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Abstract

This papers focuses on the average order of dominating sets of a graph. We find the extremal graphs for the
maximum and minimum value over all graphs on n vertices, while for trees we prove that the star minimizes
the average order of dominating sets. We prove the average order of dominating sets in graphs without isolated
vertices is at most 3n/4, but provide evidence that the actual upper bound is 2n/3. Finally, we show that the
normalized average, while dense in [1/2, 1], tends to 1

2
for almost all graphs.

1 Introduction

For a graph G containing vertex v, NG(v) = {u|uv ∈ E(G)} denotes the open neighbourhood of v while NG[v] =

N(v)
⋃{v} denotes the closed neighbourhood of v (we will omit the subscript G when only referring to one graph).

For S ⊆ V (G), the closed neighbourhood N [S] of S is simply the union of the closed neighbourhoods for each

vertex in S. A subset of vertices S is a dominating set of G if N [S] = V (G), that is, every vertex is either in S or

adjacent to a vertex in S. The domination number of G, denoted γ(G), is the order of the smallest dominating set

of G. The study of dominating sets in graphs is extensive (see, for example, [14]).

Let D(G) denote the collection of dominating sets of G. Furthermore let dk(G) = |{S ∈ D(G) : |S| = k}|. Then
the average order of dominating sets in G, denoted avd(G), is

avd(G) =

|V (G)|∑
k=γ(G)

kdk(G)

|V (G)|∑
k=γ(G)

dk(G)

,

that is, the average cardinality of a dominating set of G.

For graphs with few dominating sets avd(G) is relatively easy to compute using the above formula. For example

the empty graph Kn has exactly one dominating set of order n, hence avd(Kn) = n. However if G has many

dominating sets other techniques may be more appropriate to compute avd(G). The domination polynomial of G

is defined by

D(G, x) =

|V (G)|∑

k=γ(G)

dk(G)xk,
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(see [2], for example, for for a discussion of domination polynomials). The average order of dominating sets in G

can be regarded as the logarithmic derivative of D(G, x) evaluated at 1, that is,

avd(G) =
d

dx
ln(D(G, x))

∣∣∣∣
x=1

=
D′(G, 1)

D(G, 1)
. (1)

This allows us to compute avd(G) quickly when D(G, x) readily available. For example,

D(Kn, x) = (1 + x)n − 1 and D(K1,n−1, x) = x(1 + x)n−1 + xn−1,

so

avd(Kn) =
n2n−1

2n − 1
and avd(K1,n−1) =

(n+ 1)2n−2 + n− 1

2n−1 + 1
.

It is trivial to observe that the domination polynomial is multiplicative over components, that is, for graphs G

and H , D(G ∪ H,x) = D(G, x)D(H,x) where G ∪ H denotes the disjoint union of G and H . From this we can

obtain a fundamental result which states that the average order of dominating sets is additive over components.

Lemma 1.1. Let G and H be graphs. Then avd(G ∪H) = avd(G) + avd(H).

Proof. As D(G ∪ H,x) = D(G, x)D(H,x), it follows that D′(G ∪ H,x) = D′(G, x)D(H,x) + D(G, x)D′(H,x).

Therefore

avd(G ∪H) =
D′(G, 1)D(H, 1) +D(G, 1)D′(H, 1)

D(G, 1)D(H, 1)
=

D′(G, 1)

D(G, 1)
+

D′(H, 1)

D(H, 1)
= avd(G) + avd(H).

Although the average order of dominating sets is a novel area of research, there has been work done on averages

of serveral other graphs invariants:

• Closely related to the Weiner Index of a graph [21], the mean distance (between vertices) in a graph was

introduced in 1977 by Doyle and Graver [11]. Doyle and Graver showed for connected graphs of order n (that

is, with n vertices) the mean distance in a graph was maximized by a path, with mean distance (n+ 1)/3,

and minimized by the complete graph, with mean distance 1.

• The mean subtree order of a graph was introduced in 1983 by Jamison [15]. Jamison showed for any tree

T on n vertices, the average number of vertices in a subtree of T is at least (n+ 2)/3, with that minimum

achieved if and only if T is a path. As the mean subtree order of T is at most n, Jamison naturally defined

the mean subtree order of T divided by n to be the density of T and showed there were trees whose density

approached 1 as n → ∞. Jamison conjectured the tree with maximum density was some caterpillar graph.

Additionally, the mean subtree order has been subject to a fair amount of recent work [13, 16, 19, 20].

• The average size of an independent set in a graph was introduced in 2019 by Andriantiana et. el. [4].

Andriantiana et. el. showed the average number of vertices of an independent set in a graph was maximized

by the empty graph and minimized by the complete graph. They also showed the average number of vertices

of an independent set in a tree was maximized by Pn and minimized by K1,n−1.
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• In 2020, Andriantiana et. el. [5] introduced the average size of a matching in a graph was introduced.

Andriantiana et. el. showed the average number of edges in a matching of a graph was now minimized by

the empty graph and maximized by the complete graph. They also showed the average number of edges in a

matching in a tree was maximized by Pn and minimized by K1,n−1.

We remark that when the domination polynomial has all real roots, the average order of domination sets of

graph G can also determine the mode of the coefficients of D(G, x); Darroch [10] showed in general that a positive

sequence (a0, a1, · · · , an) has its mode at either
⌊
f ′(1)
f(1)

⌋
or

⌈
f ′(1)
f(1)

⌉
, where f(x) = a0 + a1x + · · · + anx

n is the

associated generating polynomial. Therefore by (1), if D(G, x) has all real roots then it mode is at ⌊avd(G)⌋ or

⌈avd(G)⌉.
This paper is structured as follows. In Section 2 we determine the extremal graphs for the average order of

dominating sets of graphs of order n. In Section 3 we develop bounds for the average order of domination sets for

connected graphs, as well as for trees. Section 4 introduces a normalized version of the parameter, describes the

distribution of these parameters, and considers the values for Erdös-Renyi random graphs. Finally we conclude

with some remarks.

2 Extremal Graphs

For a graph on n vertices, it is clear that avd(G) ≤ n as every dominating set has cardinality at most n. This bound

is achieved by Kn, and this graph is the unique extremal graph, as any other graph of order n has a dominating

set of size smaller than n. On the other hand, what about the minimum value of avd(G) over all graphs of order

n? As you might expect, the complete graph Kn is the unique extremal graph in this case, but the argument will

be more subtle, and that is what we shall pursue now.

We shall first need some technical results about the average cardinality of sets in collection of sets. Let X be a

nonempty finite set and P(X) its powerset. For any nonempty subset A ⊆ P(X) we define the average order of A,

denoted av(A) to be

av(A) =
1

|A|
∑

A∈A
|A|.

Lemma 2.1. For a nonempty finite set X, let A ⊂ B ⊆ P(X). Then

av(B) ≤ av(A) if and only if av(B −A) ≤ av(A).

