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A NEW SIEVE FOR RESTRICTED MULTISET COUNTING

JIYOU LI AND XIANG YU

Abstract. The Li–Wan sieve [11] is extended to multisets when the underlying set is symmetric. The

main ingredient of the proof is the Mobius inversion formula on the poset of partitions of {1, 2, . . . , k}
ordered by refinement. As illustrative applications, we investigate the problems of partitions over
finite fields and zero-sum multisets over the additive group Z/nZ.

1. Introduction

1.1. Distinct coordinate counting. For a positive integer k, let Dk be the Cartesian product of
k copies of a set D. Let X be a subset of Dk. Each element x ∈ X can be written in a vector
form x = (x1, x2, . . . , xk) with xi ∈ D. Motivated by various problems arising from coding theory and
number theory [2, 3, 4, 16], we are interested in understanding the structure of the set X which consists
of “distinct coordinate vectors” in X :

X = {(x1, x2, . . . , xk) ∈ X : xi 6= xj , ∀ 1 ≤ i 6= j ≤ k}, (1.1)

In particular, when X is finite, we want to compute its cardinality, or more generally, evaluate complex
function sums defined over X.

A natural way to compute |X| is using the inclusion-exclusion principle. For integers 1 ≤ i < j ≤ k,
let Xij = {(x1, x2, . . . , xk) ∈ X : xi = xj}. Then the classical inclusion-exclusion principle gives

|X| = |X \
⋃

1≤i<j≤k

Xij | = |X | −
∑

1≤i<j≤k

|Xij |+
∑

1≤i<j≤k,1≤s<t≤k

|Xij

⋂
Xst| − · · ·+ (−1)(

k
2)|

⋂

1≤i<j≤k

Xij |.

(1.2)

However, the number of terms in the above summation is 2(
k
2), which easily causes large total errors.

In fact, this is a major bottle-neck of the inclusion-exclusion sieve. In most applications, people use
Bonferroni inequalities to get weaker bounds such as

|X| ≥ |X | −
∑

1≤i<j≤k

|Xij |. (1.3)

These bounds play important roles in many problems in combinatorics, number theory, probability
theory and theoretical computer sciences. However, they are usually restrictive. For example, (1.3) is

only nontrivial when |X | >
(
k
2

)
. A natural question is then to find simpler explicit formulas or sharper

bounds.
A formula discovered by Li and Wan [11] gives an approach to compute |X| through a simpler way.

The new formula, which will be described in Theorem 1.1, shows that there exists a large number of
cancellations on the right-hand side of (1.2). The number of terms in the summation is significantly

reduced from 2(
k
2) to k!, or even fewer, to the partition function p(k) if X is symmetric.

There is a natural action of the symmetric group Sk on elements of X defined as follows. For τ ∈ Sk

and x = (x1, x2, . . . , xk) ∈ X , define τ ◦ x := (xτ(1), xτ(2), . . . , xτ(k)). Let Xτ be the set of elements in
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X that are invariant under the action by τ . Since each τ ∈ Sk can be written as a product of disjoint
cycles τ = τ1τ2 · · · τc(τ) uniquely up to the order of the cycles, clearly we have

Xτ = {(x1, x2, . . . , xk) ∈ X : xi = xj , ∀ i, j ∈ τm, 1 ≤ m ≤ c(τ)}.
Theorem 1.1 ([11], Theorem 1.1). For τ ∈ Sk, let sign(τ) be the signature of τ which is defined by
sign(τ) = (−1)k−c(τ), where c(τ) is the number of disjoint cycles of τ . Then

|X| =
∑

τ∈Sk

sign(τ)|Xτ |.

In particular, if X is symmetric, that is, invariant under the action of Sk, then

|X| =
∑

τ∈Ck

sign(τ)C(τ)|Xτ |, (1.4)

where C(τ) is the size of the conjugacy class of Sk that contains τ and |Xτ | is naturally defined over
Ck, the set of all conjugacy classes of Sk.

It is quite surprising that Theorem 1.1 was not known before since the Möbius inversion over Πk

was known in the 1960s, where Πk is the poset of all partitions of {1, 2, . . . , k} ordered by refinement.
Precisely, the Möbius inversion formula gives the following formula for |X |:

|X | =
∑

τ∈Πk

µ(0, τ)|Xτ |.

In the case of partition lattice Πk, an explicit expression for the Möbius function µ(0, τ) (see Proposition
2.2) was given independently by Schützenberger in 1954, and Frucht and Rota [21] in 1964. However,
the above formula is not convenient to use. One reason is that counting problems over set partitions
seem more complicated than those over permutations, as explained below.

We now explain further why counting over permutations might be simpler. Suppose that a permu-
tation τ ∈ Sk is of type (c1, c2, . . . , ck), that is, it has exactly ci cycles of length i. It is well-known
that the size of the conjugacy class of Sk that contains τ is given by

C(τ) = N(c1, c2, . . . , ck) =
k!

