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ON SOME q-SERIES IDENTITIES RELATED TO A GENERALIZED DIVISOR

FUNCTION AND THEIR IMPLICATIONS

RAJAT GUPTA AND RAHUL KUMAR

Abstract. In this article, a q-series examined by Kluyver and Uchimura is generalized. This allows

us to find generalization of the identities in the random acyclic digraph studied by Simon, Crippa,

and Collenberg in 1993. As one of the corollaries of our main theorem, we get results of Dilcher and

Andrews, Crippa, and Simon. This main theorem involves a surprising new generalization of the

divisor function σs(n), which we denote by σs,z(n). Analytic properties of σs,z(n) are also studied.

As a special case of one of our theorem we obtain result from a recent paper of Bringmann and

Jennings-Shaffer.

1. Introduction

The connection between the divisor function and the coefficients of certain basic hypergeometric

series is well-studied. For example, Kluyver obtained in [20], for |q| < 1, namely,

∞
∑

n=1

(−1)n−1qn(n+1)/2

(1 − qn)(q; q)n
=

∞
∑

n=1

qn

1− qn
=

∞
∑

n=1

d(n)qn, (1.1)

where the notation used above and throughout the paper is as follows,

(a; q)0 = 1;

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1;

(a; q)∞ := (1− a)(1− aq) · · · , for |q| < 1.

Later, Fine in his book [14, p. 14, Equations (12.4), (12.42)] and Zudilin [26, p. 4] rediscovered (1.1).

Uchimura [23, Theorem 2] also gave another equivalent representation for (1.1), that is,

∞
∑

n=1

nqn(qn+1; q)∞ =
∞
∑

n=1

(−1)n−1qn(n+1)/2

(1 − qn)(q; q)n
=

∞
∑

n=1

qn

1− qn
. (1.2)

Identities such as (1.2) inherit beautiful combinatorial interpretation and are well-studied in the lit-

erature.

Bressoud and Subbarao [9] gave an appealing combinatorial interpretation of the extreme sides of

(1.2), namely,
∑

π∈Dn

(−1)#(π)−1s(π) = d(n), (1.3)

where Dn is the set of partitions on n into distinct parts, #(π) denotes the number of parts of a

partition π of n, s(π) is the smallest part in the a partition π of n, and d(n) counts the number of
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divisors of n. The equation (1.3) was also rediscovered by Fokking, Fokking and Wang [15]. Moreover,

(1.3) was further generalized by Bressoud and Subbarao [9] for

σm(n) :=
∑

d|n

dm; m ∈ N ∪ {0} and n ∈ N.

Here, we note that σ0(n) = d(n).

A one-variable generalization of (1.1) is given in Ramanujan’s Notebook [6, p. 264, Entry 4], also

rediscovered by Uchimura [23, Equation (3)], namely, for |zq| < 1 and z 6= q−n, n ≥ 1,

∞
∑

n=1

(−1)n−1znqn(n+1)/2

(1 − qn)(zq; q)n
=

∞
∑

n=1

znqn

1− qn
. (1.4)

Recently, Andrews, Garvan, and Liang [3, Theorem 3.5] gave a beautiful generalization of (1.2) by

generalizing the left-hand side of (1.3) by defining a new weighted–partition sum,

FFW(c, n) :=
∑

π∈Dn

(−1)#(π)−1
(

1 + c+ · · ·+ cs(π)−1
)

.

For further discussions and the generalization of (1.4), we refer the readers to [3], [13].

K. Dilcher [12, Equation (4.3), (5.7)] obtained an interesting new generalization of (1.2), namely,

for |q| < 1 and k ∈ N,

∞
∑

n=k

(

n

k

)

qn(qn+1; q)∞ = q−(
k

2)
∞
∑

n=1

(−1)n−1q(
n+k

2 )

(1− qn)k(q; q)n
=

∞
∑

j1=1

qj1

1− qj1
· · ·

jk−1
∑

jk=1

qjk

1− qjk
. (1.5)

If we let k = 1 in the above identity, we get (1.2) as a special case. He obtained the first equality,

and then he proved the equality between the first and the third sum of (1.5). To the best of our

knowledge, there is no direct proof known of the second equality of (1.5).

By invoking (1.5) [12, Section 4], Dilcher gave another generalization of (1.1), that is, for |q| < 1

and k ∈ N there exist a polynomial Mk(x1, x2, ..., xk) with rational coefficients such that,

∞
∑

n=1

(−1)n−1q(
n+1
2 )

(1− qn)k(q; q)n
= Mk (S0(q), S1(q), ..., Sk−1(q)) , (1.6)

where,

Ss(q) :=
∞
∑

n=1

σs(n)q
n =

∞
∑

n=1





∑

d|n

ds



 qn =
∞
∑

n=1

nsqn

1− qn
. (1.7)

Andrews, Crippa and Simon in [2, Theorem 2.1] gave another proof of (1.6) and studied its appli-

cations in probability theory.

Dixit and Maji, in [13], obtained a more general form of (1.1), namely, for |a| < 1, |b| < 1, |c| ≤ 1

and |q| < 1,

∞
∑

n=1

(b/a; q)na
n

(1− cqn)(b; q)n
=

∞
∑

m=0

(b/c; q)mcm

(b; q)m

(

aqm

1− aqm
−

bqm

1− bqm

)

. (1.8)

Equation (1.8) also generalizes Ramanujan’s identity [21, p. 354], [6, p. 263, Entry 3].

The left-hand side of (1.6) is another generalization of (1.1) through the variable k . The identities

(1.1) and (1.4) are the special cases of (1.8). We refer the reader to [13] for further implications of

(1.8).
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In the present paper, we undertake the study of the series
∞
∑

n=1

(q/z; q)nz
n

(1− qn)k(q; q)n
, (1.9)

whose motivation arose from the aforementioned discussion. Letting z → 0 in (1.9), we get the

left-hand side of (1.6), and then if we put k = 1, we get the left-hand side of (1.1).

We also note here that a special case to (1.9) is studied recently by the first author in [19, Theorem

1.18]. He obtained a sum-of-tails identity, namely, for |q| < 1, |c| ≤ 1, a ∈ C, and k ∈ N,

∞
∑

n=1

(−a)nq(
n+1
2 )

(1 − cqn)k(q; q)n
=

∞
∑

n=0

cn
(

k + n− 1

n

)

((aqn; q)∞ − 1) . (1.10)

One of the goals of this article is to obtain a representation of (1.9) generalizing the right-hand side

of (1.6) and indicate its possible application in acyclic digraphs. Thus our first theorem is as follows:

Theorem 1.1. For |z| < 1, |q| < 1 and k ∈ N,

∞
∑

n=1

(q/z; q)nz
n

(1− qn)k(q; q)n
= −

(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

(

k + n− 1

k

)

. (1.11)

If we let z → 0 in (1.11), we get [2, Equation (9)]

∞
∑

n=1

(−1)n−1qn(n+1)/2

(1− qn)k(q; q)n
= (q; q)∞

∞
∑

n=0

qn

(q; q)n

(

k + n− 1

k

)

.

It is easy to see that the identities (1.1) and (1.2) are special cases of Theorem 1.1.

One non-trivial application of Theorem 1.1 is that it allows us to obtain the generalization of (1.6).

