arXiv:2003.05296v1 [math.RA] 10 Mar 2020

NEW EXTREMAL BINARY SELF-DUAL CODES FROM BLOCK CIRCULANT
MATRICES AND BLOCK QUADRATIC RESIDUE CIRCULANT MATRICES

J GILDEA, A KAYA, R TAYLOR, A TYLYSHCHAK, B YILDIZ

ABSTRACT. In this paper, we construct self-dual codes from a construction that involves both
block circulant matrices and block quadratic residue circulant matrices. We provide conditions
when this construction can yield self-dual codes. We construct self-dual codes of various lengths
over Fo and F2 + ulF2. Using extensions, neighbours and sequences of neighbours, we construct
many new self-dual codes. In particular, we construct one new self-dual code of length 66 and 51
new self-dual codes of length 68.

1. INTRODUCTION

Self-dual codes are a class of linear block codes that have been extensively studied in recent
history. One of the most famous and extensively used constructions, used to construct self-dual
codes, is the double circulant construction. It involves considering a generator matrix of the form
(IlA) where A is a circulant matrix. In 2002, Gaborit ([6]) introduced the notion of a quadratic
residue circulant matrix. Let R be a finite commutative Frobenius ring of characteristic 2 and p be
prime. Let v; € R, A be a p x p circulant matrix, Q,(a, b, ¢) be the p x p circulant matrix with three
free variables, obtained through the quadratic residues and non-residues modulo p. Thus, the first

row of 7 = (ro,71,...,7p—1) of @Qp(a,b,c) is determined by the following rule:
a ifi=0
r; = < b if i is a quadratic residue modulo p

¢ if i is a quadratic non-residue modulo p.

In [6], Gaborit considered constructing self-dual codes from generator matrices of the form
(I1Qp(a,b,c)) and

Y2 o 2|3 | Y4
72 Y4

I Qp(a7 b7 C)

72 Y4

In [7], these techniques were extended to constructing self-dual codes from generator matrices of the
form (Qp(a,b,c)|A) and

71| e Yo || Y4 o M

72 Y4

Qp(a,b,c) A 7
72 Y4

where A is a p X p circulant matrix. In this article we consider constructing self-dual codes from
generator matrices of the form

Qo @1 Q240 A1 A
Q2 Qo Q1A Ay Ay
Q1 Q2 Qo A1 Ay A
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where @; are quadratic residue circulant matrices and A; are p x p circulant matrices.

Section 2 of this article contains a brief introduction to self-dual codes. We discuss some im-
portant properties of quadratic residue circulant matrices in section 3. In section 4, we describe
the construction itself. We provide theoretical results that establish certain conditions when this
construction yields self-dual codes. In section 5, we apply the construction to find many known and
unknown self-dual codes that had not been previously constructed. We conclude with listing the
newly constructed codes and a suggestion for future work.

2. PRELIMINARIES

Throughout this paper, R will denote a commutative Frobenius ring of characteristic 2. A code
C of length n over R is an R-submodule of R™. Elements of the code C' are called codewords of C.
Let x = (x1,22,...,2,) € R" and y = (y1,92,...,yn) € R™. Define the Euclidean inner product

between x and y as (z,y), = > 2;y;. The dual C* of the code C is defined as
Ct={zeR"|(z,y)p, =0forallycC}.

If C = C*, we say that C is self-dual. For binary codes, a self-dual code where all weights
are congruent to 0 (mod 4) is said to be Type II and a self-dual binary code is said to be Type I
otherwise. The bounds on the minimum distances for self-dual codes are given in [I5] and are as
follows:

Theorem 2.1. ([I5]) Let d;(n) and drr(n) be the minimum distances of a Type I and Type II binary
code of length n, respectively. Then
n
drr (n) < 4|_

—|+4
< 24J+

and
4| 2]14+4 ifn£22 (mod 24
dr(n) < { 4%%} +6 ifn=22 Emgd 24;.

