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MATÍAS PAVEZ-SIGNÉ1, DANIEL A. QUIROZ2,
AND NICOLÁS SANHUEZA-MATAMALA3

Abstract. A word on q symbols is a sequence of letters from a fixed alphabet
of size q. For an integer k > 1, we say that a word w is k-universal if, given
an arbitrary word of length k, one can obtain it by removing letters from
w. It is easily seen that the minimum length of a k-universal word on q

symbols is exactly qk. We prove that almost every word of size (1 + o(1))cqk
is k-universal with high probability, where cq is an explicit constant whose
value is roughly q log q. Moreover, we show that the k-universality property
for uniformly chosen words exhibits a sharp threshold. Finally, by extending
techniques of Alon [Geometric and Functional Analysis 27 (2017), no. 1, 1–32],
we give asymptotically tight bounds for every higher dimensional analogue of
this problem.

1. Introduction

A universal mathematical structure is one which contains all possible sub-
structures of a particular form. Famous examples of universal structures are De
Bruijn sequences [9], which are periodic words that contain, exactly once, every
possible word of a fixed size as a substring. Universal structures where perhaps
first considered in a general sense by Rado [21], who studied the existence of
universal graphs, hypergraphs and functions for various notions of containment.

The study of universal (finite) graphs has received particular attention, and
for these the containment relation of choice has been that of induced subgraphs.
Thus a graph G is said to be k-universal if G contains every graph on k vertices
as an induced subgraph. Two problems have been at the centre of the study of
k-universal graphs. The first one is to determine n, the minimum value such that
there exists a k-universal graph on n vertices. In 1965, Moon [20] gave, through a
simple counting argument, a lower bound of 2(k−1)/2 for that value of n. Recently,
Alon [1] showed that this lower bound is asymptotically tight, essentially settling
this 50-year-old problem. More so, in a later paper, Alon and Sherman [2]
gave an asymptotically tight bound for the hypergraph generalisation of this
problem. The second central problem in the study of k-universal graphs is the
“random” analogue of the previous question, that is, finding the minimum n
such that “almost every” n-vertex graph is k-universal. After works of Bollobás
and Thomason [7], and Brightwell and Kohayakawa [8], Alon [1] has essentially
settled this problem as well.
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Finding a k-universal graph is equivalent to finding an adjacency matrix which
“contains” the adjacency matrices of all k-vertex graphs. Here we are consider-
ing that an adjacency matrix M contains another matrix M ′, if we can obtain
M ′ from M by iteratively applying the following operation: choose a value i
and delete the i-th row and the i-th column. It is thus natural to consider
square matrices together with the notion of containment given by the operation
of choosing values i, j and deleting row i and column j, and its associated notion
of universality. More generally, we shall consider the analogue of this notion of
containment for “d-dimensional arrays” for all d > 1.

In what follows, we use the common notation [k] = {1, . . . , k}, for any integer
k > 1. Given an alphabet Σ, a positive integer d, and a d-tuple n = (n1, . . . , nd) ∈
N

d, a d-dimensional array of size n over Σ is a collection of symbols ai ∈ Σ
indexed by the vectors i ∈ [n1]× [n2]× · · · × [nd]. With regard to the alphabet
Σ we are only interested in its cardinality, and will assume Σ = [q], whenever
|Σ| = q. Thus Σ will usually be clear from the context and, for short, we will
just talk about d-arrays of a certain size. A d-array of order n is a d-array of
size (n, n, . . . , n). Note that 1-arrays of size n are commonly referred to as words
of length n.

For general d-arrays and a corresponding notion of universality, we study the
analogue of the two questions settled by Alon in the graph case (the “determinis-
tic” and “random” questions). Whenever d > 2, we obtain asymptotically tight
bounds for both questions (see Theorem 3 and Corollary 4, below) by extending
a method used by Alon in the graph case. However, this technique does not seem
(directly) to work when d = 1, that is, for the case of words. For this case we
develop different tools which allow us to show tight bounds for both problems
(see Theorems 1 and 2).

