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Abstract

A complex unit gain graph (T-gain graph), Φ = (G,ϕ) is a graph where the function
ϕ assigns a unit complex number to each orientation of an edge of G, and its inverse
is assigned to the opposite orientation. In this article, we propose gain distance matri-
ces for T-gain graphs. These notions generalize the corresponding known concepts of
distance matrices and signed distance matrices. Shahul K. Hameed et al. introduced
signed distance matrices and developed their properties. Motivated by their work,
we establish several spectral properties, including some equivalences between balanced
T-gain graphs and gain distance matrices. Furthermore, we introduce the notion of
positively weighted T-gain graphs and study some of their properties. Using these
properties, Acharya’s and Stanić’s spectral criteria for balance are deduced. Moreover,
the notions of order independence and distance compatibility are studied. Besides, we
obtain some characterizations for distance compatibility.

Mathematics Subject Classification(2010): 05C22(primary); 05C50, 05C35(secondary).

Keywords. Complex unit gain graph, Signed distance matrix, Distance matrix, Adja-

cency matrix, Hadamard product of matrices.

1 Introduction

Let Φ = (G,ϕ) be a connected complex unit gain graph (T-gain graph) on a simple graph

G with n vertices. Let V (G) = {v1, v2, . . . , vn} and E(G) be the vertex set and the edge set

of G, respectively. If two vertices vi and vj are connected by an edge, then we write vi ∼ vj.

If vi ∼ vj, then the edge between them is denoted by ei,j. The adjacency matrix A(G)

of a graph G is a symmetric matrix whose (i, j)th entry is 1 if vi ∼ vj and zero otherwise.
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A path P in G between the vertices s and t is denoted by sP t. The distance between two

vertices s and t in G is the length of the shortest path between s and t, and is denoted by

dG(s, t) (or simply d(s, t)). The distance matrix of an undirected graph G, denoted by D(G),

is the symmetric n × n matrix whose (i, j)th entry is d(vi, vj). The distance matrix of an

undirected graph has been widely studied in the literature, see [2, 3, 4, 5] and the references

therein.

Let G be a simple undirected graph. An oriented edge from the vertex vs to the vertex

vt is denoted by −→e s,t. For each undirected edge es,t ∈ E(G), there is a pair of oriented edges
−→e s,t and −→e t,s. The collection

−→
E (G) := {−→e s,t,−→e t,s : es,t ∈ E(G)} is the oriented edge set

associated with G. Let T = {z ∈ C : |z| = 1}. A complex unit gain graph (or T-gain graph)

on a simple graph G is an ordered pair (G,ϕ), where the gain function ϕ :
−→
E (G) → T is

a mapping such that ϕ(−→e s,t) = ϕ(−→e t,s)−1, for every es,t ∈ E(G). A T-gain graph (G,ϕ) is

denoted by Φ. The adjacency matrix of a T-gain graph Φ = (G,ϕ) is a Hermitian matrix,

denoted by A(Φ) and its (s, t)th entry is defined as follows:

ast =

{
ϕ(−→e s,t) if vs ∼ vt,

0 otherwise.

The spectrum and the spectral radius of Φ are the spectrum and the spectral radius of A(Φ)

and denoted by spec(Φ) and ρ(Φ), respectively. A signed graph is a graph G together with a

signature function ψ : E(G)→ {±1}, and is denoted by Ψ = (G,ψ). The adjacency matrix

of Ψ, denoted by A(Ψ), is an n×n matrix whose (i, j)th entry is ψ(ei,j). Therefore, a signed

graph can be considered as a T-gain graph Ψ = (G,ψ), where ψ is a signature function. The

notion of adjacency matrix of T-gain graphs generalize the notion of adjacency matrix of

undirected graphs, adjacency matrix of signed graphs and the Hermitian adjacency matrix

of a mixed graph. For more information about the properties of gain graphs and T-gain

graphs, we refer to [11, 12, 16, 17].

Let Ψ = (G,ψ) be a signed graph. The sign of a path in Ψ is the product of sign of all

edges of the path [15]. Recently, in [6] the authors introduced the notion of signed distance

matrices Dmax(Ψ) and Dmin(Ψ) for a signed graph Ψ.

Definition 1.1 ([6, Definition 1.1]). Let Ψ = (G,ψ) be a signed graph with vertex set

V (G) = {v1, v2, . . . , vn}. Then two auxiliary signs are defined as follows:

(a) ψmax(vi, vj) = −1 if all shortest vivj-paths are negative, +1 otherwise,

(b) ψmin(vi, vj) = +1 if all shortest vivj-paths are positive, −1 otherwise.
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The two signed distance matrices are defined as follows:

(a) Dmax(Ψ) = (dmax(vi, vj))n×n,

(b) Dmin(Ψ) = (dmin(vi, vj))n×n,

where dmax(vi, vj) = ψmax(vi, vj)d(vi, vj) and dmin(vi, vj) = ψmin(vi, vj)d(vi, vj).

A signed graph Ψ is distance compatible if and only if Dmax(Ψ) = Dmin(Ψ). A charac-

terization of balanced signed graph in terms of signed distance matrices is obtained in [6].

For more about signed distance matrices, see [6, 13].

In this article, we introduce the notion of gain distance matrices Dmax
< (Φ) and Dmin

< (Φ) for

a T-gain graph Φ = (G,ϕ) associated with an ordered vertex set (V (G), <). These concepts

generalize the notions of signed distance matrices of signed graphs and distance matrices of

undirected graphs. We define positively weighted T-gain graphs and establish two new char-

acterizations for balance of gain graphs. Acharya’s Spectral criterion and Stanić’s spectral

criterion are particular cases of these characterizations. Besides, we introduce two properties

of a T-gain graph, ordered-independence, and distance compatibility to gain distance matri-

ces. Thereupon we establish two characterizations for the balance of T-gain graphs in terms

of gain distance matrices and distance compatibility properties. Subsequently, we present

some results on the characterization of distance compatibility.

This paper is organized as follows: In section 2, we collect needed known definitions and

results. In section 3, we define the notion of gain distance matrices, order-independent and

distance compatibility, and discuss their properties. In section 4, we discuss the positively

weighted T-gain graphs and establish two spectral characterizations for the balance(Theorem

4.2, Theorem 4.3). In section 5, we derive two characterizations for balance T-gain graph

in terms of the gain distance matrices (Theorem 5.2, Theorem 5.3). In section 6, we obtain

a couple of characterizations for distance compatible T-gain graphs (Theorem 6.1, Theorem

6.2, Theorem 6.3).