Self-dual codes that meet these bounds are called extremal.

Although, the theoretical result in this article is based around commutative Frobenius rings
of characteristic 2, all the computational results are based on the rings Fo and Fo + uF5. Now,
Fo + uFy := Fy[X]/(X?), where u satisfies u?> = 0. Thus, the elements of the ring are 0,1, u and
1+ u, where 1 and 1 + u are the units of Fo 4+ ulF5. We also define the Gray map ¢ from Fy + ulF
to F3 given by ¢(a + bu) = (b,a + b) where a,b € Fs.

The next result, introduced in [I4], will be implemented throughout this article.
Theorem 2.2. Let C be a binary self-dual code of length 2n, G = (r;) be an n x 2n generator matriz

for C, where r; is the i-th row of G, 1 < i < n. Let X be a vector in F3" with (X, X) = 1. Let
y; = (ri, X) for 1 <i < n. Then the following matriz

1 0| X
Yy yir | m
Yn Yn | Tn

generates a binary self-dual code of length 2n + 2.

Two self-dual binary codes of dimension k are said to be neighbours if their intersection has
dimension k — 1. Let C be a self-dual code. Let € Fy — C then D = <<3:>J‘ N, a:> is a neighbour

of C. Let z¢ € F3" —N(g. In [8], the following formula for constructing the k-range neighbour codes
was provided:



L
Ny = <<$z> ﬂ/\/(i)aﬂﬁi>
where NV(;;1) is the neighbour of NV;) and x; € F3" — N;).

3. QUADRATIC RESIDUE CIRCULANT MATRICES

Let Qp(as, bs, ¢;) be the it"-p x p quadratic circulant matrix, where a;, b;, ¢; € R and p is a prime num-
ber and 0 < i < 2. For the purposes of this article, we need to evaluate Q,(a;, bi,c;)Qp(a;,b;,c;)T.
From [6], we can clearly see that Qp(a;, bi, ¢i)Qp(ai, bi, ci)T

_ [Qp(af 0F + B(F + 7). 7 + BT + ) if p=dk + 1
T QplaZ + b2 + 2 abi + aici + bici + (b7 + )k, aib; + a;c; + bic; + (b7 + k) ifp=4k+3"
We shall now calculate Q(a;, b, ¢;)@p(aj,bj, c;)T. First we will consider the case when p = 4k + 1
and then the case when p = 4k + 3.
Theorem 3.1. If p = 4k + 1 then Qp(as, bi, ¢;)Qp(aj, bj,c;)T
= Qp(aiaj, aibj—l—biaj-i-(k—i—l)bibj—i—k(bicj +Cibj)+kci0j, aiCj+Ciaj+kbibj+k(bi0j+cibj+(/€+ 1)CiCj).
Proof. Assume that p =4k + 1. Let Q = Q,(0,1,0) and N = @Q,(0,0, 1), then
Qp(ai, b, ci)Qp(aj, bj, Cj)T = (aiI + sz + ciN)(ajI + bJQ + CjN)T
= (CLlj + le + CiN)(CLjI + ijT + CjNT)
= aiajI + aiijT + CLiCjNT + bian + beJQQT
+ biCjQNT + CiCLjN + CiijQT + CZ'CjNNT.
Recall ([6]) that Q@ = QT, N = NT, QQT = (k+1)Q + kN, QNT = NQT = k(Q + N) and
NNT = kQ + (k + 1)N. Therefore,
Qp(ai,bi,ci)Qplaz, by, cj)" =aia;I + (aibj + biay)Q + (aicj + ciaj)N +bib;((k +1)Q + kN)
+ (bici + Cibj)(k(Q + N)) + CiCj(kQ + (k + 1)N)
zaiajl + ((Iibj + biaj)Q + (aicj + ciaj)N + blbj(k + 1)@ + blb]kN
+ (blcl + CZbJ)kQ + (blcl + CZbJ)kN + CiCij + CiCj (k + 1)N
:I[CLZ‘CLJ'] + Q[aibj + bl-aj + (k + 1)beJ + k(biCj + Cibj) + kCiCj]
+ N[aicj + cia; + kbib; + k(bic]- + Cibj) + (k + 1)01‘0]']
= Qp(aiaj, a;b; +ba; + (k + 1)bibj + k(biCj + Cibj) + kcicy, aicy +cia; + kbiby + k(biCj + Cibj) + (k +
1)01'0]'). O
Theorem 3.2. If p = 4k + 3 then Qp(as, b, c;)Qp(aj, bj, ;)T
= Qp(aiaj + bibj + cicy, (aicj + biaj) + k(bibj + CiCj) + kbicj + (k+ 1)Cibj,
(CLibj + CiCLj) + k(blbj + CiCj) + (k + 1)()1'63‘ =+ kCibj) ’
Proof. Assume that p = 4k 4+ 3. Then
Qp(ai, b, ci)Qp(aj, bj, Cj)T = aiajl + aiijT + aichT + bian + blb]QQT
+ biCjQNT +cia; N + CiijQT + CiCjNNT.