1c1c1!2c2c2! · · · kckck!
,

since two permutations in Sk are conjugate if and only if they have the same type. This makes (1.4)
computable for many interesting cases via the exponential generating function defined by

∞∑

k=0

∑
∑

ici=k

N(c1, c2, . . . , ck)t
c1
1 tc22 · · · tckk

uk

k!
= exp

(
t1u+ t2

u2

2
+ t3

u3

3
+ · · ·

)
. (1.5)

The readers are referred to [11, 12] for more details and the proof of Theorem 1.1. It turns out that
the sieve formula (1.4) has played an important role in many interesting problems in number theory
and coding theory.

First, the sieve formula gives an elementary way for enumerating subsets S of F∗
q with the property

that
∑

x∈S xm = b, which was first studied by Odlyzko and Stanley for prime q [20]. We remark that
it has the advantage when used to count the number of k-subsets S of F∗

q satisfying the same equality
[8, 23].

Second, since a subset can be naturally regarded as a vector with distinct coordinates, the sieve
formula provides a new counting approach for investigating the subset sum problem, a well-known
#P-complete problem, from a mathematical point of view. Precisely, it is possible to explicitly
enumerate subsets of a finite subset D ⊆ G that sum to a given element in G, where G is an abelian
group. For example, G could be the additive group of a finite field, the multiplicative group of a finite
field, the rational group of an elliptic curve over finite fields, etc., andD could be a subset with algebraic
structure (a subgroup, for example) or an arbitrarily large subset of G. Many explicit or asymptotic



A NEW SIEVE FOR RESTRICTED MULTISET COUNTING 3

formulas were obtained for different subsets D in these situations; see for example [6, 10, 12, 13, 23].
Further applications can be found in [7, 9, 15].

In this paper, we extend the Li–Wan sieve to multisets when X is symmetric. This extension allows
us to count more complicated combinatorial objects naturally, as shown in Section 3.

1.2. Motivations for restricted multiset counting. We first give the definition of restricted mul-
tiset.

Definition 1.2. Let Dk be the Cartesian product of k copies of a set D. A subset X of Dk is said to
be symmetric if (xτ(1), xτ(2), . . . , xτ(k)) ∈ X for any (x1, x2, . . . , xk) ∈ X and any τ ∈ Sk. From now on,
we always assume that X is symmetric. A k-multiset [x1, x2, . . . , xk] is said to satisfy the restriction X
if the ordered k-tuple (x1, x2, . . . , xk) is in X . We denote by M(X) the set of all k-multisets satisfying
the restriction X , that is,

M(X) := {[x1, x2, . . . , xk] : (x1, x2, . . . , xk) ∈ X}.
Example 1.3. Let D = Fq be a finite field of q elements, and let X be the set X = {(x1, x2, . . . , xk) ∈
Dk : x1 + x2 + · · ·+ xk = 0}. Then M(X) consists of k-multisets over Fq whose elements sum to 0.

Remark 1.4. It is not hard to check that the restriction X is well-defined, since X is a symmetric
subset of Dk. One can also think of the set of k-multisets satisfying the restriction X as the image of
X under the map that sends the ordered k-tuple (x1, x2, . . . , xk) to the k-multiset [x1, x2, . . . , xk].

The problem of counting restricted multisets arises naturally from combinatorics. Some interesting
problems are listed as follows.

1.2.1. Polynomials with prescribed range. In studying permutations, hyperplanes and polynomials over
finite fields, Gács et al. proposed the following conjecture on polynomials with prescribed range.

Conjecture 1.5 ([5], Conjecture 5.1). Suppose that M = [a1, a2, . . . , aq] is a multiset over a finite
field Fq with a1 + a2 + · · ·+ aq = 0, where q = ph with p prime. Let m <

√
p. If there is no polynomial

with range M of degree less than q −m, then M contains an element of multiplicity at least q −m.

Here a multiset M on Fq is said to be the range of the polynomial f ∈ Fq[x] if M = [f(x) : x ∈ Fq] as
a multiset (that is, not only values, but also multiplicities need to be the same). To prove or disprove
the conjecture by a counting argument, a key step is to estimate the cardinality of the set M(X), where
X is the set of ordered k-tuples in (Fq \ {0})k that sum to zero. In the case m = 2, the conjecture
holds by Theorem 2.2 in [5]; in the case m ≥ 3, the conjecture was disproved by Muratović-Ribić and
Wang [18] using an estimation they obtained for |M(X)|.

1.2.2. Bijection between necklaces and zero-sum multisets. Wemay further partitionM(X) into various
classes. For instance, consider the set of k-multisets in M(X) with the multiplicity of each element no
greater than a given number. For an integer j ≥ 1, we define

Mj(X) = {[x1, x2, . . . , xk] ∈ M(X) : the multiplicity of each xi is no greater than j, 1 ≤ i ≤ k},
The set Mj(X) arises from the bijective proof problem of necklaces and zero-sum multisets [1], which
asks for a bijection between cyclic necklaces of length n with at most q-colors and zero-sum multisets
over Z/nZ with the multiplicity of each element strictly less than q, when n and q are coprime. Note

that the latter is the set
⋃n(q−1)

k=0 Mq−1(Xk), where Xk is the set of ordered k-tuples in (Z/nZ)k that
sum to zero. Recently, Chan [1] gave a surprising bijective construction for this problem when q is a
prime power using tools from finite fields. Specializing to the case q = 2 answers a question raised by
Stanley (see [22], Page 136), which was open for many years. The problem remains open when q is not
a prime power. We believe that our results on restricted multisets might give some new insights into
this problem.
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1.2.3. List sizes of Reed Solomon codes. Let Fq be a finite field of order q. Let 1 ≤ n ≤ q be a positive
integer and D = {x1, x2, . . . , xn} ⊂ Fq be a subset of cardinality |D| = n > 0. For 1 ≤ k ≤ n, the
Reed-Solomon code RSn,k consists of all vectors of the form

