
ON THE SCHLÄFLI SYMBOL OF CHIRAL EXTENSIONS OF
POLYTOPES

ANTONIO MONTERO

Abstract. Given an abstract n-polytope K, an abstract (n+1)-polytope P is
an extension of K if all the facets of P are isomorphic to K. A chiral polytope
is a polytope with maximal rotational symmetry that does not admit any
reflections. If P is a chiral extension of K, then all but the last entry of
the Schläfli symbol of P are determined. In this paper we introduce some
constructions of chiral extensions P of certain chiral polytopes in such a way
that the last entry of the Schläfli symbol of P is arbitrarily large.

1. Introduction

Highly symmetric polyhedra have been of interest to humanity not only for their
mathematical structure but also for their degree of beauty. There exists evidence
that the five Platonic Solids were known before the Greeks. However, undoubtedly
the Greeks have the credit of collecting and formalising the mathematical knowledge
about these objects. The formal study of highly symmetric polyhedra-like struc-
tures took a new breath in the 20th century. The work by Coxeter and Grünbaum
was significant and set the basis for what today we know as abstract polytopes.

Abstract polytopes are combinatorial structures that generalise (the face-lattice
of) convex polytopes as well as the geometric polytopes considered by Coxeter
and Grünbaum. They also include face-to-face tilings of Euclidean and Hyperbolic
spaces as well as most maps on surfaces. Abstract polytopes were introduced by
Danzer and Schulte in [10] where they describe the basic properties of these objects.
The early research on abstract polytopes was focused on the so called abstract
regular polytopes. These are the abstract polytopes that admit a maximal degree of
symmetry by combinatorial reflections. Much of the rich theory of abstract regular
polytopes can be found in [17].

Abstract polytopes inherit a natural recursive structure from their convex and
geometric analogues: a cube can be thought as a family of six squares glued along
their edges. In general, an n-polytope P can be thought as a family of (n − 1)-
polytopes glued along (n − 2)-faces. These (n − 1)-polytopes are the facets of P
and whenever all these polytopes are isomorphic to a fixed polytope K we say that
P is an extension of K.

The local combinatorics of a highly symmetric n-polytope is described by its
Schläfli symbol, whenever it is well-defined. In particular, the last entry of this
symbol describes how many facets are incident to each (n − 3)-face. If K has
Schläfli symbol {p1, . . . , pn−2} and P is an extension of K with a well-defined Schläfli
symbol, then it must be {p1, . . . , pn−2, pn−1} for some pn−1 ∈ {2, . . . ,∞}.
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The problem of determining whether or not a fixed polytope K admits an ex-
tension has been part of the theory’s development since its beginning. In fact in
[10] Danzer and Schulte attack this problem for regular polytopes. They prove that
every non-degenerate regular polytope K admits an extension P and this extension
is finite if and only if K is finite. Moreover, the last entry of the Schläfli symbol
of P is 6. In [9] Danzer proves that every non-degenerate polytope K admits an
extension and this extension is finite (resp. regular) if and only if K is finite (resp.
regular). If K is regular, the last entry of the Schläfli symbol of the extension is 4.
In [21, 23] Pellicer develops several constructions that have as a consequence that
every regular polytope admits a regular extension with prescribed even number as
the last entry of the Schläfli symbol. On the other hand, in [15], Hartley proves
that the n-hemicube, the polytope obtained by identifying oposite faces of a n-cube,
cannot be extended with an odd number as the last entry of the Schläfli symbol.

Besides regular polytopes, another class of symmetric abstract polytopes that has
been of interest is that of chiral polytopes. Chiral polytopes are those polytopes that
admit maximal symmetry by abstract rotations but do not admit mirror reflections.

The problem of building chiral polytopes on higher ranks has proved to be fairly
difficult. This problem has been attacked from several approaches, see for example
[3, 19, 32] for rank 4 and [4, 11] for rank 5 and 6. It was not until 2010 that Pellicer
showed in [22] the existence of chiral polytopes of all ranks higher than 3.

The problem of finding chiral extensions of abstract polytopes has been one of the
main approaches to find new examples of chiral polytopes. However, the results are
less numerous than those concerning regular polytopes. If P is a chiral n-polytope,
then its facets are either orientably regular or chiral. In any case, the (n− 2)-faces
of P must be regular (see [31, Proposition 9]). This implies that if P is a chiral
extension of K, then K is either regular or chiral with regular facets.

In [7] Cunningham and Pellicer proved that any finite chiral polytope with reg-
ular facets admits a finite chiral extension. Their construction offers little control
on the Schläfli symbol of the resulting extension.

In this work we introduce two constructions of extensions of chiral polytopes
with regular facets that satisfy certain conditions. These constructions offer some
control on the Schläfli symbol of the resulting extension. In particular we prove
that under certain conditions, some chiral polytopes with regular facets admit chiral
extensions whose Schläfli symbol has arbitrarily large last entry.

The paper organized as follows. In Section 2 we introduce the basic concepts on
highly symmetric polytopes and related topics needed to develop our results. In
Section 3 we introduce a construction of a GPR-graph of a chiral extension for a
dually-bipartite chiral polytope. In Section 4 we define the maniplex 2̂sM−1 as a
generalisation of the polytope 2sK−1 introduced by Pellicer in [21] and use it to build
chiral extensions of chiral polytopes admitting some particular regular quotients.
Finally, in Section 5 we show explicit examples of how to use our construction for
chiral maps on the torus.

2. Basic notions

In this section we introduce the basic concepts on the theory of highly symmetric
abstract polytopes. Our main references are [17, 18, 31, 34].

2.1. Regular abstract polytopes. Abstract polytopes are combinatorial struc-
tures with a very geometrical nature. They generalise convex polytopes, tilings of
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the Euclidean spaces, maps on surfaces, among others. Formally, abstract polytope
of rank n or an n-polytope, for short, is a partially ordered set (P,6) (we usually
omit the order symbol) that satisfies the properties in Items 1 to 4 below.

(1) P has a minimum element F−1 and a maximum element Fn.

The elements of P are called faces. We say that two faces F an G are incident if
F 6 G or G 6 F . A flag is a maximal chain of P. We require that

(2) Ever flag of P contains exactly n+2 elements, including the maximum and
the minimum of P.

The condition in Item 2 allows us to define a rank function rk : P → {−1, . . . , n}
such that rk(F−1) = −1, rk(Fn) = n and for every other face F , rk(F ) = r if
there exists a flag Φ of P such that there are precisely r faces G in Φ satisfying
F−1 < G < F . Note that this definition does not depend on the choice of Φ. The
rank function is a combinatorial analogue of the notion of dimension for convex
polytopes and tillings of the space. We usually call vertices, edges and facets the
elements of rank 0, 1 and n − 1 respectively. In general, a face of rank i is called
an i-face We also need that P satisfies the diamond condition described in Item 3.

(3) For every i ∈ {0, . . . , n− 1}, given an (i− 1)-face Fi−1 and an (i+ 1)-face
Fi+1 with Fi−1 6 Fi+1, the set {F ∈ P : Fi−1 < F < Fi+1} has cardinality
2.

The diamond condition implies that given i ∈ {0, . . . , n− 1}, for every flag Φ of P
there exists a unique flag Φi such that Φ and Φi differ exactly in the face of rank
i. In this situation we say that Φ and Φi are adjacent or i-adjacent, if we need to
emphasise on i. We also require that

(4) P is strongly flag connected.

Meaning that for every two flags Φ and Ψ there exists a sequence Φ = Φ0,Φ1, . . . ,Φk =
Ψ such that every two consecutive flags are adjacent and Φ ∩ Ψ ⊆ Φi for every
i ∈ {0, . . . , k}.

If i1, i2, . . . , ik ∈ {0, . . . , n− 1}, we define recursively Φi1,...,ik = (Φi1,...,ik−1)ik .
If F and G are two faces of a polytope such that F 6 G, the section G/F is

the restriction of the order of P to the set {H ∈ P : F 6 H 6 G}. Note that if
rk(F ) = i and rk(G) = j then the section G/F is an abstract polytope of rank
j − i − 1. If F0 is a vertex, then the vertex-figure at F0 is the section Fn/F0. We
sometimes identify each face F with the section F/F−1. In particular, every facet
Fn−1 can be identified with the section Fn−1/F−1 of rank n− 1.

The dual of an abstract polytope (P,6), commonly denoted by P∗, is the par-
tially ordered set (P,6∗) where F 6∗ G if and only if F > G.

Given an abstract n-polytope K, an (n + 1)-polytope P is an extension of K if
all the facets of P are isomorphic to K.