2 Definitions, notation and preliminary results

Let G = (V (G), E(G)) be a connected undirected graph with no loops and multiple edges,

where V (G) = {v1, v2, . . . , vn} is the vertex set and E(G) is the edge set of G. A graph G is

geodetic, if there exists a unique shortest path between any two vertices of G. Let Φ = (G,ϕ)

be a T-gain graph on G. For s, t ∈ V (G), sP t denotes a path starts at s and ends at t in

G. In case of gain graph, sP t denotes the oriented path from the vertex s to the vertex
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t. The gain of the path sP t is ϕ(sP t) =
k∏
j=1

ϕ(−→ej ), where −→e1 ,−→e2 , . . . ,−→ek are the consecutive

oriented edges in sP t. Therefore, ϕ(tPs) = ϕ(sP t). The gain of an oriented cycle
−→
Cn with

edges −→e1 ,−→e2 , . . . ,−→en is ϕ(
−→
Cn) =

n∏
j=1

ϕ(−→ej ). A cycle C is neutral in Φ if ϕ(
−→
C ) = 1. A gain

graph Φ is balanced, if all cycles in Φ are neutral. A T-gain graph Φ is anti-balanced if −Φ

is balanced. Let Re(x) and Im(x) denote the real and imaginary part of a complex number

x, respectively.

A function ζ : V (G)→ T is a switching function. Let Φ1 = (G,ϕ1) and Φ2 = (G,ϕ2) be

two T-gain graphs. Then Φ1 and Φ2 are switching equivalent, denoted by Φ1 ∼ Φ2, if there

exists a switching function ζ such that ϕ1(
−→e i,j) = ζ(vi)

−1ϕ2(
−→e i,j)ζ(vj), for all ei,j ∈ E(G).

If Φ1 ∼ Φ2, then A(Φ1) and A(Φ2) are diagonally similar and hence have the same spectra.

Lemma 2.1 ([12, Corollary 3.2]). Let Φ1 and Φ2 be two T-gain graphs on a connected graph

G with a normal spanning tree T . Then Φ1 ∼ Φ2 if and only if ϕ1(
−→
Cj) = ϕ2(

−→
Cj), for all

fundamental cycles Cj with respect to T .

A signed graph is a T-gain graph Ψ = (G,ψ), where ψ(−→e i,j) = 1 or −1 for ei,j ∈ E(G).

The sign of a path in Ψ is the product of the signs (the gains) of the edges in the path.

Theorem 2.1 (Harary’s path criterion [7] ). Let Ψ be a signed graph on an underlying graph

G. Then Ψ is balanced if and only if any pair of vertices s, t, every st-path have the same

signature.

Let Cm×n denote the set of all m×n matrices with complex entries. For A = (aij) ∈ Cn×n,

define |A| = (|aij|). For two matrices A = (aij) and B = (bij), we write A ≤ B if aij ≤ bij

for all i, j. A matrix is non-negative, if all entries of a matrix are non-negative. The spectral

radius of a matrix A is denoted by ρ(A).

Theorem 2.2 ([9, Theorem 8.4.5]). Let A,B ∈ Cn×n. Suppose A is irreducible and non-

negative and A ≥ |B|. Let µ = eiθρ(B) be a given maximum modulus eigenvalue of B. If

ρ(A) = ρ(B), then there is a unitary diagonal matrix D such that B = eiθDAD−1.

Let A = (aij), B = (bij) ∈ Cm×n. The Hadamard product of A and B, denoted by

A ◦ B, is defined as A ◦ B = (aijbij)m×n. For any three matrices A,B,C of same order,

(A ◦ B) ◦ C = A ◦ (B ◦ C). Let us recall the following property of Hadamard product of

matrices.
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Proposition 2.1 ([8, Lemma 5.1.2]). Let A,B,C be three n× n matrices and D,E be two

n× n diagonal matrices. Then

D(A ◦B)E = (DAE) ◦B = (DA) ◦ (BE) = (AE) ◦ (DB) = A ◦ (DBE).

3 Gain distance matrices

This section introduces the notion of gain distance matrices of T-gain graphs, which gener-

alize the notion of distance matrices of undirected graphs and signed distance matrices of

signed graphs.

Let Φ = (G,ϕ) be a connected T-gain graph on G. For s, t ∈ V (G), sP t denotes the

oriented path from the vertex s to the vertex t. Define three sets of paths P(s, t),Pmax(s, t)

and Pmin(s, t) as follows:

P(s, t) = {sP t : sP t is a shortest path} ,

Pmax(s, t) =

{
sP t ∈ P(s, t) : Re(ϕ(sP t)) = max

sP̃ t∈P(s,t)
Re(ϕ(sP̃ t))

}
and

Pmin(s, t) =

{
sP t ∈ P(s, t) : Re(ϕ(sP t)) = min

sP̃ t∈P(s,t)
Re(ϕ(sP̃ t))

}
.

Note that Pmax(s, t) = Pmax(t, s) and Pmin(s, t) = Pmin(t, s).

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. We denote (V (G), <)

as an ordered vertex set, where ‘ < ‘ is a total ordering of the vertices of G. An ordering

‘ <r ‘ is the reverse ordering of ‘ < ‘ if vi <r vj if and only if vj < vi, for any i, j. An ordering

‘ < ‘ is the standard vertex ordering if v1 < v2 < · · · < vn.

Definition 3.1 (Auxiliary gains). Let Φ = (G,ϕ) be a T-gain graph with an ordered vertex

set (V (G), <). We define two auxiliary gains with respect to < as follows.

(1) The function ϕ<max : V (G)× V (G)→ T is the maximum auxiliary gain with respect to

the vertex order < such that ϕ<max(s, t) = ϕ<max(t, s) for each (s, t) ∈ V (G)× V (G) and

ϕ<max is defined by

ϕ<max(s, t) = ϕ(sP t)

where s < t, and sP t ∈ Pmax(s, t) and Im(ϕ(sP t)) = max
sP̃ t∈Pmax(s,t)

Im(ϕ(sP̃ t)).
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(2) The function ϕ<min : V (G)× V (G)→ T is the minimum auxiliary gain with respect to

the vertex order < such that ϕ<min(s, t) = ϕ<min(t, s) for each (s, t) ∈ V (G)× V (G) and

ϕ<min is defined by

ϕ<min(s, t) = ϕ(sP t)

where s < t, and sP t ∈ Pmin(s, t) and Im(ϕ(sP t)) = min
sP̃ t∈Pmin(s,t)

Im(ϕ(sP̃ t)).