(f(x1), f(x2), . . . , f(xn)) ∈ Fn
q ,

where f runs over all polynomials in Fq[x] of degree at most k−1. Reed-Solomon codes play important
roles in coding theory. It is well-known that the minimum distance of the Reed-Solomon code is
n − k + 1. For simplicity we consider the special case D = Fq and the corresponding code RSq,k is
called the standard Reed-Solomon code.

Given a received word u, it is a challenging problem to determine the distance distribution having
u as the center. In particular, it is an important open problem to obtain list sizes beyond the Jonson
bound. That is, for a non-negative integer i, compute the number Ni(u) of codewords in RSq,k whose
distance to u is exactly i. In [14], the authors reduce a list size decoding problem of Reed Solomon
codes to a multiset counting problem. For interested readers we restated it as follows.

Problem 1.6. Let 1 ≤ k ≤ q and −k ≤ m ≤ q − k − 1. Given a monic polynomial f(x) ∈ Fq[x] of
degree k +m and an integer 0 ≤ r ≤ k +m, count N(f(x), r), the number of polynomials g(x) ∈ Fq[x]
with deg g(x) ≤ k − 1 such that f(x) + g(x) has exactly r distinct roots in Fq.

This leads to another refinement of M(X) and a generalization of the set X defined in (1.1). It is
the set of k-multisets in M(X) which have exactly d distinct elements, that is,

Md(X) = {[x1, x2, . . . , xk] ∈ M(X) : [x1, x2, . . . , xk] has exactly d distinct elements}.
For a ∈ D, let Pa be the property that a multiset contains a as an element, and for A ⊆ D, let NA be
the number of k-multisets satisfying the restriction X and the property Pa for each a ∈ A. Then the
weighted version of the inclusion-exclusion principle [17] gives

|Md(X)| =
∑

{a1,a2,...,ad}⊂D

N{a1,a2,...,ad} −
(
d+ 1

d

) ∑

{a1,a2,...,ad+1}⊂D

N{a1,a2,...,ad+1} + · · · .

However, N{a1,a2,...,ai} is usually depending on {a1, a2, . . . , ai} and thus it seems infeasible to use this

formula to obtain a nice bound on |Md(X)|.
Clearly, the restricted multiset sum problem is a natural generalization of the subset sum problem

and thus is #P-complete. In this paper, we try to study the counting version of this problem. We
establish several combinatorial identities, which in some cases give interesting closed-form expressions.

1.3. Main results. Our idea for computing |M(X)|, Mj(X) and |Md(X)| is based on the Möbius
inversion formula on Πk, the poset of all partitions of {1, 2, . . . , k} ordered by refinement. The method
first appeared in [12]. Given a permutation τ ∈ Sk, suppose again that we have a disjoint cycle
factorization τ = τ1τ2 · · · τc(τ) and the length of the cycle τi is ℓi, 1 ≤ i ≤ c(τ). For an integer j ≥ 1
we define

wj(τ) := (1− (j + 1)1(j+1)|ℓ1)(1− (j + 1)1(j+1)|ℓ2) · · · (1− (j + 1)1(j+1)|ℓc(τ)
), (1.6)

where 1(j+1)|ℓi denotes the indicator function of the statement (j+1) | ℓi which is equal to 1 if (j+1) | ℓi
and 0 otherwise. Let d be an integer with 1 ≤ d ≤ k, we define

wd(τ) := [xd](1− (1 − x)ℓ1)(1− (1− x)ℓ2 ) · · · (1 − (1− x)ℓc(τ)). (1.7)

Now we can state our main results. Recall that X is a symmetric subset of Dk and M(X) is defined
as M(X) = {[x1, x2, . . . , xk] : (x1, x2, . . . , xk) ∈ X}.
Theorem 1.7. Let j be a positive integer and let Mj(X) be the set of k-multisets in M(X) with the
multiplicity of each element no greater than j. Then we have

|Mj(X)| = 1

k!

∑

τ∈Sk

wj(τ)|Xτ |, (1.8)
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In particular, specializing to j ≥ k, we have

|M(X)| = 1

k!

∑

τ∈Sk

|Xτ |. (1.9)

Remark 1.8. The formula (1.8) can be further simplified by employing the symmetry of X . We notice
that Xτ has the same cardinality for τ in a conjugacy class of Sk, since X is symmetric. This leads to
the simplification of (1.8) as

|Mj(X)| = 1

k!

