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ON A REPRESENTATION OF THE AUTOMORPHISM GROUP

OF A GRAPH IN A UNIMODULAR GROUP

ISTVÁN ESTÉLYI, JÁN KARABÁŠ, ROMAN NEDELA, AND ALEXANDER MEDNYKH

Abstract. We investigate a representation of the automorphism group of a
connected graph X in the group of unimodular matrices Uβ of dimension β,
where β is the Betti number of graph X. We classify the graphs for which
the automorphism group does not embed into Uβ . It follows that if X has no
pendant vertices and X is not a simple cycle, then the representation is faithful
and Aut X acts faithfully on H1(X,Z). The latter statement can be viewed
as a discrete analogue of a classical Hurwitz’s theorem on Riemann surfaces of
genera greater than one.

1. Introduction

Given any topological space X and a finite group G of homeomorphisms of X ,
consider the associated action of G on the first homology group H1(X,Z). It is
natural to ask when this representation is faithful. Hurwitz’s theorem says when
X is a Riemann surface of genus greater than one, the answer is yes, see Farkas
and Kra [4, Theorem V.3.1, p. 270]. A. M. MacBeath in [6] proved that the action
remains faithful on the homology group H1(X,Zp), p > 2, but fails for H1(X,Z2),
see also [4, p. 276]. In this paper we consider the case where X is a finite graph. A
motivation to investigate it comes from the applications of the matrix representation
of the automorphism group of a graph in the lifting automorphism problem [7, 8, 9].
Recently we have found an application of the result in investigation of structure of
Jacobian of a graph, see [1] for definitions and further details.

Throughout we assume that X is a simple connected graph. By a dart of X we
mean an edge endowed with one of the two possible orientations. Thus every edge
uv gives rise to two darts (u, v) and (v, u) distinguished just by the orientation. If x
is dart, then the oppositely oriented dart underlying the same edge will be denoted
by x−1. An unoriented simple cycle is a connected subgraph of X , where every
vertex has degree 2. Any simple cycle has two orientations C, C−1 which we call
oriented (simple) cycles.

Let T be a spanning tree of X . For every co-tree edge ei choose one of the
two underlying darts, and denote it by xi. Clearly, each xi determines a unique
simple oriented cycle Ci = (xi, y1, y2, . . . , yk), where y1y2 . . . yk is the unique path
in T joining the terminal vertex of xi to the initial vertex of xi. The cycles Ci,
i = 1, . . . , β will be called fundamental oriented cycles. They form a basis of first
homology group H1(X) which is isomorphic to free abelian group of rank β, where
β(X) is the Betti number.
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An automorphism of a graph is a permutation of the vertices taking adjacent
vertices onto adjacent vertices. In this note we consider as a rule the induced action
of graph automorphisms on the set of darts. Hence automorphisms of a graph are
considered as permutations of the set of darts. For every automorphism f ∈ Aut X
we can construct a matrix M = MT (f) with entries in {1, 0,−1} as follows. Fix a
linear order of the co-tree edges e1, e2, . . . , eβ, where β = β(X) = e(X)− v(X) + 1.
The automorphism f of the graph X induces a linear transformation of H1(X)
which we can treat as a vector space of dimension β (with integer scalars). Then
MT (f) is the usual matrix of a linear transformation with respect to the basis
given by the fundamental oriented cycles Ci determined by co-tree darts of T . In
particular, the entry mi,j of MT (f) takes value 1 or −1 if and only if xi or x−1

i

is a dart traversed by f(Cj), respectively. Finally, choosing a different spanning
tree T ′ can be viewed as a change of basis of the vector space H1(X). Hence,
MT ′(f) is a conjugate of MT (f) by a matrix representing the coordinates for the
new cycles in terms of the old cycles. In particular, the issue of faithfulness is
obviously independent of the choice of spanning tree.

Recall that a square matrix is unimodular if its determinant is ±1. The uni-
modular matrices of dimension β (with standard multiplication) form a group, here
denoted Uβ . By convention, if β = 0, the group Uβ is trivial. The following result
is well-known.

Theorem 1 ([9]). The assignment ΘT : f 7→ MT (f) defines a homomorphism of
Aut X into the group of unimodular matrices.