In the course of doing so, we stumbled upon an interesting generalization of the divisor function,

which, to the best of our knowledge, does not appear to have been studied. It has not been concocted

artificially; instead, we naturally encountered it while trying to find a generalization of (1.6). The

second goal of this paper is to initiate the study of this new divisor function.

The topic of q-series identities related to divisor functions is of intense research, we refer the reader

to a paper of Guo and Zeng [18] for the developments in this area since the appearance of Kluyver’s

identity (1.1).

Before stating our generalization of (1.6), we define our proposed generalized divisor function by

σs,z(n) :=
∑

d|n

dszd, (1.12)

where s, z ∈ C.

It is straightforward to see that σs,z(n) reduces to σs(n) for z = 1.

Very recently, a special case of (1.12) occurred in the work of Bhoria, Eyyunni, and Maji [8,

Equation 2.5] in a different context.

Our first result on the generalized divisor function σs,z(n) is contained in the following theorem.

Theorem 1.2. Let s, z ∈ C. Then

σs−1,z(n) =
1

n

∑

d|n

ϕ(d)σs,z

(n

d

)

, (1.13)

where ϕ(d) is the Euler totient function [5, p. 25, Equation (1)].
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The following well-known result of σs(n) is a special case of Theorem 1.2.

Corollary 1.3. Let s ∈ C. Then for n ≥ 1 we have

σs(n) = ns−1
∑

d|n

ϕ(d)σ1−s

(n

d

)

. (1.14)

Our next result on the generalized divisor function σs,z(n) is:

Theorem 1.4. Let s ∈ C and |z| ≤ 1. For Re(α) > 1, we have

∞
∑

n=1

σs,z(n)

nα
= ζ(α)Liα−s(z), (1.15)

where Lis(z) is polylogarithm function defined by

Lis(z) =

∞
∑

n=1

zn

ns
. (1.16)

The above Theorem gives the following well-known result as its special case.

Corollary 1.5. For Re(α) > max{1, 1 + Re(s)}, we have

∞
∑

n=1

σs(n)

nα
= ζ(α)ζ(α − s). (1.17)

The average order of any arithmetical function is always desirable. The average order of σs,z(n)

obtained in the next theorem.

Theorem 1.6. Let 0 < z ≤ 1, s < 0. Then for x ≥ 1, we have

∑

n≤x

σs,z(n) = −x1+sE1−s(−x log(z)) +
1

2
x1+sE−s(−x log(z)) + xLi1−s(z)−

1

2
Li−s(z) +O(xβ),

where β = max
{

0, x1+sE−s(−x log(z))
}

and Eν(z) is Exponential integral which is defined by [1,

p. 228, Equation (5.1.4)]

Eν(z) :=

∫ ∞

1

e−zt

tν
dt, Re(z) > 0. (1.18)

Many results similar to Theorem 1.6 and their special cases are obtained in Section 5.

The first appearance of the generalized divisor function σs,z(n) occurs in Theorem 1.7. Before

stating this theorem, we need to define Ss,z(q) by

Ss,z(q) := Ss(q)− Ss,z(q), (1.19)

where,

Ss,z(q) := Li−s(z) +
∞
∑

n=1

σs,z(n)q
n = Li−s(z) +

∞
∑

n=1

nsznqn

1− qn
. (1.20)

If we let z = 0 in (1.19) then Ss,0(q) = Ss(q), where Ss(q) is defined in (1.7).

Now, we are all set to state our next theorem which involves the generalized divisor function σs,z(n).
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Theorem 1.7. Let Ss,z(q) be defined in (1.19). Then for |q| < 1, |z| < 1 and k ∈ N, there exist a

polynomial Mk(x1, x2, ..., xk) with rational coefficients, such that

∞
∑

n=1

(q/z; q)nz
n

(1− qn)k(q; q)n
= −Mk (S0,z(q),S1,z(q),S2,z(q), ...,Sk−1,z(q)) . (1.21)

It is easy to see that as z → 0 in the above theorem we get (1.6).

As a special case of Theorem 1.7 for k = 2, we derive the following interesting result.

Corollary 1.8. For |z| < 1, and |q| < 1,

2

∞
∑

n=1

(q/z; q)nz
n

(1− qn)2(q; q)n
=

z(2− z)

(1− z)2
−

∞
∑

n=1

(1− zn)

(1− qn)
(n+ 1)qn −

(

z

(1 − z)
−

∞
∑

n=1

(1− zn)

(1− qn)
qn

)2

. (1.22)

Remark 1.9. If we differentiate both sides of (1.22) with respect to z and then take z → q in the

resulting expression then we deduce the following elegant q-series identity

2

∞
∑

n=1

qn

(1− qn)3
=

2q

(1− qn)3
+

∞
∑

n=1

n(n+ 1)q2n

(1− qn)
. (1.23)

Simon, Crippa, and Collenberg [22] showed that the expectation and variance of a certain random

variable arising from acyclic digraphs can also be represented in terms of divisor function. One of

their results is as follows: For fixed n, if the random variable γ∗
n is defined by the number of vertices

reachable from the vertex 1 then

lim
n→∞

(n− E(γ∗
n)) =

∞
∑

j=1

∑

d|n

qj , (1.24)

and

lim
n→∞

Var(γ∗
n) =

∞
∑

j=1

∑

d|j

dqj .

Later in [2, Theorem 3.1], authors proved the following theorem by invoking their result (1.6).

Theorem 1.10. Let an(q) be a polynomial in q defined by the recursive equation

an(q) := f(n) +
(

1− qn−1
)

an−1(q), n ≥ 1,

with a0(q) = 0. Then there exist rational coefficients hj such that

lim
n→∞







n
∑

j=1

f(j)− an(q)







=

∞
∑

j=1

hjMj ; (1.25)

where

for j ≥ 2, hj =
∑

i≥j−1

(−1)i−j+1

(

i− 1

j − 2

)

i!
∑

k≥i

cks̃(k, i); h1 = c0,

and s̃(k, i) are Stirling numbers of the second kind.
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It is clear that if we take f(n) = 1 in the above theorem we get (1.24). For further details on this,

we refer the reader to [2].

In their paper [2, p. 56], authors posed a question of obtaining a similar result for f(n) being

periodic function. This question is affirmatively answered by Bringmann and Jennings-Shaffer in [10,

Theorem 1.3]. In the same paper, they have also provided a similar result for f(n) = bn, b ∈ C\{1}.

Our Theorem 1.7 also helps us in finding the following elegant generalization of [10, Theorem 1.3].

Theorem 1.11. Let f(n) be a periodic sequence with period N and an(z, q) is the sequence such that

an(z, q) := (1− z/q) f(n) +
{

1− (1− z/q) qn−1
}

an−1(z, q), a0(z, q) = 0.

If ck :=
1

N

∑

1≤j≤N

f(j)ζ
(1−j)k
N , then for |z| < 1 and |q| < 1, we have

lim
n→∞



(1− z/q)

n
∑

j=1

f(j)− an(z, q)





= (1− z/q)

(

c0S0,z(q) +
∑

1≤k≤N−1

ck

1− ζkN
−

(q; q)∞
(z; q)∞

∑

1≤k≤N−1

ck
(zζkN ; q)∞

(ζkN ; q)∞

)

. (1.26)

As an application of Theorem 1.11 and Theorem 4.6 we obtain the following generalization of [10,

Corollary 4.1]1.