∑

τ∈Ck

wj(τ)C(τ)|Xτ |, (1.10)

where Ck and Cτ are defined as in Theorem 1.1. We prefer (1.8) as it looks cleaner.
Specializing to j = 1, we see from (1.6) that

w1(τ) = (1− 2 · 12|ℓ1)(1 − 2 · 12|ℓ1) · · · (1− 2 · 12|ℓc(τ)
) = (−1)k−c(τ),

where we used 1− 2 · 12|ℓi = (−1)ℓi−1 and ℓ1 + ℓ2+ · · ·+ ℓc(τ) = k. Thus when j = 1, the sieve formula
(1.8) is indeed the Li–Wan sieve (Theorem 1.1).

Theorem 1.9. Let d be a positive integer and let Md(X) be the set of k-multisets in M(X) which
have exactly d distinct elements. Then

|Md(X)| = 1

k!

∑

τ∈Sk

wd(τ)|Xτ |. (1.11)

Theorem 1.7 and Theorem 1.9 have natural weighted versions.

Theorem 1.10. Let f : X → C be a symmetric function (“symmetric” means f(xτ(1), xτ(2), . . . , xτ(k)) =
f(x1, x2, . . . , xk) for any (x1, x2, . . . , xk) ∈ X and any τ ∈ Sk). Then we have

∑

[x1,x2,...,xk]∈Mj(X)

f(x1, x2, . . . , xk) =
1

k!

∑

τ∈Sk

wj(τ)
∑

x∈Xτ

f(x1, x2, . . . , xk).

In particular, specializing to j ≥ k, we have

∑

[x1,x2,...,xk]∈M(X)

f(x1, x2, . . . , xk) =
1

k!

∑

τ∈Sk

∑

x∈Xτ

f(x1, x2, . . . , xk).

Theorem 1.11. Let f : X → C be a symmetric function. Then we have

∑

[x1,x2,...,xk]∈Md(X)

f(x1, x2, . . . , xk) =
1

k!

∑

τ∈Sk

wd(τ)
∑

x∈Xτ

f(x1, x2, . . . , xk).

This paper is organized as follows. In Section 2, we prove the sieve formulas, Theorem 1.7 and
Theorem 1.9, via the Möbius inversion formula. Then we give two illustrative applications of the sieve
formulas in Section 3,

Notation. To distinguish between sets and multisets, we use the square bracket notation to denote
multisets. Thus for instance, the multiset {a, a, b} is denoted by [a, a, b]. If F (x) =

∑∞
n=0 anx

n is
a formal power series, then we use [xn]F (x) = an to denote the coefficient of xn in F (x). If S is a
statement, we use 1S to denote the indicator function of S, thus 1S = 1 when S is true and 1S = 0
when S is false. We often abbreviate partially ordered set as poset. We use 0 and 1 to denote the least
element and the greatest element in a poset, respectively.
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2. Proofs of the main results

In this section, we prove Theorem 1.7 and Theorem 1.9 via the Möbius inversion formula. We first
recall the Möbius inversion formula on posets.

Proposition 2.1 ([22], Proposition 3.7.1). Let (P,≤) be a poset. Define the Möbius function µ of P
recursively by

µ(x, x) = 1 for all x ∈ P, µ(x, y) = −
∑

x≤z<y

µ(x, z) for all x < y in P.

Then for f, g : P → K, where K is a field, we have

g(x) =
∑

x≤y

f(y) for all x ∈ P

if and only if

f(x) =
∑

x≤y

µ(x, y)g(y) for all x ∈ P.

Let Πk be the set of all partitions of {1, 2, . . . , k}. Define a partial order ≤ on Πk by refinement.
That is, declare τ ≤ σ if every block of τ is contained in a block of σ. Computing the Möbius function
µ of the poset (Πk,≤) is a non-trivial result in enumerative combinatorics. We cite it directly from
[22] without a proof.

Proposition 2.2 ([22], Example 3.10.4). Let τ, σ ∈ Πk and τ ≤ σ. Suppose that σ = {B1, B2, . . . , Bℓ}
and that Bi, 1 ≤ i ≤ ℓ is partitioned into λi blocks in τ . Then the Möbius function µ(τ, σ) is given by

µ(τ, σ) = (−1)λ1−1(λ1 − 1)!(−1)λ2−1(λ2 − 1)! · · · (−1)λℓ−1(λℓ − 1)!. (2.1)

In analogy to the type of a permutation, a partition τ ∈ Πk is said to be of type (a1, a2, . . . , ak) if
it has exactly ai blocks of size i, 1 ≤ i ≤ k. It is not hard to see that the number of partitions in Πk

of type (a1, a2, . . . , ak) is given by

Ñ(a1, a2, . . . , ak) =
k!

1!a1a1!2!a2a2! · · · k!akak!
. (2.2)

For the purpose of our proof, we need two combinatorial equalities.

Lemma 2.3. Let Ñ(a1, a2, . . . , ak) be defined as in (2.2) and let j be a positive integer. Then we have
∑

∑
iai=k

aj+1=···=ak=0

Ñ(a1, . . . , ak)1!
a1 · · · k!ak(−1)a1+···+ak−1(a1 + · · ·+ ak − 1)! = (k− 1)!(1− (j+1)1(j+1)|k).

Proof. Substituting (2.2) into the above equation, we see that the left-hand side is

LHS = k!
∑

∑
iai=k

(−1)a1+···+aj−1 (a1 + · · ·+ aj − 1)!

a1! · · · aj !