Observe that if X is a tree with a non-trivial automorphism group, or if X is a
simple cycle, then Θ = ΘT is not injective for any spanning tree T of X . In what
follows, we consider the following problem:

Problem. For which connected graphs X does the homomorphism ΘT determine
an embedding of Aut X into the group Uβ?

2. Main result

We will see that the answer to the posed problem depends on the structure of
blocks of X . To this end, we recall a few related basic results on the 2-connectivity
of graphs, that can be found e.g. in monographs [2, Chapter 5] and [3, Chapter 3].
A graph with at least two vertices is 2-connected, if it cannot be disconnected
by the removal of a single vertex, or in other words, if it has no cutvertices. A
bridge in a connected graph is an edge whose removal disconnects the graph. A
bridgeless connected graph is 2-edge-conected. Clearly, a 2-connected graph is 2-
edge-connected.

By a block of a graph X we mean a maximal 2-connected induced subgraph of
X . A block with at least three vertices is called nontrivial. Blocks of an arbitrary
simple graph determine a decomposition of the set of edges. More precisely, the
following properties hold true:

(P1) any two blocks of X have at most one vertex in common,
(P2) every edge of X belongs to exactly one block of X ,
(P3) each cycle of X is contained in exactly one block of X .

The block tree B = B(X) of a connected graph X is a bipartite graph with the
vertex set V (B) formed by the blocks of X and by the cutvertices of X . A cutvertex
v ∈ V (B) is adjacent to a block B ∈ V (B) if and only if v ∈ B. It can be easily seen
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that B is a tree [3, Proposition 3.1.2]. All leafs of B are blocks. It is well-known [3,
Chapter 3] that the centre of B is a single vertex, that can either be a block or a
cutvertex of X . In case it is a block, it is called the central block of X . Since an
automorphism f ∈ Aut X maps blocks onto blocks and permutes the cutvertices,
f induces an automorphism f∗ of B(X). Clearly, f∗ fixes the central vertex of B
and f∗(v) = f(v) if v is a cutvertex.

Lemma 2. Let T be an arbitrary spanning tree of X, let Ci 6= Cj be fundamental
oriented cycles with respect to T and let f ∈ ker ΘT . Then Ci, i = 1, 2, . . . , β(X)
are fixed by f setwise. Moreover, if Ci ∩ Cj 6= ∅, then Ci ∪Cj is fixed pointwise.

Proof. Since MT (f) = id, f(Ci) traverses exactly one co-tree dart xi determining
Ci. Thus f(Ci) = Ci. Assume Ci ∩ Cj is a path P , possibly of length zero. By
the previous statement, P is fixed pointwise. Clearly, there exist a dart in Ci − P
incident to an endvertex of P . Such a dart is fixed by f . An automorphism of a
simple cycle C fixing a dart fixes C pointwise. �

Corollary 3. If f ∈ ker ΘT , then f(B) = B for each nontrivial block B in X.

Lemma 4. A maximal 2-edge-connected subgraph of a connected graph X that is
not a simple cycle is fixed pointwise by f ∈ Aut X.

Proof. Let Z be a subgraph of X satisfying the assumptions. Let Y be a graph
whose vertices are oriented fundamental cycles of Z. Two such cycles are adjacent
if they have nontrivial intersection. Since Z has no bridges, Y is connected. By the
assumptions Y contains more than one vertex. Using induction based on Lemma 2,
f is the identity on Z. �

Proposition 5. Let X be a simple connected graph without vertices of degree one.
Then either the homomorphism ΘT : Aut X → Uβ is injective or X is a simple
cycle.

Proof. If X is 2-edge-connected, the statement follows from Lemma 4.
Suppose now that X has bridges. Consider the block tree B = B(X). By

assumptions, B(X) has at least 3 vertices. Since there are no vertices of degree one,
every leaf in B represents a nontrivial block. By Corollary 3, every leaf of B(X) is
fixed. Since any automorphism of a tree fixing all the leafs is the identity, we have
f∗ = id. Hence, f fixes all bridges of X . By Lemma 4, f also fixes blocks of X that
are not cycles pointwise. If a block B is a cycle and X has at least two blocks, then
the unique simple path P in B from B to any block B′ is fixed by f . By definition
of B, P traverses a cutvertex u ∈ B. Since f fixes u ∈ B, by Lemma 2, f

∣

∣

B
= id.