For i ∈ {1, . . . , n− 1}, if F is an (i− 1)-face and G is an (i+ 2)-face with F 6 G
then the section G/F is a 2-polytope. Therefore G/F is isomorphic to a pi-gon for
some pi ∈ {2, . . . ,∞}. If the number pi does not depend on the particular choice of
F and G but only on i, then we say that {p1, . . . , pn−1} is the Schläfli symbol of P.
In this situation sometimes we just say that P is of type {p1, . . . , pn−1}. Note that
if P is an n-polytope of type {p1, . . . , pn−1}, then the the facets of P are of type
{p1, . . . , pn−2}. In particular, if P is an extension of K, and P has a well-defined
Schläfli symbol, then all but the last entry of this symbol are determined by K.
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An automorphism of an abstract polytope P is an order-preserving bijection
γ : P → P. The group of automorphism of P is denoted by Aut(P). The group
Aut(P) acts naturally on F(P), the set of flags of P. This action satisfies

Ψiγ = (Ψγ)
i

for every flag Ψ, i ∈ {0, . . . , n− 1} and γ ∈ Aut(P). Moreover, as a consequence of
the strong-flag-connectivity, the action of Aut(P) on F(P) is free.

Let Φ0 = {F−1, . . . , Fn} be a base flag of P such that rk(Fi) = i. Let Γ 6
Aut(P) and for I ⊆ {0, . . . , n− 1} let ΓI denote the set-wise stabiliser of the chain
{Fi : i 6∈ I} ⊆ Φ0. Note that for every pair is subsets I, J ⊆ {0, . . . , n− 1} we have

(2.1) ΓI ∩ ΓJ = ΓI∩J

We call this condition the intersection property for Γ.
An abstract polytope is regular if the action of Aut(P) on F(P) is transitive

(hence, regular). Abstract regular polytopes have been traditionally the most stud-
ied family of polytopes. Most of their wide theory can be found in [17].

A rooted polytope is a pair (P,Φ0) where P is a polytope and Φ0 is a fixed base
flag. If P is regular, then every two flags are equivalent under Aut(P) and the
choice of a particular base flag plays no relevant role. However, if P is not regular,
then the choice of the base flag is important. See [8] for a discussion on rooted
k-orbit polytopes.

If (P,Φ0) is a regular rooted polytope, then for every i ∈ {0, . . . , n− 1} there
exists an automorphism ρi such that

Φ0ρi = Φi0.

We call the automorphisms ρ0, . . . , ρn−1 the abstract reflections (with respect to
the base flag Φ0). It is easy to see that if P is a regular n-polytope, then Aut(P) =
〈ρ0, . . . , ρn−1〉. It is important to remark that the group elements depend on Φ0.
However, since Aut(P) is transitive on flags, the choice of the base flag induces a
group-automorphism of Aut(P). More precisely, let Φ and Ψ be flags of a regular
n-polytope P and let ρ0, . . . , ρn−1 and ρ′0, . . . , ρ′n−1 denote the abstract reflections
with respect to Φ and Ψ respectively. If γ ∈ Aut(P) is such that Φγ = Ψ, then
ρ′i = γ−1ρiγ.

Note that every regular polytope has a well-defined Schläfli symbol. For P is a
regular n-polytope of type {p1, . . . , pn−1}, then the abstract reflections satisfy

(2.2)

ρ2i = ε for i ∈ {0, . . . , n− 1} ,

(ρiρj)
2

= ε if |i− j| > 2,

(ρi−1ρi)
pi = ε for i ∈ {1, . . . , n− 1} .

If Φ0 = {F−1, . . . , Fn}, the stabiliser of the chain {Fi : i 6∈ I} is the group
〈ρi : i ∈ I〉. It follows that for regular polytopes the intersection property in Equa-
tion (2.1) for Aut(P) is equivalent to

(2.3) 〈ρi : i ∈ I〉 ∩ 〈ρj : j ∈ J〉 = 〈ρk : k ∈ I ∩ J〉
for every pair of sets I, J ⊆ {0, . . . , n− 1}.

A group 〈ρ0, . . . , ρn−1〉 satisfying Equations (2.2) and (2.3) is a string C-group.
Clearly, the automorphism group of an abstract polytope is a string C-group. One
of the most remarkable facts in the theory of highly symmetric polytopes is the cor-
respondence between string C-groups and abstract regular polytopes. To be precise,
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for every string C-group Γ, there exists an abstract regular polytope P = P(Γ) such
that Aut(P) = Γ. This fact was first proved by Schulte in [26] for regular incidence
complexes, which are structures slightly more general than abstract polytopes. A
detailed proof can be found in [17, Section 2E]. See also [28, 30].

The correspondence mentioned above has been used to build families of abstract
regular polytopes with prescribed desired properties. For instance in [27] and [29]
some universal constructions are explored. In another direction, in [2, 13, 16, 20]
some abstract regular polytopes with prescribed (interesting) groups are investi-
gated. Of particular interest for this paper is the work in [9, 21, 23], where the
problem of determining the possible values of the last entry of the Schläfli symbol
of a regular extension of a given regular polytope is addressed.

2.2. Rotary polytopes. Abstract regular polytopes are those with maximal de-
gree of reflectional symmetry. A slightly weaker symmetry condition than regularity
for an abstract polytope is to admit all possible rotational symmetries. In a similar
way as it has been done for maps (see [33], for example), we call these polytopes
rotary polytopes. In this section, we review some of the theory of rotary polytopes.
Most of this theory is developed in [31].

The flag-graph of a polytope P, denoted by GP , is the edge-coloured graph whose
vertex-set is the set F(P) of flags and two flags are connected by an edge of colour
i if they are i-adjacent. An abstract polytope P is orientable if GP is bipartite.
Otherwise, P is non-orientable. If (P,Φ0) is a rooted orientable polytope, the set
of flags on the same part as Φ0 are the white flags. We denote this set by Fw(P).
The flags on the other part are the black flags. This is just another way of calling
what in [31] are called even and odd flags. By convenience, if P is non-orientable,
we say that Fw(P) = F(P). In other words, every flag is white.

If P is an abstract polytope, then the rotational group Aut+(P) of P is the
subgroup of Aut(P) that permutes the set of white flags. A polytope is rotary if
Aut+(P) acts transitively on the set of white flags. It is clear the a rotary non-
orientable polytope is a regular polytope. Therefore, we restrict our discussion
below to orientable polytopes. Note that the choice of the base flag of P plays a
stronger role now. In particular, it defines the set of white flags. In the discussion
below it is assumed that P is actually a rooted polytope (P,Φ0).

If (P,Φ0) is a polytope, for every i ∈ {1, . . . , n− 1} the flag Φi,i−10 is a white
flag. Therefore, if P is a rotary polytope, there exists an automorphism σi such
that

Φ0σi = Φi,i−10 .

The automorphisms σ1, . . . , σn−1 are called the abstract rotations with respect to
Φ0. It is easy to see that Aut+(P) = 〈σ1, . . . , σn−1〉. This is also a good point to
emphasise that the abstract rotations depend on the choice of the base flag.

If P is a rotary n-polytope, then P has a well-defined Schläfli symbol. If P is of
type {p1, . . . , pn−1} the automorphisms σ1, . . . , σn−1 satisfy

(2.4)
σpii = ε, and

(σiσi+1 · · ·σj)2 = ε for 1 6 i < j 6 n− 1.

Sometimes it is useful to consider an alternative set of generators for Aut+(P).
For i, j ∈ {0, . . . , n− 1} with i < j we define the automorphisms

τi,j = σi+1 · · ·σj .
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Note that this is a small change with respect to the notation of [31, Eq. 5]. What
they call τi,j for us is τi−1,j . Observe that τi−1,i = σi for i ∈ {1, . . . , n − 1}. It is
also convenient to define τj,i = τ−1i,j for i < j and τ−1,j = τi,n = τi,i = ε for every
i, j ∈ {0, . . . , n − 1}. In particular, we have that 〈τi,j : i, j ∈ {0, . . . , n − 1}〉 =
〈σ1, . . . , σn−1〉. We also have

Φ0τi,j = Φj,i0 .

Moreover, if Φ0 = {F−1, . . . , Fn}, and I ⊆ {0, . . . , n− 1}, then the stabiliser of
the chain {Fi : i 6∈ I} is the group 〈τi,j : i, j ∈ I〉. It follows that the intersection
property in Equation (2.1) for Aut+(P) can be written as

(2.5) 〈τi,j : i, j ∈ I〉 ∩ 〈τi,j : i, j ∈ J〉 = 〈τi,j : i, j ∈ I ∩ J〉 .
If P is a regular polytope with automorphism group Aut(P) = 〈ρ0, . . . , ρn−1〉,

then P is rotary with Aut+(P) = 〈σ1, . . . , σn−1〉 where σi = ρi−1ρi. If P is also
orientable, then Aut+(P) is a proper subgroup of Aut(P) of index 2. Furthermore,
Aut+(P) induces two flag-orbits, namely, the white flags and the black flags.

