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Abstract

Finite quasi semimetrics on n can be thought of as nonnegative valuations on the edges of a
complete directed graph on n vertices satisfying all possible triangle inequalities. They comprise
a polyhedral cone whose symmetry groups were studied for small n by Deza, Dutour and
Panteleeva. We show that the symmetry and combinatorial symmetry groups are as they
conjectured.

Integral quasi semimetrics have a special place in the theory of tiled orders, being known as
exponent matrices, and can be viewed as monoids under componentwise maximum; we provide
a novel derivation of the automorphism group of that monoid. Some of these results follow from
more general consideration of polyhedral cones that are closed under componentwise maximum.
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1. Introduction

Metric spaces are ubiquitous, making metrics a well known concept. Quasi-semimetrics (the
term is not totally standard) are a weakened form of metrics: for a given space X , d(x, y) is
required to be a nonnegative real, and the triangle inequality d(x, y) 6 d(x, z) + d(z, y) has to
be satisfied. It relaxes two requirements on the definition of a metric, namely, it is not required
to be symmetric, and distinct elements are allowed to be at “distance” zero. Usually, a space
with a fixed metrics or quasi-semimetrics is studied, for the implied geometrical and topological
structure. There is a plethora of such specific examples in [12].

Here we take a different viewpoint: we fix the space X and consider the set of all quasi-
semimetrics on it as the main object. Quasi-semimetrics form a convex cone of real functions
on X × X ; for finite X , that is a rational polyhedral cone, which we denote ÊX (also Ên
if X = [n] = {1, 2, . . . , n}) and it has been the object of some study (Deza, Dutour, and
Panteleeva [9], Deza, Deza, and Dutour Sikirić [10], Deza and Panteleeva [11] and Deza, Deza,
and Dutour Sikirić [8], which denote it as QMETn). It is convenient, for the discussion below,
to have the explicit description of Ên as the subset of Mn(R) consisting of matrices X = (xij)
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such that for all pairwise distinct i, j, k,

Tijk : xij + xjk > xik ,
Nij : xij > 0 ,

xii = 0 .
(1)

It is also convenient to think of such X as an assignment of values to the edges of the
complete directed graph with vertex set [n]. Following [10], the Tijk are called triangle inequal-
ities, while Nij are nonnegativity inequalities. Also, to avoid special cases requiring definition

acrobatics, we stipulate that n > 3, whenever Ên is considered.
This family of cones is quite thoroughly discussed in [10], and one aspect will be relevant

here: the determination of their (Euclidean) symmetry group and combinatorial symmetry
group (those are defined in Section 2).

Given the description of Ên, there is a natural class of linear maps that preserve the cone:
permutations of coordinates that leave the system describing Ên invariant. Those are of two
types:

a. Any permutation π on the indices induces the permutation Pπ : xij 7→ xπ(i)π(j).

b. The transpose map (called reversal in [8]) τ : xij 7→ xji.

We call those system automorphisms, and denote the group they form by Sn. Since τ commutes
with all permutations of the first type, it follows that Sn

∼= Sn × Z2.
These maps are isometries, so they are symmetries of cone; they naturally induce a subgroup

of the combinatorial automorphism group of Ên, which we also will denote as Sn. Deza et al.
[10] verified computationally that Sn is the whole symmetry and combinatorial symmetry group
of Ên for small n and conjectured (also in [8]) that this was the case in general. Our main result
here settles those conjectures:

Theorem 3.7. The combinatorial symmetry group of Ên is Sn.

As every cone, ÊX is a semigroup under addition; it is, moreover, closed on an additional
operation, which also turns it into a commutative semigroup: componentwise maximum. It is
convenient to use the infix notation a ⊕ b = max(a, b), for real a, b, and extend the notation
componentwise to real vectors or matrices: if u, v ∈ RI , u ⊕ v is defined by (u⊕ v)i = ui ⊕ vi;
we refer to this operation simply as max. These two operations (and the addition of a −∞)
turn RX into a semiring, a coproduct of copies of the tropical semiring. In this context, ÊX is
a subsemiring of RX , but not, however, a subsemimodule.

We will be especially interested in integer valued quasi-semimetrics, and denote En = Ên∩Z
n.

There are many reasons to concentrate on the integer points in a rational cone (see [6], [3]),
and in this particular case they have appeared in a context far removed from the usual study
of polyhedra, the theory of tiled orders in algebras. Those are described based on a discrete
valuation ring and a matrix, which, by [16, Lemma 1.1], is an integer valued quasi-semimetrics;
in that context, those have been called exponent matrices. We refer to [16], [1], [7], [14] for
definitions, more details and some applications; we will not mention tiled orders any more here,
but honor them in the notation ÊX .

Clearly Sn respects integrality and the operations of addition and max, so it also restricts
to (En,+) and (En,⊕) automorphisms. A natural question is whether new symmetries or
automorphisms can crop up if we consider each of those monoids.