Recall ([6]) that Q = NT, QQT = NNT = I + kQ + kN, QNT = kQ + (k + 1)N and NQT =
(k+1)Q + EN. Therefore,
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Qp(ai, b;, ci)Qp(aj, bj, Cj)T :aiajl + (aicj + biaj)Q + (aibj + ciaj)N + (bibj + CiCj)QQT + biCjQNT + CiijQT
=a;ja;I + (a;cj + bia;)Q + (a;b; + cia;)N + (bib; + cic;) (L + kQ + kN)
+bicj(kQ + (k+1)N) +¢;bj((E+1)Q + kN)
= aja;l + (aicj + bia;)Q + (aibj + cia;)N + (bibj + cicj)I + k(bibj + cic;)@Q
+ k(bibj 4 cicj)N + kbic;Q + (k + 1)biciN + (k + 1)c;ib;Q + keib; N
= I[a;a; + bib; + cicj] + Q(aicj + biaj) + k(bib; + cicj) + kbic;
+ (k + 1)Cibj] + N[(aibj + Ciaj) + k(bibj + CiCj) + (k+ 1)biCj + kCibj]
= Qp(aiaj + bib; + cicy, (aicj + biaj) + k(bibj + CiCj) + kbicj + (k+ 1)Cibj,
(aibj + ciaj) + k(bib; + cicy) + (k + 1)bic; + ke;b;)

O

4. THE CONSTRUCTION

We shall now describe the main construction itself and provide conditions when this construction
produces self-dual codes. Let Q; = Qp(ar, b, ;). Define the matrix

Qo Q1 Q2|4 A A
- Q2 QO Ql 2 AO Al
Q1 Q2 QoA Ay A

and let C be the linear code of length 6p generated by the matrix M, where A; are p X p circulant
matrices over R. Let CIRC(A4,...,A,) be the block circulant matrix where the first row of block

matrices are Ay, ..., A, and ag), = a( mod 3), then
5 T
T T T T
MM?" = CIRC | Y (@:Q] + AiAT) ZQ Qllirays + Al oy, <Z QiQfii 2y, + AiA[(i+2)]3>
i=0 i=0
2
Clearly, C is self-orthogonal if and only Z AiAT Z QZQT and ZA ATl [(1+2)]3 Z QZQTl [(1+2)]3
=0 =0 i=1 i=1
2
Using Theorem [3.I] we can see that Z Q:QT =
i=0
2
(Zaz,2b2+kb2+c ), > (e —|—kb2—|—c))> if p=dk+1
5 1=0 ) =0 ) .
Qp Z(a +b2+c ,Z aib; + a;c; + bic; + k( b2+c ), albi—l—aici—l—bici—i—k(b?—i—c?)) ifp=4k+3
i=0 i=0 i=0