If P is rotary but not regular, then Aut(P) = Aut+(P) and this group induces
precisely two orbits in flags in such a way that adjacent flags belong to different
oribts. In this case we say that P is chiral. Chiral polytopes were introduced by
Schulte and Weiss in [31] as a combinatorial generalisation of Coxeter’s twisted
honeycombs in [5].

If (P,Φ0) is a rooted chiral polytope, the enantiomorphic form of P, usually
denoted by P, is the rooted polytope (P,Φ0

0). In the classic development of the
theory of chiral polytopes, the enantiomorphic form of P is usually thought as the
mirror image of P; as a polytope that is different (but isomorphic) from P. However,
when treated as rooted polytopes it is clear that the only difference is the choice
of the base flag. The underlying partially ordered set is exactly the same. For a
traditional but detailed discussion about enantiomorphic forms of chiral polytopes
we suggest [32, Section 3].

The automorphism group of P is generated by the automorphisms σ′1, . . . , σ′n−1
where (Φ0

0)σ′i = (Φ0
0)i,i−1. It is easy to verify that σ′1 = σ−11 , σ2 = σ2

1σ2 and for
i > 3, σ′i = σi. If P is orientably regular then conjugation by ρ0 defines a group
automorphism ρ : Aut+(P)→ Aut+(P) that maps σi to σ′i.

The relations in Equation (2.4) together with the intersection property in Equa-
tion (2.5) characterise the rotation groups of the rotary polytopes. Moreover, the
existence of the group-automorphism ρ : Aut+(P) → Aut+(P) mentioned above
determines whether or not the rotary polytope is regular. More precisely, the fol-
lowing result hold.

Theorem 2.1 (Theorem 1 in [31]). Let 3 6 n, 2 < p1, . . . , pn−1 6 ∞ and Γ =
〈σ1, . . . , σn−1〉. For every i, j ∈ {−1, . . . , n}, with i 6= j define

τi,j =


ε if i < j and i = −1 or j = n,

σi+1 · · ·σj if 0 6 i < j 6 n− 1,

σ−1j · · ·σ
−1
i+1 if 0 6 j < i 6 n− 1.

Assume that Γ satisfies the relations in Equation (2.4). Assume also that Equa-
tion (2.5) holds. Then

(1) There exists a rotary polytope P = P(Γ) such that Aut+(P) = Γ and
σ1, . . . , σn−1 act as abstract rotations for some flag of P.
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(2) P is of type {p1, . . . , pn−1}. The facets and vertex-figures of P are isomor-
phic to P(〈σ1, . . . , σn−2〉) and P(〈σ2, . . . , σn−1)〉, respectively. In general if
n > 4 and 1 6 k < l 6 n − 1, F is a (k − 2)-face and G is an incident
(l+1)-face, then the section G/F is a rotary (l−k+2)-polytope isomorphic
to P(〈σk . . . , σl〉).

(3) P is orientably regular if and only if there exists an involutory group auto-
morphism ρ : Γ→ Γ such that ρ : σ1 7→ σ−11 , ρ : σ2 7→ σ2

1σ2 and ρ : σi 7→ σi
for i > 3.

In Section 3 we use {σ1, . . . , σn−2, τ}, with τ = σn−2σn−1, as an alternative
generating set for Aut+(P). The following lemma describe the relations in Equa-
tion (2.4) in terms of these generators.

Lemma 2.2 (Lemma 2.1 in [22]). Let n > 4 and Γ = 〈σ1, . . . , σn−1〉 be a group
with the property that the subgroup Γn−1 = 〈σ1, . . . , σn−2〉 satisfies the relations in
Equation (2.4). Let τ = σn−2σn−1. Then the set of relations in Equation (2.4) is
equivalent to the set of relations

(2.6)

τ2 = ε,

τσn−3τ = σ−1n−3,

τσn−4τ = σn−4σ
2
n−2,

τσiτ = σi for 1 6 i < n− 4.

2.3. Maniplexes, connection group, coverings and quotients. . Sometimes
it is useful to work in a wider universe than that of abstract polytopes. The
universe of maniplexes will work for our purposes. Maniplexes were introduced
by Wilson in [34] as a combinatorial generalisation of maps to higher dimensions.
A maniplex of rank n (or n-maniplex) is a connected graph resembling the flag
graph of a polytope. Formally, a maniplex or rank n (or n-maniplex) M is a
connected, n-valent graph whose nodes are the flags of M and whose edges are
properly coloured with {0, . . . n− 1}, meaning that for every i ∈ {0, . . . , n− 1}, the
edges with label i determine a perfect matching of M. The set of flags of M is
denoted by F(M). We also require that if i, j ∈ {0, . . . , n− 1} and |i− j| > 2, then
the connected components of M determined by the edges of colours i and j are
alternating squares. Note the slight change of notation: what we call an n-maniplex
is called an (n− 1)-maniplex in [8, 34].

Every n-polytope P determines an n-maniplex through its flag-graph and it
is usually safe P with the maniplex induced by GP In general, not every maniplex
induces a polytope. For a discussion about polytopality of maniplexes and examples
of maniplexes that are not polytopes see [14].

A facet of an n-maniplexM is a connected component of the graph resulting of
removing the edges of colour n− 1 fromM.

An automorphism of a maniplexM is a colour-preserving graph automorphism.
The automorphism group of M is denoted by Aut(M). Note that the group
Aut(M) acts freely on F(M). The notions of rooted, regular, rotary and chiral
maniplexes extend in a naturally from polytopes to maniplexes.

Note that if M is a maniplex and i ∈ {0, . . . , n − 1}, then the edges of colour
i define an involutory permutation ri such that ri(Φ) = Φi for every Φ ∈ F(M).
The connection group of M is group Con(M) = 〈r0, . . . , rn−1〉 (also known as
the monodromy group in [18] and elsewhere). Note that in general the connection
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elements do not define automorphism. Also observe that in this paper we use a left
action for connection elements.

IfM is a maniplex, then the permutations r0, . . . , rn−1 have the following prop-
erties:

(1) The group Con(M) = 〈r0, . . . , rn−1〉 acts transitively on the set F(M).
(2) Each permutation ri is fixed-point-free.
(3) If i 6= j and Φ is any flag, then riΦ 6= rjΦ.
(4) If |i− j| > 2, then ri and rj commute.
Conversely, if F is a set and r0, . . . rn−1 are permutations on F satisfying Items 1

to 4 above, then they define a maniplex M with F(M) = F and Con(M) =
〈r0, . . . , rn−1〉. In other words, we can define a maniplex by its underlying graph
or through its connection group (see [24], for example). The facets of a maniplex
are precisely the orbits of a flag under the action of 〈r0, . . . , rn−1〉.

A permutation γ : F(M)→ F(M) induces an automorphism ofM if and only
if

(riΦ) γ = ri(Φ)γ

for every flag Φ.
It is well known that if M is a regular maniplex then Con(M) ∼= Aut(M)

with the isomorphism mapping ri to ρi (see [18, Theorem 3.9]). If M is a rotary
maniplex, then the action of Aut+(P) and the action of Con(P) have an interesting
relation. This relation is described in the following proposition (see [22, Lemma 2.5
and Proposition 2.7]).

Proposition 2.3. Let P be a rotary n-polytope with base flag Φ0. Let Aut+(P) =
〈σ1, . . . , σn−1〉 and Con(P) = 〈r0, . . . , rn−1〉 be the rotation and connection groups
of P respectively. For 1 6 i 6 n − 1, define si = ri−1ri and consider the even
connection group Con+(P) = 〈s1, . . . , sn−1〉 of P. Then the following hold

(1) For every i1, . . . , ik ∈ {1, . . . , n− 1}

si1 · · · sikΦ0 = Φ0σi1 · · ·σik .

(2) An element si1 · · · sik ∈ Con+(P) fixes the base flag if and only if σi1 · · ·σik =
ε. In this situation, si1 · · · sik stabilises every white flag.

(3) If Fw(P) denotes the set of white flags of P, then there is an isomorphism
f : Conw(P)→ Aut+(P) with Conw(P) = 〈s1, . . . , sn−1〉, where si denotes
the permutation of Fw(P) induced by si. This isomorphism maps si to σi
for every i ∈ {1, . . . , n− 1}.

Note that unlike the regular case, where there is a isomorphism from Con(P)
to Aut(P) mapping ri to ρi, if P is chiral, the mapping g : Con+(P) → Aut+(P)
defined by si 7→ σi is not an isomorphism. By Part 3 of Proposition 2.3 this
mapping is well defined, but in general it is not injective. In other words, there are
non-trivial elements of Con+(P) that fix every white flag of P. The subgroup of
Con+(P) containing all such elements (i.e. the kernel of g) is called the chirality
group. For some uses and properties of the chirality group see [6, Section 3] and
[18, Section 7].