That is not the case: it was proved in [14] that the automorphism group of (En,+) and
(En,⊕) is Sn. The proofs were considerably ad-hoc and elaborate, and here we will present
new, and somewhat more conceptual proofs.
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Any automorphism of (En,+) naturally extend to a linear automorphisms of Ên, thus re-
specting its face-lattice, as well as any symmetry of Ên does. So, our main theorem implies that
both groups coincide with Sn (we elaborate on that in Section 2).

For some perspective on this result, we refer the reader to [5]; there, some elegant algorithms
for computing the symmetry and combinatorial symmetry group of a given polyhedral cone are
shown; both are reduced to finding the automorphism group of a colored graph. There is a
difference, though. The graph for the symmetry group has as vertices the extreme rays or the
facets of the cone, so it has polynomial size in the description of the cone. For the combinatorial
symmetry group, the graph is the incidence graph of extreme rays and facets; this may have
exponential size relative to a given description, and this is indeed the case with Ên. This method
underlies our proof of the main theorem, but we were able to finesse the problem of describing
the extreme rays by showing that just a small part of them suffices.

The automorphism group of (En,⊕) are derived from a more general view of cones closed
under max, and their integer point submonoids. In this case, in general, a ⊕-automorphism
does not need to respect the face-lattice (Example 5.1), and may even not be extendable to the
whole cone. We present some conditions which imply that the automorphisms of the integer
submonoid of a max-closed cone are induced by permutations of the coordinates. This is enough
to show that Aut(En,⊕) = Aut(En,+)

The article proceeds as follows: We start by recalling some basics on polyhedral cones
and proving some initial facts in Section 2. Section 3 proves the main theorem. Section 4
presents some basic facts about max-closed cones. This is followed by Section 5 where we prove
the aforementioned result on ⊕-automorphism of the integer submonoid of a max-closed cone,
entailing, in particular, that Aut(En,⊕) = Sn.

2. Preliminaries on polyhedral cones

We present here a summary of facts and terminology about polyhedral cones; some of these
have been appropriately streamlined for our needs. For more detailed information and proofs
the reader is referred to [6, 8, 18]. Besides the definitions, we make several assertions about
cones without further ado; they are well-known facts that can be found in the references, and
are easy exercises. As the cones we are interested in are the Ên, we illustrate the concepts as
they directly apply to them.

In what follows, I, J,N will denote finite sets; R, Z, R+, N will stand for the sets of real
numbers, integers, non-negative reals and non-negative integers, respectively. In the vector
space RN we single out the canonical basis vectors ei and the one vector 1 =

∑

i ei; on RN ,
x 6 y means xi 6 yi for all i ∈ N , and x > y means y 6 x. The support of v ∈ RN

is supp(v) = {i ∈ N | vi 6= 0} and its cardinality will be denoted s(v). A subset of RN is
full-dimensional if it linearly spans the whole space. We will consider subsets S, S ′ of RN to
be equivalent if there is a bijection between S and S ′ such that the image of each vector is a
positive scalar multiple of it. A ray is an equivalence class of a nonzero singleton, and we will
say that S is clean if its elements belong to different rays. A point (or ray) x that satisfies a
linear inequality ax > 0, does it exactly if ax = 0 and strictly if ax > 0. A ray is rational if it
contains a vector with rational coordinates.

Example 2.1:As defined, the cone Ên lies in the subspace of n × n real matrices with null diagonal;
it is convenient to consider this subspace to be the whole ambient space. So, for a fixed n, let
Nn = {(i, j) | 1 6 i, j 6 n, i 6= j}, and we take the space RNn to be the one where Ên is defined. The
vectors in this space are still better visualized (and referred to) as matrices with a blotted diagonal,
rather than a linear list of coordinates. Written in the format ax > 0, the defining inequalities Tijk
take the form xij + xjk − xik > 0, whose coefficient vector a has support of size 3.
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A finite set of non-zero vectors S is said to be a V-description of the set {
∑

v∈S λvv | λv ∈
R+ for all v ∈ S}, and S is also called an H-description of {x ∈ RN | vtx > 0 for all v ∈ S}. We
may think of S as the set of rows of a matrix A; then S is an H-description of {x ∈ RN | Ax > 0}.
The Weyl-Minkowski Theorem (see [18] and [6]) states that a set has a V-description if and only
if it has an H-description; further, it has a V-description with rational rays if and only if it has
an H-description in which the matrix has only rational entries. A set with either description
is called a polyhedral cone, and it is a rational polyhedral cone if it has either description using
only rational data. Clearly, equivalent sets describe the same cones; either way, just clean
descriptions suffice.

A cone C is pointed if the only linear subspace it contains is (0). A cone C is full-dimensional
if there is a point that satisfies all inequalities of an H-description strictly.

Example 2.2: Ên was defined by inequalities; that is, we have an explicit H-description of Ên, the
corresponding set S consisting of coefficient vectors (matrices, actually) of those inequalities. The
coefficients are just 0, 1,−1, which shows that Ên is a rational polyhedral cone, and also that the
description is clean. Moreover, each inequality induces a facet (a concept defined below and a fact
proved in Section 3). The matrix 1 satisfies all inequalities strictly, showing that Ên is full-dimensional;
the nonnegativity inequalities easily imply that Ên is pointed.