Corollary 1.12. Let an(z, q) be the sequence defined as an(z, q) := (1− z/q) (−1)n+
{

1− (1− z/q) qn−1
}

an−1(z, q), a0(z, q) = 0. For |z| < 1 and |q| < 1, we have

lim
n→∞



(1− z/q)
n
∑

j=1

(−1)j − an(z, q)



 = −
(q, q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)2n+1q
2n+1

(q; q)2n+1
= −

1

2
+

1

2

(q; q)∞(−z; q)∞
(−q; q)∞(z; q)∞

.

(1.27)

This paper is organised as follows. We first collect some known results from the literature in Section

2 which will be employed in the sequel. Section 3 is devoted to proving Theorems 1.1, Theorem 1.7 and

to obtaining several lemmas derived to prove Theorem 1.7. In section 4, Theorem 1.11, its Corollary

1.12, and several other results are proved. Section 5 contains the theory of the generalized divisor

function σs,z(n), namely, Theorem 1.2, Theorem 1.4, Theorem 1.6. Several other properties of σs,z(n)

are also obtained in this section. We conclude the paper with proposing some questions in Section 6.

2. Preliminaries

The q-Gauss sum identity [16, p. 354, Equation (II.8)] is given by

2φ1(a, b; c; q, c/ab) =
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/(ab); q)∞

. (2.1)

We note down the q-binomial theorem [16, p. 8, Equation (1.3.2)], for |z| < 1, |q| < 1 and a ∈ C:

∞
∑

n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (2.2)

1In the first equality of Corollary 4.1 of [10], − 1
2
−

(q;q)∞
2(−q;q)∞

must be −

1
2
+ (q;q)∞

2(−q;q)∞
.
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An equivalent version of the q-binomial theorem (2.2) is [7, p. 9, Equation (1.3.8)]

∞
∑

n=0

(a/b; q)n
(q; q)n

(by)n =
(ay; q)∞
(by; q)∞

. (2.3)

We also record the Chu-Vandermonde identity [17]

k
∑

r=1

(

n

r

)(

k − 1

k − r

)

=

(

k + n− 1

k

)

. (2.4)

3. Proofs of q-series identities

We begin this section with a proof of Theorem 1.1.

Proof of Theorem 1.1. Consider

R(z, ξ) : =

∞
∑

k=1

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1− qn)k
ξk. (3.1)

Then by using binomial theorem in (3.1), we see that

R(z, ξ) =
ξ

1− ξ

∞
∑

n=1

(q/z; q)nz
n

(q; q)n (1− qn/(1− ξ))

= −

∞
∑

n=1

(1/(1− ξ); q)n (q/z; q)nz
n

(q; q)n (q/(1− ξ); q)n

= 1− 2φ1

(

1

1− ξ
,
q

z
;

q

1− ξ
; q, z

)

, (3.2)

Upon using (2.1) in (3.2), we get

R(z, ξ) = 1−
(q; q)∞ (z/(1− ξ); q)∞
(z; q)∞ (q/(1− ξ); q)∞

. (3.3)

Equation (2.2) and (3.3) implies that

R(z, ξ) = 1−
(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)n
(q; q)n

(

q

1− ξ

)n

= 1−
(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)n
(q; q)n

qn
∞
∑

k=0

(

k + n− 1

k

)

ξk. (3.4)

Now use the definition (3.1) of R(z, ξ) in the above equation and then compare the coefficients of

ξk, k ≥ 1 on both sides of the above equation to arrive at (1.11). �

To prove Theorem 1.7, we need several lemmas which we prove in the sequel below.

Lemma 3.1. For r ∈ N, |z| < 1 and |q| < 1

dr

dǫr

(

(ǫz; q)∞
(ǫq; q)∞

)

∣

∣

∣

∣

∣

ǫ→1

= r!

∞
∑

n=0

(

n

r

)

(z/q; q)n
qn

(q; q)n
.
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Proof. An application of (2.2) implies that

dr

dǫr
(ǫz; q)∞
(ǫq; q)∞

=
dr

dǫr

∞
∑

n=0

(z/q; q)n
(q; q)n

ǫnqn

=

∞
∑

n=0

(z/q; q)n
(q; q)n

n(n− 1)....(n− r + 1)ǫn−rqn

= r!

∞
∑

n=0

(z/q; q)n
(q; q)n

(

n

r

)

ǫn−rqn.

Letting ǫ → 1 on both sides of the above equation, we arrive at the statement of our lemma. �

Define a new function,

Tr,z = Tr,z(ǫ, q) : =

∞
∑

n=1

qnr

(1− ǫqn)r
−

∞
∑

n=0

zrqnr

(1− ǫzqn)r
. (3.5)

A simple observation leads to

d

dǫ
Tr,z(ǫ, q) = rTr+1,z(ǫ, q). (3.6)

Lemma 3.2. For each k ∈ N, z ∈ C and |q| < 1 there exists a k-degree rational polynomial

Nk(x1, x2, .., xk) such that

dk

dǫk
(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞

Nk (T1,z, T2,z, .., Tk,z) . (3.7)

Proof. Note that

d

dǫ

(ǫz; q)∞
(ǫq; q)∞

=
d

dǫ



(1− ǫz)

∞
∏

j=1

1− ǫzqj

1− ǫqj





= (1 − ǫz)
d

dǫ



exp



log





∞
∏

j=1

1− ǫzqj

1− ǫqj











−
z

1− ǫz

(ǫz; q)∞
(ǫq; q)∞

= (1 − ǫz)
∞
∏

j=1

1− ǫzqj

1− ǫqj
d

dǫ





∞
∑

j=1

log

(

1− ǫzqj

1− ǫqj

)



−
z

1− ǫz

(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞

∞
∑

j=1

{

−zqj

1− ǫzqj
−

−qj

1− ǫqj

}

−
z

1− ǫz

(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞





∞
∑

j=1

qj

(1 − ǫqj)
−

∞
∑

j=0

zqj

(1− ǫzqj)





=
(ǫz; q)∞
(ǫq; q)∞

T1,z(ǫ, q), (3.8)

where T1,z(ǫ, q) is defined in (3.5). If we take N1(x1) := x1 then the above equation leads to

d

dǫ

(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞

N1 (T1,z) . (3.9)

Again differentiating (3.9) with respect to ǫ, we see that

d2

dǫ2
(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞

T 2
1,z(ǫ, q) +

(ǫz; q)∞
(ǫq; q)∞

d

dǫ
T1,z(ǫ, q).
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Invoking (3.6) in the above equation, we have

d2

dǫ2
(ǫz; q)∞
(ǫq; q)∞

=
(ǫz; q)∞
(ǫq; q)∞

T 2
1,z(ǫ, q) +

(ǫz; q)∞
(ǫq; q)∞

T2,z(ǫ, q) =
(ǫz; q)∞
(ǫq; q)∞

N2(T1,z, T2,z),

where N2(x1, x2) := x2
1 + x2. Thus by using induction and (3.6), we conclude the proof. �

The next lemma gives a representation for Tr,z(1, q).