Let us first define the notion of containment we will consider for general d-
arrays, which is a generalisation of the containment notion for matrices discussed
above. For fixed d, let A = (ai) be a d-array of size (n1, . . . , nd). We define
the coordinate restriction operation on A as follows. Choose some j ∈ [d] and
ℓ ∈ [nj ]. Delete all the symbols whose j-th coordinate is ℓ, to obtain a d-array of
size (n1, n2, . . . , nj−1, nj−1, nj+1, . . . , nd). We say a d-array A contains a d-array
A′ if we can obtain A′ by iteratively applying coordinate restriction operations,
and consider universal d-arrays under this containment notion.

For fixed d, k > 1, and a fixed alphabet Σ, we say a d-array over Σ is k-universal
if it contains every d-array A on Σ of size (n1, n2, . . . , nd), where nj 6 k for all
j ∈ [d]. Note that if we want to show that a given d-array is k-universal, it
is enough to show that it contains every d-array of order k. We let fd(q, k) be
the minimum n such that there exists a k-universal d-array of order n over the
q-symbol alphabet.

It is important to distinguish the notion of containment we consider for the
case of words from that considered in De Bruijn sequences. We obtain a smaller
word from a larger one by deleting entries (this notion is commonly called sub-

word or subsequence), while De Bruijn (cyclic) sequences contain each smaller
word in a contiguous manner (a notion usually called substring or factor). In par-
ticular, a substring is always a subword but not vice versa. From a combinatorial
perspective, the notion of subword is just as natural, and has been considered
in various extremal problems. Examples include the “twins problem” [5, 10, 11]
which asks for two disjoint identical subwords of a given word which leave as few
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unused symbols as possible. Another example is the “longest common subse-
quence problem”[13, 17], which seeks the expected value of the longest common
subsequence of two randomly chosen words. The notion of subword also has ad-
ditional desirable properties. For instance, the subword density of a fixed length
word is continuous with respect to the cut-distance in the limit theory for words
sequences [15].

Our results in the case of words are the following.

Theorem 1. Let k > 1 and q > 2 be integers. Then f1(q, k) = qk.

This result establishes the gap between the notions of subword and substring.
While a minimal k-universal word has size qk, a De Bruijn sequence has size
Θ(qk).

We also obtain the following “threshold” behaviour for randomly chosen words
to be k-universal. For any q > 1, let Hq =

∑q
i=1 1/i be the qth harmonic number.

Theorem 2. Let q > 2 be a fixed integer and cq = qHq. Consider a uniformly

chosen word w of length n = n(k) over the q-symbol alphabet. For every ε > 0
we have

Pr[w is k-universal ] →
{

0 if n 6 (1− ε)cqk, and

1 if n > (1 + ε)cqk,

where the limit is taken as k → ∞.

In particular, for the 2-symbol alphabet, we have f1(2, k) = 2k, while roughly
3k symbols are necessary and sufficient for a typical binary word of that length
to be k-universal. This last statement answers a question of Biers-Ariel, Godbole
and Kelley [6].

The following theorem and its corollary are our results for general d-arrays
with d > 2.

Theorem 3. Let d, q > 2 be fixed integers. For every ε > 0, a uniformly chosen

d-array of order n = (1+ ε)k
e
q

kd−1

d over the q-symbol alphabet is k-universal with
high probability as k → ∞.

Furthermore, a simple counting argument gives fd(q, k) >
k
e
q

kd−1

d (see Section
3). Thus we obtain the following.

Corollary 4. Let d, q > 2 be fixed integers. We have fd(q, k) = (1+ok(1))
k
e
q

kd−1

d .

We point out that the cases d = 1 and d > 2 behave in completely different
manners. In the case d = 1, the case of words, the value of n in the random
version is considerably larger than f1(q, k) (a similar scenario holds for the graph
case [1]). In contrast, for d-arrays with d > 2 the order which is necessary for
random d-arrays to be k-universal is asymptotically equal to fd(q, k).

The paper is organised as follows. The proofs of Theorem 1 and 2 are found
in Section 2. In Section 3, we prove Theorem 3 and give the counting argument
which implies Corollary 4. The paper ends with concluding remarks in Section 4.

2. Universal words

In this section we prove Theorems 1 and 2. We will use Σ = [q] as the fixed
q-symbol alphabet. We recall the standard notation used to work with words.
Given a word w and an integer k, wk is the k-fold concatenation of w with itself
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k times. We write Σk for the set of all words of length k over Σ and Σ∗ for the
set of all words over Σ.