Additionally (by Theorem B.2), if p = 4k + 1 then

1=

3 2 2
Z QiQai.;_z)]S <Z i A[(i4+2)]5 Z [(i42)]s T bia[(it2))s + (k4 1)bibir2), + k(biciit2))s + Cibiit2)]s
=1 =0 0
2

+ kcicj(i+2)], ), Z Cli+2))s T Cia[(i+2))s + kbibit2))s + k(bic(i12))s + Cibiray, + (K + 1)Ci0[<i+2>13)>

1=



and if p = 4k + 3 then

2 2
Z QiQf(1+2), = Qp <Z (@[ 2] + biblr2)s + Cici(ira)ss YL@ty + biafray,) + kbibiya), + ciciira),)
=1 1=0 1=0

2
+ kbiciira), + (k+ Deibira,] Y_[(@ibara, + ciaarn,) + bbb, + ciciira)s)
1=0

+ (k + D)bicy(i+2)), + kcib[<i+2)]3>]>

Combining these results, we reach the following:

Theorem 4.1. Assume that p = 4k—+1. Then, C is a self-orthogonal code if and only if the following
conditions hold:

2 2
1) Y AAT = Qp<Zal,Zb2+kb2+c ), > (e} +kb2+c))>
=0 =0 =0

(2)
3
> _AiAfi g, (Z @i0[(i+2) ]svz(“ib[(iw)]s + biaj(iv2)), + (b + 1)bibj(ira)), + k(bici(iva)), + cibl(i+2)]s
=1 , 1=0
+ ke )y D (@icira), + i) + kbibiyay, + kbiciira), + by, + (k+ 1)Ci0[(i+2)]s)> :
1=0

Theorem 4.2. Assume that p = 4k+3. Then, C is a self-orthogonal code if and only if the following
conditions hold:

2 2 2 2
)ZAiA;fF:Qp<Z(a + b2 4 c?) ,Zalb + ajc; + bic; + k(b2 + 2 ,Zalbi—i—aici—l—bici—i—k(b?—i—c?)),
3 =0 =0

=0
(2)

3 2 2
D AiAfiay, = <Z (asagiva)ly + bibl+2)s + Ciciirler X (@iciarals + bioi2),) + Fbibla2),

] i=0 i=0

2
+keicira)y + kbiciar2)s + (k + Debiara)), ) _[(@ibiaras + ciagiras) + kbibit2)s

=0

+keiciira)y + (B + Dbicira))s + kcib[(i+2)]3)]> :

Theorem 4.3. The matriz M has full rank iff the following conditions hold:
2

(1) > (AiCi+ AiDy) = I,
izo

(2) Y (AiClita), + AiDjita),) = 0, and
izo

(3) Y (AiClita), + AiDjiga),) = 0,
=0

for some p x p circulant matrices Cy and D; over R.

Proof. Clearly,
= ( CIRC(Qo,Q1,Q2) | CIRC(Ag, A1, A2) )
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has full rank iff M N = I3, for some 6p x 3p matrix N over R. Let N’ = (ni,...,ngp)" be the first
column of N, clearly M (circ(ni,...,ny,)T, ... circ(nspr1,--- nep) T )T = (Ip,0p, 0p, 0p, 0, 0,) 7. If
N" = (Cy,Ch,C2, Do, D1, D2)T is the matrix that satisfies MN" = (I, 0,,0p,0p,0,,0,)T, then N
can take the form

CIRC(Dy, D3, D7)

where Cy and D; are p X p circulant matrices over R. Now,

N:( CIRC(Cy,Cs,Ch) )

2 2 2
MN = CIRC <Z(Aici + A;D;), Z(Aic[i+2]3 + AiDjita),), ) (AiCligy, + AiD[iJrl]g))
i=0 i=0 i=0
and M has full rank iff:
2

(1) Z(AlCZ + AlDZ) = Ip,

130
(2) D (AiCliya), + AiDyiya),) = 0p and

130
(3) Y (AiClita), + AiDjiga),) = 0,

i=0

Theorem 4.4. Let C be self-dual. Then,

<§Qz> B+ (g&)TB’_Ip

for some p X p matrices B and B’ over R.