To avoid confusion, we will try to avoid the use of Con+(P) and instead use the
group Conw(P), which is the permutation group on Fw(P) induced by the action
of Con+(P). Since we will only use the action of Con+(P) on white flags, it is
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safe to abuse notation an identify si = ri−1ri ∈ Con+(P) with si ∈ Conw(P), the
permutation induced by si on the set Fw(P).

If P and Q are n-polytopes, we say that P covers Q if there exists a surjective
function φ : P → Q such that φ preserves incidence, rank and flag-adjacency. In
this situation, we say that φ is a covering from P to Q. If (P,Φ0) and (Q,Ψ0) are
rooted polytopes, then (P,Φ0) covers (Q,Ψ0) if there is a covering from P to Q
that maps Φ0 to Ψ0. If P covers Q we also say that Q is a quotient of P. If (P,Φ0)
covers (Q,Ψ0), then there exists a colour-preserving graph homomorphism from GP
to GQ mapping Φ0 to Ψ0. Conversely, if such a graph homomorphism exists, then
(P,Φ0) covers (Q,Ψ0) (see [8, Proposition 3.1]). The previous observation allows
us to extend naturally the notion of covering to maniplexes and rooted maniplexes.
Moreover, for rotary maniplexes we have the following result. This is a consequence
of Part 3 of Proposition 2.3.

Proposition 2.4. Let (M,Φ0) and (N ,Ψ0) be two rooted rotary n- maniplexes. Let
Aut+(M) = 〈σ1, . . . , σn−1〉, Aut+(N ) = 〈σ′1, . . . , σn−1〉, Con+(M) = 〈s1, . . . , sn−1〉,
Con+(N ) =

〈
s′1, . . . , s

′
n−1
〉
denote their rotation and even connection groups. Then

the following are equivalent.
(1) (M,Φ0) covers (N ,Ψ0).
(2) There exists a group-homomorphism η : Con+(M) → Con+(N ) mapping

si to s′i.
(3) There exists a group-homomorphism η : Aut+(M) → Aut+(N ) mapping

σi to σ′i.

LetM andN be rotary n-maniplexes with rotation groups Aut+(M) = 〈σ1, . . . , σn−1〉
and Aut+(N ) =

〈
σ′1, . . . , σ

′
n−1
〉
. We define the group

(2.7)
Aut+(M)♦Aut+(N ) =

〈
(σ1, σ

′
1), . . . (σn−1, σ

′
n−1)

〉
6 Aut+(M)×Aut+(N ).

A straightforward consequence of Part 3 is the following.

Lemma 2.5. If (M,Φ0) and (N ,Ψ0) are rooted maniplexes such that (M,Φ0)
covers (N ,Ψ0), then Aut+(M)♦Aut+(N ) ∼= Aut+(M).

Note that if M is of type {q1, . . . , qn−1} and N is of type
{
q′1, . . . , q

′
n−1
}
, then

the group Aut+(M)♦Aut+(N ) satisfy the relations in Equation (2.4) for pi =
lcm(qi, q

′
i). However, in general the group Aut+(M)♦Aut+(N ) will not satisfy the

intersection property in Equation (2.5), even when M and N are polytopes. The
following results can be used to prove that the group Aut+(M)♦Aut+(N ) has the
intersection propety under certain conditions.

Lemma 2.6 (Lemma 3.3 in [11]). Let Γ = 〈σ1, . . . , σn−1〉 be a group satisfying
Equation (2.4), and let Λ = 〈λ1, . . . , λn−1〉 be a group satisfying Equation (2.2)
and the intersectio property in Equation (2.5). If the mapping σi 7→ λi for i ∈
{1, . . . , n− 1} induces a homomorphism π : Γ→ Λ, which is one-to-one on 〈σ1, . . . , σn−1〉,
then Γ also has the intersection property.

If P is rotary polytope and M is a rotary maniplex such the facets of P cover
the facets of M, then the mapping π : Aut+(P)♦Aut+(M) → Aut+(P) defined
by (σi, σ

′
i) 7→ σi satisfy the hypotesis of Lemma 2.6. In other words, we have the

following result, which is essentially [11, Lemma 3.3]
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Lemma 2.7. If P is a rotary polytope and M is a rotary maniplex so that the
facets of P cover the facets of M, then the group Aut+(P)♦Aut+(M) has the
intersection property in Equation (2.5).

2.4. GPR-graphs. A general permutation representation graph (or just GPR-
graph) is a directed graph encoding all the information of the rotation group of
a rotary polytope. They were introduced in [25] as a generalisation of CPR-graphs
(C-group premutation representation graphs). In this section we review the defini-
tion and basic properties of such graphs.

Let P be a rotary n-polytope with rotation group Aut+(P) = 〈σ1, . . . , σn−1〉.
Let m ∈ N and let φ : Aut+(K)→ Sm be an embedding of the group Aut+(K) into
a symmetric group Sm. The GPR-graph associated to φ is the directed labelled
multigraph (parallel edges are allowed) whose vertices are {1, . . . ,m} and for which
there is an arrow from s to t, with label k, whenever φ(σk) maps s to t.

We call k-arrows the arrows labelled with k. Usually the embedding is given by
a known action of Aut(K) and it can be omitted. We also omit loops, so a point
of {1, . . . ,m} is understood to be fixed by φ(σk) if and only if it has no k-arrows
starting on it. A connected component of arrows with labels in I ⊆ {1, . . . , n−1} is
called an I-component, and if I = {k} for some k, then it is called a k-component.
Observe that an I-component consists of one orbit of points in {1, . . . ,m} under
〈φ(σi) : i ∈ I〉.

Note that a GPR-graph of a rotary polytope P determines the automorphism
group of P (and hence, it determines P). Observe also that the group Aut(P)
acts on the vertices of any GPR-graph of P via the embedding φ. Moreover,
every path from a vertex u to a vertex v of a GPR-graph determines a word on
{σ1, . . . σn−1}∪{σ−11 , . . . , σ−1n−1} and hence, an element α of Aut+(P). The element
α satisfies that φ(α) maps u to v. In general different paths determine different
elements of Aut+(P).

If (P,Φ0) is a rooted rotary polytope, we may consider the isomophism described
in Part 3 of Proposition 2.3 as an embedding of Aut+(P) into the permutation group
Conw(P) on the set of white flags given by the (left) action of Con+(P). The GPR-
graph associated to this embedding is called the Cayley GPR-graph of P and it is
denoted by Cay(P).

Since the action of Con+(P) on the set of white flags is free (see Part 2 of
Proposition 2.3), the following proposition is immediate.

Proposition 2.8. (Proposition 5 in [7]) Let Cay(P) be the Cayley GPR-graph of
a rotary polytope P and let s and t be vertices of Cay(P). There exists a unique
element w ∈ Con+(P) mapping s to t. In particular, every element of Con+(P)
determined by a path from s to t is equal to w.

Given an embedding φ of Aut+(P) into Sm, there exists a natural embedding
φd of Aut+(K) into the direct product Sm × · · · × Sm of d copies of Sm. This
embedding is given by φd : σi 7→ (φ(σi), . . . , φ(σi)). By considering this embedding,
the following proposition is obvious.

Proposition 2.9. Let G1, . . . , Gd be isomorphic copies of a GPR-graph of a rotary
polytope P. Then the disjoint union of G1, . . . , Gd is a GPR-graph of P.

We finish this review of GPR-graphs with the following result, which will be
useful in later sections.



ON THE SCHLÄFLI SYMBOL OF CHIRAL EXTENSIONS OF POLYTOPES 11

Theorem 2.10 (Theorem 8 in [7]). Let G be a directed graph with arrows labelled
1, . . . , n. Let G1, . . . Gd be the {1, 2, . . . , n− 1}-components of G. Assume also that

(1) G1, . . . Gd are isomorphic (as labeled directed graphs) to the Cayley GPR-
graph of a fixed chiral n-polytope K with regular facets.

(2) For k ∈ {1, . . . , n − 1}, the action of (σk · · ·σn)2 on the vertex set of G is
trivial, where σi is the permutation determined by all arrows of label i.

(3) 〈σ1, . . . , σn−1〉 ∩ 〈σn〉 = {ε}.
(4) For every k ∈ {2, . . . , n−1} there exists a {1, . . . , n−1}-component Gik and

a {k, . . . , n}-component Dk such that Gik∩Dk is a nonempty {k, . . . , n−1}-
component.

Then G is a GPR-graph of a chiral (n+ 1)-polytope P whose facets are isomorphic
to K.