= k!
∑

∑
iai=k

(−1)a1+···+aj−1

a1 + · · ·+ aj

(
a1 + · · ·+ aj
a1, . . . , aj

)

= k!
∞∑

m=1

(−1)m−1

m

∑
∑

iai=k∑
ai=m

(
m

a1, . . . , aj

)

= k!

∞∑

m=1

(−1)m−1

m
[xk](x + x2 + · · ·+ xj)m

= k![xk] log(1 + x+ · · ·+ xj)
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= k![xk](log(1− xj+1)− log(1 − x))

= (k − 1)!(1− (j + 1)1(j+1)|k).

This proves the lemma. �

Lemma 2.4. Let Ñ(a1, a2, . . . , ak) be defined as in (2.2) and let d be an integer with 1 ≤ d ≤ k. Then
we have

∑
∑

iai=k
a1+···+ak=d

Ñ(a1, . . . , ak)1!
a1 · · · k!ak(−1)a1+···+ak−1(a1 + · · ·+ ak − 1)! = (k − 1)!(−1)d−1

(
k

d

)
.

Proof. Similar to the proof of the previous lemma, a substitution of (2.2) into the above equation yields

LHS = k!
(−1)d−1

d

∑
∑

iai=k
a1+···+ak=d

d!

a1! · · · ak!

= k!
(−1)d−1

d
[xk](x + x2 + · · ·+ xk)d

= k!
(−1)d−1

d
[xk](x − xk+1)d(1− x)−d

= (k − 1)!(−1)d−1

(
k

d

)
.

The lemma then follows. �

Now we prove Theorem 1.7.

Proof of Theorem 1.7. For a partition τ ∈ Πk, defineX
◦
τ to be the set of ordered k-tuples (x1, x2, . . . , xk)

such that (x1, x2, . . . , xk) ∈ Xτ but (x1, x2, . . . , xk) /∈ Xσ for any σ > τ . It is not hard to check that
|Xτ | =

∑
τ≤σ |X◦

σ|. Then the Möbius inversion formula (Proposition 2.1) gives

|X◦
τ | =

∑

τ≤σ

µ(τ, σ)|Xσ |. (2.3)

Suppose that τ = {B1, B2, . . . , Bℓ} and the size of Bi ismi, 1 ≤ i ≤ ℓ. We observe from the definition
of X◦

τ that the multiplicities of elements in the multiset [x1, x2, . . . , xk] with (x1, x2, . . . , xk) ∈ X◦
τ are

m1,m2, . . . ,mℓ. Thus for (x1, x2, . . . , xk) ∈ X◦
τ , the multiplicity of each element in [x1, x2, . . . , xk]

that is no greater than j is equivalent to the size of each block of τ that is no greater than j. Since
the number of permutations of this multiset is

(
k

m1,m2,...,mℓ

)
, the number of k-multiset satisfying the

restriction X◦
τ is

|M(X◦
τ )| =

m1!m2! · · ·mℓ!

k!
|X◦

τ |. (2.4)

Note that X =
⋃

τ∈Πk
X◦

τ is a disjoint union of Xτ , so we conclude that

|Mj(X)| =
∑

τ∈Πk:the size of each block of τ≤j

|M(X◦
τ )|.

Substituting (2.3) and (2.4) into the above equation, we obtain

|Mj(X)| =
∑

τ∈Πk:mi≤j,1≤i≤ℓ

m1!m2! · · ·mℓ!

k!
|X◦

τ |

=
1

k!

∑

σ∈Πk

( ∑

τ≤σ:mi≤j,1≤i≤ℓ

m1!m2! · · ·mℓ!µ(τ, σ)
)
|Xσ|.

Note that heremi and ℓ should be mi(τ) and ℓ(τ) respectively, but we omit the variable τ for notational
simplicity.
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Since the number of cyclic permutations of length k in Sk is (k− 1)!, a partition σ in Πk with block
sizes n1, n2, . . . , nr corresponds to (n1 − 1)!(n2 − 1)! · · · (nr − 1)! permutations in Sk. Thus to prove
(1.8), it suffices to show

∑

τ≤σ:mi≤j,1≤i≤ℓ

m1!m2! · · ·mℓ!µ(τ, σ) = (n1 − 1)!(n2 − 1)! · · · (nr − 1)!wj(σ), (2.5)

where m1,m2, . . . ,mℓ are the block sizes of τ and n1, n2, . . . , nr are the block sizes of σ. We observe
from (2.1) that the sum on the left-hand side of (2.5) can be written as a product of the same sum
taken over each block of σ. In view of this and the definition of wj(σ), it suffices to show (2.5) for
partition σ with a single block (that is, σ = 1), as the general case follows from this special case.

Thus we may assume that σ = 1 and we need to show

∑

τ∈Πk:mi≤j,1≤i≤ℓ

m1!m2! · · ·mℓ!µ(τ,1) = (k − 1)!(1− (j + 1)1(j+1)|k). (2.6)

Using (2.1), the left-hand side can be simplified as

∑

τ≤1:mi≤j,1≤i≤ℓ

m1!m2! · · ·mℓ!µ(τ,1) =
∑

∑
iai=k

∑

τ∈Πk:type(τ)=(a1,...,ak)
aj+1=···=ak=0

1!a1 · · · k!akµ(τ,1)

=
∑

∑
iai=k

aj+1=···=ak=0

Ñ(a1, . . . , ak)1!
a1 · · · k!ak(−1)a1+···+ak−1(a1 + · · ·+ ak − 1)!