Proof. By the previous result,

2
(1) > (AiCi + A;Dy) = I,
izO
(2) Z(Aic[iJrQ]S + AiD[i+2]3) =0, and
izO
(3) > (AiClis1), + AiDjigy,) = Op.
=0

Adding these equations, we obtain that

() Be) () (£0)

2 2 2
Let Qg = ZQ“ Ag = ZA“ 03 = ZCZ and D3 = ZDl Thus,
i=0 =0

i=0 i=0
Q303+ A3D3 =1,

and
(QsCs + A3Ds)" = C3 Q3 + D3y Ay = Q3C5 + Aj Dy =1,



since circulant matrices commute. Therfore,
Q3C3 + AsDs = Q3C5 + A3(Q5 C§ + A3 DY) Dy
= Q305 + A3QYCTD; 4 A3 AT DI D3
=1,
If C is self-dual, then M M7 = 03, and
(Ip I, Ip )MMT( L, I, I )T = 0p.
Consequently,
(Qs Qs Qs As Ay A3 )( Qs Qs Q3 Ay Ay Az )" =0, and Q3QF = Az AT,
Finally,
I, = Q3Cs + A3QYCT D3 + A3 AY DY D3
= Q305 + A3Q3 C3 D3 + Q3Q5 D3 Dy
= QsCs + Q3Q3 D3 D3 + A3Q3 C3 Ds
= Q3(Cs + Q3 D5 D3) + Q3 (A3C3 D)
=QsB+ Q5B
where B = C3 + Q¥ DI D3 and B’ = A3CT D;. O

2
Theorem 4.5. Assume that p =4k + 1. Let C be self-dual. Then, ZQl is invertible.
i=0

Proof. By the previous result,

2 2 T
(La)o(xe) #-u,
i=0 i=0
for some p x p matrices B and B’ over R. Clearly, Q; = a;I, + b;Q + ¢;N where Q = Q,(0,1,0),
N = Q,(0,0,1). Now,
Qf = (ailp +0:Q + e:N)”
= ailp =+ bZQT + CiNT
= ailp + sz + CiN
-0
since @ = QT, N = NT. Therefore,

(g@) B+ <§;Qi>TB/: (i@) B+ (i@) B' = (i@) (B+B') =1,

=0 =0

2
and ) Qi is invertible. O
1=0

In the next result, we consider a specific example of a commutative Frobenius ring of characteristic
2. For the purpose of the next result, we assume that R is a local ring with a residue class field that
contains 2 elements.

Theorem 4.6. Assume that p = 4k + 3, R be a local ring with a residue class field that contains 2
2

elements and assume that k is even. Let C be a self-dual code over R. Then, Z Q; 1is invertible.
i=0
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2 2 2 2
Proof. Let Q3 = ZQi’ az = Zai, by = Zbi and c3 = Zci. Clearly, Q3 = asl, + b3Q + csN

i=0 i=0 i=0 i=0
(where Q = Q,(0,1,0), N = Q,(0,0,1)) and Q3B + Q¥ B’ = I,, for some matrices B and B’. Let
J be the unique maximal ideal in R. It remains to show that Q3 (mod J) is invertible. If b3 = c3
(mod J) then

QY = (a3l + 03Q + bsN)T = azl, + b3QT + bsNT = azl, + bsN +b3Q = Q3 (mod J)
since Q = NT. Therefore,
Q3(B+B)=Q3B+QiB =1, (mod J).
and Q3 (mod J) is invertible.
If b3 # c3 (mod J) then bs + ¢35 =1 (mod J) and
(1,...,)QF =(1,...,1)Q3 = (a3 + bz +c3,...,a3 + bz +¢3) = (azg + 1)(1,...,1) (mod J).
N—— N——