Proof. Set S(C) = ∑
C∈C |C| for any C ⊆ P(X). Then
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av(B) ≤av(A)

⇔ S(B)
|B| ≤S(A)

|A|

⇔ S(A) + S(B −A)

|A|+ |B − A| ≤S(A)

|A|
⇔ S(A)|A| + S(B −A)|A| ≤S(A)|A|+ S(A)|B − A|

⇔ S(B −A)|A| ≤S(A)|B − A|

⇔ S(B −A)

|B − A| ≤S(A)

|A|
⇔ av(B −A) ≤av(A)

Lemma 2.2. For a nonempty finite set X, let A ⊆ P(X). If there exists r1, r2 ∈ R and partition A1,A2, . . . ,Ak

of A such that r1 ≤ av(Ai) ≤ r2, then r1 ≤ av(A) ≤ r2.

Proof. Now

av(A) =
S(A)

|A| =

∑k
i=1 S(Ai)

|A| =

∑k
i=1 |Ai|av(Ai)

|A| ≥
∑k

i=1 |Ai|r1
|A| =

r1
∑k

i=1 |Ai|
|A| = r1

and

av(A) =
S(A)

|A| =

∑k
i=1 S(Ai)

|A| =

∑k
i=1 |Ai|av(Ai)

|A| ≤
∑k

i=1 |Ai|r2
|A| =

r2
∑k

i=1 |Ai|
|A| = r2.

A simplicial complex A is a subset of P(X) such that ∅ ∈ A and A ∈ A implies P(A) ⊆ A. Simplicial complexes

have numerous applications in combinatorics (and algebraic topology); here we will need a result on the average

size of a set in a complex.

Proposition 2.3. Let A be a simplicial complex on a nonempty finite set X with n elements. Then for all k ≤ n
2

|Ak| ≥ |An−k|,

where Ak = {A ∈ A : |A| = k}. Hence av(A) ≤ n
2 .

Proof. We will use Hall’s Theorem (see, for example, [9]) to show |Ak| ≥ |An−k|. Consider the bipartite graph with

bipartition (An−k, Ak) where A ∈ An−k and B ∈ Ak are adjacent if and only if B ⊆ A. As A is a simplicial complex,

the degree of each A ∈ An−k is
(
n−k
k

)
and the degree each B ∈ Ak is at most

(
n−k
n−2k

)
=

(
n−k
k

)
. Furthermore, for any

subset S ⊆ An−k there are exactly |S|
(
n−k
k

)
edges incident with the vertices of S and at most |N(S)|

(
n−k
k

)
edges

incident to the vertices of N(S). Therefore |S| ≤ |N(S)| and by Hall’s Theorem you can match An−k into Ak, so

|Ak| ≥ |An−k|.
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Now let Bk = An−k ∪Ak. Note that av(Bk) ≤ n
2 and B1,B2, . . . ,Bn

2
is a partition of A. It follows from Lemma

2.2 that av(A) ≤ n
2 .

On our path to proving that Kn is the unique graph, among all graphs of order n, with the least average order of

dominating sets, we shall need the following that states that every subset of vertices that does not omit the closed

neighbourhood of some vertex must be dominating.

Lemma 2.4. [1] Let G be a graph of order n then dn−k(G) =
(
n
k

)
for all k ≤ δ(G), where δ(G) is the minimum

degree of G. �

Theorem 2.5. Let G be a graph of order n then avd(G) ≥ n2n−1

2n−1 with equality if and only if G ∼= Kn.

Proof. Let D(G) be the collection of subsets S ⊆ V (G) such that V (G) − S is a dominating set of G. Note D(G)

is a simplicial complex. Therefore by Theorem 2.3 for all k ≤ n
2 ,

dn−k = |{S ∈ D(G) : |S| = k}| ≥ |{S ∈ D(G) : |S| = n− k}| = dk.

It follows that avd(G) is minimized if dn−k = dk for all k ≤ n
2 . As dn = 1 and d0 = 0 this cannot happen for

k = 0, but avd(G) will be minimized if and only if dn−k = dk for all 1 ≤ k ≤ n
2 , and this does occur for Kn. Thus

avd(G) ≥ n2n−1

2n−1 > 1
2 . To find all extremal graphs, suppose dn−k = dk for all 1 ≤ k ≤ n

2 .

First we assume that δ(G) ≥ 1. By Lemma 2.4, dn−1 = n and therefore d1 = n. A dominating set of order

one must be a vertex of degree n − 1. Therefore G has n vertices of degree n − 1 and is hence Kn. Now suppose

δ(G) = 0 and G has r ≥ 1 isolated vertices. Then D(G, x) = xrD(H,x) for some isolate-free graph on n−r vertices.

Furthermore

avd(G) =
D′(G, 1)

D(G, 1)
=

rD(H, 1) +D′(H, 1)

D(H, 1)
= r + avd(H) ≥ r +

n− r

2
≥ n+ 1

2
.

If n = 1, then G ∼= K1 and n+1
2 = n2n−1

2n−1 . An easy induction shows that n+1
2 > n2n−1

2n−1 for n ≥ 2, completing the

proof.

3 Bounds

3.1 General graphs

For a graph on n vertices, we have seen that avd(G) ≤ n, with the bound achieved uniquely by Kn. However,

can we say more if we insist on the graph being connected? Or even just having no isolated vertices? The lower

bound occurs for complete graphs, so no improvement is possible there, but the upper bound leaves some room for

improvement. We shall do so first in terms of δ, the minimum degree.

For a dominating set S of a graph G let

a(S) = {v ∈ S : S − v /∈ D(G)},
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the set of critical vertices of S with respect to domination (in that their removal makes the set no longer dominating).

This parameter is key to improving the upper bound. we will need first an expression for the sum of a(S) over all

dominating sets.

Lemma 3.1. For a graph G with n vertices.

∑

S∈D(G)

|a(S)| = 2D′(G, 1)− nD(G, 1).

Proof. For a vertex v ∈ V (G) let av(G) = {S ∈ D(G) : S − v /∈ D(G)}, and let D+v(G) denote the collection

of dominating sets which contain v. Let D−v(G) denote the collection of dominating sets which does not contain

v. Clearly av(G) ⊆ D+v(G). We will now show is a one-to-one correspondence between D+v(G) − av(G) and

D−v(G). For any S ∈ D+v(G)− av(G), S − v ∈ D(G) so clearly S − v ∈ D−v(G). Furthermore if S ∈ D−v(G) then

S ∪ {v} ∈ D+v(G) and S ∪ {v} /∈ av(G). As the maps are injective, it follows that |D+v(G) − av(G)| = |D−v(G)|
and as av(G) ⊆ D+v(G) we have |av(G)| = |D+v(G)| − |D−v(G)|. Furthermore

∑

v∈V (G)

|D+v(G)| =
n∑

i=1

i · d(G, i) = D′(G, 1) (2)

and

∑

v∈V (G)

|D−v(G)| =
n∑

i=1

(n− i) · d(G, i) = nD(G, 1)−D′(G, 1). (3)

Therefore

∑

S∈D(G)

|a(S)| =
∑

v∈V (G)

av(G) =
∑

v∈V (G)

(|D+v(G)| − |D−v(G)|) = 2D′(G, 1)− nD(G, 1).