= (k − 1)!(1− (j + 1)1(j+1)|k).

The last step is due to Lemma 2.3. This completes the proof. �

Next we prove Theorem 1.9.

Proof of Theorem 1.9. A similar argument as in the previous proof yields

|Md(X)| =
∑

τ∈Πk:τ has eaxctly d blocks

|M(X◦
τ )|.

Substituting (2.3) and (2.4) into the above equation, we obtain

|Md(X)| =
∑

τ∈Πi

m1!m2! · · ·md!

k!
|X◦

τ |

=
1

k!

∑

σ∈Πk

∑

τ≤σ

m1!m2! · · ·md!µ(τ, σ)|Xσ |,

Again, as in the previous proof, the proof will be completed if we can show

∑

τ≤σ

m1!m2! · · ·md!µ(τ, σ) = (n1 − 1)!(n2 − 1)! · · · (nr − 1)!wd(σ),

where m1,m2, . . . ,md are the block sizes of τ and n1, n2, . . . , nr are the block sizes of σ, and it can be
further reduced to the case that σ = 1. Thus we need to show

∑

τ∈Πk

m1!m2! · · ·md!µ(τ,1) = (k − 1)![xd](1 − (1− x)k).
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Again, using (2.1), the left-hand side can be simplified as
∑

τ∈Πk

m1!m2! · · ·md!µ(τ,1) =
∑

∑
iai=k

∑

τ∈Πk:type(τ)=(a1,...,ak)
a1+···+ak=d

1!a1 · · · k!akµ(τ,1)

=
∑

∑
iai=k

a1+···+ak=d

Ñ(a1, . . . , ak)1!
a1 · · · k!ak(−1)a1+···+ak(a1 + · · ·+ ak − 1)!

= (k − 1)!(−1)d−1

(
k

d

)

= (k − 1)![xd](1− (1 − x)k).

where we used Lemma 2.4. This completes the proof. �

The proofs of the weighted versions are omitted since they are completely similar.

3. Applications to partitions over finite fields and zero-sum multisets over Z/nZ

To illustrate the application of our sieve formula, we investigate two combinatorial problems which
are partitions over finite fields and zero-sum multisets over the group of integers modulo n.

3.1. Partitions over finite fields. Motivated by the conjecture on polynomials with prescribed range,
Muratović-Ribić and Wang [19] considered the problem of counting the number of partitions over finite
fields. To be precise, let Fq be a finite field of q elements and F∗

q be its multiplicative group. A partition
of an element b ∈ Fq into k parts is a multiset of k nonzero elements in F∗

q whose sum is b. We denote
by Pk(b) the number of partitions of b into k parts over Fq. Using a previous result of Li [10] and the
inclusion-exclusion principle, Muratović-Ribić and Wang obtained an explicit formula for Pk(b). They
proved the following theorem:

Theorem 3.1 ([19], Theorem 1). Let k be a non-negative integer, Fq be a finite field of q = pa elements,
and b ∈ Fq. Define v(b) = q − 1 if b = 0 and v(b) = −1 otherwise. The number of partitions of b into
k parts over Fq is given by

Pk(b) =
1

q

(
q + k − 2

k

)

if k 6≡ 0, 1 mod p,

Pk(b) =
1

q

(
q + k − 2

k

)
+

v(b)

q

(
q/p+ k/p− 1

k/p

)

if k ≡ 0 mod p, and

Pk(b) =
1

q

(
q + k − 2

k

)
− v(b)

q

(
q/p+ k/p− 1

k/p

)

if k ≡ 1 mod p.

We apply the sieve formula (1.9) to give a direct proof of Theorem 3.1, which avoids using the
inclusion-exclusion principle in Muratović-Ribić and Wang’s proof. First of all, we state a lemma.

Lemma 3.2 ([11], Lemma 3.1). Assume p | k. Let p(k, i) be the number of permutations in Sk of i
cycles with the length of its each cycle divisible by p. Then we have

k∑

i=1

p(k, i)qi = k!

(
q/p+ k/p− 1

k/p

)
.

Proof of Theorem 3.1. Denote by P̃k(b) the number of partitions of b into at most k parts in Fq,
that is, the number of multisets of k elements in Fq whose sum is b. It is not hard to see that
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Pk(b) = P̃k(b)− P̃k−1(b). Thus it is sufficient to determine P̃k(b) which, by definition, is the cardinality
of the set M(X) with X given by

X = {(x1, x2, . . . , xk) ∈ Fk
q : x1 + x2 + · · ·+ xk = b}.

Applying the sieve formula (1.9), we have

P̃k(b) =
1

k!

∑

τ∈Sk

|Xτ |. (3.1)

Suppose that τ has a disjoint cycle decomposition τ = τ1τ2 · · · τm and the length of the cycle τi is
ℓi, 1 ≤ i ≤ m. Then we have

Xτ = {(x1, x2, . . . , xm) ∈ Fm
q : ℓ1x1 + ℓ2x2 + · · ·+ ℓmxm = b}.