——
p p p p
Thus
(1,...,)Q3B+(1,...,1)QiB = (1,...,1)I,,
N—— N—— N——
p p p
(a3 +1)(1,...,1)(B+B) = (a3 + )(,...,)B + (a5 + 1)(1,...,1)B'=(1,...,1) (mod J)
N—— N—— SN—— N——
p p p p
and
(as+1)(1,...,)(B+B)Y1,.... )T =@1,....,1)A,...,1)T =1 (mod J).
N—— SN—— —— Y—
p p p p

So as + 1 is invertible by modulo ideal J and az = 0 (mod J). Thus Q3 = Q (mod J) or Q3 = N
(mod J) and Q% = N? = I, since k is even and Q? = N? = [, + kQ + kN. Thus Q3 (mod J) is
invertible. ]

5. NUMERICAL RESULTS

In this section, we construct new self-dual codes of length 66 and 68 via certain extensions, neigh-
bours and sequences of neighbours. Initially, we consider the above construction when p = 5 over
Fy +uF2. We construct an extremal self-dual code (type I) of length 60 (described in Table[Il). From
this code, we construct an extremal self-dual code (type I) of length 64 via an Fy + ulFy extension
(Table 2)). Next, we find a new self-dual code of length 66 by an Fy extension of the previously
constructed self-dual code of length 64 (Table B]). Finally, we find new self-dual codes of length 68
via an Fy 4+ ulF5 extension of the previously constructed self-dual code of length 64 and sequences of
neighbours of this code (Tables[ [l 6] [7 and B]). Magma (|2]) was used to construct all of the codes
throughout this section.

The possible weight enumerators for a self-dual Type I [60, 30, 12]-code is given in [4l[5] as:
Weoa = 1+ 3451y + 24128y 4 336081y ¢ + - - |
Weoo = 14 (25554 643)y'2 + (33600 — 3848) y'* +--- ,0 < 8 < 10.
Extremal singly even self-dual codes with weight enumerator Weo 1 and Weo,2 are known ([I0])
for 5 € {0,1,...,8,10}.
To begin with, we construct the following code:
The possible weight enumerators for a self-dual Type I [64, 32, 12]-code are given in [A 5] as:
Wes1 = 14 (13124 168)y'2 4 (22016 — 648) y** +--- 14 < B < 284,
Weso = 14 (13124 168) 5" + (23040 — 648) ¢ +---,0 < 3 < 277.



TABLE 1. Self-dual codes of length 60 (codes over Fy + ulF3 when p = 5)

[Ci [ (a1,b1,¢1) [ (ag,b2,¢9) [ (as,b3,c3) | v \ V2 \ U3 [ Aut(C;) |
[1] (www [ (wul) | (1Lu,0) | (wuuu0) ] (w,00u1)] (w,u+lut+1,u,0)][2%-3-5]

B
0]

Extremal singly even self-dual codes with weight enumerators Wg4,1 are known ([I19,16])

14,16, 18,19, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34,
s { 35, 36, 38, 39, 44, 46, 49, 53, 54, 58, 59, 60, 64, 74 }

and extremal singly even self-dual codes with weight enumerator Ws4 2 are known for

0,...,40, 41,42, 44, 45, 46,47, 48,49, 50, 51, 52, 54, 55, 56, 57, 21 30
pe { 58. 60,62, 64, 69,72, 80, 88, 96, 104, 108, 112, 114, 118, 120, 184 }\{ 39}

The weight enumerators of an extremal self-dual code of length 66 is given in [5] as follows:

Wes1 = 1+ (858+8B)y'? + (18678 — 243)y"* + -+ where 0 < 8 < 778,
Weso = 141690y + 7990y + .- and
Wess = 14 (858 +883)y'% + (18166 — 248)y™ + - - - where 14 < 3 < 756.