3. Extensions of dually bipartite chiral polytopes

In this section we give a construction of chiral extensions of dually bipartite chiral
polytopes with regular facets. To be precise, given a finite dually-bipartite chiral
polytope K and s ∈ N, we construct a graph Gs(K) such that Gs(K) is a GPR-graph
of a finite chiral extension P of K. To be precise, we prove the following theorem.

Theorem 3.1. Letn > 3 and let K be a finite dually-bipartite chiral n-polytope with
regular facets. Let s ∈ N. Then there exists a finite chiral extension P of K such
that if P is of type {p1, . . . , pn−1, pn}, then 2s|pn.

In particular, since s is arbitrary, we have the following result as a consequence.

Corollary 3.2. Let n > 3. Every finite dually-bipartite chiral n-polytope with
regular facets admits infinitely many non-isomorphic chiral extensions.

Recall that an n-polytope K is dually bipartite if its facets admit a colouring
with two colours in such a way that facets incident to a common (n− 2)-face of K
have different colours.

Let K be a dually bipartite chiral n-polytope with regular facets. Let Fw(K)
denote the set of white flags of K and for i ∈ {1, . . . , n − 1} let si denote the
permutation of Fw(K) induced by the connection element ri−1ri. Let Conw(K)
denote the permutation group of Fw(K) generated by {si : 1 6 i 6 n − 1}. As
discussed before, Conw(K) ∼= Aut+(K).

Let Kn−1 denote the set of facets of K and c : Kn−1 → {1,−1} a colouring as the
one described above. Observe that c induces a colouring c : Fw(K) → {1,−1} by
assigning to each white flag the colour of its facet. Consider the following remark.

Remark 3.3. Let K and c be as above. If Ψ ∈ 〈s1, . . . , sn−2〉Φ, then c(Ψ) = c(Φ).

We use this property of the colouring c in our construction. Another important
remark about dually bipartite polytopes is the following.

Remark 3.4. If K is a dually bipartite polytope of type {p1, . . . , pn−1}. If pn−1 <∞,
then pn−1 is even.

The idea of our construction is very similar to that of [7]. Let K be a dually
bipartite chiral n-polytope with regular facets. Take s ∈ N and let G1, . . . G2s

be 2s copies of Cay(K), constructed as follows. For each ` ∈ Z2s, the vertices of
the graph G` will be pairs labelled by (Φ, `) where Φ ∈ Fw(K). Note that for



12 ANTONIO MONTERO

k ∈ {1, . . . , n− 1}, there is an arrow labelled with k (k-arrow) from (Φ, `) to (Ψ, `)
if and only if Ψ = skΦ. For I ⊆ {1, . . . , n−1}, the I-component of a vertex v is the
connected component containing v after removing the arrows whose labels do not
belong to I. Observe that Remark 3.3 implies that the colouring c is such that if v
and u belong to the same {1, . . . , n− 2}-component, then c(u) = c(v). We assume
that if Φ0 is base flag of K, then c(Φ0) = 1. The strategy is to define a matching
M on the vertices of the disjoint union of G1, . . . G2s. Then consider the involutory
permutation t that results from swapping the endpoints of every edge of M . We
take sn = s−1n−1t and then use Theorem 2.10 to prove that the resulting graph is a
GPR-graph of a chiral extension of K. Then we will explore the properties of the
resulting extension.

We define M in several steps.

(1) Add an edge between (Φ0, `) and (Φ0, `+ (−1)`).
(2) For every j, add an edge from (sjn−1Φ0, `) to

(
s−jn−1Φ0, `+ (−1)`c(sjn−1Φ0)

)
.

Observe that the edge of Step 2 is well defined by Remark 3.4, since the order of
sn−1 must be even, which implies that sjn−1Φ0 and s−jn−1Φ0 have the same colour.
Now for every ` ∈ Z2s and k ∈ {1, . . . , n − 2} let E`k denote the {k, . . . , n − 1}-
component of (Φ0, `). The vertices of E`k are of the form (Ψ, `) where Ψ belongs
to the orbit of Φ0 under 〈sk, . . . , sn−1〉. This implies that E`n−2 ⊆ · · · ⊆ E`1 = G`.
Define also the families

C`k =
{
{1, . . . , n− 2}-components F of G` : F ∩ E`k 6= ∅ but F ∩ E`k+1 = ∅

}
.

(3) For k 6 n− 2 and for every F ∈ C`k with ` odd, pick a vertex (ΦF , `) in E`k
and match it to (ΦF , `+ (−1)`c(ΦF )).

Since every {1, . . . n−2}-component ofG` either has a vertex of the form
(
sjn−1Φ0, `

)
for some j or belongs to C`k for some k, with Steps 1 to 3 we have picked exactly
one vertex of each {1, . . . , n− 2}-component of the graphs G1, . . . , G2s.

Let (Φ, `) be a vertex and let F be its {1, . . . , n− 2}-component. Let (ΦF , `) be
the unique vertex of F incident to an edge of M . Observe that since the action
of Conw(K) is free on the set of white flags, there exists a unique element w of
〈s1, . . . , sn−2〉 such that wΦF = Φ. In other words, every vertex of F is of the form
(wΦF , `) for some w ∈ 〈s1, . . . , sn−2〉.

Since K has regular facets, Proposition 2.3 and Part 3 of Theorem 2.1 imply
that there exist an involutory group automorphism ρ of 〈s1, . . . , sn−2〉 mapping
sn−2 to s−1n−2, sn−3 to sn−3s

2
n−2 while fixing si for 1 6 i 6 n − 4. For w ∈

〈s1, . . . , sn−2〉, let w denote ρ(w). Note that the automorphism ρ is the dual version
of the automorphism in Part 3 of Theorem 2.1.

(4) For every vertex of the form (wΦF , `), with w ∈ 〈s1, . . . , sn−2〉, add an edge
from (wΦF , `) to (wΦF , `+ (−1)`c(ΦF )).

Observe that the edge of Step 4 is well-defined since all the flags of the form
wΦF with w ∈ 〈s1, . . . , sn−2〉 have the colour of ΦF .

We have defined the matching M . Let t be the involutory permutation given by
swapping the endpoints of each edge of M and define sn = s−1n−1t.

Proposition 3.5. Let K be a finite dually bipartite chiral polytope with regular
facets and let s ∈ N. The permutation group 〈s1, . . . , sn〉 defined by the graph
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Gs(K) is the automorphism group of a chiral extension P of K with the property
that 2s divides the last entry of the Schläfli symbol of P.

Proof. We will use Theorem 2.10. Part 1 there follows from our construction, since
G1, . . . , G2s are copies of Cay(K). To prove Part 2 we need to see that the action of
(sk · · · sn)2 is trivial on every vertex. According to Lemma 2.2 it suffices to prove
that the following relations hold:

t2 = ε,

tsn−2t = s−1n−2,

tsn−3t = sn−3s
2
n−2,

tsit = si for 1 6 i 6 n− 4.

The first relation holds by construction since t swaps the two vertices of every edge
of M . The other three relations are a consequence of the construction of M in
Step 4. Recall that sn−2 = s−1n−2, sn−3 = sn−3s

2
n−2, and si = si for i 6 n− 4.

To prove Part 3 of Theorem 2.10 consider the action of sn and s2n on a vertex
(Φ0, `):

(3.1)

sn (Φ0, `) = s−1n−1t (Φ0, `)

= s−1n−1
(
Φ0, `+ (−1)`

)
=
(
s−1n−1Φ0, `+ (−1)`

)
,

(3.2)

s2n (Φ0, `) = sn
(
s−1n−1Φ0, `+ (−1)`

)
= s−1n−1t

(
s−1n−1Φ0, `+ (−1)`

)
= s−1n−1

(
sn−1Φ0, `+ (−1)` + (−1)`+1c(s−1n−1Φ0)

)
= s−1n−1

(
sn−1Φ0, `+ 2(−1)`

)
=
(
Φ0, `+ 2(−1)`

)
,

where we have used that `+ (−1)` ≡ `+ 1 (mod 2) and that c(s−1n−1Φ0) = −1.
It follows that if sjn(Φ0, 0) = (Ψ, 0), then j is a multiple of 2s and Ψ = Φ0.

In this situation sjn fixes (Φ0, 0). Since the unique element of 〈s1, . . . , sn−1〉 fixing
(Φ0, 0) is ε (see Proposition 2.3), 〈s1, . . . , sn−1〉 ∩ 〈sn〉 = {ε}, proving Part 3.

Let k ∈ {2, . . . , n − 1} and let Dk be the {k, . . . , n}-component of (Φ0, 0). In
order to prove Part 4, we will prove that Dk ∩G` = E`k for every ` ∈ Z2s. It is clear
that every vertex of E`k belongs to Dk∩G`, since the elements of 〈sk, . . . , sn−1〉 map
vertices of G` to vertices of G`. To show the other inclusion, we will prove that if
(Ψ, `) is a vertex in E`k then it is matched to a vertex in E`

′

k where `′ = `+(−1)`c(Ψ)
(see Figure 1).