If all the ℓi’s vanish in Fq, that is, p | ℓi for 1 ≤ i ≤ m, then the above linear equation has (v(b) +
1)qm−1 solutions and thus |Xτ | = (v(b) + 1)qm−1. In particular, in this case, we have p | k since
ℓ1 + ℓ2 + · · ·+ ℓm = k. Otherwise, the linear equation has qm−1 solutions and thus |Xτ | = qm−1.

When p ∤ k, the ℓi’s cannot vanish simultaneously, so we have |Xτ | = qm−1, where m is the number
of disjoint cycles of τ . Substituting this into (3.1), we conclude that

P̃k(b) =
1

k!

k∑

i=1

c(k, i)qi−1 =
1

q

(
q + k − 1

k

)
, (3.2)

where c(k, i) denotes the unsigned Stirling number of the first kind which counts the number of per-

mutations in Sk with exactly i cycles, and we used the equality
∑k

i=0 c(k, i)x
k = (x+ k − 1)k.

When p | k, according to the previous discussion, we have

P̃k(b) =
1

k!

( k∑

i=1

(c(k, i)− p(k, i))qi−1 +

k∑

i=1

p(k, i)(v(b) + 1)qi−1
)

=
1

k!

(1
q

k∑

i=1

c(k, i)qi +
v(b)

q

k∑

i=1

qi
)
.

Using Lemma 3.2, we conclude that

P̃k(b) =
1

q

(
q + k − 1

k

)
+

v(b)

q

(
q/p+ k/p− 1

k/p

)
.

Finally, noting that Pk(b) = P̃k(b) − P̃k−1(b), a discussion depending on whether k ≡ 0 mod p or
k ≡ 1 mod p completes the proof.

�

3.2. Bijection between necklaces and zero-sum multisets. In his book [22], Stanley raised a
bijective proof problem asking for a bijection between cyclic necklaces with at most two colors and
subsets of Z/nZ whose elements sum to zero, when n is odd. The problem was answered by Chan [1]
recently and he generalized the problem to q-colored necklaces and multisets which is stated as follows.

Problem 3.3. Consider these two distinct combinatorial objects: (1) the cyclic necklaces of length n
with at most q colors, and (2) the multisets of integers modulo n with elements summing to zero and
with the multiplicity of each element being strictly less than q. When q and n are coprime, show that
these two objects have the same cardinality and construct a bijection between these two objects.

In [1], Chan gave a proof of the equinumerosity of these two objects which is not bijective. Addi-
tionally, when q is a prime power, he constructed a bijection between these two objects by viewing
necklaces as cyclic polynomials over the finite field of size q. Note that specializing to q = 2 answers
the bijective proof problem raised by Stanely. Since the bijection that he constructed relies on finite
fields, it fails to work when q is not a prime power. Thus the problem remains open when q is not a
prime power.
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We would like to use our sieve formula to give another proof of the equinumerosity of these two
objects, which is not bijective either. We believe that this proof might give some new insights into this
problem. We shall prove the following theorem:

Theorem 3.4. Let q and n be two coprime positive integers. Let N denote the set of cyclic necklaces
of length n for which the color of each bead is drawn from a color set of size q, and let F denote the
set of multisets of elements in Z/nZ with element summing to zero and with the multiplicity of each
element being strictly less than q. Then we have

|N | = |F| = 1

n

∑

e|n

φ(e)qn/e, (3.3)

where φ is Euler’s totient function.

Before proving the theorem, we state a lemma.

Lemma 3.5. Let N(c1, c2 . . . , ck) be the number of permutations in Sk of type (c1, c2, . . . , ck) and let
ti = (1− (j + 1)1(j+1)|i)n1e|i. Then we have

∑
∑

ici=k

N(c1, c2, . . . , ck)t
c1
1 tc22 · · · tckk = k![uk](1− ue)−n/e(1 − ulcm(e,j+1))gcd(e,j+1)n/e.

Proof. Substituting ti = (1− (j+1)1(j+1)|i)n1e|i into the exponential generating function (1.5), we see
that the left-hand side of the above equation is

LHS = k![uk] exp
(
(1 − (j + 1)1(j+1)|e)n

ue

e
+ (1 − (j + 1)1(j+1)|2e)n

u2e

2e
+ · · ·

)

= k![uk] exp
(n
e
(ue +

u2e

2
+ · · · )− gcd(e, j + 1)n

e
(ulcm(e,j+1) +

u2 lcm(e,j+1)

2
+ · · · )

)

= k![uk] exp
(
− n

e
log(1− ue) +

gcd(e, j + 1)n

e
log(1− ulcm(e,j+1))

)

= k![uk](1− ue)−n/e(1− ulcm(e,j+1))gcd(e,j+1)n/e.