Although Theorem 1 can be proved directly, we will derive it using stronger
tools, which we will need to prove Theorem 2. To introduce these tools, we begin
with a few definitions. Given any word w in Σ∗, define UΣ(w) as the minimal
prefix of w which contains all symbols of Σ if it exists, or UΣ(w) = w otherwise.
Define TΣ(w) as w with the prefix UΣ(w) removed. Given a word w, we can
greedily decompose it in a unique way as w = u1u2 · · ·uℓu

′ such that for all
i ∈ [ℓ], ui = UΣ(uiui+1 · · ·uℓu

′) and TΣ(uiui+1 · · ·uℓu
′) = ui+1 · · ·uℓu

′, each ui

contains all the symbols of Σ and u′ (possibly empty) does not contain all the
symbols of Σ. We say u1u2 · · ·uℓu

′ is the Σ-universal decomposition of w and we
let νΣ(w) = ℓ. We can use νΣ(w) to characterise k-universal words, as follows.

Proposition 5. A word w ∈ Σ∗ is k-universal if and only if νΣ(w) > k.

Proof. Suppose w satisfies νΣ(w) > k. Then w has as a prefix a substring
u1u2 · · ·uk where each of the words ui contains all of the symbols from Σ. Then
any word x ∈ Σk can be found greedily as a subword in w by finding the i-th
symbol of x inside the word ui.

In the other direction, suppose νΣ(w) = k′ < k and let w = u1 · · ·uk′u
′ be the

Σ-universal decomposition of w. Since each ui is a minimal prefix of ui · · ·uk′u
′

that contains all the symbols of Σ, it must have the form ui = viσi, where σi is a
symbol in Σ and vi does not use the symbol σi. Further, let σk′+1 be any symbol
in Σ which does not appear in u′ (which exists by definition). We claim that w
does not contain the word w′ = σ1σ2 · · ·σk′σk′+1. Since k′ + 1 6 k, this readily
implies that w is not k-universal.

To find a contradiction, suppose that w′ is contained in w. The first symbol
of w′ is σ1, and the first time σ1 appears in w is at the end of u1, and thus
the remaining symbols must appear after the end of u1. That means the word
σ2 · · ·σk′σk′+1 is contained in u2 · · ·uk′u. Using the same reasoning, we see that
for all j 6 k′, the j-th symbol of w′ appears in w only after the last symbol of
uj. Therefore, the last symbol of w′, which is σk′+1, appears as a symbol in u′, a
contradiction. �

Note that Theorem 1 follows trivially from Proposition 5. This is because any
word containing all symbols from Σ must have size at least |Σ| = q, thus a word
w with νΣ(w) > k must have least qk symbols. Equality is attained by (12 · · · q)k.

Now, we will need to estimate νΣ(w) for a uniformly chosen random word w.
We will appeal to the well-known “coupon-collector problem”. Given a q-sized
set Q and a sequence X1, X2, . . . of independent and uniformly chosen random
variables Xi ∈ Q for all i > 1, define the random variable T as the minimum
integer such that {X1, . . . , XT} = Q. It is known that T can be written as the
sum of q independent geometric random variables T = G1+· · ·+Gq, where Gj has
parameter j/q for each j ∈ [q], and from this it is deduced that E[T ] = cq := qHq.

Now we are ready for the proof of Theorem 2.

Proof of Theorem 2. Let Σ be an alphabet of size q. To estimate νΣ(w) of a
random word w, we will couple w with a word created from “coupon-collector”
experiments, as follows. Define a random string U ∈ Σ∗ using the following
process. Initially, let U = σ0 be a word of length 1, where σ0 is chosen uniformly
from Σ. If U already has all the symbols of Σ, stop. Otherwise, choose uniformly
and independently a symbol σ ∈ Σ and update U by appending σ at the end.
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Clearly, the length |U | of U distributes as the random variable T defined before
the start of the proof and thus E[|U |] = cq. Given k > 0, let U1, . . . , Uk be
independent random strings, each of them distributed as U , and let U (k) =
U1U2 · · ·Uk be their concatenation. Crucially, we have νΣ(U

(k)) = k, and each
strict prefix u of U (k) satisfies νΣ(u) < k.