Lemma 3.3. Let Ss,z(q) be defined in (1.19). For r ∈ N there exists a rational constant cr,h for

0 ≤ h ≤ r − 1 such that

Tr,z(1, q) =

r−1
∑

h=0

cr,hSh,z(q). (3.10)

Proof. From (3.5), we have

Tr,z(1, q) =
∞
∑

n=1

qnr

(1− qn)r
−

∞
∑

n=0

zrqnr

(1− zqn)r
. (3.11)

We invoke [2, Lemma 2.5] in (3.11) to see that

Tr,z(1, q) = Tr(1, q)−

∞
∑

n=0

zrqnr

(1− zqn)r

=

r−1
∑

j=0

cr,jSj(q)−

∞
∑

n=0

zrqnr

(1− zqn)r
. (3.12)

Upon using the binomial theorem, we see that

∞
∑

n=0

zrqnr

(1− zqn)r
=

∞
∑

n=0

zqn(1− (1− zqn)r−1

(1− zqn)r

=

∞
∑

n=0

zqn

(1 − zqn)r

r−1
∑

j=0

(

r − 1

j

)

(−1)j(1 − zqn)j

= z
r−1
∑

j=0

(

r − 1

j

)

(−1)j
∞
∑

n=0

qn

(1− zqn)r−j
. (3.13)

We again employ the binomial theorem in (3.13) to get

∞
∑

n=0

zrqnr

(1− zqn)r
= z

r−1
∑

j=0

(

r − 1

j

)

(−1)j
∞
∑

n=0

∞
∑

m=0

(

r − j +m− 1

r − j − 1

)

qn(1+m)zm

= z
r−1
∑

j=0

(

r − 1

j

)

(−1)j
∞
∑

n=0

∞
∑

m=0

qn(1+m)zm

(r − j − 1)!
(m+ 1)(m+ 2)...(m+ r − j − 1)

= z

r−1
∑

j=0

(−1)j

(r − j − 1)!

(

r − 1

j

) ∞
∑

n=0

∞
∑

m=1

qnmzm−1(m)(m+ 1)...(m+ r − j − 2)

=

r−1
∑

j=0

(−1)r−1

(r − j − 1)!

(

r − 1

j

) ∞
∑

n=0

∞
∑

m=1

qnmzm(−m)(−m− 1)...(−m− r + j + 2). (3.14)
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Now note that generating function for Stirling numbers is given by

x(x − 1) · · · (x− j + 1) =

j
∑

i=0

s(j, i)xi. (3.15)

From (3.14) and (3.15), we have

∞
∑

n=0

zrqnr

(1− zqn)r
=

r−1
∑

j=0

(−1)r−1

(r − j − 1)!

(

r − 1

j

) ∞
∑

n=0

∞
∑

m=1

qnmzm
r−j−1
∑

i=0

(−1)imis(r − j − 1, i)

=
r−1
∑

j=0

(−1)r−1

(r − j − 1)!

(

r − 1

j

) r−j−1
∑

i=0

(−1)is(r − j − 1, i)
∞
∑

n=0

∞
∑

m=1

mizmqnm

=

r−1
∑

j=0

(−1)r−1

(r − j − 1)!

(

r − 1

j

) r−j−1
∑

i=0

(−1)is(r − j − 1, i)Si,z(q)

=

r−1
∑

i=0

Si,z(q)

r−i−1
∑

j=0

(−1)i+r−1

(r − j − 1)!

(

r − 1

j

)

s(r − j − 1, i)

=

r−1
∑

i=0

cr,iSi,z(q), (3.16)

where Si,z(q) is defined in (1.20). Now combine (3.12) and (3.16) to arrive at (3.10). �

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Invoke Theorem 1.1 and (2.4) so that

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1− qn)k
= −

(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

k
∑

r=1

(

n

r

)(

k − 1

k − r

)

= −
(q; q)∞
(z; q)∞

k
∑

r=1

(

k − 1

k − r

) ∞
∑

n=0

(z/q; q)nq
n

(q; q)n

(

n

r

)

. (3.17)

Then employ Lemma 3.1 in (3.17) in the first step and Lemma 3.2 in the second step below so as to

have
∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1 − qn)k
= −

(q; q)∞
(z; q)∞

k
∑

r=1

(

k − 1

k − r

)

1

r!

[

dr

dǫr
(qz; q)∞
(ǫq; q)∞

]

ǫ=1

= −
(q; q)∞
(z; q)∞

k
∑

r=1

(

k − 1

k − r

)

1

r!

[

(ǫz; q)∞
(ǫq; q)∞

Nr[T1,z(ǫ, q), ..., Tr,z(ǫ, q)]

]

ǫ=1

= −

k
∑

r=1

(

k − 1

k − r

)

1

r!
Nr[T1,z(1, q), ..., Tr,z(1, q)]. (3.18)

Now an application of Lemma 3.3 in (3.18) implies that

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1− qn)k
= −

k
∑

r=1

(

k − 1

k − r

)

1

r!
Nr

[

c1,0S0,z(q), c2,0S0,z(q) + c2,1S1,z(q), ..., cr,0S0,z(q)

+ cr,1S1,z(q) + ...+ cr,r−1Sr−1,z(q)
]

= −Mk (S0,z(q),S1,z(q), ...,Sk−1,z(q)) .

This concludes the proof. �
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We give explicit form of M1(x1) as well as M2(x1, x2).

Letting k = 1 in (3.18) and then using the fact N1(x) = x, obtained in Lemma 3.2, to arrive,

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1− qn)
= −N1[T1,z(1, q)] = −T1,z(1, q).

Now, employing Lemma 3.3 in the above equation with the fact that c1,0 = 1, we obtain,

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1 − qn)
= −S0,z(q).

Hence M1(x1) = x1, and with the help of N1(x1) = x1, N2(x1, x2) = x2
1 +x2, we have M2(x1, x2) :=

1
2 (x

2
1 + x1 + x2). Similarly Mk(x1, x2, · · · , xk) for k ≥ 3 can be defined.

Proof of Corollary 1.8. Let k = 2 in Theorem 1.7 and use the fact that M2(x1, x2) =
1
2 (x

2
1+x1+x2)

with letting x1 = S0,z(q) and x2 = S1,z(q). Then simplify to arrive at (1.22). �

4. Extensions of q-series identities arising from random graphs

Let us consider the general sequence

an(z, q) := (1− z/q) f(n) +
{

1− (1− z/q) qn−1
}

an−1(z, q), n ≥ 1 and a0(z, q) = 0, (4.1)

which satisfies the properties given in the lemma below.

Lemma 4.1. For n ∈ N,

(1) an(z, q) = (1− z/q)

n
∑

i=1

f(n+ 1− i)

i−1
∏

j=1

{

1− (1− z/q) qn−j
}

,

(2) an(z, q) = (1− z/q)





n
∑

i=1

f(i)−

n−1
∑

j=1

aj(z, q)q
j



 .

Proof. To prove (1), we use induction on an(z, q). Let n = 1 in (4.1) so that

a1(z, q) = (1− z/q) f(1),

which shows that (1) is true for n = 1.