The Weyl-Minkowski Theorem implies that Ên also has a V-description. Describing it explicitly is
a possibly impossible task. In [9] and [8] there are explicit descriptions of the rays for n 6 4. After
that, there are descriptions of some families and some computational results. The number of rays
grows exponentially with n2, so computations quickly stop short. However, a small family of rays
described in Section 3 will be crucial in the proof of the main theorem.

A linear inequality ax > 0, with a 6= 0 that holds for every x ∈ C is a valid inequality
for C; the face of C it induces is the set {x ∈ C | ax = 0}. We also consider C a (improper)
face. The faces of a cone, ordered by inclusion, comprise a lattice, the face-lattice of the
cone, with intersection as the meet operation. The face lattice is finite and graded. A facet
is a maximal proper face. If C is full-dimensional, every facet is induced by a unique (up
to equivalence) inequality, and the collection of such facet-inequalities comprises the unique
minimal H-description of C. The face-lattice is coatomistic, that is, every proper face is an
intersection of facets; equivalently, in any H-description, a face is a subset of C that satisfies
some fixed subset of the inequalities exactly. A point is interior to a face if the valid inequalities
it satisfies exactly are precisely those that induce the face; every face has an interior point.
Equivalently, a point p is interior to a face F if and only if the facets containing p are those
that contain F ; in particular, in a clean H-description, a facet-inequality is one such that there
is a point satisfying that one exactly, and all other inequalities strictly. It also follows that C is
full-dimensional if and only if it has an interior point. If the cone is pointed, the minimal non-
zero faces are rays, so called extreme rays, and these comprise the unique minimal V-description
of the cone. The face-lattice is also atomistic: every face is a join of extreme rays.

An integer cone is the intersection CZ of a rational cone C with ZN . Such a cone is an
additive submonoid of ZN , and it is finitely generated. If C is pointed, there exists a unique
minimal set of generators, called a Hilbert basis, and it is finite (see [18, Theorem 16.4], [6,
Chapter 2]); it contains one point in each extreme ray, and usually some more points.

The presentation above relies on a fixed system of coordinates, given by the basis of el-
ementary vectors. A more elegant, coordinate free approach is used in [6], and it gives an
account of all relevant concepts related to the face-lattice. However, working with a fixed basis
comes naturally when handling systems of linear inequalities; moreover, the max operation is
naturally and traditionally defind based on coordinates.

A linear automorphism of a cone C ⊆ RN is a linear automorphism ϕ of RN such that
ϕ(C) = C. If ϕ is an isometry preserving Euclidean distance, it is said to be a isometry of C
([8] calls it a symmetry of C). It is clear from the definition that any linear automorphism of
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C maps faces to faces, and induces an automorphism of the face lattice of C; in particular, the
families of extreme rays and of facets are invariant.

We single out four symmetry groups associated with a given cone C (we combine the notation
of [5] and [8], with occasional slight change of meaning):

• Comb(C) - the combinatorial symmetry group, consisting of all automorphisms of the
face-lattice of C.

• Lin(C) - the linear symmetry group, consisting of all linear automorphisms of C.

• Symm(C) - the symmetry group, consisting of all isometries of C (named as in [8]).

• LinZ(C) - the integral symmetry group, consisting of all linear automorphisms leaving
C ∩ ZN invariant.

So, any linear automorphism of C induces an automorphism of the face lattice of C, and
this induction is indeed a group homomorphism ind:Lin(C) → Comb(C). As the face-lattice is
both atomistic and coatomistic, both the set of facets and the set of extreme rays are bases for
the permutation group Comb(C); that is, any element of this group is fully determined by its
action on either set. The approach favored in [5] is to represent automorphisms by their action
on extreme rays, while in Section 3 we find it convenient to represent them by their action on
the facets. After all, convenience depends on the available description of the cone.

Proposition 2.1. If C is a full dimensional pointed rational cone, the restrictions of ind to
Symm(C) and LinZ(C) are injective.

Proof. Consider first the restriction to LinZ(C). If ϕ is in the kernel of this map, it leaves each
ray invariant. But the set of integral vectors in the ray is also invariant, and that implies that
ϕ is the identity on that ray. So it is the identity automorphism. For Symm(C), we apply the
same argument to the unit vector in each ray.

Example 2.3:Notice that, in spite of the similarity exposed in the proof of Proposition 2.1, Symm(C)
and LinZ(C) can be quite different. Consider the cone C1 = {x ∈ R2 | x2 > 0, x1 − x2 > 0}; the map
given by

(

1 0

1 −1

)

is in LinZ(C1) but not in Symm(C1). On the other hand, for C2 = {x ∈ R2 | x2 >

0, 3x1 − 4x2 > 0}, the map given by 1

5

(

4 3

3 −4

)

is in Symm(C2) but not in LinZ(C2).

The restrictions of ind above (actually, ind itself) can be far from surjective. To see this,
take your favorite highly symmetric cone and apply to it a linear transformation that is neither
orthogonal nor integral. The poor image’s symmetry and integral symmetry groups becomes
severely handicapped, while the combinatorial symmetry group gets away scot-free.