Given k, n > 0, we construct a (random) word w in Σn as follows: if |U (k)| > n
then let w be the first n symbols of U (k); otherwise, construct w′ from U (k)

by appending n − |U (k)| fresh random symbols at the end of U (k). Note that
each symbol of w is chosen independently and uniformly over the symbols of
Σ, so w corresponds exactly to a word on Σn chosen uniformly at random. By
construction it is clear that, for all k, n > 0,

Pr[w is k-universal ] = Pr[νΣ(w) > k] = Pr[|U (k)| 6 n], (1)

where the first equality is due to Proposition 5.
To estimate the last probability, note that |U (k)| =

∑ℓ
i=1 |Ui| and recall that

each of the |Ui| has expectation equal to cq. Thus, by the (Weak) Law of Large
Numbers, we have that, for all ε > 0,

Pr[(1− ε)cqk 6 |U (k)| 6 (1 + ε)cqk] → 1, (2)

whenever k goes to infinity. In particular, if n 6 (1−ε)cqk then Pr[|U (k)| 6 n] →
0; and if n > (1 + ε)cqk then Pr[|U (k)| 6 n] → 1. By (1), the result follows. �

Remark. Theorem 2 admits an improvement over the size of the error term ε,
which can be replaced by any function in ω(k−1/2). We sketch the proof. We
do the same as before, but instead of (2) one should use that Pr[||U (k)| − cqk| >
ω(1)

√
k] → 0, where ω(1) is any function that goes to infinity together with k.

To prove this last statement, write each |Ui| as the sum of q geometric random

variables |Ui| =
∑q

j=1G
(i)
j , where G

(i)
j has expectation q/j. We want to bound

the probability that |U (k)| − cqk > ω(1)
√
k holds (the event given by the “re-

verse” inequality can be treated analogously). If the inequality holds, then there

exists j ∈ [q] such that
∑k

i=1G
(i)
j − qk/j > ω(1)

√
k/q. A sum of independent

geometric random variables follows a negative binomial distribution, which ad-
mits a Chernoff–Hoeffding-type deviation bound (see, e.g., [14, Problem 2.4]),
and using it gives the result.

3. Universal d-arrays

As before, let Σ = [q] be the q-symbol alphabet. For integers d, k > 1, we
write Ad(Σ, k) for the set of all d-arrays of order k over Σ. In this section,
we prove Theorem 3 and establish the lower bound for fd(q, k) which implies
Corollary 4. To do so, we first need the following well-known estimates for
binomial coefficients, most of which follow from Stirling’s approximation. For all
n, k > 1,

k! >

(

k

e

)k

and

(

n

k

)

6

(en

k

)k

. (3)

Further, if k → ∞ as n → ∞, while k = o(
√
n),

(

n

k

)

= (1 + o(1))
1√
2πk

(en

k

)k

, (4)
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and if k = Ω(n) and k 6 n/2 then

log2

(

n

k

)

= (1 + o(1))H

(

k

n

)

n, (5)

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy.
The lower bound for fd(q, k) when d > 2 is given by the following counting

argument. Notice that there are qk
d

q-symbol d-arrays of order k. Therefore, a
q-symbol d-array of order n must satisfy

(

n

k

)d

> qk
d

in order to contain all arrays of order k. By (3) and the definition of fd(q, k) we
obtain

(

efd(q, k)

k

)kd

>

(

fd(q, k)

k

)d

> qk
d

,

and thus we have

fd(q, k) >
k

e
qk

d−1/d. (6)

In light of Theorem 1, we know that for d = 1 the lower bound obtained here
is considerably far from being tight. But we will show that it is asymptotically
tight for all d > 2. In fact, it is asymptotically tight for the random version of
the problem.

In order to prove Theorem 3 we follow an approach taken by Alon [1] in the
study of universal graphs. Before diving into the proof let us first give a rough
outline.