Suppose (1) is valid for n = k. We show that it holds for n = k + 1. Observe that

ak+1(z, q) = (1− z/q) f(k + 1) +
{

1− (1− z/q) qk
}

ak(z, q)

= (1− z/q) f(k + 1) +
{

1− (1− z/q) qk
}



(1− z/q)

k
∑

i=1

f(k + 1− i)

i−1
∏

j=1

{

1− (1− z/q) qk−j
}





= (1− z/q) f(k + 1) +



(1− z/q)

k
∑

i=1

f(k + 1− i)

i
∏

j=1

{

1− (1− z/q) qk−j+1
}





= (1− z/q)

k
∑

i=0

f(k + 1− i)

i
∏

j=1

{

1− (1− z/q) qk−j+1
}

= (1− z/q)

k+1
∑

i=1

f(k + 2− i)

i−1
∏

j=1

{

1− (1− z/q) qk−j+1
}

.
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This shows (1) holds for n = k + 1 too. T‘herefore, by the principal of mathematical induction, (1)

follows for all n ∈ N.

We again use the induction to prove (2). By using the definition (4.1) of an(z, q), it is easy to see

that (2) holds for n = 1. Let’s assume that (2) is valid for n = k. Then for n = k + 1, we have

ak+1(z, q) = (1− z/q) f(k + 1) +
{

1− (1− z/q) qk
}

ak(z, q)

= (1− z/q) f(k + 1) + ak(z, q)− (1− z/q) qkak(z, q).

Now use the assumption that ak(z, q) satisfies (2) in the middle term of the above equation. Then

ak+1(z, q) = (1− z/q) f(k + 1) + (1− z/q)





k
∑

i=1

f(i)−

k−1
∑

j=1

aj(z, q)q
j



− (1− z/q) qkak(z, q)

= (1− z/q)





k+1
∑

i=1

f(i)−

k
∑

j=1

aj(z, q)q
j



 .

This proves (2). �

Theorem 4.2. Let an(z, q) be defined in (4.1). Then there exist rational coefficients hj such that

lim
n→∞







(1− z/q)

n
∑

j=1

f(j)− an(z, q)







=

∞
∑

j=1

hjMj ; (4.2)

where

for j ≥ 2, hj =
∑

i≥j−1

(−1)i−j+1

(

i− 1

j − 2

)

i!
∑

k≥i

cks̃(k, i); h1 = c0,

and s̃(k, i) are Stirling numbers of the second kind.

Proof. Define

A(z, α, q) : =

∞
∑

n=1

an(z, q)α
n, (4.3)

F (α) : =

∞
∑

n=1

f(n)αn. (4.4)

By using (4.1), we see that

A(z, α, q) =

∞
∑

n=1

an(z, q)α
n

=

∞
∑

n=1

(

(1− z/q) f(n) +
{

1− (1− z/q) qn−1
}

an−1(z, q)
)

αn

= (1− z/q)F (n) + αA(z, α, q)− α (1− z/q)A(z, αq, q).

Therefore,

A(z, α, q) =
(1− z/q)

(1− α)
F (n)−

(1− z/q)α

(1− α)
A(z, αq, q).
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Solving the above recursive relation leads to

A(z, α, q) =

∞
∑

n=1

(−1)n−1
(

z/αqn−1; q
)

n
F (αqn−1)q

(n−1)(n−2)
2 αn−1

(α; q)n
,

thus, at α = q,

A(z, q, q) =

∞
∑

n=1

(−1)n−1 (z/qn; q)n F (qn)q
n(n−1)

2

(q; q)n
. (4.5)

Upon using the following simple observation

(−1)n (z/qn; q)n q
n(n−1)

2 = (q/z; q)n(z/q)
n

in (4.5), we have

A(z, q, q) = −

∞
∑

n=1

F (qn) (q/z; q)n
(q; q)n

(z/q)
n
. (4.6)

Invoke (2) and use (4.3) to deduce that

lim
n→∞



(1− z/q)

n
∑

j=1

f(j)− an(z, q)



 = (1− z/q)A(z, q, q). (4.7)

Now let us state another form of a generating function of f(n), as given in [2], namely,

F (α) =
∑

m≥0

∑

k≥m

cks̃(k,m)m!
αm

(1− α)m+1
− c0, (4.8)

then,

F (qn) =
∑

m≥1

dm

m−1
∑

j=0

(

m− 1

j

)

(−1)j
qn

qm+1−j
+ c0

qn

1− qn
, (4.9)

where

dm =
∑

k≥m

cks̃(k,m)m!, for m ≥ 1, d0 = c0.

From equation (4.6), (4.7) and (4.9),

lim
n→∞



(1− z/q)
n
∑

j=1

f(j)− an(z, q)



 = (1− z/q)A(z, q, q)

= −(1− z/q)
∞
∑

n=1

F (qn)
(

q
z ; q
)

n

(q)n

(

z

q

)n

(4.10)

= −(1− z/q)

{

∑

m≥1

dm

m−1
∑

j=0

em,j

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1− qn)m+1−j

+ c0

∞
∑

n=1

(q/z; q)nz
n

(q; q)n(1 − qn)

}

.
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Employ Theorem 1.7 in the above equation to obtain

lim
n→∞



(1− z/q)

n
∑

j=1

f(j)− an(z, q)



 = −(1− z/q)







−
∑

m≥1

dm

m−1
∑

j=0

em,jMm+1−j − c0M1







= (1− z/q)

∞
∑

j=1

hjMj.

This proves the theorem. �

Remark 4.3. It is easy to see that upon letting z → 0 in Theorem 4.2, we obtain [2, Theorem 3.1].

As a special case of Theorem 4.2 we get the following interesting result.

Corollary 4.4. Let b ∈ C\{1}, and an,z(q) is the sequence of polynomials in q defined recursively for

n ∈ N by

an(z, q) := (1− z/q) bn +
{

1− (1− z/q) qn−1
}

an−1(z, q), a0(q) = 0. (4.11)

Then, for |q| < min(|b|−1, 1),

lim
n→∞

(

(1− z/q)
b− bn+1

1− b
− an,z(q)

)

= −b(1− z/q)
∞
∑

m=0

(q/b; q)mbm

(q; q)m

(

zqm

1− zqm
−

qm+1

1− qm+1

)

.

(4.12)

Proof. Define

a := 1− z/q, (4.13)

Lemma 4.1 (1) with f(n) = bn implies that

an(z, q) = a

n−1
∑

i=0

bn−i
i
∏

j=1

(

1− aqn−j
)

. (4.14)

Multiply and divide (4.14) by (aq; q)n−i−1 to see that

an(z, q) = a(aq; q)n−1

n−1
∑

i=0

bn−i

(aq; q)n−i−1
.