Therefore, f = id on X . �

Let w ∈ V (X) be a cutvertex of X such that there exist a bridge B1 and a
nontrivial block B2 ≇ K2, both containing w. By a pendant tree of X rooted at
w we mean a subgraph of X induced by {w} ∪ V (Fw), where Fw is the maximal
acyclic subgraph of X−w. A pendant tree will be called rigid, if its automorphism
group is trivial. A unicyclic graph will be called periodic if it admits a non-trivial
automorphism f rotating the unique cycle.

Example 6. All periodic unicyclic graphs can be constructed as follows. Choose
two positive integers n, k such that n > 2, k | n, and k < n. Further, choose a se-
quence of rooted trees S0, S1, . . . , Sk−1 with the corresponding roots w0, w1, . . . , wk−1.
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Let C = (v0, v1, . . . , vn−1) be a simple cycle with vertices vi, i ∈ {0, 1, . . . , n− 1}.
Form a graph X by taking the cycle C and attach to every vertex vj of C a copy
of the tree Si, where j ≡ i (mod k), by identifying vj with the root wi of Si, see
e.g. Figure 1.

It is obvious that X admits an automorphism ̺ of order n
k
> 1 rotating C with

period k. Hence, ̺ is a nontrivial element in the kernel of ΘT , for any spanning
tree T of X . Therefore, ΘT is not injective.

S0 S1 X
Figure 1. An example of a periodic unicyclic graphX with n = 4
and k = 2.

Now we are ready to prove the main result.

Theorem 7. Let X be a connected simple graph and let T be a spanning tree of
X. Then ΘT is not injective if and only if at least one of the following statements
holds.

(i) X is a tree and Aut X 6= 1,
(ii) X contains a pendant tree S such that Aut S 6= 1,
(iii) X is periodic unicyclic.

Proof. The direction (⇐) is straightforward. If X is a tree, then β(X) = 0 and Uβ

is trivial, hence ΘT is not injective whenever Aut X 6= 1. If (ii) holds, then there
exists an automorphism τ ∈ ker ΘT fixing the complement of the pendant tree S
pointwise and acting nontrivially on S. The case (iii) is treated in Example 6.

(⇒) In order to derive a contradiction we assume that there exists a nontrivial
automorphism f ∈ ker ΘT and none of (i), (ii), or (iii) holds true. In particular,
we assume that X is not a tree.

If X contains some pendant trees S0, S1,. . . , Sk−1, we reduce X to a graph X ′

by removing the trees S0,. . . ,Sk−1. Since each of Si is rigid, we have ker ΘT

∣

∣

X′
≥

ker ΘT . By Proposition 5 ker ΘT

∣

∣

X′
is trivial. �

3. Concluding remarks

The aim of this section is to discuss several problems related to the main result.
The first problem reads as follows.

Problem 1. What is the smallest dimension d such that Aut X is faithfully rep-
resented by d× d unimodular matrices?

Theorem 7 characterises graphs X for which d ≤ β(X). On the other hand, the
automorphism group of a complete graph Kn, n > 3, Aut Kn

∼= Sn, is faithfully
represented by permutation matrices of type n×n, while β(Kn) = (n−1)(n−2)/2.
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The other extreme is a cycle Cp, p is prime, which automorphism group Aut Cp
∼=

Dp, with faithful representation by p× p matrices while β(Cp) = 1.
Another motivation comes from representation of groups. Given a group G one

can use Frucht’s theorem [5] and ask for the graph X such that Aut X ∼= G. One
can ask for ‘the smallest unimodular representation’ of the group G.

Problem 2. Given a finite groupG find the smallest graphX such that G ≤ Aut X
is faithfully represented by unimodular matrices.

One can take X to be a Cayley graph for G and then ask the following.

Problem 3. What is the smallest Betti number β(X) through all Cayley graphs
X for G such that the representation of Aut X = G is faithful?

The question is related as well to the problem how to find the smallest generating
set of G, giving the smallest valence of X .

A short analysis of our argumentation shows that the proof of faithfulness of the
unimodular representation of Aut X does not impose any requirements on the field
over which the matrices are considered, except that 1 6= −1. It follows that the
representation remains faithful if the matrices MT (f) are considered over fields of
characteristic p > 2.
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republic
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