Given k ∈ N sufficiently large and n = (1 + o(1))k
e
qk

d−1/d, let A ∈ Ad(Σ, n) be
a uniformly chosen d-array of order n over Σ. For a fixed array M ∈ Ad(Σ, k),
we consider the random variable X that counts the number of copies of M
in A. Since there are qk

d

d-arrays of order k over Σ, it is enough to prove that
Pr[X = 0] = o(q−kd) and then use a union bound in order to conclude. However,
is not easy to prove this directly. Instead, we consider the random variable Y
which is the size of the maximum family of disjoint copies of M in A. It is clear
that Y = 0 if and only if X = 0. Therefore, it is enough to estimate Pr[Y = 0].
The random variable Y has the advantage that it is 1-Lipschitz, meaning that
changing the value of one entry of the random array may change the value of
Y in at most 1. Therefore, we may use (a known consequence of) Talagrand’s
inequality in order to upper bound Pr[Y = 0]. However, to be able to use this
tool, we need estimates on the expected number of pairs of copies of M in A
which overlap in some entries, which amounts to studying the variance of X .
Grasping the asymptotic behaviour of this variance turns out to be the most
technical part of our proof.

Theorem 6 (Talagrand’s inequality [3, Theorem 7.7.1]). Let Ω =
∏

i∈[r]Ωi be a

product probability space, with the product probability measure, and let h : Ω → R

be a 1-Lipschitz function, that is, |h(x) − h(y)| 6 1 when x and y differ in at

most one coordinate. For f : N → N, suppose that h is f -certifiable, that is, if
x ∈ Ω is such that h(x) > s then there exists a set I ⊆ [r] of size at most f(s)
such that if a vector y ∈ Ω coincides with x on I, then h(y) > s. Then for

Y (x) = h(x) and all b, t, we have

Pr[Y 6 b− t
√

f(b)] · Pr[Y > b] 6 e−t2/4.
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Proof of Theorem 3. Let d, q, k > 2 be fixed, ε > 0. Let n = (1 + ε)k
e
q

kd−1

d .
Recall that we are interested in the asymptotic behaviour when d, q are fixed
and k tends to infinity. In particular, we can assume whenever necessary that k
is sufficiently large with respect to d, q, ε. All asymptotic notation is with respect
to k tending to infinity.

Let M ∈ Ad(Σ, k) be a fixed d-array of order k over the q-symbol alphabet Σ,
and let A be a uniformly chosen array from Ad(Σ, n). Our aim is to find a good
upper bound on the probability that A does not contain M , i.e., one allowing us
to use a union bound to prove the result.

Let T denote the collection of subsets of [n]d of the form T = T1 × · · · × Td,
where |Ti| = k for each 1 6 i 6 d. Given T ∈ T , let T (A) be the subarray
of A with entries ai and i ∈ T . Let XT be the indicator function of the event
that T (A) induces a copy of M , and let X =

∑

T∈T XT be the number of copies

of M in A. Since for every T ∈ T we have E[XT ] = q−kd, by linearity of the
expectation then we have

µ := E[X ] =

(

n

k

)d

q−kd = (1 + o(1))(2πk)−d/2(1 + ε)dk > (16 log q)k2d, (7)

where the last equality follows from the choice of n and (4), while the inequality
follows from the assumption that k is large.

It will be crucial to show that we have

Var(X) 6 (1 + o(1))µ. (8)

To this end, we investigate (the expectation of) the random variable

Z =
∑

T,T ′

XTXT ′ ,

where the sum ranges over the pairs of distinct T, T ′ ∈ T which intersect in at
least one cell. For a vector i = (i1, . . . , id) ∈ [k]d, we write

∆i =
∑

T,T ′∈Ti

E[XTXT ′ ],

where Ti denotes the collection of indices T, T ′ ∈ T such that |Tj ∩ T ′
j | = ij for

all j ∈ [d]. Equivalently, T and T ′ intersect on exactly ij indices on the j-th
coordinate. Therefore, if ∆ = E[Z], and k = (k, k, . . . , k) then we have

∆ =
∑

T,T ′

E[XTXT ′ ] =
∑

i∈[k]d\{k}

∆i. (9)

Given i ∈ [k], we define

Λi =

(

n

k

)(

k

i

)(

n− k

k − i

)

and Ld(i) = q
id

d (1−(k/i)d−1) 1

(k − i)!

(

k

i

)(

(1 + ε)k

e

)k−i

.

In order to prove (8) we will use the following two claims.

Claim 7. For all i ∈ [k]d we have

∆i

µ
6

∏

j∈[d]

Ld(ij).
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Proof of Claim 7. Let i = (i1, . . . , id). First, note that the total number of
pairs T, T ′ which intersect on ij entries on the j-th coordinate is exactly equal to
∏

j∈[d] Λij . Moreover, the union of two subarrays T and T ′ of this type together

span exactly 2kd − i1 · · · id cells. Then XTXT ′ = 1 holds if and only if in each
one of those cells the correct symbol is attained, which implies

∆i 6 q−(2kd−i1···id)
∏

j∈[d]

Λij .