Note that, for s < t, ϕ<max(s, t)( resp., ϕ<min(s, t)) is the maximum (resp., minimum) gain,

with respect to the lexicographic order, over all the shortest paths between the vertices s

and t.

Definition 3.2 (Gain distances). Let Φ = (G,ϕ) be a T-gain graph with an ordered vertex

set (V (G), <). For any two vertices s, t ∈ V (G), there are two gain distances from the vertex

s to the vertex t which are defined as follows:

(1) d<max(s, t) = ϕ<max(s, t)d(s, t),

(2) d<min(s, t) = ϕ<min(s, t)d(s, t).

Next we define the gain distance matrices for T-gain graphs.

Definition 3.3 (Gain distance matrices). Let Φ = (G,ϕ) be a T-gain graph with an order <

on the vertex set V (G), where V (G) = {v1, v2, · · · , vn}. The gain distance matrices Dmax
< (Φ)

and Dmin
< (Φ) associated with < are defined as follows:

(1) Dmax
< (Φ) = (d<max(vi, vj)),

(2) Dmin
< (Φ) = (d<min(vi, vj)).

Here d<max(vi, vj) is the (i, j)th entry of Dmax
< (Φ).

The gain distance matrices are the generalization of the distance matrix of an undirected

graph and signed distance matrices of a signed graph. It is easy to see that the gain distance

matrices Dmax
< (Φ) and Dmin

< (Φ) are Hermitian, and hence have real eigenvalues. For any

pair of vertices (vs, vt), there are two different maximum gain distances d<max(vs, vt) and

d<max(vt, vs) which have same absolute value but they are the complex conjugate to each

other. The distance d<max(vs, vt) is the maximum gain distance from the vertex vs to the

vertex vt in Φ with respect to the vertex ordering (V (G), <). Likewise, the minimum gain

distance is defined.

Now we illustrate the definitions with the following example.
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𝟔

Figure 1: T-gain graphs Φ = (G,ϕ)

Example 3.1. Let Φ = (G,ϕ) be a T-gain graph shown in Figure 1. Let us consider the

standard order < on vertex set V (G), where V (G) = {v1, v2, v3, v4, v5}. Then

Dmax
< (Φ) =


0 1 2e

iπ
6 1 e

iπ
3

1 0 e
iπ
6 1 2e

iπ
3

2e−
iπ
6 e−

iπ
6 0 e

iπ
6 3e

iπ
6

1 1 e−
iπ
6 0 2e

iπ
3

e−
iπ
3 2e−

iπ
3 3e−

iπ
6 2e−

iπ
3 0

 .

Now, consider the reverse ordering ‘ <r ‘ of the standard order ‘ < ‘. Then

Dmax
<r (Φ) =


0 1 2e−

iπ
6 1 e

iπ
3

1 0 e
iπ
6 1 2e

iπ
3

2e
iπ
6 e−

iπ
6 0 e

iπ
6 3e−

iπ
6

1 1 e−
iπ
6 0 2e

iπ
3

e−
iπ
3 2e−

iπ
3 3e

iπ
6 2e−

iπ
3 0

 .

Here Dmax
< (Φ) 6= Dmax

<r (Φ). In fact, spec(Dmax
< (Φ)) 6= spec(Dmax

<r (Φ)). Similarly,

Dmin
< (Φ) 6= Dmin

<r (Φ).

Definition 3.4 (Vertex order independent). A T-gain graph Φ = (G,ϕ) is vertex order-

independent (simply, order independent), if Dmax
< (Φ) = Dmax

<r (Φ) and Dmin
< (Φ) = Dmin

<r (Φ),

where < is the standard vertex order on V (G). In this case, we define

Dmax(Φ) = Dmax
< (Φ) = Dmax

<r (Φ) and Dmin(Φ) = Dmin
< (Φ) = Dmin

<r (Φ).

Now we present a characterization for order independent T-gain graph.

Theorem 3.1. Let Φ = (G,ϕ) be a T-gain graph. Then Φ is not order independent if and

only if at least one of the following holds.
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(i) There exists vs, vt ∈ V (G) with at least two shortest paths from vs to vt in Pmax(vs, vt)

have different gains.

(ii) There exists vs, vt ∈ V (G) with at least two shortest paths from vs to vt in Pmin(vs, vt)

have different gains.

Proof. Let Φ = (G,ϕ) be a T-gain graph with vertex set V (G) = {v1, v2, · · · , vn}. Let <

be the standard vertex order on V (G). Suppose Φ is not order independent, then either

Dmax
< (Φ) 6= Dmax

<r (Φ) or Dmin
< (Φ) 6= Dmin

<r (Φ) hold. Suppose Dmax
< (Φ) 6= Dmax

<r (Φ). Then there

exists vs, vt ∈ V (G) such that d<max(vs, vt) 6= d<rmax(vs, vt). Then ϕ<max(vs, vt) 6= ϕ<rmax(vs, vt).

Let vs < vt and ϕ<max(vs, vt) = ϕ(vsP1vt) = x + iy ∈ T, for some vsP1vt ∈ Pmax(vs, vt). It is

clear that y 6= 0. Now vt <r vs and ϕ<rmax(vt, vs) = ϕ(vtP2vs), for some vtP2vs ∈ Pmax(vs, vt).

Then ϕ<rmax(vs, vt) = ϕ<rmax(vt, vs) = ϕ(vtP2vs) = ϕ(vsP2vt). Since vtP2vs ∈ Pmax(vs, vt), so

ϕ(vsP2vt) = x − iy1 ∈ T, where either y1 = y or y1 = −y. Also, ϕ<max(vs, vt) 6= ϕ<rmax(vs, vt),

so ϕ(vsP1vt) 6= ϕ(vsP2vt). Thus ϕ(vsP2vt) = x − iy and y > 0. Hence (i) holds. Similarly,

Dmin
< (Φ) 6= Dmin

<r (Φ) implies (ii).