Together with the codes recently obtained in [I] and the ones from [12], [13] and [7], extremal
singly even self-dual codes with weight enumerator Wss 1 are known for

g €{0,1,2,3,5,6,...,94,100,101,115}
and extremal singly even self-dual codes with weight enumerator Wsg 3 are known for
B €{22,23,...,92} \ {89,91}.

The known weight enumerators of a self-dual [68, 34, 12];-code are as follows ([3L11]):
Wes1 = 1+ (4424 48)y*2 + (10864 — 83)y* + ...
Wes2 = 1+ (442 +48)y™* + (14960 — 83 — 2567)y** + ...
where 0 <y < 9. Codes have been obtained for Wgg 2 when ([8])
v=2, fe€{2m|m=29,...,100,103,104}; or 8 € {2m + 1|m = 32,...,81,84,85,86};
v =3, B€{2mlm=239,...,92,94,95,97,98,101,102}; or
B e {2m+ 1|m = 38,40,43,...,77,79, 80,81, 83, 87, 88, 89, 96}
N =4, B € {2m|m = 43,46, ...,58,60,...,93,97,98,100}; or
Be{2m+ 1jm=48,...,55,57,58,60,61,62,64,68, ...,72,74,78,79, 80, 83, 84, 85, 89, 95};
~ = 5 with 8 € {101,105,109,111,...,182,187,189,191,192,193,195,198,200,201,202,211,213}
~ =6, B e{131,133,137,. .., 202,203,206, 207, 210} ;
V=T, B {Tm|m =14,...22,28,...,39,42} or § € {155,...,199};
=8, Be{180,...,221};
v =9, Be{186,...,226,228,230};

Applying Theorem over Fy and Fy + ulFy (to the code constructed in Table [Il), we construct
self-dual codes of lengths 64, 66 and 68 (Tables 2 Bl and M]). We replace 3 with 1+ u to save space.

TABLE 2. Self-dual codes of length 64 from Fy + uF; extensions of codes from Table

[Cilc] X [Weas | B[ Aui(D) |
(1 ]3] (wu0u3030u330301013ulull00ul3ll) | 1 |14 2° |
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TABLE 3. Self-dual codes of length 66 from Fy extensions of codes from Table
where z; = 0 for 1 <7 < 33.

5,‘ D;|c X VVGG;L' B AUt(gl)
111 (00111100110110011001111001101011) 3 21 1

=

TABLE 4. Self-dual codes of length 68 (Wss 2) from Fy + uFs extensions of codes
from Table

[ ¢ ] X [a] B ] Aut(F) |
| 1+u ‘ (0uu01u130130000031100111331030u0) | 2 | 67 ‘ 2 ‘

Let Ny = F1. Applying the k*h-range neighbour formula (in section 2), we obtain:

TABLE 5. i'" neighbour of N

L] NGy Zi B ]
0] Ny [(1010001001111100101010100100000001) 3 103
1| N [(1001010100001111001111100011111110) 4 124
2| N [ (I11110I01T111101111010000110110111) 5 134
3| N | (1010100011100001100011000110010010) 6 149
4] N5 |(0010101000110001011010101011010110) 6 133
5| N | (0000001001000111101111000000101110) 7 145
6| N | (II0ITT1T0T1T1T11001111101010111011) 8 161
7| N | (1001000001100010000111100000110010) 8 153
8| N |(0010111011010011100001110000101111) 9 177

We shall now separately consider the neighbours of N7, N(s) and Ng).