In order to get to our upper bound, we need to partition a(S). Let S be a dominating set of G containing the

vertex v. By definition v ∈ a(S) if and only if S − v is not a dominating in G. Therefore v ∈ a(S) if and only if

there exists u ∈ N [v] such that among the vertices of S, u is only dominated by v (u could very well be v). We

will call such a vertex u a private neighbour of v with respect to S. Let PrivS(v) denote the collection of all private

neighbours of v with respect to S, that is,

PrivS(v) = {u ∈ N [v] : N [u] ∩ S = {v}}.

Note v ∈ a(S) if and only if PrivS(v) 6= ∅. Moreover, for v ∈ a(S), note that PrivS(v)∩S ⊆ {v}. We now partition

a(S) = a1(S) ∪ a2(S), where

a1(S) = {v ∈ a(S) : PrivS(v) ∩ (V − S) 6= ∅}

a2(S) = {v ∈ a(S) : PrivS(v) = {v}}.
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(We allow either to be empty.) Note that if v ∈ a2(S) then N(v) ⊆ V −S. We can partition V −S = N1(S)∪N2(S),

where

N1(S) = {v ∈ V − S : |N [v] ∩ S| = 1}

N2(S) = {v ∈ V − S : |N [v] ∩ S| ≥ 2}.

That is, N1(v) is the set of those vertices outside of S that have a single neighbour in S, and N2(S) are those that

have more than one neighbour in S. (Again, we allow either to be empty.)

As an example consider the labelled P5 in Figure 3.1. Now S = {v2, v3, v5} is a dominating set. Furthermore

a(S) = {v2, v5} with a1(S) = {v2}, a2(S) = {v5}, N1(S) = {v1} and N2(S) = {v4}. Alternatively, let S′ =

{v1, v3, v5}. Now a(S′) = {v1, v3, v5} with a1(S
′) = ∅, a2(S′) = {v1, v3, v5}, N1(S

′) = ∅ and N2(S
′) = {v2, v4}.

v1 v2 v3 v4 v5

Figure 3.1: A vertex labelled P5

Lemma 3.2. Let G be a graph. For any S ∈ D(G), |a1(S)| ≤ |N1(S)|.

Proof. For any u ∈ N1(S), N [u] ∩ S ∈ a1(S). Therefore the map f : N1(S) → a1(S) where f(v) = N [v] ∩ S is

surjective, so |N1(S)| ≥ |a1(S)|.

For graph G containing a vertex v let pv(G) denote the collection of subsets of V −N [v] which dominate G− v

(and hence they dominate G − N [v] as well). We are now ready to improve our upper bound for graph with no

isolated vertices.

Theorem 3.3. Let G be a graph with n ≥ 2 vertices and minimum degree δ ≥ 1. Then

avd(G) ≤ 2n(2δ − 1) + n

3(2δ − 1) + 1
,

and so avd(G) ≤ 3n
4 .

Proof. We begin by showing

∑

S∈D(G)

|a2(S)| =
∑

v∈V (G)

|pv(G)|. (4)

It suffices to show for any S ∈ D(G) containing v, v ∈ a2(G) if and only if S − v ∈ pv(G). Suppose v ∈ a2(S).

By definition of a2(G), v ∈ a2(G) if and only if PrivS(v) = {v}. Therefore N [v] ∩ S = {v} and N(v) ⊆ N2(S).

Furthermore S − v ⊆ V −N [v] and dominates G− v and thus S − v ∈ pv(G). Conversely, suppose S − v ∈ pv(G).

By definition of pv(G), S − v /∈ D(G) but S ∈ D(G). Therefore v ∈ a(S). However every neighbour of v is already

dominated by S − v; therefore, N(v) ⊆ N2(S) and v ∈ a2(G).

For now fix v ∈ V (G). By definition every S ∈ pv(G) dominates G − v but does not contain any vertices of

N [G]. Therefore for any non-empty T ⊆ N(v), S ∪T ∈ D−v(G). Furthermore for S1, S2 ∈ pv(G) and T1, T2 ∈ N(v)
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if S1 ∪ T1 = S2 ∪ T2 then S1 = S2 and T1 = T2. Let P(N(v)) denote the power set of N(v). Then there is an

injective map from pv(G)× (P(N(v))− ∅) to D−v(G) and hence (2deg(v) − 1)|pv(G)| ≤ |D−v(G)|. So together with

(3) and (4) we obtain

∑

S∈D(G)

|a2(S)| =
∑

v∈V (G)

|pv(G)| ≤
∑

v∈V (G)

|D−v(G)|
2deg(v) − 1

≤
∑

v∈V (G)

|D−v(G)|
2δ − 1

=
nD(G, 1)−D′(G, 1)

2δ − 1
.

By Lemma 3.2, |a1(S)| ≤ |N1(S)|. So together with (3) we obtain

∑

S∈D(G)

|a1(S)| ≤
∑

S∈D(G)

|N1(S)| ≤
∑

S∈D(G)

|V − S| =
∑

v∈V (G)

|D−v(G)| = nD(G, 1)−D′(G, 1).

By Lemma 3.1,
∑

S∈D(G)

|a(S)| = 2D′(G, 1)− nD(G, 1), and hence from

∑

S∈D(G)

|a(S)| =
∑

S∈D(G)

|a1(S)|+
∑

S∈D(G)

|a2(S)|

we have that

2D′(G, 1)− nD(G, 1) ≤ nD(G, 1)−D′(G, 1) +
nD(G, 1)−D′(G, 1)

2δ − 1
.

From this it follows that
D′(G, 1)

D(G, 1)
≤ 2n(2δ − 1) + n

3(2δ − 1) + 1
.

Finally, one can verify that as δ ≥ 1,
2n(2δ − 1) + n

3(2δ − 1) + 1
≤ 3n

4
,

and we are done.

Theorem 3.3 shows all graphs with no isolated vertices have avd(G) ≤ 3n
4 . However for δ ≥ 4 the bound can be

improved again, if we are even more careful with our counting. Again, we shall need a couple of technical lemmas

first.

Lemma 3.4. For any graph G,

∑

S∈D(G)

|N1(S)| =
∑

e∈E(G)

|D(G)−D(G − e)|.

Proof. It suffices to show for every dominating set S ∈ D(G) there are exactly N1(S) edges e = {u, v} in G such

that S /∈ D(G− e). For every S ∈ D(G) consider the edge e in G. If e goes from a vertex v ∈ N1(S) to some vertex

in S then v is not dominated by S in G− e, so S ∈ D(G) −D(G− e).

Conversely suppose e does not go from a vertex in N1(S) to some vertex in S; we need to show that S /∈
D(G)−D(G− e). Note that in G− e, S necessarily dominates every vertex other than possibly u and v. Therefore

S ∈ D(G− e) if and only if S dominates both u and v in G− e. Consider the following 3 cases:

Case 1: u, v ∈ S. Then both u and v dominate themselves in S so S is a dominating set in G − e. Therefore

S /∈ D(G)−D(G − e).
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Case 2: u, v /∈ S. As S is a dominating set of G, there exists vertices x, y ∈ S (possibly x = y) such that x and y

are adjacent to u and v respectively in G. Note x and y are still adjacent to u and v respectively in G−e. Therefore

S is a dominating set in G− e and S /∈ D(G)−D(G − e).