By the AM-GM inequality applied to id1, . . . , i
d
d, we have i1 · · · id 6 (

∑d
j=1 i

d
j )/d.

Thus we have

∆i

µ
6

q−(2kd−i1···id)
∏

j∈[d] Λij
(

n
k

)d
q−kd

6 q−kd+ 1
d

∑
j∈[d] i

d
j

∏

j∈[d]

(

k

ij

)(

n

k − ij

)

.

Using that
(

n
k−i

)

6 nk−i/(k − i)! and replacing n = (1 + ε)k
e
qk

d−1/d we have

∆i

µ
6 q−kd+ 1

d

∑
j∈[d] i

d
j

∏

j∈[d]

(

k

ij

)

nk−ij

(k − ij)!

6
∏

j∈[d]

q
1
d
(idj−kd) 1

(k − ij)!

(

k

ij

)(

(1 + ε)k

e

)k−ij

q
1
d
kd−1(k−ij)

=
∏

j∈[d]

Ld(ij),

as desired. y

Claim 8. If 1 6 i 6 k − 1, then Ld(i) = o(k−d).

Proof of Claim 8. We will show that there exists c > 0 such that, for all i,
Ld(i) 6 e−ck holds, which clearly yields the claim.

Without loss of generality we may assume that ε 6 (log q)/8, as otherwise we
can restrict to a smaller array. Setting i = k− j and by the Bernoulli inequality
(1 + j/(k − j))d−1 > 1 + j(d− 1)/(k − j) we have

Ld(k − j) = q
(k−j)d

d
(1−(1+j/(k−j))d−1) 1

j!

(

k

j

)(

(1 + ε)k

e

)j

6 q−
d−1
d

j(k−j)d−1 1

j!

(

k

j

)(

(1 + ε)k

e

)j

6 q−
d−1
d

j(k−j)d−1

(

k

j

)(

(1 + ε)k

j

)j

,

where in the last step we used (3) to bound j!.
Taking logarithms, using d > 2, and later using log(1 + ε) 6 ε, we obtain

logLd(k − j) 6 −1

2
j(k − j) log q + j log

(

(1 + ε)k

j

)

+ log

(

k

j

)

6 −1

2
j(k − j) log q + j(ε+ log k − log j) + log

(

k

j

)

(10)

Now, let β ∈ (0, 1/2) be small enough so that

log

(

1

1− β

)

+ 2 log(2)H(β) 6
1

16
log q

holds. We now split the proof into two cases. Assume first that we have j 6

(1−β)k. In this case, we use (3) to bound the binomial coefficient and k−j > βk
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in (10) to get

logLd(k − j) 6 −1

2
jβk log q + j(ε+ log k) + j(log k + 1− log j)

6 j

[

−1

2
βk log q + ε+ 2 log k + 1

]

.

For k large enough, we have ε+2 log k+1 6 1
4
βk log q, so the term in the brackets

is negative. Using j > 1 we finally get logLd(k−j) 6 −1
4
βk log q, or equivalently

Ld(k − j) 6 exp
(

−1
4
βk log q

)

, which finishes the proof in this case.
Now, consider the remaining case j > (1 − β)k. Since β < 1/2, we have

(

k
j

)

6
(

k
(1−β)k

)

=
(

k
βk

)

. Using (5), we get log
(

k
j

)

6 (1 + o(1)) log(2)H(β)k 6

2 log(2)H(β)k. We plug this in (10) to get

logLd(k − j) 6 −1

2
(k − 1) log q + j(ε+ log k − log j) + 2 log(2)H(β)k

6 −1

2
(k − 1) log q + j(ε− log(1− β)) + 2 log(2)H(β)k

6 k

[

−1

4
log q + ε− log(1− β) + 2 log(2)H(β)

]

,

where in the last step we used j 6 k and (k − 1)/2 > k/4, which holds since k
is large. Now we use the assumption ε 6 (log q)/8 and the choice of β to get

logLd(k − j) 6 k

[

−1

8
log q − log(1− β) + 2 log(2)H(β)

]

6 −k
log q

16
.