(4.15)

Replace n− i− 1 by j in the above equation and use the value of a from (4.13) to get

an(z, q) = (1− z/q) ((1− z/q) q; q)n−1

n−1
∑

j=0

bj+1

((1− z/q) q; q)j
. (4.16)

Let

F (x) :=

∞
∑

n=1

bnxn. (4.17)

Then

F (qn) =
bqn

1− bqn
, (4.18)
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for |q| < |b|−1 and n ∈ N. From (4.6) and (4.18),

A(z, q, q) = −b

∞
∑

n=1

(q/z; q)n
(1− bqn)(q; q)n

zn. (4.19)

Equation (4.7) with f(n) = bn implies

lim
n→∞

(

(1− z/q)
b− bn+1

1− b
− an,z(q)

)

= (1− z/q)A(a, q, q). (4.20)

From (4.19) and (4.20),

lim
n→∞

(

(1 − z/q)
b− bn+1

1− b
− an,z(q)

)

= −b(1− z/q)

∞
∑

n=1

(q/z; q)n
(1− bqn)(q; q)n

zn. (4.21)

Substitute (1.8) with a = z, b = q and then c = b in (4.21) to get

lim
n→∞

(

(1− z/q)
b− bn+1

1− b
− an,z(q)

)

= −b(1− z/q)

∞
∑

m=0

(q/b; q)mbm

(q; q)m

(

zqm

1− zqm
−

qm+1

1− qm+1

)

.

(4.22)

This proves the corollary. �

Remark 4.5. Upon letting z → 0 in Corollary 4.4, one get [10, Theorem 1.2].

We end this section with proving Theorem 1.11 and its corollary.

Proof of Theorem 1.11. We will use the following equivalent representation obtained in [10, Equation

(3.8)],

f(n) =

N
∑

j=1

f(j)

N

N−1
∑

k=0

ζ
(n−j)k
N , (4.23)

since,

N−1
∑

k=0

ζ
(n−j)k
N =

{

N n ≡ j (mod N),

0 otherwise,

then it is easy to conclude that (4.23) is a periodic function of period N . Also for |α| < 1,

F (x) =

N−1
∑

k=0

ckx

1− ζkNx
. (4.24)

Thus, from (4.10) and (4.24),

lim
n→∞



(1− z/q)

n
∑

j=1

f(j)− an(z, q)



 = −(1− z/q)

∞
∑

n=1

N−1
∑

k=0

(q/z; q)n
(q; q)n

ckq
n

1− ζkNqn
(z/q)n

= −(1− z/q)

(

c0

∞
∑

n=1

(q/z; q)nz
n

(1− qn)(q; q)n
+

N−1
∑

k=1

ck

∞
∑

n=1

(q/z; q)nz
n

(1− ζkNqn)(q; q)n

)

.

(4.25)

Employing (1.21) with k = 1 in the first sum on the right-hand side of(4.25) and using the q-Gauss

summation formula (2.1) with a = q/z, b = ζkN , and c = qζkN in the second sum on the right-hand
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side of (4.25), we deduce that

lim
n→∞



(1− z/q)
n
∑

j=1

f(j)− an(z, q)



 = −(1− z/q)

(

−c0S0,z(q) +
N−1
∑

k=1

ck

(

(zζkN ; q)∞(cq; q)∞

(ζkN ; q)∞(z; q)∞
−

1

1− ζkN

)

)

= (1− z/q)

(

c0S0,z(q) +

N−1
∑

k=1

ck

1− ζkN
−

(q; q)∞
(z; q)∞

N−1
∑

k=1

ck
(zζkN ; q)∞

(qζkN ; q)∞

)

.

This concludes the proof. �

Our next next result is a generalization of [10, Corollary 1.4].

Corollary 4.6. Let f(n) be a periodic sequence with period N and an(z, q) is the sequence such that

an(z, q) := (1− z/q)f(n) +
{

1− (1 − z/q)qn−1
}

an−1(z, q), a0(z, q) = 0.

Then for |q| < 1, we have

lim
n→∞



(1− z/q)
n
∑

j=1

f(j)− an(z, q)



 = (1 − z/q)
(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

N
∑

j=1

f(j)

⌈

n+ 1− j

N

⌉

.

(4.26)

Proof. We first simplify the terms of (1.26). Note that by using the definition of ck given in Theorem

1.11, we have

N−1
∑

k=1

ck(zζ
k
N ; q)∞

(ζkN ; q)∞
=

1

N

N−1
∑

k=1

(zζkN ; q)∞

(ζkN ; q)∞

N
∑

j=1

f(j)ζ
(1−j)k
N

=
1

N

N
∑

j=1

f(j)

N−1
∑

k=1

(zζkN ; q)∞ζ
(1−j)k
N

(ζkN ; q)∞

=
1

N

N
∑

j=1

f(j)
N−1
∑

k=1

(zζkN ; q)∞ζ
(1−j)k
N

(1− ζkN )(ζkN q; q)∞
. (4.27)

Use (2.3) with a = z, b = q and y = ζkN to represent (zζkN ; q)∞/(ζkNq; q)∞ as a series and then

substitute it in (4.27) to deduce that

N−1
∑

k=1

ck(zζ
k
N ; q)∞

(ζkN ; q)∞
=

1

N

N
∑

j=1

f(j)

N−1
∑

k=1

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

ζ
nk+(1−j)k
N

(1− ζkN )

=
1

N

N
∑

j=1

f(j)

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

N−1
∑

k=1

ζ
(n+1−j)k
N

(1− ζkN )
. (4.28)

From [10, Lemma 2.5], for j ∈ Z, we have

N−1
∑

k=1

ζjkN
1− ζkN

=
N − 1

2
+ j −N

⌈

j

N

⌉

. (4.29)
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By using the above equation with j replaced by n+ 1− j in (4.28), we get

N−1
∑

k=1

ck(zζ
k
N ; q)∞

(ζkN ; q)∞
=

1

N

N
∑

j=1

f(j)

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

(

N − 1

2
+ n+ 1− j −N

⌈

n+ 1− j

N

⌉)

=
1

N

N
∑

j=1

f(j)

(

N + 1

2
− j

) ∞
∑

n=0

(z/q; q)nq
n

(q; q)n
+

1

N

N
∑

j=1

f(j)

∞
∑

n=0

n(z/q; q)nq
n

(q; q)n

−

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

N
∑

j=1

f(j)

⌈

n+ 1− j

N

⌉

. (4.30)

Invoke (2.2) and Theorem 1.1 with k = 1 to evaluate the first sum and second sum respectively on

the right-hand side of (4.30) to arrive at

N−1
∑

k=1

ck(zζ
k
N ; q)∞

(ζkN ; q)∞
=

(z; q)∞
N(q; q)∞

N
∑

j=1

f(j)

(

N + 1

2
− j

)

+
(z; q)∞S0(z, q)

N(q; q)∞

N
∑

j=1

f(j)

−

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

N
∑

j=1

f(j)

⌈

n+ 1− j

N

⌉

. (4.31)

From [10, p. 6], we have

N−1
∑

k=1

ck

1− ζkN
=

1

N

N
∑

j=1

f(j)

(

N + 1

2
− j

)

. (4.32)

Finally, substitute values from (4.31) and (4.32) in (1.26) to arrive at (4.26). �

Next, we prove Corollary 1.12 by employing Theorem 1.11 and Corollary 4.6.