Conversely, suppose statement (i) holds. Then there exist two shortest −−→vsvt-paths vsP1vt

and vsP2vt in Pmax(vs, vt) with different gains. If ϕ(vsP1vt) = x+ iy ∈ T, then ϕ(vsP2vt) =

x− iy, y 6= 0. Without loss of generality, assume that y > 0. If vs < vt, then ϕ<max(vs, vt) =

x + iy and ϕ<rmax(vs, vt) = ϕ<rmax(vt, vs) = x+ iy = x − iy. Thus ϕ<max(vs, vt) 6= ϕ<rmax(vs, vt).

Therefore Dmax
< (Φ) 6= Dmax

<r (Φ) and hence Φ is not order independent. Similarly if the

statement (ii) holds, then Φ is not order independent.

Proposition 3.1. Let Φ = (G,ϕ) be a T-gain graph and ‘ < ‘ be the standard vertex

order. Then Dmax
< (Φ) = Dmin

< (Φ) if and only if Dmax(Φ) and Dmin(Φ) are well defined and

Dmax(Φ) = Dmin(Φ).

Proof. Suppose Dmax
< (Φ) = Dmin

< (Φ). Let s, t ∈ V (G) such that s < t. Then d<max(s, t) =

d<min(s, t). Therefore ϕmax
< (s, t) = ϕmin

< (s, t). Thus all the shortest paths from s to t have the

same gain. Therefore, ϕmax
< (s, t) = ϕmax

<r (s, t) and ϕmin
< (s, t) = ϕmin

<r (s, t). Thus Dmax(Φ) and

Dmin(Φ) are well defined. Since d<max(s, t) = d<min(s, t), so Dmax(Φ) = Dmin(Φ). The converse

is easy to verify.

Theorem 3.2. Let Φ = (G,ϕ) be a T-gain graph and ‘ < ‘ be the standard vertex order.

Let <a be any vertex order on V (G). Then Dmax
< (Φ) = Dmin

< (Φ) if and only if Dmax
<a (Φ) =

Dmin
<a (Φ).
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Proof. Let < be the standard vertex order, and Dmax
< (Φ) = Dmin

< (Φ). Let vi, vj ∈ V (G).

Then d<max(vi, vj) = d<min(vi, vj) and ϕ<max(vi, vj) = ϕ<min(vi, vj). Thus all the shortest paths

from vi to vj have the same gain. Therefore, for any arbitrary vertex ordering <a, we have

ϕ<amax(vi, vj) = ϕ<amin(vi, vj). Hence d<amax(vi, vj) = d<amin(vi, vj). Since vi and vj are arbitrary, so

Dmax
<a (Φ) = Dmin

<a (Φ).

Proof of the converse is similar to that of the previous part.

Definition 3.5 (Distance compatible). A T-gain graph Φ = (G,ϕ) is called gain distance

compatible (simply, distance compatible) if Dmax
< (Φ) = Dmin

< (Φ), where < is the standard

order. In this case, we define D(Φ) = Dmax
< (Φ) = Dmin

< (Φ).

The proof of the following theorem is easy to verify.

Theorem 3.3. For a T-gain graph Φ = (G,ϕ), the following are equivalent:

(1) Φ is distance compatible.

(2) D(Φ) = Dmax
< (Φ) = Dmin

< (Φ) = Dmax(Φ) = Dmin(Φ).

(3) D(Φ) is well defined.

Proof. (1) =⇒ (2) : Let Φ be distance compatible. Then, by the definition, Dmax
< (Φ) =

Dmin
< (Φ) for standard vertex order<. AlsoD(Φ) = Dmax

< (Φ) = Dmin
< (Φ). Now by Proposition

3.1, Dmax(Φ) = Dmin(Φ). Hence Dmax(Φ) = Dmin
< (Φ) and Dmin(Φ) = Dmin

< (Φ).

(2) =⇒ (3) : By the definition of distance-compatible T-gain graph, D(Φ) exists.

(3) =⇒ (1) : If D(Φ) is well defined, then D(Φ) = Dmax(Φ) = Dmin(Φ). Hence Φ is

distance-compatible.

Proposition 3.2. Let Φ = (G,ϕ) be any distance compatible T-gain graph. If Φ ∼ Ψ, then

Ψ is distance compatible and spec(D(Φ)) = spec(D(Ψ)).

Proof. Let Φ = (G,ϕ) be a T-gain graph with the standard vertex order <. Let s, t ∈ V (G).

Since Φ is distance compatible, all oriented shortest paths sP t from s to t have the same

gain. As Φ ∼ Ψ, so there exists a switching function ζ such that ψ(sP t) = ζ(s)−1ϕ(sP t)ζ(t),

for any shortest path sP t. For any shortest path sP t, ϕ(sP t) is unique, so ψ(sP t) is

unique. Thus ψ<max(s, t) = ψ<min(s, t) and hence Dmax
< (Ψ) = Dmin

< (Ψ). That is, Ψ is distance

compatible and D(Ψ) is well defined. Let dψ(s, t) and dϕ(s, t) be the unique gain distance

from s to t in Ψ and Φ, respectively. Then dϕ(s, t) = ζ(s)−1dψ(s, t)ζ(t). Thus D(Φ) and

D(Ψ) are similar and hence spec(D(Φ)) = spec(D(Ψ)).
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Converse of the above statement holds for balanced T gain graph, see Corollary 5.1.

Proposition 3.3. Let Φ = (G,ϕ) be a T-gain graph. Then

(1) If Φ is a signed graph, then Φ is order-independent.

(2) If Φ is balanced or anti-balanced, then Φ is order-independent.

(3) If Φ is distance compatible, then Φ is order-independent.

(4) If Φ is geodetic, then Φ is order-independent.

However, converse of the above statements need not be true in general, see Example 3.2.

The following result is an extension of the Harary’s path criterion for T-gain graphs.

Lemma 3.1. Let Φ = (G,ϕ) be any T-gain graph. Then Φ is balanced if and only if every

directed (s, t)-path have the same gain in Φ, for any two vertices s, t.

Proof. Let Φ = (G,ϕ) be balanced. Suppose that the two oriented paths sP1t and sP2t have

different gains. That is ϕ(sP1t) 6= ϕ(sP2t). Then ϕ(sP1t)ϕ(tP2s) =
k∑
j=1

ϕ(
−→
Cj) 6= 1, where

C1, C2, . . . , Ck are the cycles formed by these two paths. Therefore, there exist at least one

cycle, say Cj such that ϕ(
−→
Cj) 6= 1 . Thus Φ is not balanced, a contradiction. Converse is

easy to verify.