Case 3: Either u ∈ S and v /∈ S, or u /∈ S and v ∈ S. Without loss of generality suppose u ∈ S and v /∈ S. As e

does not go from a vertex in N1(S) to some vertex in S then v /∈ N1(S) and therefore v ∈ N2(S). By definition of

N2(S), there exists at least one other vertex x ∈ S adjacent to v. Therefore x is still adjacent to v in G− e and S

is a dominating set in G− e. Therefore S /∈ D(G)−D(G − e).

Therefore for every dominating set S ∈ D(G), the number of edges e in G which have S ∈ D(G) −D(G − e) is

exactly the number of edges from N1(S) to S. By definition of N1(S), each vertex in N1(S) is adjacent to exactly

one vertex in S. Therefore, the number of edges e in G which have S ∈ D(G) −D(G− e) is exactly |N1(S)|.

Lemma 3.5. [17] Let G be a graph. For every edge e = {u, v} of G,

|D(G) −D(G− e)| = |pu(G− e)|+ |pv(G− e)| − |pu(G)| − |pv(G)|.

�

We are now ready to prove another upper bound for avd(G).

Theorem 3.6. For any graph G with no isolated vertices,

avd(G) ≤ n

2
+

∑

v∈V (G)

deg(v)

2deg(v)+1 − 2
.

Proof. By Lemma 3.2, Lemma 3.4, Lemma 3.5 we obtain.

∑

S∈D(G)

|a1(S)| ≤
∑

e∈E(G)

(|pu(G− e)|+ |pv(G− e)| − |pu(G)| − |pv(G)|) =
∑

v∈V (G)

∑

u∈N(v)

(|pv(G− uv)| − |pv(G)|)

Together with (4) we obtain

∑

S∈D(G)

|a(S)| =
∑

S∈D(G)

(|a1(S)|+ |a2(S)|) ≤
∑

v∈V (G)

∑

u∈N(v)

|pv(G− uv)| −
∑

v∈V (G)

(deg(v)− 1)|pv(G)|.

Furthermore as G has no isolated vertices we obtain

∑

S∈D(G)

|a(S)| ≤
∑

v∈V (G)

∑

u∈N(v)

|pv(G− uv)|. (5)

For each v ∈ V (G) and e = {u, v} ∈ E(G) consider S ∈ pv(G − e). For any nonempty T ⊆ NG[v] − {u},
S ∪ T ∈ D(G − e) ⊆ D(G) and all such sets are distinct. Therefore (2deg(v) − 1)|pv(G − e)| ≤ |D(G)| (where the

9



degree is in the graph G) and together with Lemma 3.1 and (5) we obtain

2D′(G, 1)− nD(G, 1) =
∑

S∈D(G)

|a(S)| ≤
∑

v∈V (G)

deg(v) ·D(G, 1)

2deg(v) − 1
,

from which is follows that
D′(G, 1)

D(G, 1)
≤ n

2
+

∑

v∈V (G)

deg(v)

2deg(v)+1 − 2
.

Corollary 3.7. For a graph G with minimum degree δ ≥ 1.

avd(G) ≤ n

2

(
1 +

δ

2δ − 1

)
.

In particular if δ ≥ 2 log2(n) then avd(G) ≤ n+1
2 .

Proof. Let f(x) = x
2x+1−2 . It is not hard to verify that for x ≥ 1, f(x) is a decreasing function. Therefore for all

v ∈ V (G), f(deg(v)) ≤ f(δ), and by Theorem 3.6

avd(G) ≤ n

2
+

∑

v∈V (G)

deg(v)

2deg(v)+1 − 2
≤ n

2
+

n · δ
2δ+1 − 2

=
n

2

(
1 +

δ

2δ − 1

)
.

Now suppose δ ≥ 2 log2(n). As δ ≤ n−1, we know that 2 log2(n) ≤ n−1. Again, one can verify that g(n) = δ/(2δ−1)

is decreasing for δ ≥ 1, so

avd(G) ≤ n

2

(
1 +

δ

2δ − 1

)

≤ n

2

(
1 +

2 log2(n)

22 log2(n) − 1

)

≤ n

2

(
1 +

n− 1

n2 − 1

)

=
n

2

(
1 +

1

n+ 1

)

≤ n

2

(
1 +

1

n

)

=
n+ 1

2
.

Theorem 3.3 and Corollary 3.7 give two different upper bounds for avd(G) based on δ(G). Figure 3.2 plots

avd(G) sorted by minimum degree for all graphs of order n = 8 and n = 9, respectively. The curve in Figure 3.2 is

the minimum of the two bounds of Theorem 3.3 and Corollary 3.7 evaluated for each integer 0 ≤ δ ≤ n and linearly

interpolated between each point.

Our best upper bound for all isolate-free graphs remains avd(G) ≤ 3n
4 . However by Corollary 3.7 if δ(G) ≥ 4

then avd(G) ≤ 19n
30 ≤ 2n

3 . In fact, all graphs up to order 9 with no isolated vertices have avd(G) ≤ 2n
3 . This leads

10



(a) Graphs of order 8 (b) Graphs of order 9

Figure 3.2: The bounds from Theorem 3.3 and Corollary 3.7 compared to avd(G) for n = 8 and n = 9.

us to the following conjecture.

Conjecture 3.8. Let G be a graph with n ≥ 2 vertices. If G has no isolated vertices (so, in particular, if G is

connected) then avd(G) ≤ 2n
3 .

We can show that the upper bound in Conjecture 3.8 is achieved for all n ≥ 2: For n = 2 and n = 3, avd(K2) =
4
3

and avd(K1,2) = 2. For any n ≥ 4 there exists non-negative integers k and ℓ such that n = 2k+3ℓ. Then by Lemma

1.1 any graph of the form H = kK2 ∪ ℓK1,2 will have avd(H) = 2n
3 . These graphs are not connected, but one can

insist on connectivity as follows. Let G be any graph on k+ ℓ vertices, and let G′ be the graph obtained by adding

one leaf to k vertices of G and two leaves to the other ℓ vertices of G. Oboudi showed [18] that D(G′, x) = D(H,x).

Therefore avd(G′) = 2n
3 , and by choosing G to be connected, the graph G′ will be as well.

While we are unable to prove Conjecture 3.8, we can provide some evidence for it. A graph G is called

quasi-regularizable if one can replace each edge of G with a non-negative number of parallel copies, so as to

obtain a regular multigraph of minimum degree at least one. Any graph which contains a spanning subgraph

which is both regular and nonempty is quasi-regularizable; in particular, any graph which contain either a perfect

matching or a hamiltonian cycle is quasi-regularizable. Berge [6] characterized quasi-regularizable graphs as those

for which |S| ≤ |N(S)| holds for any independent set S of G. We will now show that for quasi-regularizable graphs,

Conjecture 3.8 holds.

Theorem 3.9. If G is a quasi-regularizable graph then avd(G) ≤ 2n
3 .