Proof of Corollary 1.12. Let f(n) = (−1)n. Then it is easy to see that c0 = 0 and c1 = −1. Also

f(n) is a periodic sequence with period N = 2. Therefore upon invoking Theorem 1.11, we get

lim
n→∞



(1− z/q)

n
∑

j=1

(−1)j − an(z, q)



 = (1 − z/q)

(

−
1

2
+

1

2

(q; q)∞(−z; q)∞
(−q; q)∞(z; q)∞

)

. (4.33)

An application of Theorem 4.6 implies that

lim
n→∞



(1− z/q)
n
∑

j=1

(−1)j − an(z, q)



 = (1− z/q)
(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)nq
n

(q; q)n

(

−
⌈n

2

⌉

+

⌈

n− 1

2

⌉)

= −(1− z/q)
(q; q)∞
(z; q)∞

∞
∑

n=0

(z/q; q)2n+1q
2n+1

(q; q)2n+1
. (4.34)

The result now follows upon using (4.33) and (4.34). �

5. Theory of the generalized divisor function σs,z(n)

In this section we develop the theory of the generalized divisor function σs,z(n). We begin with

presenting the proof of Theorem 1.2. For that we need to use the Dirichlet product of arithmetical

functions f(n) and g(n) given by [5, p. 29]

(f ∗ g)(n) :=
∑

d|n

f(d)g
(n

d

)

. (5.1)
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Proof of Theorem 1.2. Let us define, for n ∈ N,

Ns
z (n) := nszn, (5.2)

N(n) := n, (5.3)

and

U(n) := 1. (5.4)

Note that

(Ns
z ∗ u) (n) =

∑

d|n

Ns
z (d)u

(n

d

)

=
∑

d|n

dszd

= σs,z(n). (5.5)

Use (5.5) in the second step below so that

∑

d|n

ϕ(d)σs,z

(n

d

)

= (ϕ ∗ σs,z) (n)

= (ϕ ∗ (Ns
z ∗ u)) (n)

= (ϕ ∗ (u ∗Ns
z )) (n)

= ((ϕ ∗ u) ∗Ns
z ) (n), (5.6)

where we used the commutative and associative property of the Dirichlet product. In the notation of

Dirichlet product and (5.3), Theorem 2.2 of [5, p. 26] implies that

(ϕ ∗ u)(n) = N(n). (5.7)

From (5.6) and (5.7),

∑

d|n

ϕ(d)σs,z

(n

d

)

= (N ∗Ns
z ) (n)

= (Ns
z ∗N) (n)

=
∑

d|n

Ns
z (d)N

(n

d

)

=
∑

d|n

dszd
n

d

= n
∑

d|n

ds−1zd

Finally upon using the definition of σs,z(n) in the above equation, we arrive at (1.13). �

Proof of Corollary 1.3. Let z = 1 in Theorem 1.2 and use the fact that σs−1(n) = ns−1σ1−s(n) and

then in the resultant expression replace s by 1− s to arrive at (1.14). �

Next we obtain the Dirichlet series for σs,z(n).
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Proof of Theorem 1.4. Upon using the definition (1.12) of σz,ξ(n), we see that

∞
∑

n=1

σs,z(n)

nα
=

∞
∑

n=1

1

nα

∑

d|n

dszd

=

∞
∑

d=1

∞
∑

m=1

dszd

(md)α

=

∞
∑

d=1

zd

dα−s

∞
∑

m=1

1

mα

= Liα−s(z)ζ(α), (5.8)

where we used the definitions of ζ(α) and Liα−z(z) for Re(α) > 1 and for all α ∈ C, respectively. �

Proof of Corollary 1.5. From (1.16), it is clear to see that, for Re(α) > 1 + Re(s),

Liα−s(1) = ζ(α − s). (5.9)

Let z = 1 in (1.15) and then use (5.9) to arrive at (1.17). �

We note down the Euler’s summation formula [5, Theorem 3.1] which is crucial to proving Lemma

5.2.

Theorem 5.1. If f has a continuous derivative f ′ on the interval [y, x], where 0 < y < x, then

∑

y<n≤x

f(n) =

∫ x

y

f(t) dt+

∫ x

y

(t− ⌊t⌋)f ′(t) dt+ f(x)(x − ⌊x⌋)− f(y)(y − ⌊y⌋). (5.10)

We first prove the following lemma which will be employed later.

Lemma 5.2. Let α > 0 and 0 < z ≤ 1. Then, for x ≥ 2, we have

∑

n≤x

zn

nα
= −x1−sEα(−x log(z)) + Liα(z) +O

(

x−α
)

. (5.11)

Proof. Let f(t) = zt/tα and y = 1 in Theorem 5.1 to get

∑

n≤x

zn

nα
= z +

∫ x

1

zt

tα
dt+

∫ x

1

(t− ⌊t⌋)

(

−α
zt

tα+1
+

zt log(z)

tα

)

dt− (x− ⌊x⌋)
zx

xα

= Eα(− log(z))− x1−αEα(−x log(z)) + z − α

∫ x

1

(t− ⌊t⌋)zt

tα+1
dt+ log(z)

∫ x

1

(t− ⌊t⌋)zt

tα
dt+O(x−α).

(5.12)

Note that for 0 < z ≤ 1,

∣

∣

∣

∣

∫ ∞

x

(t− ⌊t⌋)zt

tα+1
dt

∣

∣

∣

∣

≤

∫ ∞

x

|z|t

tα+1
dt

≤

∫ ∞

x

1

tα+1
dt

= O(x−α), (5.13)
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and
∣

∣

∣

∣

∫ ∞

x

(t− ⌊t⌋)zt

tα
dt

∣

∣

∣

∣

≤

∫ ∞

x

|z|t

tα
dt

≤

∫ ∞

x

1

tα
dt

= O(x−α). (5.14)

From (5.12), (5.13) and (5.14),

∑

n≤x

zn

nα
= Eα(− log(z))− x1−αEα(−x log(z)) + z − α

∫ ∞

1

(t− ⌊t⌋)zt

tα+1
dt+ log(z)

∫ ∞

1

(t− ⌊t⌋)zt

tα
dt+O(x−α)

= Eα(− log(z))− x1−αEα(−x log(z)) + z −

∫ ∞

1

(t− ⌊t⌋)

tα

(α

t
− log(z)

)

zt dt+O(x−α)

= −x1−αEα(−x log(z)) + Cz(α) +O(x−α), (5.15)

where,

Cz(α) = Eα(− log(z)) + z −

∫ ∞

1

(t− ⌊t⌋)

tα

(α

t
− log(z)

)

zt dt.

Note that upon taking x → ∞ in (5.15), we get

Liα(z) = Cz(α),

therefore

Cz(α) = Liα(z). (5.16)

Hence from (5.15) and (5.16), we have

∑

n≤x

zn

nα
= −x1−αEα(−x log(z)) + Liα(z) +O(x−α).

This proves (5.11). �

As a special case of Lemma 5.2, we get [5, p. 55, Theorem 3.2(b)].

Corollary 5.3. For α > 1, we have

∑

n≤x

1

nα
=

x1−α

1− α
+ ζ(α) +O(x−α). (5.17)

Proof. Let z = 1 in Lemma 5.2 and use the fact that Liα(1) = ζ(α) for α = 1 to see that

∑

n≤x

1

nα
= −x1−αEα(0) + ζ(α) +O(x−α). (5.18)

From [1, p. 229, Formula 5.1.23], for ν > 1

Eν(0) =
1

ν − 1
. (5.19)

Let ν = α in (5.19), then for α > 1,

Eα(0) = −
1

1− α
. (5.20)

Substitute (5.20) in (5.18) to arrive at (5.17). �

Our next theorem gives Theorem 1.6 very easily.
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Theorem 5.4. Let α > 0, α 6= 1, s > 0 and 0 < z < 1. Then, we have

∑

n≤x

σs,z(n)

nα
= −

x1+s−α

1− α
E1−s(−x log(z))− x1+s−αζ(α)Eα−s(−x log(z)) + ζ(α)Liα−s(z)

+
x1−α

1− α
Li1−s(z) +O(xβ), (5.21)

where β = max
{

−α, x1+s−αE−s(−x log(z))
}

.