Let Φ = (G,ϕ) be any T-gain graph. Then Φ is either order-independent or order-

dependent. If Φ is ordered-independent, then Φ may or may not be balanced, anti-balanced,

geodetic. If Φ is ordered-dependent, then, by Proposition 3.3, Φ is neither balanced nor

anti-balanced nor geodetic. Therefore, any T-gain graph Φ = (G,ϕ) belongs to one of the

following classes:

(A) Φ is balanced or anti-balanced or geodetic and Dmax(Φ) = Dmin(Φ).

(B) Φ is neither balanced nor anti-balanced nor geodetic and Dmax(Φ) = Dmin(Φ).

(C) Φ is neither balanced nor anti-balanced nor geodetic and Dmax(Φ) 6= Dmin(Φ).

(D) Φ is neither balanced nor anti-balanced nor geodetic and at least one of Dmax(Φ) and

Dmin(Φ) are not well defined.

Next we give some examples. Examples of Type (A) can be constructed easily. Example

3.1 is of Type (D). Examples of Type (B) and Type (C) are given below.
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Figure 2: T-gain graphs Φ1 and Φ2

Example 3.2. Let us consider the T-gain graph Φ1 = (G,ϕ1) (in Figure 2) with the standard

vertex order. The graph Φ1 is neither balanced nor anti-balanced nor geodetic. Also Φ is

order-independent. Now

Dmax(Φ1) =


0 1 1 2e

iπ
6 e

iπ
6

1 0 1 2 1

1 1 0 e
iπ
3 1

2e−
iπ
6 2 e−

iπ
3 0 1

e−
iπ
6 1 1 1 0

 , Dmin(Φ1) =


0 1 1 2e

iπ
3 e

iπ
6

1 0 1 2e
iπ
3 1

1 1 0 e
iπ
3 1

2e−
iπ
3 2e−

iπ
3 e−

iπ
3 0 1

e−
iπ
6 1 1 1 0

 .

Thus Dmax(Φ1) 6= Dmin(Φ1). Therefore, by Theorem 3.3, Φ1 is distance incompatible.

Example 3.3. The T-gain graph Φ2 (in Figure 2) with the standard vertex ordering is

neither balanced nor anti-balanced nor geodetic. Here Φ2 is order-independent. However, it

is distance compatible and

Dmax(Φ2) = Dmin(Φ2) =


0 1 e

iπ
4 2e

iπ
2 e

iπ
4

1 0 1 2e
iπ
4 1

e−
iπ
4 1 0 e

iπ
4 1

2e−
iπ
2 2e−

iπ
4 e−

iπ
4 0 e−

iπ
4

e−
iπ
4 1 1 e

iπ
4 0

 .

4 Positively weighted T-gain graph

In this section, we introduce the notion of a positively weighted T-gain graph. The adja-

cency matrices of positively weighted T-gain graphs generalize the following notions: T-gain
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adjacency matrices, Hermitian adjacency matrices of mixed graphs, adjacency matrices of

signed graphs, adjacency matrices of undirected graphs.

Definition 4.1 (Positively weighted T-gain graph). Let Φ = (G,ϕ) be any T-gain graph

with E(G) be the undirected edge set of G. Let w : E(G) → R+ be a weight function on

the edges of G. The positively weighted T-gain graph associated with Φ and w is the graph

G together with the weighted gain function ϕw defined as follows:

ϕw(−→e i,j) = ϕ(−→e i,j)w(ei,j).

A positively weighted T-gain graph on (G,ϕ) is denoted by (G,ϕ,w)(or simply Φw).

The adjacency matrix associated with Φw, denoted by A(Φw), is an n × n Hermitian

matrix whose (i, j)th entry is ϕw(−→e i,j) if ei,j ∈ E(G), and zero otherwise. Since A(Φw) is

Hermitian, so all its eigenvalues are real. The spectrum of A(Φw) is the spectrum of Φw.

If ϕ = 1, then the corresponding positively weighted T-gain graph is the weighted graph

(G,w), and is denoted by Gw. The adjacency matrix of Gw, denoted by A(Gw), is an n× n
symmetric matrix with the (i, j)th entry w(ei,j). Then A(Φw) = A(Φ) ◦ A(Gw), where ′◦′ is

the Hadamard product.

We establish an expression for the characteristic polynomial of A(Φw), which is a gener-

alization of the weighted Sachs formula. Let Φw = (G,ϕ,w) be a positively weighted T-gain

graph. The weight of a cycle C in Gw is defined as w(C) =
∏

e∈E(C)

w(e). Now
−→
C is an oriented

cycle. Then the weighted T-gain of
−→
C is ϕw(

−→
C ) =

∏
−→e ∈
−−−→
E(C)

ϕw(−→e ) =
∏

−→e ∈
−−−→
E(C)

ϕ(−→e )w(e) =

w(C)ϕ(
−→
C ). An elementary subgraph H of G is a subgraph of G such that each component

of H is either a cycle or an edge of G. For an elementary subgraph H, He denotes the set of

isolated edges in H. The collection of all elementary subgraphs with k vertices is denoted

by Hk. Next, we state the weighted gain Sachs formula. As the proof is similar to that of

the weighted case, so we skip it.

Theorem 4.1 (Weighted gain Sachs formula). Let Φw = (G,ϕ,w) be a positively weighted

T-gain graph with characteristic polynomial χ(Φw;x) = xn + a1x
n−1 + · · ·+ an. Then

ai =
∑
H∈Hi

(−1)p(H)2c(H)w(He)w(H)
∏
C∈H

Re(ϕ(C)), (1)

where c(H), p(H) and C denote the number of cycles, the number of components and cycle

in H , respectively.
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If we choose T-gain graph Φ to be the underlying graph G, then above formula become

the known Weighted Sachs formula.

Corollary 4.1 (Weighted Sachs formula, [6]). Let (G,w) be a weighted graph with charac-

teristic polynomial χ(G,w;x) = xn+a1x
n−1+ · · ·+an. Then the coefficients can be expressed

as

ai =
∑
H∈Hi

(−1)p(H)2c(H)w(He)w(H), (2)

where c(H), p(H) denote the number of cycles and the number of components in H, respec-

tively.