The astute reader may complain that this is a trick; a deeper construction of Bokowski,
Ewald, and Kleinschmidt [4] presents a polytope lattice and a combinatorial symmetry that
cannot be realized linearly for any polytope with that face-lattice. A standard construction
turns this into a result about cones.

Going back to the cone Ên, we notice that Sn consists of maps that are both isometries and
integral, that is, we have the following diagram of monomorphisms:

As it turns out in Theorem 3.8, the composition Sn → Comb(Ên) is surjective, hence all
inclusions are equalities.

3. Symmetries and combinatorial automorphisms of Ên

The main result in this section is Theorem 3.7, which describes the combinatorial automor-
phism group of Ên. For n 6 5 this has been done in [9], computationally. As noted before,
while some shortcuts exist, the general method for computing the combinatorial automorphism
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ind

77♦♦♦♦♦♦♦♦♦♦♦

Figure 1:

group of a cone is to determine the bipartite incidence graph of extreme rays and facets, and
then computing the automorphism group of the graph. Although no polynomial algorithm is
yet known for such computation, there are very good programs [17] that can handle graphs of
fairly large size.

As per Corollary 3.3, Ên has n2(n − 1)/2 facets. However, [9] tells us that for n > 6, the
number of extreme rays is already too big for polite computational society.

As it turns out, there is an orbit of Sn, denoted Ln, consisting of 2n extreme rays, such that
it is enough to consider the incidence graph of facets and Ln to clinch Comb(Ên); the following
nice properties hold:

a. Ln is an orbit of Comb(Ên) (Lemma 3.10).

b. The action of Comb(Ên) on Ln is the same as the action of Sn (Lemma 3.12).

c. The action above is faithful.

The last item is what will finally establish the main theorem.
Recall that Tijk and Nij are the defining inequalities for Ên; in what follows, the same labels

in boldface (Tijk, etc.) will denote the corresponding faces of Ên, which turn out to be facets

of Ên.
The following facts about some special members of Ên appear in part in [9, Theorem 5], and

in [14, Theorem 1.1]. We present them here with proofs, for completeness. For each proper
subset I of {1, . . . , n}, the associated oriented cut quasi-semimetrics ([9, 11, 12]) is the binary
exponent matrix δ(I) such that δ(I)ij = 1 if and only if i ∈ I, j /∈ I.

Proposition 3.1. Considering Ên:

a. The oriented cut quasi-semimetrics are those with minimal nonempty supports.

b. If A ∈ Ên and supp(A) = supp(δ(I)), then A is a scalar multiple of δ(I).

c. All oriented cut quasi-semimetrics are extreme rays of Ên.

Proof. For (a), let A ∈ Ên, and suppose Ars > 0. Let I = {k | Ark = 0}; this is a proper subset
of indices, as r ∈ I, s /∈ I. Then, if i ∈ I, j /∈ I, Ari = 0 6= Arj , and Trij implies Aij > 0. It
follows that supp(δ(I)) ⊆ supp(A). For (b), let i ∈ I and suppose there exist distinct j, k /∈ I.
Applying Tijk and Tikj we conclude that Aij = Ajk; that is, all nonzero terms on each row of
A are equal; the same argument applies to columns. So, all nonzero elements of A are equal,
and the result follows. Finally, for (c), let A be an interior point of the minimal face containing
δ(I). It must satisfy exactly the same inequalities as δ(I); in particular, the same Nij , hence
supp(A) = supp(δ(I)). From part (b), it follows that the face has dimension 1.

This is a technical workhorse for what follows:

Lemma 3.2. For all three distinct indices i, j, k the only defining inequalities of Ên exactly
satisfied by Nij ∩Njk are Nij , Njk, Nik and Tijk.
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Proof. If x ∈ Nij ∩Njk, then xij = xjk = 0, and Tijk implies that xjk 6 0. This implies that x
satisfies both Nik and Tijk exactly.

In order to show that no other inequality is satisfied exactly, we construct an exponent
matrix H = H(i, j, k) as follows. For distinct r, s,

Hrs =



















0 if rs = ij, jk, ik,

3 if rs = ji, kj or r = i, s 6= j, k or s = k, r 6= i, j,

4 if rs = ki or r = j, s 6= i, k or s = j, r 6= i, k,

5 otherwise.

See Fig. 2 for an illustration.





















0 0 0 3 3 3 →
3 0 0 4 4 4 →
4 3 0 5 5 5 →
5 4 3 0 5 5 →
5 4 3 5 0 5 →
5 4 3 5 5 0
↓ ↓ ↓ ↓ ↓





















Figure 2: H(1, 2, 3). Arrows mean repeat the term in that direction.

It is quite clear that the only nonnegativity inequalities satisfied by H are Nij, Njk, Nik,

and it also satisfies Tijk exactly. To see that H ∈ Ên, as well as that it does not satisfy any
other triangle inequality exactly can be done by case analysis. Separating the remaining Trst
according with r = i, r = j, r = k, s = i, s = j, s = k (some of these cases are not mutually
exclusive), and all remaining cases, leads to an easy verification that H satisfies all these Trst,
no one exactly.

The fact below is proved in [8] as a consequence of a method of lifting facets from Ên to
Ên+1; that kind of obscures its simplicity.

