T, Wo) < R(T,Ws118) = (s+2)(n—1)+ 1.
Hence, R(T, Ws9) = (s+2)(n — 1) + 1. O

7.2 Possible future work
As described in Section 3.4, we propose Conjecture 3.4.1, here restated as follows.

Conjecture. Suppose that m > 3 and s > 2. Then for sufficiently large n,

R(T,. W) = {(s+1)(n—1)+1, z:fm z:s even,
’ (s+2)(n—1)+1, if m is odd.

For m = 8 and m = 9, we have proved that this conjecture is true for all tree
graphs T" € T. To complete all of the cases, we need to find the analogous results
for all other trees separately.

Furthermore, in Chapters 4 and 5, we have determined the Ramsey numbers
R(T,, Wy) for all tree graphs T,, with maximum degree of at least n — 5 versus the
wheel graph Wg. In Chapter 6, we have determined the Ramsey numbers R(T,,, Ws)
for all tree graphs T, with maximum degree of at most n — 6 where n is sufficiently
large versus Ws. To determine the remaining Ramsey numbers R(7,,, Wg), the next
step would be to focus on the smaller tree graphs with maximum degree of at most
n — 6.
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