Now we are ready to state two interesting results which generalize the corresponding

known result for T-gain graph and signed graph.

Theorem 4.2. Let Φw = (G,ϕ,w) be a positively weighted T-gain graph. Then Φw and Gw

are cospectral if and only if Φ is balanced.

Proof. If Φ = (G,ϕ) is balanced, then there exists a diagonal unitary matrix U such that

A(Φ) = UA(G)U∗. Now, by Proposition 2.1,

A(Φw) = A(Φ) ◦ A(Gw) = UA(G)U∗ ◦ A(Gw) = U(A(G) ◦ A(Gw))U∗ = UA(Gw)U∗.

Thus Φw and Gw are cospectral

Conversely, suppose Φw andGw are cospectral. Let χ(Φw;x) =
n∑
i=0

aix
n−i and χ(G,w;x) =

n∑
i=0

bix
n−i be the characteristic polynomials of Φw and Gw, respectively. Suppose that Φ is

not balanced. Then there exists a cycle of smallest length, say k, which is not balanced. Let

Ck be the collection of all unbalanced k cycles. Then, by Theorem 4.1,

bk − ak = 2
∑
C∈Ck

w(C).{1− Re(ϕ(C))} > 0,

a contradiction. Thus Φ is balanced.

The well known Acharya’s spectral criterion for the balance of signed graphs follows from

Theorem 4.2.

Corollary 4.2 ([1, Corollary 1.1]). Let Ψ = (G,ψ) be a signed graph. Then spectra of Ψ

and G coincide if and only if Ψ is balanced.

Proof. By taking ϕ = ±1 and w = 1 in Theorem 4.2, we get the result.
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Another consequence is the following recent result about the signed graph.

Corollary 4.3 ([6, Theorem 2.4]). Let Ψ = (G,ψ) be a signed graph and w be a positively

weighted function, where ψ = ±1. Then Ψw and Gw are cospectral if and only if Ψ is

balanced.

Next, we prove one of the main results of this article.

Theorem 4.3. Let Φw = (G,ϕ,w) be a connected positively weighted T-gain graph. Then

the spectral radius of Φw and Gw are equal if and only if either Φ or −Φ is balanced.

Proof. Suppose either Φ or −Φ is balanced. Then, it is easy to see that, the spectral radius

Φw and Gw are equal. Conversely, suppose ρ(Φw) = ρ(Gw). Let µn ≤ µn−1 ≤ · · · ≤ µ1 be

the eigenvalues of Φw. Then either ρ(Φw) = µ1 or ρ(Φw) = −µn.

Case 1: If ρ(Φw) = µ1, then, by Theorem 2.2, there exists a diagonal unitary matrix D

such that A(Φw) = DA(Gw)D∗. Now A(Φ) ◦ A(Gw) = D(A(G) ◦ A(Gw))D∗. Then, by

Proposition 2.1, A(Φ)◦A(Gw) = (DA(G)D∗)◦A(Gw). Define B = (bij) as follows: bij is the

inverse of the nonzero (i, j)th-entry of A(Gw), otherwise zero. Then (A(Φ) ◦ A(Gw)) ◦ B =

((DA(G)D∗) ◦ A(Gw)) ◦ B. Thus, by Proposition 2.1, we have A(Φ) = DA(G)D∗. Thus Φ

is balanced.

Case 2: If ρ(Φw) = −µn, then µn = eiπρ(Φw). By Theorem 2.2, there exists a diagonal

unitary matrix D, such that A(Φw) = eiπDA(Gw)D∗. That is, −A(Φw) = DA(Gw)D∗. Then

A(−Φ) ◦ A(Gw) = D(A(G) ◦ A(Gw))D∗. By Proposition 2.1, we have A(−Φ) = DA(G)D∗.

Thus −Φ is balanced.

Now we present the following consequences of the above results.

Corollary 4.4. Let Φw = (G,ϕ,w) be a connected positively weighted T-gain graph. Then

the largest eigenvalue of Φw and Gw are equal if and only if Φ is balanced.

Corollary 4.5. Let Φ = (G,ϕ) be a connected T-gain graph. Then the largest eigenvalue of

Φ and G are equal if and only if Φ is balanced.

Proof. The proof follows from Corollary 4.4 by assuming w = 1.

Also Theorem 4.3 unifies the following recent results.

Corollary 4.6 ([6, Corollary 2.7]). Let Ψw = (G,ψ,w) be a connected positively weighted

signed graph. Then Ψ is balanced if and only if the largest eigenvalue of Ψw and Gw coincide.
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Proof. By taking ϕ = ±1, the result follows from Corollary 4.4.

Corollary 4.7 ([10, Theorem 4.4]). Let Φ = (G,ϕ) be a connected T-gain graph. Then

spectral radius of Φ and G coincide if and only if either Φ is balanced or −Φ is balanced.

Proof. Take w = 1 in Theorem 4.3.

Corollary 4.8 ((Stanić’s spectral criterion [14, Lemma 2.1])). Let Ψ = (G,ψ) be a connected

signed graph. Then the largest eigenvalue of Ψ and G coincide if and only if Ψ is balanced.

Proof. Result follows from Corollary 4.4 by choosing ϕ = ±1 and w = 1.

5 Characterizations of balanced T-gain graphs in terms

of gain distance matrices

In this section, we establish two characterizations for balanced T-gain graphs using the gain

distance matrices. Let us define two complete T-gain graphs which are obtained from gain

distance matrices Dmax
< (Φ) and Dmin

< (Φ).

Definition 5.1. Let Φ = (G,ϕ) be a T-gain graph and ‘ < ‘ be an order on V (G). The

complete T-gain graph with respect to Dmax
< (Φ), denoted by KDmax

< (Φ), is defined as follows:

keep the edges of Φ unchanged, and join non adjacent vertices vi and vj with gain ϕ(−→e i,j) =

ϕ<max(vi, vj) for all vi, vj. Similarly KDmin
< (Φ) is defined using Dmin

< (Φ).

For a T-gain graph Φ = (G,ϕ) with order <, if Dmax
< (Φ) = Dmin

< (Φ), then the associated

complete T-gain graphs KDmax
(Φ) and KDmax

(Φ) are the same, and it is denoted by KD(Φ).