Proof. We begin by showing |a(S)| ≤ n− |S| for every S ∈ D(G). By Lemma 3.2, |a1(S)| ≤ |N1(S)|. Therefore it

suffices to show |a2(S)| ≤ |N2(S)|. For every v ∈ a2(S), N(v) ⊆ V − S as otherwise PrivS(v) 6= {v}. Furthermore,

N(v) ⊆ N2(S) as otherwise v ∈ a1(S). Therefore a2(S) is an independent set with N(a2(S)) ⊆ N2(S). As G is a

11



quasi-regularizable graph then |a2(S)| ≤ |N(a2(S))| ≤ |N2(S)|, so

|a(S)| = |a1(S)|+ |a2(S)| ≤ |N1(S)|+ |N2(S)| = n− |S|.

Finally, as |a(S)| ≤ n− |S| then ∑
S∈D(G)

|a(S)| ≤ nD(G, 1)−D′(G, 1). Thus together with Lemma 3.1 we obtain

2D′(G, 1)− nD(G, 1) ≤ nD(G, 1)−D′(G, 1) ⇒ avd(G) =
D′(G, 1)

D(G, 1)
≤ 2n

3
.

3.2 Trees

In this section we turn to trees (which are connected and, if are nontrivial, have δ ≥ 1). For every n ≥ 2 there

is a tree T of order n with avd(T ) = 2n
3 , satisfying the upper bound from Conjecture 3.8 for isolate-free graphs.

Examples of trees which achieve the upper bound given in Conjecture 3.8 are described in the paragraph following

Conjecture 3.8 (if one chooses the base graph G there to be a tree as well). It also remains an open question whether

this is actual the upper bound amongst trees.

However, what about the lower bound? For graphs the lower bound was achieved by complete graphs, but these

are far from being trees. We show now that avd(T ) ≥ avd(K1,n−1), and the argument is even more involved than

for the lower bound for general graphs. For this we require a result similar to that of Proposition 2.3. However

the proof of this is considerably more involved. For a tree T of order n, recall D(T ) denotes the collection of all

dominating sets in T . For now fix S ∈ D(T ). Recall in the proof of Proposition 2.3, it was important to bound the

number of subsets S′ ⊆ S where S′ is also a dominating set and |S′| = k. Let

domk(S) = |{S′ ⊆ S : S′ ∈ D(T ) and |S′| = k}|.

The trivial upper bound, which was used in the proof of Proposition 2.3, is simply domk(S) ≤
(|S|

k

)
, but we

need something stronger for trees. Recall a(S) = {v ∈ S : S − v /∈ D(T )}. Therefore for any S′ ⊆ S, if S′ ∈ D(T )

then a(S) ⊆ S′. Therefore domk(S) ≤
(|S|−|a(S)|

k−|a(S)|
)
. However this is only useful if a(S) 6= ∅. On the other hand,

when a(S) = ∅, S is double dominating set [12], that is, a subset S ⊆ V (G) such that for every vertex v ∈ V (G),

|N [v] ∩ S| ≥ 2. The order of the smallest double dominating set is denoted γ×2(G). Note that for a dominating

set S of a tree T , if |S| < γ×2(T ) then a(S) ≥ 1. Moreover, suppose γ(T ) + γ×2(T ) ≥ n + 1. Then |S| > γ×2(T )

implies n+ 1− |S| < γ(T ) and hence domk(S) = 0 for k ≤ n+ 1− |S|.

Theorem 3.10. If T is a nontrivial tree then γ×2(T ) + γ(T ) ≥ n+ 1.

Proof. We can assume that n ≥ 3, as if n = 2, then T = K2 and so γ×2(T ) = 2, γ(T ) = 1 and the result holds.

Set V (T ) = V . It is sufficient to show for any double dominating set S, γ(T ) ≥ n − |S| + 1. Note that if the m

vertices v1, . . . , vm had pairwise disjoint closed neighbourhoods, then γ(T ) ≥ m as any dominating set would need

to contain at least one vertex from each closed neighbourhood. Therefore it is sufficient to show for any double

dominating set S, there exists a collection of |V −S|+1 vertices with pairwise disjoint closed neighbourhoods. We
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will induct on the number of vertices in V − S. For v ∈ V and u ∈ N(v) let B(T, v, u) denote the set of vertices in

the same component as u in T − v (See Figure 3.3).

B(T, v, u)
B(T, v, w)

ℓ

w

v

u

u′

...
...

...
...

Figure 3.3: An example of B(T, v, u) and B(T, v, w).

Let S be a double dominating set, so that S contains every leaf and stem of T (as stem in a tree is a vertex

adjacent ot a leaf). The case where |V −S| = 0 is vacuously true for any nontrivial tree. Assume for any nontrivial

tree and some k ≥ 0 if |V −S| ≤ k then there exists a collection of |V −S|+1 vertices with pairwise disjoint closed

neighbourhoods. Now suppose |V − S| = k + 1. Note that for any leaf in T , both it and its stem (i.e. the leaf’s

only neighbour) must both be in S, otherwise S is not a double dominating set. Fix a leaf ℓ ∈ V . Now choose a

vertex v /∈ S which is of maximum distance to ℓ. Note v is not a stem, as otherwise v ∈ S which contradicts v /∈ S.

Furthermore, deg(v) ≥ 2, as otherwise either v ∈ S or S is not a double dominating set; in particular, v 6= ℓ.

Let w ∈ N(v) be the only neighbour of v which is closer ℓ than v (See Figure 3.3). Note that w 6= ℓ, as otherwise

v would be stem and hence belong to S. As deg(v) ≥ 2, choose u ∈ N(v) − {w}. Note every vertex in B(T, v, u)

is further from ℓ than v and therefore B(T, v, u) ⊆ S. Moreover, as v is not a stem, deg(u) ≥ 2. Therefore choose

u′ ∈ N(u)−{v}. Note that N [u′] ⊆ B(T, v, u) (as in Figure 3.3). Now set T ′ = B(T, v, w) and S′ = S ∩B(T, v, w).

T ′ is a nontrivial tree as w, ℓ ∈ T ′. For each x ∈ V (T ′), NT [x] = NT ′ [x], except for w where NT [x] = NT ′ [x] ∪ {v}.
As v /∈ S, |NT [x] ∩ S| = |NT ′ [x] ∩ S′| ≥ 2 for all x ∈ V (T ′). Therefore S′ is a double dominating set of T ′. Finally

the only vertex in V (T )− V (T ′) which was not in S was v, as v was the furthest vertex from ℓ which was not in S.

Therefore |V (T ′)−S′| = |V (T )−S|−1 = k and by our induction hypothesis there exists a collection of k+1 vertices

with disjoint closed neighbourhoods in T ′. Let P denote this collection. As v /∈ NT [u
′] then NT [x] ∩ NT [u

′] = ∅
for all x ∈ V (T ′). Therefore P ∪ {u′} is a collection of k + 2 = |V − S| + 1 vertices with pairwise disjoint closed

neighbourhoods in T .

We need two additional lemmas on the way to finding the extremal tree with the least average order of dominating

sets.