Proof. Invoking the definition of σs,z(n) to see that

∑

n≤x

σs,z(n)

nα
=
∑

n≤x

1

nα

∑

d|n

dszd

=
∑

d≤x

∑

q≤x/d

dszd

qαdα

=
∑

d≤x

ds−αzd
∑

q≤x/d

1

qα
. (5.22)

From [5, p. 55, Theorem 3.2(b)], for α > 0, α 6= 1, we have

∑

n≤x

1

nα
=

x1−α

1− α
+ ζ(α) +O(x−α). (5.23)

Use (5.23) in (5.22) to get, for α > 0, α 6= 1,

∑

n≤x

σs,z(n)

nα
=
∑

d≤x

ds−αzd
(

(x/d)1−α

1− α
+ ζ(α) +O

(

(x/d)
−α
)

)

=
x1−α

1− α

∑

d≤x

zd

d1−s
+ ζ(α)

∑

d≤x

zd

dα−s
+O



x−α
∑

d≤x

zd

d−s



 . (5.24)

Let α = 1− s in Lemma 5.2 to get, for s < 1 and 0 < z ≤ 1,

∑

d≤x

zd

d1−s
= −xsE1−s(−x log(z)) + Li1−s(z) +O

(

xs−1
)

. (5.25)

Upon Invoking Lemma 5.2 with replacing α by α− s, we get, for α > s and 0 < z ≤ 1,

∑

d≤x

zd

dα−s
= −x1+s−αEα−s(−x log(z)) + Liα−s(z) +O

(

xα−s
)

. (5.26)

We employ Lemma 5.2 again with α = −s so that, for s < 0 and 0 < z ≤ 1,

∑

d≤x

zd

d−s
= −x1+sE−s(−x log(z)) + Li−s(z) +O (xs) (5.27)

Substitute values from (5.25), (5.26) and (5.27) in (5.24) to arrive at

∑

n≤x

σs,z(n)

nα
= −

x1+s−α

1− α
E1−s(−x log(z)) +

x1−α

1− α
Li1−s(z) +O

(

xα−s
)

− x1+s−αζ(α)Eα−s(−x log(z))

+ ζ(α)Liα−s(z) +O
(

xα−s
)

+O
(

x1+s−αE−s(−x log(z)) + x−α + xα−s
)

= −
x1+s−α

1− α
E1−s(−x log(z)) +

x1−α

1− α
Li1−s(z)− x1+s−αζ(α)Eα−s(−x log(z)) + ζ(α)Liα−s(z)

+ O
(

xβ
)

, (5.28)
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where β := Re
{

x−α, x1+s−αE−s(−x log(z))
}

. This proves the theorem. �

Theorem 1.6 follows very easily by invoking Theorem 5.4.

Proof of Theorem 1.6. Let α → 0 in (5.21) and use the fact that ζ(0) = −1/2 to arrive at Theorem

1.6. �

We also get the following result for σ−s(n) [5, p. 61, Theorem 3.6] from Theorem 1.6.

Corollary 5.5. Let s > 1. Then if x > 1 we have

∑

n≤x

σ−s(n) = xζ(1 + s) +O(1). (5.29)

Proof. Upon invoking (5.19), for s < 0, we get

E1−s(0) = −
1

s
. (5.30)

Also, for s < −1,

E−s(0) = −
1

s+ 1
. (5.31)

Let z = 1 in Theorem 1.6 and then in the resultant expression use (5.30) and (5.31) so that, for

s < −1,

∑

n≤x

σs(n) =
x1+s

s
+

x1+s

2(1 + s)
−

1

2
ζ(−s) + xζ(1 − s) +O(1).

Upon replacing s by −s in the above equation then for s > 1, we get

∑

n≤x

σ−s(n) =
x1−s

2(1− s)
−

x1−s

s
−

1

2
ζ(s) + xζ(1 + s) +O(1). (5.32)

Observe that x1−s = O(1) for s > 1. Use this fact in (5.32) to arrive at (5.29). �

Theorem 5.4 gives the following result too.

Corollary 5.6. For s < 0 and α > 1 + s, we have

∑

n≤x

σs(n)

nα
=

x1+s−α

s(1− α)
+

x1−α

1− α
ζ(1− s) +

x1+s−α

1 + s− α
ζ(α) + ζ(α)ζ(α − s) +O

(

xλ
)

, (5.33)

where λ = max {−α, 1 + s− α}.

Proof. Let z = 1 in (5.21) and use the fact from (5.19)

E1−s(0) = −
1

s
, for s < 0, Eα−s(0) = −

1

1 + s− α
, for α > 1 + s, (5.34)

to arrive at (5.33). �

We also get [5, p. 70, Exercise 3] as a special case of Theorem 5.4 or Corollary 5.6.

Corollary 5.7. Let α > 1. We have

∑

n≤x

d(n)

nα
=

x1−α

(1− α)
+ ζ2(α) +O

(

x1−α
)

. (5.35)
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Proof. Note that, as s → 0

xs

s
+ ζ(1− s) → log(x) + γ.

Let s → 0 in (5.33) and use the above expression to see that

∑

n≤x

d(n)

nα
=

x1−α

(1− α)
+

x1−α

1− α
ζ(α) + ζ2(α) +O

(

x1−α
)

.

Observe that x1−α

1−α ζ(α) = O
(

x1−α
)

and use this fact in the above equation to arrive at (5.35). �

6. Concluding Remarks

This work arose from our quest to study the series (1.9). We obtained an equivalent representation

for this series in Theorem 1.1. The study of this series allows us to find a generalization of a result of

Andrews, Crippa and Simon, i.e., (1.6). In the course of studying (1.9), we encountered a surprising

new generalization of the divisor function σs(n), that is, (1.12). Several properties of this new divisor

function σs,z(n) is obtained in this article. We hope this will instigate further research on the properties

of this function.

It will be interesting to obtain results analogous to those obtained by Dixit and Maji for (1.8) for

the series
∞
∑

n=1

(b/z; q)nz
n

(1− cqn)k(bq; q)n
. (6.1)

The importance of this proposed study is clearly visible for k = 1 from the paper of Dixit and Maji

[13]. For z → 0 and k = 1 of (6.1), many authors, for example, Uchimura [24], Dilcher [12], and

Yan and Fu [25] studied the finite analogues. Therefore finite analogues of Theorem 1.1 will also be

interesting to explore.

Here we emphasize that Simon-Crippa-Collenberg [22] showed that the expectation and variance

of a certain random variable arising from acyclic digraphs can also be represented in terms of divisor

function. Note that in Theorem 1.7, we obtained a generalization of their identity. Therefore it will

be worthwhile to find an application of our Theorem 1.7 in the theory of acyclic digraph similar to

that of Simon, Crippa and Collenberg.
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