Then the proof of the following theorem is easy to verify.

Theorem 5.1. For a T-gain graph Φ = (G,ϕ), the following are equivalent:

(1) KD(Φ) is well defined.

(2) KDmax
(Φ) = KDmax

(Φ) = KDmax
< (Φ) = KDmin

< (Φ) = KD(Φ).

(3) Dmax
< (Φ) = Dmin

< (Φ), for some ordering <.

Theorem 5.2. Let Φ = (G,ϕ) be a T-gain graph with vertex order <. Then the following

statements are equivalent.

(i) Φ is balanced.
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(ii) KDmax
(Φ) is balanced.

(iii) KDmin
(Φ) is balanced.

(iv) Dmax(Φ) = Dmin(Φ) and associated complete T-gain graph KD(Φ) is balanced.

Proof. (i) =⇒ (iv) Let V (G) = {v1, v2, . . . , vn}. Suppose Φ is balanced. Let vi, vj ∈
V (G). Then, by Lemma 3.1, all shortest oriented paths viPvj have the same gain. Thus

ϕ<max(vi, vj) = ϕ<min(vi, vj). Therefore, Dmax
< (Φ) = Dmin

< (Φ). By Proposition 3.1 and Corollary

3.2, Dmax(Φ) = Dmin(Φ). Hence KD(Φ) is well defined.

Claim: KD(Φ) is balanced.

Let vi � vj in G and ei,j be the edge joining vi and vj in KD(Φ). For every oriented path

viPvj in Φ have the same gain. So every cycle passing through the edge ei,j has gain 1. Let

T be a normal spanning tree of G. Suppose vi � vj in G. In T , joining the edge ei,j creates

a fundamental cycle of KD(Φ), say CT . Now by previous observation, ϕ(CT ) = 1. Thus all

the fundamental cycles in KD(Φ) are neutral, and hence, by Lemma 2.1, KD(Φ) is balanced.

If KD(Φ) is balanced, then, as Φ is a subgraph of KD(Φ), so Φ is balanced. Therefore,

(iv) =⇒ (i), (iii) =⇒ (i) and (ii) =⇒ (i) follow.

The proofs (iv) =⇒ (iii) and (iv) =⇒ (ii) are easy to see.

Theorem 5.3. Let Φ = (G,ϕ) be a T-gain graph with vertex order <.Then the following

statements are equivalent:

(i) Φ is balanced.

(ii) Dmax(Φ) is cospectral with D(G).

(iii) Dmin(Φ) is cospectral with D(G).

(iv) The largest eigenvalue of Dmax(Φ) and D(G) are equal.

(v) The largest eigenvalue of Dmin(Φ) and D(G) are equal.

Proof. Let V (G) = {v1, v2, . . . , vn}, and Φ be balanced. Then by Theorem 5.2, KDmax
(Φ)

is balanced. Note that KDmax
(Φ) = (Kn, ψ) with ψ(−→e i,j) = ϕmax(vi, vj) = ϕ(viPvj), where

viPvj is a shortest path in Φ. Consider Dmax(Φ) as the adjacency matrix of a positively

weighted T-gain graph (Kn, ψ, w) with weight function w : E(Kn) → R+ is defined as

w(ei,j) = d(vi, vj), where d(vi, vj) is the distance between vi and vj in G. Then the adjacency
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matrix of (Kn, w) is same as D(G). By Theorem 4.2 and Theorem 5.2, Φ is balanced if and

only if Dmax(Φ) is cospectral with D(G). Thus (i)⇔ (ii).

Now, by Corollary 4.4, Φ is balanced if and only if the largest eigenvalue of Dmax(Φ) and

D(G) coincide. This proves (i)⇔ (iv).

The proofs of (i)⇔ (iii) and (i)⇔ (v) are similar .

Both of the above characterizations extend the corresponding known characterizations

[6, Theorem 3.1] and [6, Theorem 3.5] for signed graph.

Corollary 5.1. Let Φ = (G,ϕ) be a T-gain graph. Then Φ is balanced if and only if D(Φ)

exist and it is cospectral with D(G).

6 Distance compatible gain graphs

In this final section, we establish a couple of characterizations for distance compatible T-gain

graphs. These results extend the corresponding known results for signed graph [6].

Theorem 6.1. Let Φ = (G,ϕ) be any bipartite T-gain graph. Then Φ is distance compatible

if and only if Φ is balanced.

Proof. If Φ is balanced, by Theorem 5.3, Φ is distance compatible. Conversely, suppose Φ

is distance compatible. Then, by Proposition 3.3, Φ is order-independent and Dmax(Φ) =

Dmin(Φ). Suppose that Φ is unbalanced. Since Φ is bipartite, there exists an unbalanced even

cycle C. Let vi and vj be two diametrical vertices of C. Then C contains two disjoint paths

viP1vj and viP2vj of same length. Since ϕ(C) 6= 1 and ϕ(
−→
C ) = ϕ(viP1vj)ϕ(vjP2vi) 6= 1, so

ϕ(viP1vj) 6= ϕ(viP2vj).

Claim: viP1vj and viP2vj are shortest paths between vi and vj.

Suppose viP1vj and viP2vj are not shortest paths. Let viPvj be a shortest path. Then at

least one of the even cycle formed by viP1vj, viPvj and viP2vj, viPvj is unbalanced, and has

length strictly smaller than that of C, which is a contradiction. Since ϕ(viP1vj) 6= ϕ(viP2vj),

for any ordered vertex set (V (G), <), ϕ<max(vi, vj) 6= ϕ<min(vi, vj), a contradiction. Thus Φ is

balanced.

A cut vertex in a graph G is a vertex whose removal creates more components than the

number of components of G. A block of a graph G is a maximum connected subgraph of G

that has no cut vertex.
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Theorem 6.2. Let Φ = (G,ϕ) be a T-gain graph. Then, Φ is distance compatible if and

only if every block of Φ is distance compatible.

Proof. Let B1, B2, . . . , Bk be the blocks of Φ. Suppose every block is distance compatible.