TABLE 6. New codes of length 68 as neighbours

Ny [ M (35, 236, -+, T68) v B [Ny [ M (35, 736, -+, T68) v B
7 (1001110100001011001000010110001111) 6 135| 7 (0110101110011000110111101110111101) 7 142
7 (1010101111010000011101101110100001) 7 144 7 (1010000001001100100011001110010110) 7 148
7 (1100000100000100000111110100011000) 7 150 | 7 (0000001101101010011100110000101010) 7 152
7 (1100001010100000101010001010000011) 8 156 | 7 (0I11011101011111010001111101111101) 8 157
7 (100111011101111011111011010011011T) 8 158 7 (1100111101110001001101011111111010) 8 159
7 (0111111111111101111011010001001110) 8 160 7 (0000010100011010000011100000110110) 8 162
7 (1011100110110111110001111010111001) 8 163 7 (1000001100011101010001001011100111) 8 164
7 (0101101010111111100000010110011010) 8 165] 7 (1100111110111111011000111101101101) 8 166
7 (0110110011000101101101010000111011) 8 167 7 (1110001001011001000010101101101111) 8 168
7 (0000110001100111100110010110000100) 8 169 [ 7 (1101100001010100111111000110010000) 8 170
7 (0100111101011101000000001111011110) 8 171[ 7 (1101011100101001111000001010101101) 8 172
7 (0011011111010111110100010011001110) 8 173 7 (1000000111111110110000111001110100) 8 174
7 (1000111010001101101000001010100111) 8 175] 7 (1011011001110100101000011000010011) 8 176
7 (1101110100011011100010110101010001) 8 177 7 (0000001001111010000101101011000101) 8 178
7 (1010110111110111000100101010000110) 8 179

6. CONCLUSION

In this work, we introduced a new construction that involved both block circulant matrices and
block quadratic residue circulant matrices. We demonstrated the relevance of this new construction
by constructing many binary self-dual codes, including new self-dual codes of length 66 and 68.

e Codes of length 66: We were able to construct the following extremal binary self-dual
codes with new weight enumerators in Wee 3:

8 ={21}.
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TABLE 7. New codes of length 68 as neighbours

/\/(i) M, (T357T367T68) 2l 8 /\/(1) M; (TssTseTos) ”r |
8 (1011100000000100011001011001010000) 6 134 8 (0100011011001110010010110000110000) 7 146
8 (1000010001101000000110110001001100) 8 154 8 (0100010111101000010111100101011101) 8 155

TABLE 8. New codes of length 68 as neighbours

N [ M (35, T36, .-, Tes) v B [Ng [ M (35, T36, .-, Tes) v B
9 (101100001011100101111110010111111T) 9 169 9 (0111011011011100111010101011101011) 9 171
9 (1010111001101000111110101111110011) 9 173 9 (1000100101111111111101111101000011) 9 174
9 (1001010100111110011111000101100001) 9 175 9 (1100110001000010011000011000010100) 9 176
9 (0000111100010110110000010011101110) 9 178 9 (0000111111001110111000111100010001) 9 179
9 (0010110110000001011001111001010110) 9 180 9 (1101100001101011010000110010101111) 9 181
9 (1000010010001101110110100111100100) 9 182 9 (111101010111011000111010111001101T) 9 183
9 (0101001111100011111010011011111011) 9 184 9 (1011000000001100111100001100011001) 9 185

Codes of length 68: We were able to construct the following extremal binary self-dual
codes with new weight enumerators in Weg 2:

(y=6, B={134,135}).

(y=17, B={142,144,145,146, 148,150, 152}).

(y=8, B={153,154,155,156,157, 158,159,160, 161,162, 163, 164, 165, 166, 167,
168,169,170, 171,172, 173,174, 175,176, 177, 178, 179}).

(y=9, B={169,171,173,174,175,176,177,178,179,180, 181, 182, 183, 184, 185}).

In this paper, we considered 3 x 3 blocks of both block circulant matrices and block quadratic
residue circulant matrices. A possible direction in the future could be to consider n x n blocks of
both block circulant matrices and block quadratic residue circulant matrices.
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