Lemma 3.11. [8] K1,n−1 has the most dominating sets amongst all trees of order n. �

Lemma 3.12. [7] For every nontrivial tree T , 2γ(T ) ≤ γ×2(T ). �

Lemma 3.13. If T is a graph with n vertices then dn−k ≥ dk+1 for all k + 1 ≤ n+1
2 .

Proof. Fix k ≤ n+1
2 . If k + 1 < γ(T ) then clearly dn−k ≥ dk+1 holds as dk+1 = 0. So suppose for the remiander

of this proof that k + 1 ≥ γ(T ). We will now use Hall’s Theorem again. As before, let Dk denote the collection
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of all dominating sets of order k. We now construct a bipartite graph with bipartition (Dk+1, Dn−k); two vertices

A ∈ Dk+1 and B ∈ Dn−k are adjacent if A ⊆ B. As every superset of a dominating set remains dominating, the

degree of each A ∈ Dk+1 is
(
n−k−1
n−2k−1

)
=

(
n−k−1

k

)
. By the same argument used in the proof of Proposition 2.3, it

suffices to show for any B ∈ Dn−k there are at most
(
n−k−1

k

)
subsets of B which are in Dk+1.

By Theorem 3.10, γ×2(T ) + γ(T ) ≥ n+ 1 and hence k + 1 ≥ n+ 1− γ×2(T ) We now consider two cases:

Case 1: Suppose k + 1 > n + 1 − γ×2(T ) then γ×2(T ) > n − k. For any dominating set B ∈ Dn−k there exists

a vertex v ∈ T such that N [v] ∩ B contains exactly one vertex. Let {u} = N [v] ∩ B. Then B − u is no longer a

dominating set. Hence there are at most
(
n−k
k+1

)
−
(
n−k−1
k+1

)
=

(
n−k−1

k

)
subsets of B which are also in Dk+1.

Case 2: Suppose k + 1 = n + 1 − γ×2(T ) then γ×2(T ) = n − k. As γ×2(T ) + γ(T ) ≥ n + 1 then γ(T ) ≥ k + 1.

Furthermore, as γ(T ) ≤ k + 1, it follows that k + 1 = γ(T ). For any dominating set B ∈ Dn−k, if B is not a

double dominating set then it follows for Case 1 that there are at most
(
n−k−1

k

)
subsets of B which are also in

Dk+1. So suppose B is a double dominating set. Let m be the number stems in T . If m = 1 then T = K1,n−1. It

is easy to see k + 1 = γ(K1,n−1) = 1 so n− k = n. Furthermore more dn(K1,n−1) = d1(K1,n−1) = 1 and therefore

dn(K1,n−1) ≥ d1(K1,n−1). Now suppose m ≥ 2. Choose two stems s1 and s2 along with leaves ℓ1 and ℓ2 which

are adjacent to s1 and s2 respectively. As B is a double dominating set then s1, s2, ℓ1, ℓ2 ∈ B, otherwise ℓ1 or ℓ2

with not be double dominated. Furthermore if A ⊆ B such that A ∈ Dk+1, then A is a minimum dominating set.

Therefore A contains exactly one of si or ℓi for each i = 1, 2 and remaining k+1 vertices of A are chosen from then

remaining n − k − 4 vertices in B. Therefore there are at most 4
(
n−k−4
k−1

)
subsets A ⊆ B such that A ∈ Dk+1. If

n− k − 4 ≥ 1, then
(
n−k−4
k−1

)
=

(
n−k−5
k−2

)
+
(
n−k−5
k−1

)
≤

(
n−k−4
k−2

)
+
(
n−k−4

k

)
and

4

(
n− k − 4

k − 1

)
≤
((

n− k − 4

k − 2

)
+

(
n− k − 4

k − 1

))
+

(
n− k − 4

k − 1

)
+

((
n− k − 4

k − 1

)
+

(
n− k − 4

k

))

=

(
n− k − 3

k − 2

)
+

(
n− k − 4

k − 1

)
+

(
n− k − 3

k

)

≤
((

n− k − 3

k − 2

)
+

(
n− k − 3

k − 1

))
+

((
n− k − 3

k − 1

)
+

(
n− k − 3

k

))

=

(
n− k − 2

k − 1

)
+

(
n− k − 2

k

)

=

(
n− k − 1

k

)
,

Otherwise, suppose n − k − 4 < 1. As γ×2(T ) = n − k then γ×2(T ) ≤ 4. By Lemma 3.12, 2γ(T ) ≤ γ×2(T ).

Therefore γ(T ) ≤ 2. Furthermore as T has two stems, γ(T ) ≥ 2 and therefore γ(T ) = 2. Now γ×2(T ) + γ(T ) =

n− k + k + 1 = n+ 1, so n ≤ 5. There are exactly three trees with γ(T ) = 2 and n ≤ 5. They are shown below.

(a) P4 (b) T5 (c) P5

However γ×2(P4) = 4, γ(P4) = 2 so γ×2(P4) + γ(P4) = 6 6= n+ 1 and γ×2(T5) = 5, γ(T5) = 2 so γ×2(T5) + γ(T5) =
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7 6= n + 1, so we can omit these cases. Finally, D(P5, x) = x5 + 5x4 + 8x3 + 3x2 which satisfies dn−k ≥ dk+1 for

k + 1 ≤ n+1
2 .

Theorem 3.14. If T is a graph with n vertices avd(T ) ≥ avd(K1,n−1) with equality if and only if T ∼= K1,n−1.

Proof. By Lemma 3.13, avd(T ) ≥ n+1
2 and dn−k ≥ dk+1 for k + 1 ≤ n+1

2 . Suppose T 6∼= K1,n−1, so γ(T ) ≥ 2 and

d(T, 1) = 0. Now consider the mean domination order of all dominating sets except for the dominating set V (T ).

Let D∗(T ) = D(T )− {V (T )}. Note that

av(D∗(T )) =
D′(T, 1)− n

D(T, 1)− 1

For k+1 ≤ n+1
2 let Bk = Dn−k(T )∪Dk+1(T ). Note that av(Bk) ≥ n+1

2 as dn−k ≥ dk+1. Furthermore B2, . . . ,Bn+1

2

is a partition of D∗(T ). It follows from Lemma 2.2 that

D′(T, 1)− n

D(T, 1)− 1
= av(D∗(T )) ≥ n+ 1

2
.