Corollary 3.3. All nonnegativity and triangle inequalities are facet defining for Ên.

Proof. Lemma 3.2 implies that no face induced by each nonnegativity inequality is contained in
any other face, so they all induce facets. But clearly Ên 6= Rn, so, at least one triangle inequality
is facet-inducing. As the group Sn acts transitively on the set of triangular inequalities, they
all induce facets as well.

Here is a more direct proof:

The matrix whose ij-entry is 0 if ij = rs, 2 if i = s or j = r and 1 otherwise
is an interior point of Nrs. The matrix whose ij-entry is 1 if ij = rs or st and
is 2 otherwise is an interior point of Trst. Each of these facts can be verified by
inspection.

The oriented cut quasi-semimetrics associated to sets of size 1 and n− 1 play a very special
role, already detected in [14]. Denote R(r) = δ({r}), C(r) = δ({1, . . . , n}\{r}. In matrix form,
R(r) has row r with all ones off diagonal, and is zero elsewhere; ditto for C(r) and column r, so
that C(r) = τ(R(r)). We denote Ln = {R(r), C(r) | 1 6 r 6 n} and refer to its members as lines.
As noted before, all rays in Ln are extreme in Ên; an alternative proof is in [14, Lemma 3.2].

Recall that s(A) is the size of the support of A, that is the number of nonzero entries in A.

7



Proposition 3.4. If 0 6= A ∈ Ên, then s(A) > n− 1. If s(A) = n− 1, then it is a multiple of
some line.

Proof. This can be read directly from Proposition 3.1, as s(δ(I)) = |I|(n− |I|).

Direct inspection shows that:

Proposition 3.5. Recall that when mentioning Tijk and Nij all indices are distinct.

a. R(r) satisfies exactly only {Tijk | j 6= r} and {Nij | i 6= r}.

b. C(s) satisfies exactly only {Tijk | j 6= s} and {Nij | j 6= s}.

c. Nij is satisfied exactly on Ln only by those R(r) such that r 6= i and those C(s) such that
s 6= j.

d. Tijk is satisfied exactly on Ln only by those R(r) such that r 6= j and those C(s) such that
s 6= j.

For each facet F , let e(F ) = {R ∈ Ln | R satisfies the F inequality exactly}. If we think of
the members of Ln as rays, e(F ) = {R ∈ Ln | R ⊆ F}.

Proposition 3.6. If for some Nij, e(F ) = e(Nij), then F = Nij.

Proof. From Proposition 3.5, e(Nij) = Ln\{R
(i), C(j)}, while e(Tijk) = Ln\{R

(j), C(j)}, and
the result follows.

We now state the main result in this section.

Theorem 3.7. The combinatorial automorphism group of Ên consists precisely of those permu-
tations of the face-lattice induced by Sn, that is, the restriction of ind to Sn is an isomorphism.

In view of Proposition 2.1, we have

Theorem 3.8. Symm(Ên) = LinZ(Ên) = Sn.

Some of these results are proved in [8] for small values of n and conjectured to hold in
general.

Proof of Theorem 3.7. By (Fig. 1) and Proposition 2.1, it is enough to show that ind(Sn) =
Comb(Ên). The set F of facets is invariant under Comb(Ên); since every face of Ên is a meet
of facets, it is enough to show that for every ϕ ∈ Comb(Ên) there exists a ψ ∈ Sn whose action
on F coincides with that of ϕ.

Some Lemmas below pave the way to Lemma 3.12, which shows Ln is invariant under
Comb(Ên), and each combinatorial automorphism acts on Ln in the same way as some auto-
morphism induced from Sn.

To finish the proof, let ϕ ∈ Comb(Ên), and ψ be given by Lemma 3.12; then γ = (indψ)−1ϕ ∈
Comb(Ên) is the identity on Ln.

As γ is a combinatorial automorphism, it commutes with e. Hence, given a nonnegativity
facet Nij , e(γ(Nij)) = {γ(R) | R ∈ e(Nij)} = e(Nij), and it follows from Proposition 3.6 that
γ(Nij) = Nij ; Lemma 3.2 implies that γ fixes the triangular facets as well. Hence γ is the
identity, and ϕ = indψ.

Those were the facts used in the proof of Theorem 3.7:

Lemma 3.9. Any A ∈ Ên strictly satisfies at least (n − 2)p(A) + s(A) defining inequalities,
where p(A) is the number of pairs {i, j} such that at least one of aij , aji is positive.
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Proof. If A satisfies both Tijk and Tjik exactly, then aij + aji = 0, hence these entries are 0.
So, if at least one of aij , aji is positive, at least one of Tijk and Tjik is strict for A, for each k.
That gives (n − 2)p(A) strict inequalities. The number of strict nonnegativity inequalities is
s(A).

Lemma 3.10. The set Ln is invariant under any combinatorial automorphism of Ên.

Proof. Proposition 3.5 implies that the ray spanned by each R(r) and C(s) is contained in
(n− 1)2(n− 2) triangular facets and (n− 1)2 nonnegativity ones, so it is contained in precisely
(n − 1)3 facets. We will show that any other nonzero face is contained in fewer facets. This
immediately implies the result.