This completes the proof. �

Proof of Theorem 3.4. The cyclic necklaces of length n with at most q color can be viewed as the
equivalence class of functions from {1, 2, . . . , n} to {1, 2, . . . , q}, under the action of the cyclic group
Cn. Denote the set of the functions by X . Then Burnside’s lemma gives

|N | = 1

n

∑

g∈Cn

|Xg|,

where Xg denotes the set of elements in X that are fixed by g. Suppose that g ∈ Cn is an element of

order e. Then it is not hard to see that |Xg| = qn/e. Since a cyclic group has φ(e) elements of order
e, we conclude that

|N | = 1

n

∑

e|n

φ(e)qn/e. (3.4)

Now we consider the cardinality of set F . We note that F =
⋃n(q−1)

k=0 Mq−1(Xk) is a disjoint union
of Mq−1(Xk) with

Xk = {(x1, x2, . . . , xk) ∈ (Z/nZ)k : x1 + x2 + · · ·+ xk = 0}.
We will use character sums to calculate |Mq−1(Xk)|. Let G denote the additive group Z/nZ of order

n and let Ĝ be the group of all characters on G. Using the fact that the sum of all characters over a
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nonzero element of G is equal to 0, we have

|Mq−1(Xk)| =
∑

[x1,x2,...,xk]∈Mq−1(Gk)

1

|G|
∑

χ∈Ĝ

χ(x1 + x2 + · · ·+ xk)

=
1

n

∑

χ∈Ĝ

∑

[x1,x2,...,xk]∈Mq−1(Gk)

χ(x1)χ(x2) · · ·χ(xk).

Applying the sieve formula (1.8), we have

|Mq−1(Xk)| =
1

n

∑

χ∈Ĝ

1

k!

∑

τ∈Sk

wj(τ)
∑

(x1,x2,...,xk)∈Gk
τ

χ(x1)χ(x2) · · ·χ(xk). (3.5)

Suppose that τ has a disjoint cycle decomposition τ = τ1τ2 · · · τm and the length of τi is ℓi, 1 ≤ i ≤ m.
We see from the definition of Gk

τ that

∑

(x1,x2,...,xk)∈Gk
τ

χ(x1)χ(x2) · · ·χ(xk) =

m∏

i=1

(∑

x∈G

χℓi(x)
)
. (3.6)

Let e be the order of the character χ. Then we have
∑

x∈G χℓi(x) = |G| = n if e | ℓi and
∑

x∈G χℓi(x) =
0 otherwise. This implies that the sum in the right-hand side of (3.6) is equal to nm if e | ℓi for 1 ≤ i ≤ m
and 0 otherwise; in particular, e | k in the former case since k = ℓ1 + ℓ2 + · · ·+ ℓm. Substituting this
result into (3.5), we see that

1

k!

∑

τ∈Sk

wj(τ)
∑

(x1,x2,...,xk)∈Gk
τ

χ(x1)χ(x2) · · ·χ(xk)

=
1

k!

∑
∑

ici=k

∑

τ∈Sk:type(τ)=(c1,c2,...,ck)

k∏

i=1

(1 − q1q|i)
ci(n1e|i)

ci

=
1

k!

∑
∑

ici=k

N(c1, c2, . . . , ck)

k∏

i=1

(1− q1q|i)
ci(n1e|i)

ci

=[uk](1 − ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e,

where we used Lemma 3.5 in the last step. Therefore |Mq−1(Xk)| is simplified as

|Mq−1(Xk)| =
1

n

∑

e|n,e|k

φ(e)[uk](1− ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e.

Summing over k, we obtain

|F| =
n(q−1)∑

k=0

|Mq−1(Xk)| =
1

n

∑

e|n

φ(e)
∑

0≤k≤n(q−1):e|k

[uk](1 − ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e. (3.7)

Set a = lcm(e, q)/e and b = gcd(e, q). Then we have

(1− ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e = (1− ue)−n/e(1 − uae)bn/e

=
(1− uae)n/e

(1− ue)n/e
(1 − uae)(b−1)n/e

= (1 + ue + u2e + · · ·+ u(a−1)e)n/e(1− uae)(b−1)n/e.

This implies that
∑

0≤k≤n(q−1):e|k

[uk](1− ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e = qn/e
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if gcd(e, q) = 1, and
∑

0≤k≤n(q−1):e|k

[uk](1 − ue)−n/e(1− ulcm(e,q))gcd(e,q)n/e = 0

otherwise. Substituting this into (3.7), we see that

|F| = 1

n

∑

e|n:gcd(e,q)=1

φ(e)qn/e.

Since q and n are coprime, |F| can be simply written as

|F| = 1

n

∑

e|n

φ(e)qn/e,

which is exactly the same as (3.4). The proof is completed. �

References

[1] S. Chan, A bijection between necklaces and multisets with divisible subset sum, Electron. J. Combin. 26 (2019), no.
1, P1.37.

[2] Q. Cheng, E. Murray, On deciding deep holes of Reed-Solomon codes, In: Proceedings of TAMC 2007, In: LNCS,
4484 (2007), 296–305.

[3] Q. Cheng, D. Wan, On the list and bounded distance decodability of Reed-Solomon codes, SIAM J. Comput. 37

(2007), no. 1, 195–209.
[4] Q. Cheng, D. Wan, Complexity of decoding positive-rate Reed-Solomon codes, IEEE Trans. Inf. Theory 56 (2010),

no. 10, 5217–5222.
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