By Lemma 3.11, D(T, 1) ≤ D(K1,n−1, 1) and

avd(T ) =
n+D′(T, 1)− n

D(T, 1)

=
n

D(T, 1)
+

(
D(T, 1)− 1

D(T, 1)

)
D′(T, 1)− n

D(T, 1)− 1

≥ n

D(T, 1)
+

(
D(T, 1)− 1

D(T, 1)

)
n+ 1

2

≥ n

D(K1,n−1, 1)
+

(
D(K1,n−1, 1)− 1

D(K1,n−1, 1)

)
n+ 1

2

>
n− 1

D(K1,n−1, 1)
+

(
D(K1,n−1, 1)− 1

D(K1,n−1, 1)

)
n+ 1

2

=
n− 1

2n−1 + 1
+

(
2n−1

2n−1 + 1

)
n+ 1

2

=
n− 1 + 2n−2(n+ 1)

2n−1 + 1
= avd(K1,n−1)

4 Distribution of Average Order of Dominating Sets

What are the possible values for avd(G)? If G is a graph of order n, we showed in the previous section avd(G) ∈
(n2 , n], but it seems unlikely that one can say precisely what values in the interval are average orders of dominating

sets. A natural variant of avd(G) is âvd(G) = avd(G)
n

which we shall refer to as the normalized average order

of dominating sets in G. (Similar kinds of normalized graph parameters have been investigated throughout the

literature – for example, [13, 15, 19].)
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We start with some examples. We say a graph contains a simple k-path if there exists k vertices of degree two

which induce a path in G. Two families of graphs which contains simple k-paths are paths Pn and cycles Cn (where

k = n− 2 and n− 1, respectively). The following holds for graphs which contain simple 3-paths.

Theorem 4.1. [17] Suppose G is a graph with vertices u, v, w which form a simple 3-path. Then

D(G, x) = x(D(G/u, x) +D(G/u/v, x) +D(G/u/v/w, x))

where G/u is the graph formed by joining every neighbour of u and then deleting u. �

There is no known closed formula for all coefficients of D(Pk, x) and D(Ck, x) respectively. This makes de-

termining mean dominating order of paths and cycles difficult. We will now show that for a family of graphs

satisfying a recurrence relation similar to that in Theorem 4.1, we can calculate the limit of the normalized average

order of dominating sets as n → ∞. First we shall put forward a way to calculate the limits of average values of

functions of a certain type (which include those that arise from solving linear polynomial recurrences); the proof is

straightforward and omitted.

Theorem 4.2. Suppose functions fn(x) satisfy

fn(x) = α1(x)(λ1(x))
n + α2(x)(λ2(x))

n + · · ·+ αk(x)(λk(x))
n

where αi(x) and λi(x) are fixed non-zero analytic functions, such that |λ1(1)| > |λi(1)| for all i > 1. Then

lim
n→∞

f ′
n(1)

nfn(1)
=

λ′
1(1)

λ1(1)
.

�

Theorem 4.3. lim
n→∞

âvd(Pn) = lim
n→∞

âvd(Cn) ≈ 0.618419922.

Proof. For both paths and cycles, we have a sequence of graphs (Gn)n≥1 which satisfy

D(Gn, x) = x(D(Gn−1, x) +D(Gn−2, x) +D(Gn−3, x))

As Gn follows the homogeneous linear recursive relation D(Gn, x) = x(D(Gn−1, x) + D(Gn−2, x) + D(Gn−3, x)),

then D(Gn, x) = α1(x)λ1(x)
n + α2(x)λ2(x)

n + α3(x)λ3(x)
n where each λ1(x) satisfies

λi(x)
3 − xλi(x)

2 − xλi(x) − x = 0.

We solve this cubic polynomial (see also [3]). The solutions are

λ1(x) =
x

3
+ p(x) + q(x),

λ2(x) =
x

3
− p(x)− q(x) +

√
3

2
(p(x) − q(x)) i,

λ3(x) =
x

3
− p(x)− q(x) −

√
3

2
(p(x) − q(x)) i,
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where

p(x) =
3

√
x3

27
+

x2

6
+

x

2
+

√
x4

36
+

7x3

54
+

x2

4

q(x) =
3

√
x3

27
+

x2

6
+

x

2
−
√

x4

36
+

7x3

54
+

x2

4

Note |λ1(1)| ≈ 1.83929 > |λ2(1)| = |λ3(1)| ≈ 0.73735.

Therefore by Theorem 4.2, lim
n→∞

avd(Gn)
n

=
λ′

1(1)
λ1(1)

. It follows that

lim
n→∞

avd(Gn)

n
=

λ′
1(1)

λ1(1)

=
1
3 + p′(1) + q′(1)
1
3 + p(1) + q(1)

=

1
3 + 27

√
33+187

66(19+3
√
33)

2
3

− 27
√
33−187

66(19−3
√
33)

2
3

1
3 + (19+3

√
33)

1
3

3 + (19−3
√
33)

1
3

3

=
1

3
+

(88− 8
√
33)(19 + 3

√
33)

1
3

1056
+

(55− 7
√
33)(19 + 3

√
33)

2
3

1056
,

which we will denote by r. By Theorem 4.1, both Cn and Pn satisfy the same recurrence as Gn and hence

lim
n→∞

avd(Pn)
n

= lim
n→∞

avd(Cn)
n

= r ≈ 0.618419922.

For all graphs of order 9 we counted the number of graphs with âvd(G) ∈ [ 12 + k
20n ,

1
2 + k+1

20n ) for each integer

0 ≤ k ≤ 10n− 1. Figure 4.1 shows the linearly interpolated distribution of âvd(G) for all graphs of order 9. The

distribution appears to be skewed towards 1
2 . However, our next result shows âvd(G) can be arbitrarily closed to

any value in
[
1
2 , 1

]
.

Figure 4.1: Distribution of avd(G) for all graphs of order 9
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Proposition 4.4. The set
{
âvd(G) : G is a graph

}
is dense in [ 12 , 1].

Proof. It suffices to show for every rational number a
b

∈ [0.5, 1] (a and b positive) there exists a sequence of

graphs (Gk)k≥1, with orders nk respectively, such that limk→∞ nk = ∞ and limk→∞
avd(Gk)

nk

= a
b
. Let Gk =

(2b − 2a)Kk ∪ (2a− b)Kk; Gk has order (2b − 2a)k + (2a− b)k = bk. Note such a graph exists as a
b
∈ [0.5, 1] and

hence a ≤ b ≤ 2a. Recall D(Kk, x) = (1 + x)k − 1 and D(Kk, x) = xk. Therefore

lim
i→∞

avd(Kk)

k
= lim

k→∞

k2k−1

k(2k − 1)
= 0.5 and lim

k→∞

avd(Kk)

k
= 1.

Therefore by Lemma 1.1

lim
k→∞

avd(Gk)

bk
= lim

k→∞

(2b− 2a)avd(Kk) + (2a− b)avd(Kk)

bk

= lim
i→∞

(2b− 2a)avd(Kk)

bk
+ lim

k→∞

(2a− b)avd(Kk)

bk

=
(2b− 2a) · 0.5

b
+

2a− b

b
=

a

b

While we have shown that the closure of the normalized average order of dominating sets fills the interval [1/2, 1],

where do most values lie? Let G(n, p) denote the sample space of random graphs on n vertices (each edge exists is

independent present with probability p). We will now show with probability tending to 1, the normallized average

order of dominating sets of a random graph approaches 1
2 (even if the graph is sparse with p close to 0); this explains

the “bundling up” of values near n/2 in Figure 4.1.

Theorem 4.5. Let Gn ∈ G(n, p). Then

lim
n→∞

âvd(Gn) =
1

2
.

Proof. It follows from Theorem 2.5 that âvd(Gn) ≥ 1
2 . Therefore it is sufficient to show lim

n→∞
âvd(Gn) ≤ 1

2 .