Let F be a nonzero face of Ên and let A be an interior point of F . As there exist n(n−1)(n−2)
triangular facets and n(n − 1) nonnegativity facets, for a total of n(n − 1)2, we want to show
that if F /∈ Ln then A strictly satisfies more than (n− 1)2 = n(n− 1)2 − (n− 1)3 inequalities.

By Proposition 3.1, we need to consider only two cases

a. There exists a subset I of NN such that 2 6 |I| 6 n−2 and for every i ∈ I, j /∈ I, aij > 0.
Referring to Lemma 3.9, both p(A) and s(A) are at least |I|(n−|I|); so A strictly satisfies
at least (n− 1)|I|(n− |I|) inequalities. As 2 6 |I| 6 n− 2, |I|(n− |I|) > n− 1, and the
result follows.

b. There exist two members of Ln such that the support of A contains the union of their
supports, hence s(A) > 2n − 3. Trivially, p(A) > n − 1, so A strictly satisfies at least
(n− 2)(n− 1) + 2n− 3 > (n− 1)2 inequalities.

Denote R = {R(i) | i = 1, . . . , n}, C = {C(i) | i = 1, . . . , n}.

Lemma 3.11. The partitions (R,C ) and
(

{

R(i), C(i)
}

i=1,...,n

)

of Ln are preserved by any

combinatorial automorphism of Ên.

Proof. We denote by c(A,B) the number of facets containing lines A,B; this is clearly a com-
binatorial invariant. Let us compute these numbers using Proposition 3.5 (a) and (b). There
are three cases to consider:

a. A = R(r), B = R(s) or A = C(r), B = C(s), r 6= s. We count the Tijk with j 6= r, s and Nij

with i 6= r, s (case R) or j 6= r, s (case C). Hence
c(A,B) = (n− 1)(n− 2)2 + (n− 1)(n− 2) = (n− 1)2(n− 2).

b. A = R(r), B = C(s), r 6= s. We count the Tijk with j 6= r, s and Nij with i 6= r and j 6= s.
Hence c(A,B) = (n− 1)(n− 2)2 + (n− 1)(n− 2) + 1 = (n− 1)2(n− 2) + 1.

c. A = R(r), B = C(r). We count the Tijk with j 6= r and Nij with i 6= r and j 6= r. Hence
c(A,B) = (n− 1)2(n− 2) + (n− 1)(n− 2) = n(n− 1)(n− 2).

Consider now the complete graph with vertex set Ln and edges colored by the values of c(A,B)
just computed. By Lemma 3.10, any combinatorial automorphism of Ên permutes the vertices
of the graph, and, since the colors are combinatorial invariants, such permutation is an auto-
morphism of the colored graph.

Lemma 3.12. If ϕ is a combinatorial automorphism of Ên, then there exists ψ ∈ Sn such that
for every R ∈ Ln, ϕ(R) = (indψ)(R).

Proof. Since Ln is invariant, ϕ
(

R(1)
)

= R(j) or C(j), for some j. Consider first the case

ϕ
(

R(1)
)

= R(j). It follows from Lemma 3.11, ϕ(R) = R, hence there exists π ∈ Sn such

that for every i, ϕ
(

R(i)
)

= R(π(i)). Also, for every i, ϕ
({

R(i), C(i)
})

=
{

R(π(i)), ϕ
(

C(i)
)}

, and

again by Lemma 3.11, we have that ϕ
(

C(i)
)

= C(π(i)), and the result follows, with ψ = Pπ.

In the case ϕ
(

R(1)
)

= C(j), we argue as above for (ind τ) ◦ ϕ, and conclude the result with
ψ = τPπ.
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4. Max closed cones

Here we have a glimpse on cones that are also ⊕-monoids, i.e. max-closed cones, restricted
to cones contained in QN

+ . As we have two additive monoids on QN
+ , we label by the ⊕ symbol all

notions like submonoid and homomorphism to make it clear which structure we are referring to.
While the restriction to rational instead of real cones appears out of the blue here, Example 5.4
gives a rationale for that.

Proposition 4.1. A rational cone C is a ⊕-submonoid of QN
+ if and only if its integer cone

CZ = C ∩ ZN is a ⊕-submonoid of NN .

Proof. Only the ‘if’ part requires a proof. Let u, v ∈ C. Choose a positive integer r such that
ru, rv ∈ NN . Clearly those vectors are in C, hence so is ru ⊕ rv = r(u⊕ v). The last equality
shows that u⊕ v ∈ C, as required.

Proposition 4.2. Let H be a half-space given by a linear inequality ax > 0. Then,

a. If a has at most one negative component, H is max-closed.

b. If a has at least two negative components, then any small neighborhood in the bounding
hyperplane of H contains points whose max is outside H.

Proof. If a is nonnegative, it is clear that H is max-closed. Suppose it has a single negative
component; we can rewrite the inequality as cx − bxi > 0, where c > 0, ci = 0, b > 0. Let
u, v ∈ H ; Without loss of generality, max(ui, vi) = vi. Then, c(u ⊕ v) > cv > bvi = b(u ⊕ v)i,
showing that u⊕ v ∈ H . This shows part (a).