Let (Ψ, `) be a vertex of E`k. Let F be the {1, . . . , n − 2}-component of G`
containing (Ψ, `). Note that (Ψ, `) ∈ F ∩ E`k. Observe that for every vertex (Φ, `)
in F we have that c(Φ) = c(F ). Define `′ = ` + (−1)`c(F ). Since F intersects
E`k, then F ∈ C`j for some j > k. In Step 3 of the construction we picked a vertex
(ΦF , `) in E`j (and hence in E`k) and matched it to (ΦF , `

′). Since (ΦF , `) and (Ψ, `)
belong to F , there exists w ∈ 〈s1, . . . , sn−2〉 such that

w(ΦF , `) = (Ψ, `).



14 ANTONIO MONTERO

G`G`−1 G`+1

E`−1k E`k E`+1
k

· · · · · ·

Dk

Figure 1. The intersection of Dk with G` is E`k

Similarly, since both vertices belong to E`k, there exists v ∈ 〈sk, . . . , sn−1〉 such that

v(ΦF , `) = (Ψ, `).

But since the action of 〈s1, . . . , sn−1〉 is free (see Proposition 2.3), it follows that
w = v. Therefore, w is an element of 〈s1, . . . sn−2〉∩〈sk, . . . , sn−1〉 = 〈sk, . . . , sn−2〉.
This implies that w ∈ 〈sk, . . . , sn−2〉.

Since both (Φ0, `) and (Ψ, `) belong to E`k, then there exists u ∈ 〈sk, . . . , sn−1〉
such that

(Ψ, `) = u(Φ0, `).

Finally, in Step 4 we matched (Ψ, `) to

(wΦF , `
′) = ww−1(Ψ, `′) = ww−1u(Φ0, `

′),

but ww−1u ∈ 〈sk, . . . , sn−1〉, implying that (Ψ, `) is matched to a vertex in E`
′

k .
As a consequence of Theorem 2.10, the group 〈s1, . . . , sn〉 is the automorphism

group of a chiral extension P of K. To see that the last entry of the Schläfli symbol
of P must be a multiple of 2s just observe that the orbit of (Φ0, 0) under 〈sn〉 has
length 2s (see Equation (3.2)). �

Theorem 3.1 is an immediate consequence of Proposition 3.5.

4. Extensions of chiral polytopes with regular quotients

In this section we describe a technique to build an infinite family {Ps : s ∈
N, s > 2} of chiral extensions of a given chiral n-polytope K with regular facets
from a particular chiral extension P of K. The polytope Ps satisfies the property
that if P has type {p1, . . . , pn−1, q}, then Ps is of type {p1, . . . , pn−1, lcm(2s, q)}.
To guarantee the existence of such a family we require the existence of a regular
n-maniplex R with at least two facets such that K covers R.

In this construction we use the maniplex 2̂sM−1. Given an n-maniplexM, the
maniplex 2̂sM−1 is a (n + 1)-maniplex whose facets are isomorphic to M. The
maniplex 2̂sM−1 is finite (resp. regular) if and only ifM is finite (resp. regular).
Moreover, if every (n−2)-face ofM belongs to two diferent (n−1)-faces, then there
are 2s facets around each (n−2)-face of 2̂sM−1. In particular, ifM is regular with
at least two facets, then 2̂sM−1 is regular and the last entry of the Schläfli symbol
of 2̂sM−1 is 2s. If K is an abstract regular polytope the resulting maniplex 2̂sK−1

is actually a polytope that is isomorphic to the polytope
(
2̂sK

∗−1)∗ introduced by
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Pellicer in [21]. This construction generalises that of Pellicer in the same way as
the construction 2̂M in [12, Section 6] generalises Danzer’s 2K in [9].

LetM be an n-maniplex with base flag Φ0. LetMn−1 denote the set of facets
of M and let m = |Mn−1|. Recall that since M is connected, then m is either
finite or countably infinite. Let {Fj : 0 6 j < m} be a labelling of Mn−1 so that
Φ0 ∈ F0. Let F(M) and Con(M) = 〈r0, . . . , rn−1〉 denote the set of flags and the
connection group ofM respectively. Choose s ∈ N such that s > 2 and let

A =
⊕

06j<m

Zs =
{

x = (xj)06j<m : xj = 0 for all but finitely many j < m
}
.

Let

U =

x ∈ A :
∑

06j<m

xj = 0

 6 A.
Note that if m is finite, then A is the direct product of m copies of Zs and

|U | = sm−1. In most of our applications this is the case. This motivates our use of
vector notation instead of that of formal sequences. We also abuse of language and
call “vectors” the elements of U .

Consider the vectors aj = ej−e0, where ei denotes the vector of A with ith entry
equal to 1 and every other entry equal to 0. Note that aj = (−1, . . . , 0, 1, 0 . . . ) if
0 < j and that a0 = 0. Then 2̂sM−1 is the (n + 1)-maniplex (Fs, {r̂0, . . . , r̂n}),
where

Fs = F(M)× U × Z2,

r̂i(Φ, x, δ) = (riΦ, x, δ) for 0 6 i 6 n− 1,

r̂n(Φ, x, δ) = (Φ, x + (−1)δaj , 1− δ) whenever Φ ∈ Fj ,

Now we need to prove that the pair (Fs, {r̂0, . . . , r̂n}) indeed defines a maniplex.
First observe that if i ∈ {0, . . . , n}, then r̂i is a permutation of Fs, since riΦ ∈
F(M) and ai ∈ U . Clearly r̂i is an involution for i ∈ {0, . . . , n − 1}. Now assume
that Φ is a flag ofM with Φ ∈ Fj , then

r̂2n (Φ, x, δ) = r̂n
(
Φ, x + (−1)δaj , 1− δ

)
=
(
Φ, x + (−1)δaj + (−1)1−δaj , δ

)
= (Φ, x, δ) .

This proves that r̂n is an involution. Observe that ri 7→ r̂i for 0 6 i 6 n − 1
defines an isomorphism between Con(M) and 〈r̂0, . . . , r̂n−1〉. This isomorphism
proves that the facets of 2̂sM−1 are isomorphic to M. Moreover, if w ∈ Con(M)

we may think of w as en element of Con(2̂sM−1).
The fact that Con(2̂sM−1) is transitive on Fs follows from the facts that {aj :

0 6 j < m} is a generating set of U and that {r0, . . . , rn−1} is transitive on
F(M). Note that for ever i ∈ {0, . . . , n}, the permutation r̂i is fixed-point-free. If
i, j ∈ {0, . . . , n−1} it is clear that r̂i(Φ, x, δ) 6= r̂j(Φ, x, δ) sinceM is a maniplex. For
i ∈ {0, . . . , n−1}, r̂n(Φ, x, δ) 6= r̂i(Φ, x, δ) since they have different third coordinates.

Let (Φ, x, δ) be a flag of and let 0 6 j < m be such that Φ ∈ Fj . If i ∈
{0, . . . , n− 2} then riΦ ∈ Fj , and then it follows that

r̂ir̂n(Φ, x, δ) = (riΦ, x + (−1)δaj , 1− δ) = r̂nr̂i(Φ, x, δ).



16 ANTONIO MONTERO

Then r̂n commutes with r̂i whenever i 6 n − 2. The elements r̂i and r̂j commute
for i, j ∈ {0, . . . , n− 1} with i 6= j and |i− j| > 2 because ri and rj commute. We
have proved then that 2̂sM−1 is a maniplex.

Let (Φ, x, δ) be a flag and assume that Φ ∈ Fj . Let 0 6 k < m be such that
rn−1(Φ) ∈ Fk. Observe that if every (n − 2)-face ofM is incident to two (n − 1)-
faces, then j 6= k. Consider the action of (r̂nr̂n−1)2 on an arbitrary flag (Φ, x, δ):

(r̂nr̂n−1)2 (Φ, x, δ) = r̂nr̂n−1r̂n (rn−1Φ, x, δ)

= r̂nr̂n−1
(
rn−1Φ, x + (−1)δak, 1− δ

)
= r̂n

(
Φ, x + (−1)δak, 1− δ

)
=
(
Φ, x + (−1)δak + (−1)1−δaj , δ

)
=
(
Φ, x + (−1)δ(ak − aj), δ

)
.