Thus in this case we have Ld(k − j) 6 exp(−k log q
16

), which finishes the proof of
the claim. y

Since the sum in (9) is over all the kd − 1 many tuples i in [k]d distinct from
(k, . . . , k), then Claim 7 and Claim 8 together imply that

∆ = o(µ). (11)

Now, since X is a sum of zero-one random variables, we have

Var(X) 6 E[X ] +
∑

T,T ′∈T

Cov(XT , XT ′).

In the sum we only need to consider the pairs T, T ′ ∈ T with non-trivial intersec-
tion (otherwise the variables XT , XT ′ are independent and thus their covariance
is zero). Further, we have Cov(XT , XT ′) 6 E(XTXT ′). Therefore, by (11) we
have

Var(X) 6 µ+∆ = (1 + o(1))µ,

and so we have finally proved (8).
By Chebyshev’s inequality, and equations (7) and (8) we have

Pr[|X − µ| > 1
4
µ] 6

16Var(X)

µ2
6

32

µ
→ 0.

Therefore, X > 3µ/4 with probability at least 3/4. Likewise, by Markov’s in-
equality and (11) we have

Pr[Z > µ/5] 6
5 E[Z]

µ
=

5∆

µ
→ 0,
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and therefore Z 6 µ/4 with probability at least 3/4. In particular, both events
hold at the same time with probability at least 1/2.

Let Y denote the random variable which is the size of the maximum family of
disjoint copies of M in A. Since X > 3µ/4 and Z 6 µ/4 hold simultaneously
with probability at least 1/2, then, by conditioning on this event, we deduce that

Pr[Y > µ/2] > 1/2. (12)

Notice also that X = 0 if and only if Y = 0.
We are now ready to use Talagrand’s inequality to finish the proof. Note that

h(A) := Y is 1-Lipschitz, since by switching the value of one entry one can add
or remove at most 1 copy of M (the one using that entry). Moreover, h(A) is

f -certifiable for f(s) = skd. Using b = µ/2 and t = k−d/2
√

µ/2, Talagrand’s
inequality and (12) give us

Pr[X = 0] = Pr[Y = 0] 6 2e−µk−d/8.

Finally, we use a union bound over all the possible choices of M ∈ Ad(Σ, k), to
deduce that the probability that A is not k-universal is at most

2qk
d

e−µk−d/8
6 2qk

d

e−2kd log q = 2q−kd → 0,

where the inequality comes from (7). The result follows. �

Remark. The constant error term ε in Theorem 3 can be improved to Ω(log k/k).
This can be seen by checking that replacing ε = C log k/k (with C being a
large constant) is enough for (7) to hold. This does not change the rest of the
calculations.

4. Concluding remarks

4.1. Uniqueness of subwords. One could wonder whether k-universal words
can contain every subword exactly once, just as De Bruijn sequences contain
every substring exactly once. However, this is not the case for essentially every
value of k.

Proposition 9. Let k > 2 and q > 2 be integers, and w a k-universal word over

the q-symbol alphabet. There exists a word u of length k such that w contains at

least two copies of u.

Proof. Since w is k-universal, Theorem 1 implies w has at least qk symbols.
Thus w contains at least

(

qk
k

)

subwords of length k. For all 1 6 i < k we have
(qk − k + i)/i > q and thus

(

qk

k

)

=
qk(qk − 1) · · · (qk − k + 1)

k · (k − 1)!
= q

k−1
∏

i=1

qk − k + i

i
> qk,

so by the pigeonhole principle there is a word of length k that appears at least
twice as a subword in w. �

The same proof together with (4) yields that, for q fixed and k large, for every
universal word w there is a word of length k contained at least

(

qk
k

)

q−k = 2Ω(k)

times in w.
Notice that the lower bound (6) for fd(q, k) when d > 2, follows from com-

puting the size of a k-universal d-array containing every array of order k exactly
once. So perhaps studying the uniqueness of subarrays in universal d-arrays
could help in obtaining even tighter bounds for these functions.
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4.2. Explicit universal d-arrays. In Theorem 1 we establish that f1(q, k) = qk
by giving an explicit construction of a minimal universal word. In contrast, in
Theorem 3 we establish the upper bound on fd(q, k) for d > 2, by showing that
random d-arrays of that order are likely to be k-universal. It would be interesting
to find “explicit” constructions of almost optimal universal arrays, for all relevant
parameters. The simplest open question in this regard would be the following.