Suppose that there are distinct r, s ∈ N such that ar, as < 0. Let u be a point on the
hyperplane ax = 0 and choose any ε > 0. Let z ∈ NN have components zr = −as, zs = ar,
all other components being 0; then, az = 0, and both u+ εz and u− εz lie in the hyperplane.
Let v = (u + εz) ⊕ (u − εz); then, vs = us − εar, vr = ur − εas, and vi = ui otherwise. But
av = au− 2εaras < 0, so v 6∈ H .

Theorem 4.3. A full dimensional cone is max-closed if only if for every facet inequality ax > 0,
a has at most one negative component.

Proof. One one hand, if the inequalities are of the form given, the cone is an intersection of
max-closed half-spaces, hence max-closed.

If a facet inequality of a cone is not of the specified form, then, applying Prop. 4.2 to a
neighborhood of an interior point of that facet, we see that the cone is not max-closed.

Corollary 4.4. A full dimensional nonnegative cone is max-closed if only if every facet in-
equality is either of form xj > 0 or ax > 0, where a has exactly one negative component and at
least one positive component.

Proof. Since each xj > 0 is a valid inequality for C, all facet inequalities ax > 0 not of this
type must have at least one negative coefficient, say, ai < 0. By Theorem 4.3, it is exactly one
and there must be a j such that aj > 0, otherwise, any x ∈ C would satisfy xi 6 0 and be
nonnegative, whence, xi = 0, contradicting full dimension.

5. ⊕-automorphisms

In RN , x 6 y if and only if x⊕ y = y, so any ⊕-automorphism also preserves 6. We recall
that in a partial order, y covers x if x � y and there is no third element z such that x � z � y.
In ZN , y covers x if and only if y = x+ ei, for some i. When dealing with integer vectors, we
will use interval notation to refer implicitly to ZN , that is [x, y] = {z ∈ ZN | x 6 z 6 y}.
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We will be concerned here with ⊕-automorphisms of integer max-closed cones only. On one
hand, this is motivated by our interest in exponential matrices; on the other hand, Example 5.4
presents a brief discussion on real and rational cones in this context, and their difficulties. Still,
some facts that help tame additive automorphisms of integer max-closed cones do not hold for
⊕-automorphisms, and we will need a few additional hypotheses on the cone.

Example 5.1:Here we show a family ofmax-closed cones, and a ⊕-automorphism of the corresponding
integer cones which cannot be extended to an additive automorphism. An intuitive geometric expla-
nation for that is that the cones are “too thin”. For any positive integer k, let Ck be the 2-dimensional
cone given by:

{

−k x + (k + 1)y > 0
(k + 1)x − k y > 0.

One readily verifies that Ck is symmetric about the line x− y = 0.
The points p = (k + 1, k) and q = (k, k + 1) are special here: in the lattice Ck ∩ Z2 each of them

covers only (k, k) and is covered only by (k + 1, k + 1). To see this, suppose (x, y) ∈ Ck ∩ Z2\{p, q}
satisfies (x, y) > p. We want to show that (x, y) > (k + 1, k + 1); if y > k, then y > k + 1 and we are
done, and the case y = k would require x > k + 1, which is ruled out by the first defining inequality.
All remaining verifications are similar.

It follows that the involution on Ck ∩ Z2 that interchanges p and q and fixes all other points is
order preserving - hence a ⊕-automorphism of the integer cone.

Since this map moves p and fixes 2p, it cannot be extended to an additive map.

We say that an arbitrary S ⊆ RN is very full if, for every i ∈ N , 1± ei ∈ S (recall that 1
denotes the vector of all 1’s).

Proposition 5.1. A cone is very full if and only if for every facet inequality ax > 0, one has
that a1 > maxi∈N |ai|.

Proof. Consider a vector w = 1+ αei, where α = ±1. Then, aw > 0 if and only if a1 > −αai,
and that happens if and only if a1 > |ai|.

If C is a subset of RN , and ϕ is a bijective map from C to itself, we will say that ϕ is
permutational if there exists a permutation π ofN such that for every a = (ai) ∈ C, ϕ(a)π(i) = ai
for all i ∈ N . That means that ϕ is the restriction to C of the linear map whose action on the
canonical basis (ei)i∈N is given by ei 7→ eπ(i).

Note that any permutational map is an additive homomorphism, a ⊕-homomorphism and
an isometry.

Theorem 5.2. Let C be a very full subset of NN closed under + and ⊕. Then, every ⊕-
automorphism fixing a non-zero multiple of 1 is permutational.

Proof. Notice that 1 = (1− e1)⊕ (1− e2) ∈ C, since 1± ei ∈ C. Furthermore, for every integer
k > 0, i ∈ N , k1± ei = (k− 1)1+ 1± ei ∈ C. It will be convenient to denote bki = k1− ei, and
Bk = {bki | i ∈ N}.

Let ϕ be a ⊕-automorphism fixing r1.
We will proceed through a series of claims.