It follows that orbit of (Φ, x, δ) under 〈(r̂nr̂n−1)2〉 has length the same as the order
of (ak − aj) in U , which is s, provided that j 6= k. Therefore, if every (n− 2)-face
of M is incident to two (n − 1)-faces, then the order of (r̂nr̂n−1)2 is s. Then we
have that there are 2s facets incident to each (n− 2)-face of 2̂sM−1. In particular,
if M is of type {p1, . . . , pn−1}, then 2̂sM−1 is of type {p1, . . . , pn−1, 2s}. If M is
a regular maniplex, then the condition that every (n− 2)-face ofM is incident to
two facets ofM is equivalent to requiring thatM has at least two facets.

Observe that the orbit of a flag (Φ, x, δ) under the group 〈r̂0, . . . , r̂n−1〉 is

{(Ψ, x, δ) : Ψ ∈ F(M)}.

In particular, every facet of 2̂sM−1 is determined by a pair (x, δ) with x ∈ U and
δ ∈ Z2. Furthermore, the maniplex 2̂sM−1 is dually bipartite; and the necessary
colouring is given by δ. The base facet of 2̂sM−1 is the facet determined by the
pair (0, 0). This facet together with the base flag Φ0 ofM determines the base flag
(Φ0, 0, 0) of 2̂sM−1.

Now we describe some symmetry properties of 2̂sM−1. Assume that γ ∈ Aut(M).
Observe that γ acts on {j : 0 6 j < m} by permuting the elements the same way
it permutes the facets ofM. If x = (xj : j < m), then take xγ := (xjγ−1 : j < m).
This defines a right action of Aut(M) on U . Observe that this action is linear in
the sense that (x + y)γ = xγ + yγ for every x, y ∈ U . Note also that ejγ = ejγ for
every j ∈ {1, . . . ,m}. In particular ajγ = ejγ − e0γ = ejγ − e0γ .

For γ ∈ Aut(M), define γ : Fs → Fs by

(Φ, x, δ)γ = (Φγ, xγ + δa0γ , δ).

Proposition 4.1. The mapping γ 7→ γ defines an embedding of Aut(M) into
Aut(2̂sM−1). In fact, if M denotes the base facet of 2̂sM−1, then the image of
Aut(M) is precisely StabAut(2̂sM−1)(M).

Proof. In order to see that, we first need to prove that γ actually defines an auto-
morphism. Note that γ is a permutation of Fs with inverse γ−1.

Now we need to prove that

r̂i ((Φ, x, δ)γ) = (r̂i(Φ, x, δ)) γ

for every i ∈ {0, . . . , n} and every (Φ, x, δ) ∈ Fs.
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If i ∈ {1, . . . , n− 1}, then
r̂i ((Φ, x, δ) γ) = r̂i (Φγ, xγ + δa0γ , δ)

= (riΦγ, xγ + δa0γ , δ)

= (riΦ, x, δ) γ

= (r̂i (Φ, x, δ)) γ.

So it remains to show that r̂n ((Φ, x, δ) γ) = (r̂n (Φ, x, δ)) γ.
Consider the left side of the previous equation:

r̂n ((Φ, x, δ) γ) = r̂n (Φγ, xγ + δa0γ , δ)

=
(
Φγ, xγ + δa0γ + (−1)δaj , 1− δ

)
,

where j is such that Φγ ∈ Fj . Now the right side:

(r̂n (Φ, x, δ)) γ =
(
Φ, x + (−1)δak, 1− δ

)
γ

=
(
Φγ, (x + (−1)δak)γ + (1− δ)a0γ , 1− δ

)
where k is such that Φ ∈ Fk. Note that if these two are different, then they differ
in the second coordinate. Observe also that Fkγ = Fj .

Compare the second coordinates. On the one hand,

xγ + δa0γ + (−1)δaj = xγ + δ(e0γ − e0) + (−1)δ(ej − e0)

= xγ + δe0γ +
(
−δ − (−1)δ

)
e0 + (−1)δej ,

and on the other
(x + (−1)δak)γ + (1− δ)a0γ = xγ + (−1)δ(ekγ − e0γ) + (1− δ)(e0γ − e0)

= xγ +
(
−(−1)δ + (1− δ)

)
e0γ − (1− δ)e0 + (−1)δej .

Finally, observe that
(
−(−1)δ + (1− δ)

)
= δ and

(
−δ − (−1)δ

)
= (δ − 1) for δ ∈

{0, 1}. This proves that γ is indeed an automorphism of 2̂sM−1.
Clearly if (Φ, 0, 0) is a flag of the base facet, then

(Φ, 0, 0)γ = (Φγ, 0, 0).

Since Φ is arbitrary, this defines a group homomorphism such that the image of
Aut(M) is a subgroup of StabAut(2̂sM−1)(M). Since the action of the automor-
phism group on the set of flags is free, this homomorphism is injective. Every
element of StabAut(2̂sM−1)(M) induces an automorphism of M. Since the action
of Aut(2̂sM−1) on flags is free, these automorphisms must belong to the image of
Aut(M). �

From now on we will abuse notation and denote γ simply by γ and think of
Aut(M) as a subgroup of Aut(2̂sM−1). Similarly, if there is no place for confusion,
we will denote the base facet of 2̂sM−1 byM instead ofM.

Now, for every y ∈ U consider τy : Fs → Fs given by τy : (Φ, x, δ) 7→ (Φ, x+y, δ).
Consider also the mapping χ : Fs → Fs given by χ : (Φ, x, δ) 7→ (Φ,−x, 1 − δ).
Straighforward computations show that τy and χ define automorphisms of 2̂sM−1.
In fact, it can be proved that

〈{χ} ∪ {τy : y ∈ U}〉 = 〈χ〉n 〈τy : y ∈ U〉 ∼= Z2 n U.

Moreover, we can fully describe the structure of Aut(2̂sM−1).
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Theorem 4.2. Let M be an n-maniplex such that every (n − 2)-face of M is
incident to two facets. Then

Aut(2̂sM−1) ∼= Aut(M) n (Z2 n U) .

Proof. The discussion above implies that

〈Aut(M) ∪ {χ} ∪ {τy : y ∈ U}〉 6 Aut(2̂sM−1).

To prove the other inclusion observe that if an automorphism ω ∈ Aut(2̂sM−1)
maps the base flag

(
Φ0, 0, 0

)
to (Ψ, x, δ), there is an automorphism of Z2 n U

mapping (Φ0, 0, 0) to (Ψ, 0, 0), and then there must be an automorphism in Aut(M)
mapping Ψ0 to Φ, since Aut(M) is the stabilizer of the base facet. The inclusion
follows from the fact the the action of Aut(2̂sM−1) on Fs is free.

It just remains to determine the structure of the group. It is clear that (Z2 n U)∩
Aut(M) = {ε}, since the former fixes the first coordinate of every flag and the only
element of Aut(M) that fixes a flag of M is ε. Take γ ∈ Aut(M), y ∈ U and let
(Φ, x, δ) be an arbitrary flag. Then

(Φ0, x, 0) γ−1τyγ =
(
Φγ−1, xγ−1 + δa0γ−1 , δ

)
τyγ

=
(
Φγ−1, xγ−1 + δa0γ−1 + y, δ

)
γ

=
(
Φ, (xγ−1 + δa0γ−1 + y)γ + δa0γ , δ

)
=
(
Φ, x + δ(e0γ−1γ − e0γ + e0γ − e0) + yγ, δ

)
= (Φ, x + yγ, δ)

= (Φ, x, δ) τyγ .

Similarly,

(Φ, x, δ) γ−1χγ =
(
Φγ−1, xγ−1 + δa0γ−1 , δ

)
χγ

=
(
Φγ−1,−(xγ−1 + δa0γ−1), 1− δ

)
γ

=
(
Φ,−x + δ(e0 − e0γ−1)γ + (1− δ)(e0γ − e0), 1− δ

)
= (Φ,−x + a0γ , 1− δ)
= (Φ, x, δ)χτa0γ .

Therefore, Aut(M) normalises (U n Z2) and

〈Aut(M) ∪ {χ} ∪ {τy : y ∈ U}〉 = Aut(M) n (Z2 n U) . �

Observe that ifM is a regular n-maniplex with automorphism group 〈ρ0, . . . , ρn−1〉,
then 2̂sM−1 is a regular (n+ 1)-maniplex and ρ0, . . . , ρn−1, χ act as generating re-
flections of Aut(2̂sM−1).

IfM is a finite regular polytope, then 2̂sM−1 is the polytope
(
2sM

∗−1)∗, where
2sM

∗−1 is the construction introduced by Pellicer in [21] applied to the dual ofM.
To see this, just observe that the automorphism group described in Theorem 4.2 is
isomorphic to the one described in [21, Theorem 3.4]. The isomorphism maps each
abstract reflection of 2̂sM−1 to the corresponding abstract reflection of

(
2sM

∗−1)∗.
In this sense, the construction introduced here slightly generalises that of [21] since
the former can be applied to non-polytopal and/or non-regular maniplexes.