Let s, t ∈ V (G). If s and t are in the same block then they are distance compatible. Suppose

s and t are in different blocks. Without loss of generality, suppose s is in B1 and t is in

B2. Then any path sP t in G must passes through the cut vertices vi and vj where vi and

vj are in B1 and B2, respectively (vi may be same as vj). Any shortest path sP t can be

decompose into sPvi ∪ viPvj ∪ vjPt. Since B1 is distance compatible, so any shortest path

sPvi has unique gain. As the vertices vi and vj are connected by a unique path, so ϕ(viPvj)

is unique. Proofs of the other cases are similar. Therefore, any shortest path from s to t has

same gain. Thus s and t are distance compatible. Hence Φ is distance compatible. Converse

is easy to verify.

Let Φ = (G,ϕ) be T-gain graph with the standard order < on the vertex set. Let

s, t ∈ V (G). If ϕ<max(s, t) = ϕ<min(s, t), then s and t are called distance compatible. Note

that ϕ<max(s, t) = ϕ<min(s, t) if and only if ϕ<amax(s, t) = ϕ<amin(s, t), for any other vertex order

<a. Therefore, the vertices s and t are called distance-incompatible if for some order <a,

ϕ<amax(s, t) 6= ϕ<amin(s, t) holds.

Lemma 6.1. Let Φ = (G,ϕ) be a 2-connected non-geodetic T-gain graph. If s and t are two

incompatible vertices of least distance in G then there exists at least two internally disjoint

shortest paths between s and t which have different gains.

Proof. Since s, t are distance-incompatible and G is non-geodetic, so there exist at least

two shortest paths say sP1t and sP2t such that ϕ(sP1t) 6= ϕ(sP2t). If sP1t and sP2t are

internally disjoint, then we are done. Suppose sP1t and sP2t are not internally disjoint. Let

v1, v2, . . . , vp be the common internal vertices of the paths sP1t and sP2t . Let C1, C2, . . . , Cr

be the only cycles formed by sP1t and sP2t. Thus ϕ(sP1t)ϕ(tP2s) =
r∑
i=1

ϕ(
−→
Ci) 6= 1. Then

there exist a cycle Cj which is not balanced. Let Cj be formed by vjP1vj+1 and vjP2vj+1.

Since sP1t and sP2t are shortest paths, so vjP1vj+1 and vjP2vj+1 must be shortest paths

in between vj and vj+1 and of same lengths. Also ϕ(
−→
Cj) = ϕ(vjP1vj+1)ϕ(vj+1P2vj) 6=

1. Thus ϕ(vjP1vj+1) 6= ϕ(vjP2vj+1). Hence vj and vj+1 are distance-incompatible, and

distance between them in G is smaller than the distance between the vertices s and t in G,

a contradiction.
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Theorem 6.3. Let Φ = (G,ϕ) be any 2-connected non-geodetic T-gain graph. Then Φ is

distance-incompatible if and only if there is an unbalanced even cycle such that there exist

two diametrically opposite vertices s and t which have no other smaller length path.

Proof. If Φ is distance-incompatible, then there exist vertices s, t which are distance-incompatible

and of least distance. Then by Lemma 6.1, there exists a pair of shortest disjoint paths in

between s and t such that they have different gains. Let C2l be the cycle formed by the two

disjoin paths. Therefore, ϕ(
−→
C2l) 6= 1 and s, t do not have any other shorter length path.

The converse is easy to verify.

Acknowledgments

The authors thank Prof Thomas Zaslavsky, Binghamton University, for his comments and

suggestions, which improved the paper’s presentation. Aniruddha Samanta thanks Univer-

sity Grants Commission(UGC) for the financial support in the form of the Senior Research

Fellowship (Ref.No: 19/06/2016(i)EU-V; Roll No. 423206). M. Rajesh Kannan would like

to thank the SERB, Department of Science and Technology, India, for financial support

through the projects MATRICS (MTR/2018/000986) and Early Career Research Award

(ECR/2017/000643).

References

[1] B. Devadas Acharya, Spectral criterion for cycle balance in networks, J. Graph Theory

4 (1980), no. 1, 1–11. MR 558448

[2] R. Bapat, S. J. Kirkland, and M. Neumann, On distance matrices and Laplacians,

Linear Algebra Appl. 401 (2005), 193–209. MR 2133282

[3] R. L. Graham, A. J. Hoffman, and H. Hosoya, On the distance matrix of a directed

graph, J. Graph Theory 1 (1977), no. 1, 85–88. MR 505769

[4] R. L. Graham and L. Lovász, Distance matrix polynomials of trees, Adv. in Math. 29

(1978), no. 1, 60–88. MR 480119

[5] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell

System Tech. J. 50 (1971), 2495–2519. MR 289210

19



[6] Shahul K. Hameed, T. V. Shijin, P. Soorya, K. A. Germina, and Thomas Zaslavsky,

Signed distance in signed graphs, Linear Algebra Appl. 608 (2021), 236–247. MR

4143538

[7] Frank Harary, On the notion of balance of a signed graph, Michigan Math. J. 2

(1953/54), 143–146 (1955). MR 67468

[8] Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University

Press, Cambridge, 1991. MR 1091716

[9] , Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013.

MR 2978290

[10] Ranjit Mehatari, M. Rajesh Kannan, and Aniruddha Samanta, On the adja-

cency matrix of a complex unit gain graph, Linear and Multilinear Algebra,

10.1080/03081087.2020.1776672.

[11] Nathan Reff, Spectral properties of complex unit gain graphs, Linear Algebra Appl. 436

(2012), no. 9, 3165–3176. MR 2900705

[12] Aniruddha Samanta and M. Rajesh Kannan, On the spectrum of complex unit gain

graph, arXiv preprint arXiv:1908.10668 (2019).

[13] T. V. Shijin, P. Soorya, K. Shahul Hameed, and K. A. Germina, On signed distance in

product of signed graphs, arXiv preprint arXiv:2009.08707.

[14] Zoran Stanić, Integral regular net-balanced signed graphs with vertex degree at most four,

Ars Math. Contemp. 17 (2019), no. 1, 103–114. MR 3998150

[15] Thomas Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), no. 1, 47–74. MR

676405

[16] , Vertices of localized imbalance in a biased graph, Proc. Amer. Math. Soc. 101

(1987), no. 1, 199–204. MR 897095

[17] Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser.

B 47 (1989), no. 1, 32–52. MR 1007712

20


	1 Introduction
	2 Definitions, notation and preliminary results
	3 Gain distance matrices
	4 Positively weighted  T -gain graph
	5 Characterizations of balanced  T -gain graphs in terms of gain distance matrices
	6 Distance compatible gain graphs