Question 10. Is it possible to give an explicit description of a k-universal 2-array
on 2 symbols of optimal (or close to optimal) order?

In the setting of d-uniform hypergraphs, Alon and Sherman [2] gave an explicit

construction of d-graphs on Θ
(

2(
k

d)/d
)

vertices which contain every k-vertex d-

graph as an induced subhypergraph, which is optimal up to the implied constant.

4.3. Universal random higher-dimensional permutations. For ℓ > 1 an
integer, let Sℓ be the set of all permutations of [ℓ]. For n > k > 1, we say
that a permutation σ ∈ Sn contains a permutation τ ∈ Sk if there are indices
1 6 i1 < · · · < ik 6 n such that for all j, ℓ ∈ [k], σ(ij) < σ(iℓ) if and only if
τ(j) < τ(ℓ). A k-universal permutation is one that contains all permutations of
Sk. The question of the minimal n such that there exists a k-universal permu-
tation in Sn was asked by Arratia [4]. Through a simple counting argument he
observed that such an n must satisfy n > (1 + o(1))k2/e2 and conjectured that
this was the optimal value of n given k. The trivial bound which motivated this
conjecture (now known to be false) was recently improved by Chroman, Kwan
and Singhal [12], although only by a small constant factor.

The random version of this problem was posed by Alon (see [4]) who con-
jectured that a random permutation of order (1 + o(1))k2/4 is k-universal with
high probability. If true, this bound would be tight, as can be deduced from
the known results on the length of the longest increasing subsequence of random
permutations. The best known upper bound for this problem is due to He and
Kwan [16], who recently proved that a random permutation on O(k2 log log k)
elements is k-universal with high probability.

The study of higher dimensional permutations is ripe for further research. A
line of a d-array A = (ai1,...,id) of order n is a sequence of elements obtained
by choosing some j ∈ [n] and looking at the entries ai1,...,ij−1,ℓ,ij+1,...,id, for some
fixed i1, . . . , ij−1, ij+1, . . . , id ∈ [n] and ℓ ranging from 1 to n. Just as a usual
permutation can be identified with a permutation matrix, it possible to define a
d-dimensional permutation (henceforth, d-permutation) of order n as a (d+ 1)-
array of order n over {0, 1}, where each line contains a unique 1 entry (see [18,19]
for equivalent definitions and discussion).

Looking for connections with the case of permutations, we propose the fol-
lowing notion of “universality” for d-permutations. A d-pattern of order k is a
sequence (σ1, . . . , σd) where σℓ ∈ Sk for all ℓ ∈ [d]. We say a d-permutation M of
order n contains a d-pattern of order k if there exists a sequence x(1), . . . , x(k) ∈
[n]d+1 of index vectors such that M

x
(i)
1 x

(i)
2 ···x

(i)
d+1

= 1 for all i ∈ [k], x
(1)
1 < x

(2)
1 <

· · · < x
(k)
1 (the first coordinates of the vectors are increasing), and further, for

each ℓ ∈ [d] and all i, j ∈ [k], it holds that x
(i)
ℓ+1 < x

(j)
ℓ+1 if and only if σℓ(i) < σℓ(j).

Note that for d = 1 this is equivalent to the containment of one permutation in
another. We say a d-permutation M is k-pattern-universal if it contains all
d-patterns of order k.



12 PAVEZ-SIGNÉ, QUIROZ, AND SANHUEZA-MATAMALA

Linial and Simkin [19] considered “monotone subsequences of length k” in
d-permutations, which expressed in our language correspond to d-patterns of
order k of the form (σ, . . . , σ), where σ is the identity function. They showed
that the longest monotone subsequence in a random d-permutation of order n
has length Θ(nd/(d+1)) with high probability. This implies that a random d-
permutation needs to have order at least Ω(k(d+1)/d) to be k-pattern-universal
with high probability. In analogy with the case of permutations, we believe this
to be tight.

Conjecture 11. For d > 2, there exists a constant C > 0 such that a random

d-permutation of order Ck(d+1)/d is k-pattern-universal with high probability as

k → ∞.
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