The construction 2̂sM−1 allows us to prove the following theorem.
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Theorem 4.3. Let K be a chiral n-polytope of type {p1, . . . , pn−1}. Assume that
K has a quotient that is a regular maniplex with at least two facets. If P is a
chiral extension of K of type {p1, . . . , pn−1, q}, then for every s ∈ N, K has a chiral
extension of type {p1, . . . , pn−1, lcm(q, 2s)}.

Proof. Let Aut+(K) = 〈σ1, . . . , σn−1〉 and Aut+(P) = 〈σ1, . . . , σn−1, σn〉. Let R
be the regular quotient of K. For s ∈ N, consider 2̂sR−1. By the discussion above,
2̂sR−1 is a regular (n + 1)-maniplex. Let Aut+(2̂sR−1) = 〈σ′1, . . . , σ′n〉. Observe
that Aut+(R) = 〈σ′1, . . . , σ′n−1〉. Consider the group

Γs = Aut+(P)♦Aut+(2̂sR−1) = 〈(σ1, σ′1), . . . , (σn, σ
′
n)〉 .

Observe that the group Aut+(K) = 〈σ1, . . . , σn−1〉 covers the group Aut+(R) =
〈σ′1, . . . , σ′n−1〉. Since Aut+(P) satisfies the intersection property, then Lemma 2.7
implies that Γs is the automorphism group of a rotary polytope Ps. By Lemma 2.5,
the group

Aut+(K)♦Aut+(R) =
〈
(σ1, σ

′
1), . . . , (σn−1, σ

′
n−1)

〉 ∼= Aut+(K).

It follows that the facets of Ps are isomorphic to K and hence they are chiral.
Therefore Ps is chiral itself. The order of (σn, σ

′
n) is lcm(q, 2s), which implies that

Ps is of type {p1, . . . , pn−1, lcm(q, 2s)}. �

5. Chiral extensios of maps on the torus

In this section we show some applications of the constructions developed in
Sections 3 and 4.

Example 5.1. If b, c ∈ Z such that bc(b− c) 6= 0 and b ≡ c (mod 2), then the map
{4, 4}(b,c) is a dually-bipartite chiral 3-polytope. By applying the construction in
Section 3 we obtain an family of chiral 4-polytopes of type {4, 4, 2q} for infinitely
many q ∈ N.

Example 5.2. Similarly if bc(b − c) 6= 0 the map {3, 6}(b,c) is a dually-bipartite
chiral 3-polytope. The construction in Section 3 gives rise to a family of 4-polytopes
of type {3, 6, 2q} for infinitely many values of q ∈ N.

The condition for K to be dually-bipartite can be slightly restrictive. For example
the maps {6, 3}(b,c) are never dually-bipartite. However the construction outlined
in Section 4 can be applied to many of those maps, as it will be shown in the
discussion below.

Example 5.3. The map K = {4, 4}(4,2) has infinitely many non-isomorphic chiral
extensions. Moreover, K admits a chiral extension whose last entry of its Schläfli
symbol is arbitrarily large. Indeed, by [7, Theorem 1], K admits a chiral extension
P. Let Λ(b,c) denote the lattice group such that {4, 4}(b,c) = {4, 4}/Λ(b,c). Since
the lattice group Λ(4,2) is contained in the lattice Λ(2,0), then R = {4, 4}(2,0) is a
regular quotient of K with 4 facets. Therefore we may apply Theorem 4.3.

Of course the idea in Example 5.3 extends to a map {4, 4}(b,c) as long as such
map has a regular quotient with at least two facets. The results in [1, Section 4]
imply that the only maps on the torus without a regular quotient with at least two
facets are {4, 4}(b,c) and {6, 3}(b,c) with b, c coprime and b 6≡ c (mod 2) for type
{4, 4}, or b 6≡ c (mod 3) for the case {6, 3}. Note that every regular toroidal map of
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type {3, 6} has at least two facets. Therefore, Example 5.3 extends to such maps.
In the discusion below we will give explicit Schläfli symbols for chiral extensions of
such maps by using a slightly different approach.

In [32] Schulte and Weiss build chiral 4-polytopes from the hyperbolic tessella-
tions of types {4, 4, 3}, {4, 4, 4}, {6, 3, 3} and {3, 6, 3}. The strategy in all the cases
is essentially the same: they represent the rotation group [p, q, r]+ of {p, q, r} as
matrices in PGL2(R) with R = Z[i] (the Gaussian integers) if {p, q, r} is {4, 4, 4}
or {4, 4, 3}, and R = Z[ω] (the Eisenstein integers) if {p, q, r} is {6, 3, 3} or {3, 6, 3}.
Then they find an appropriate m in such a way there is a ring homomorphism from
R to Zm. This induces a homomorphism from PGL2(R) to PGL2(Zm) which maps
[p, q, r]+ to a finite group. Then they prove that these finite groups are the rotation
groups of finite orientably regular or chiral polytopes.

The following results are simplified versions of some of their results.

Theorem 5.4 ([32, Theorem 7.3]). For every integer m > 3 there exists an ori-
entably regular polytope P of type {4, 4, 3} with facets isomorphic to {4, 4}(m,0) and
vertex-figures isomorphic to the cube {4, 3}.

Theorem 5.5 ([32, Theorem 7.6]). Let m > 3 be an integer such that the equation
x2 + 1 has a solution in Zm. Then for every i ∈ Zm such that i2 ≡ −1 (mod m)
there exist b, c ∈ Z such that gcd(b, c) = 1, m = b2 + c2 and b+ ci ≡ 0 (mod m). In
this situation, the image of [4, 4, 3]+ to PGL2(Zm) is the automorphism group of a
chiral polytope of type {4, 4, 3} with facets isomorphic to {4, 4}(b,c) and vertex-figures
isomorphic to {4, 3}.

Note that if we start with arbitrary b, c ∈ Z such that gcd(b, c) = 1 then m =
b2 + c2 satisfies the hypotesis of Theorem 5.5. It follows that we can build a chiral
extension of type {4, 4, 3} for every map {4, 4}(b,c) with gcd(b, c) = 1. It can be
proved that for every pair of integers b, c there exist b1, . . . , bk, c1, . . . , ck ∈ Z such
that

Aut+
(
{4, 4}(b,c)

)
∼= Aut+

(
{4, 4}(b1,c1)

)
♦ · · ·♦Aut+

(
{4, 4}(bk,ck)

)
,

and such that if bjcj 6= 0, then bj and cj are coprime. For each j ∈ {1, . . . , k} let
Pj be the extension of {4, 4}(bj ,cj) given by Theorem 5.4 or Theorem 5.5. Let

Γ = Aut+ (P1)♦ · · ·♦Aut+ (Pk) .

The group Γ satisfy the relations in Equation (2.4). The intersection propety for Γ
follows from a dual version of Lemma 2.7 since all the vertex-figures of the polytopes
P1, . . . ,Pk are isomorphic to the cube. Therefore the polytope P = P(Γ) obtained
from Theorem 2.1 is a rotary polytope of type {4, 4, 3}. Observe that the facets of
P are precisely {4, 4}(b,c). This implies that P is a chiral extension of {4, 4}(b,c) of
type {4, 4, 3}.

Of course, the analysis we have done for type {4, 4, 3} can be done for types
{4, 4, 4}, {6, 3, 3} and {3, 6, 3} (using the results of Section 8, Section 9 and Section
10 of [32], respectively), and we obtain chiral extensions of the maps {4, 4}(b,c),
{3, 6}(b,c) and {6, 3}(b,c). With those polytopes of type {6, 3, 3} the intersection
property will follow again from Lemma 2.7. For types {4, 4, 4} and {3, 6, 3} the
intersection property involve long but straightforward computations using the mat-
ices associated to the rotation groups. The proof can be done following the same
idea as in [32, Sections 8 and 10].
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By combining the discussion above with Theorem 4.3, we can prove the following
results.

Theorem 5.6. LetM = {4, 4}(b,c) be a chiral map of type {4, 4} on the torus. Let
d = gcd(b, c). If d 6= 1 or d = 1 but b ≡ c (mod 2), then for every s ∈ N there
exists a chiral extension ofM of type {4, 4, 6s} and a chiral extension ofM of type
{4, 4, 4s}.

Theorem 5.7. Let M = {3, 6}(b,c) be a chiral map of type {3, 6} on the torus.
Then for every s ∈ N there exists a chiral extension ofM of type {3, 6, 6s}.

Theorem 5.8. LetM = {6, 3}(b,c) be a chiral map of type {6, 3} on the torus. Let
d = gcd(b, c). If d 6= 1 or d = 1 but b ≡ c (mod 3), then for every s ∈ N there
exists a chiral extension ofM of type {6, 3, 6s}.
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