The degree of any vertex v of Gn has a binomial distribution Xv with N = n− 1, and hence has mean p(n− 1).

From Hoeffding’s well known bound on the tail of a binomial distribution, it follows that for any fixed ε > 0,

Prob (Xv ≤ (p− ε)(n− 1)) ≤ e−2ε2(n−1).

Thus

Prob (∪vXv ≤ (p− ε)(n− 1)) ≤ ne−2ε2(n−1) → 0.

It follows that δ(Gn) > (p−ε)(n−1) > 2 log2(n) with probability tending to 1. By Corollary 3.7, if δ(Gn) ≥ 2 log2(n)

then avd(Gn) ≤ n+1
2 . Therefore with probability tending to 1,

lim
n→∞

âvd(Gn) ≤ lim
n→∞

n+ 1

2n
=

1

2
,

and we are done.
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5 Conclusion and Open Problems

The most salient open problem is that in Conjecture 3.8, namely, a tight upper bound on the average order of

dominating sets among all connected graphs of order n. As mentioned previously, any graph which contains a

perfect matching is quasi-regularizable. Let ν(G) denote the matching number of G, that is, the largest cardinality

of a matching. We alter the proof of the previous theorem to put avd(G) in terms of ν(G). This will not improve the

bound from Theorem 3.9 for graphs with perfect matchings. However there are graphs which contain near perfect

matchings which are not quasi-regularizable and therefore not subject to the bound in Theorem 3.9, for example

paths of odd order. However, we can get an upper bound via the matching number.

Theorem 5.1. Let G be a graph with n vertices. Then avd(G) ≤ n− 2ν(G)
3 .

Proof. We begin by showing |a(S)| ≤ 2(n − ν(G)) − |S| for every S ∈ D(G). By Lemma 3.2, |a1(S)| ≤ |N1(S)|.
Therefore it suffices to show |a2(S)| ≤ |N2(S)| + n − 2ν(G). For every v ∈ a2(S), N(v) ⊆ V − S otherwise

PrivS(v) 6= {v}. Furthermore N(v) ⊆ N2(S) otherwise v ∈ a1(S). Fix a maximum matching in G. Each vertex

in a2(S) is either unmatched or matched with a vertex in N2(S). Note there are at most n − 2ν(G) unmatched

vertices in G. Therefore |a2(S)| ≤ |N2(S)|+ n− 2ν(G).

Finally as |a(S)| ≤ 2(n− ν(G)) − |S| then ∑
S∈D(G)

|a(S)| ≤ 2(n− ν(G))D(G, 1) −D′(G, 1). Thus together with

Lemma 3.1 we obtain

2D′(G, 1)− nD(G, 1) ≤ 2(n− ν(G))D(G, 1) −D′(G, 1) ⇒ avd(G) =
D′(G, 1)

D(G, 1)
≤ n− 2ν(G)

3
.

Another avenue of research is investigating the monotonicity of avd(G) with respect to vertex or edge deletion.

For example the removal of any edge or vertex in a graph decreases the number of dominating sets. However this

is not necessarily the case for avd(G). Let G be the graph pictured in Figure 5.1.

v1

v2

v3

v4

v5

v6

Figure 5.1: A vertex labelled graph

It is not difficult to determine D(G, x) = x6 + 6x5 + 12x4 + 10x3 + 5x2 + x and therefore avd(G) = 25/7.

However

• avd(G− v1) =
58
19 < avd(G) < 13

3 = avd(G− v1)

• avd(G− v5v6) =
39
11 < avd(G) < 78

19 = avd(G− v1v4)

Despite this the following conjecture holds for all graphs on up to 7 vertices
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Conjecture 5.2. For a nonempty graph G there exists a vertex v and edge e such that

avd(G− v) < avd(G) < avd(G− e).

References

[1] S. Akbari, S. Alikhani, and Y. H. Peng. Characterization of graphs using domination polynomials. Eur. J.

Comb., 31:1714–1724, 2010.

[2] S. Alikhani. Dominating sets and domination polynomials of graphs. Lambert Academic Publishing, first

edition, 2012.

[3] Saeid Alikhani. On the domination polynomials of non P4-free graphs. Iran. J. Math. Sci. Inform., 8(2):49–55,

2013.

[4] Eric O.D. Andriantiana, Valisoa Razanajatovo Misanantenaina, and Stephan Wagner. The average size of

independent sets of graphs. Eur. J. Math., 2019.

[5] Eric O.D. Andriantiana, Valisoa Razanajatovo Misanantenaina, and Stephan Wagner. The Average Size of

Matchings in Graphs. Graphs Comb., 36(3):539–560, 2020.

[6] Claude Berge. Some common properties for regularizable graphs, edge-critical graphs and B-graphs, volume

108. Springer-Verlag, Berlin, 1980.

[7] Mostafa Blidia, Mustapha Chellali, Teresa W Haynes, and Michael A. Henning. Independent and double

domination in trees. Util. Math., 70, 2006.

[8] Dorota Brod and Zdzis law Skupien. Trees with extremal numbers of dominating sets. Australas. J. Comb.,

35:273–290, 2006.

[9] R.A. Brualdi. Introductory Combinatorics. Pearson/Prentice Hall, fifth edition, 2010.

[10] J. N. Darroch. On the Distribution of the Number of Successes in Independent Trials. Ann. Math. Stat.,

35(3):1317–1321, 1964.

[11] J.K. Doyle and J.E. Graver. Mean Distance in a Graph. Discrete Math., 17:147–154, 1977.

[12] Frank Harary and Teresa W Haynes. Double domination in graphs. Ars Comb., 55:201–213, 2000.

[13] J. Haslegrave. Extremal results on average subtree density of seriesreduced trees. J. Comb. Theory, Ser. B,

107:26–41, 2014.

[14] T.W. Haynes, S. Hedetniemi, and P.J. Slater. Fundamentals of domination in graphs. Marcel Dekker, 1998.

[15] Robert E Jamison. On the Average Number of Nodes in a Subtree of a Tree. J. Comb. Theory, Ser. B,

35:207–223, 1983.

20



[16] Robert E Jamison. Monotonicity of the Mean Order of Subtrees. J. Comb. Theory, Ser. B, 37:70–78, 1984.

[17] T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks. Recurrence relations and splitting formulas for the

domination polynomial. Electron. J. Comb., 19:1–27, 2012.

[18] Mohammad Reza Oboudi. On the roots of domination polynomial of graphs. Discret. Appl. Math., 205:126–131,

2016.

[19] Andrew Vince and Hua Wang. The average order of a subtree of a tree. J. Comb. Theory, Ser. B, 100(2):161–

170, 2010.

[20] Stephan Wagner and Hua Wang. On the Local and Global Means of Subtree Orders. J. Graph Theory,

70560:154–166, 2015.

[21] Harry Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69(1):17–20, 1947.

21


	1 Introduction
	2 Extremal Graphs
	3 Bounds
	3.1 General graphs
	3.2 Trees

	4 Distribution of Average Order of Dominating Sets
	5 Conclusion and Open Problems