Claim 1 For every integer k > 0, ϕ fixes k1.
It is enough to prove that, for k > 0, if ϕ fixes k1, then it fixes both (k+1)1 and (k−1)1,
and then proceed by induction up and down, starting from r1.

The set of vectors covering k1 is invariant under ϕ. Those are {k1 + ei}i∈N , and so
(k + 1)1 = ⊕i∈N (k1 + ei) is fixed by ϕ. Also, the set Bk of vectors covered by k1 is
invariant, so ⊕{x ∈ C | x 6 bki , for all i ∈ N} = (k − 1)1 is also fixed, and the claim is
proved.
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Notice that for every integer k > 1, the set Bk consists of the coatoms of the interval [0, k1]
in ZN , and, a fortiori, in C, so, by Claim 1, Bk is invariant under ϕ. Let π ∈ SN be the
permutation defined by ϕ(b1i ) = b1π(i).

Claim 2 For every k > 1, i ∈ N , ϕ(kb1i ) = kb1π(i).
Fix a k > 1. We know already from the proof of Claim 1, that ϕ permutes the vectors
from Bk. Let us show ϕ also permutes (kb1i )i∈N . This set is precisely

{w ∈ C | |[0, w] ∩B1| = 1 = |[w, k1] ∩Bk|},

which shows our set is invariant under ϕ. Since one must have ϕ(b1i ) 6 ϕ(kb1i ), the claim
follows.

Claim 3 For every k > 1,i ∈ N , the interval [kb1i , k1] in C is a chain of height k (i.e. length
k + 1).
Clearly this interval consists of the vectors kb1i ⊕ t1, 0 6 t 6 k, which gives the claim.

Now we finish the proof. Given any v ∈ C, we want to show that ϕ(v)π(i) = vi, for each i.
Choose k bigger than any component of v, and of ϕ(v). The vector kb1i ⊕ v has all components
k, except for the ith, which equals vi. So, the interval [kb1i , kb

1
i ⊕ v] is a chain of height vi. It is

mapped bijectively by ϕ to [kb1π(i), kb
1
π(i) ⊕ ϕ(v)], which is a chain of height ϕ(v)π(i). It follows

that ϕ(v)π(i) = vi, as claimed.

The examples below illustrate the precision of Theorem 5.2.

Example 5.2:The set C needs not be an integer polyhedral cone: fix a real 0 < α < 1, and for n > 3,
let C = {x ∈ Nn |

∑

i 6=j xi > xαj , j = 1, . . . , n}. Since xα + yα > (x + y)α for all x, y ∈ R+, this is an
additive submonoid of Nn, and it is clearly very full. Following the proof of Proposition 4.2, we see
that C is also closed under ⊕. The elements of C with minimal support are all vectors with exactly
two ones and zeros elsewhere; any ⊕-automorphism keeps this set invariant, hence it fixes 1, its max.
Theorem 5.2 implies that every ⊕-automorphism is permutational (by the description symmetry, any
permutation of coordinates yields a ⊕-automorphism). On the other hand, it is an exercise to show
that the smallest polyhedral cone containing C is the positive orthant, which is, of course, too large,
as e1 /∈ C.

Example 5.3:Here we show that the requirement of being an additive monoid cannot be simply
dismissed. For each k ∈ N, let Dk = {v ∈ NN | k1 6 v 6 (k + 1)1}, and let D = ∪k∈NDk. Then D is
⊕-submonoid of NN , and very full, but it is not closed under +. Choose, for each k, a permutation
πk ∈ SN , and let T be the map that acts like πk on the layer Dk. This is a ⊕-automorphism, but,
unless all the πk are equal, it is not permutational.

Example 5.4:If C is a real, full dimensional ⊕-closed cone, then every ⊕-automorphism is fully
determined by its action on C ∩ QN . That is because each x ∈ C is the greatest lower bound of the
set {y ∈ C ∩ QN | x 6 y}. On the other hand, the rational cone Qn

+ admits a quite complicated
automorphism group: choose on each component an increasing function on Q+; the whole choice can
even be done so as to fix NN . Actually, in the same vein as in [2], Corollary 5.4 is likely also true for
rational and real cones, except for orthants, but we do not pursue this here.

Lemma 5.3. Let C be a ⊕-submonoid of NN . Assume also that C is fixed by a group of
permutational maps that is transitive on the canonical basis. Then every ⊕-automorphism of C
fixes a multiple of 1.

Proof. By Dickson’s Lemma [13], [15], C has a finite set of minimal non-zero vectors; this set
is invariant under any ⊕-automorphism of C, so its ⊕-sum is fixed by those automorphisms.
That is a non-zero vector fixed by a transitive permutation group, so it is a positive multiple
of 1.
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Combining Theorem 5.2 with Lemma 5.3, we obtain:

Corollary 5.4. Let C be a very full subset of NN closed under + and ⊕. Assume also that C
is fixed by a group of permutational maps that is transitive on the canonical basis. Then every
⊕-automorphism of C is permutational.

Let us apply this now to En. This is very full, closed under + and ⊕, and Sn ⊆ Aut(En,⊕)
is a group as required by Corollary 5.4, so every ⊕-automorphism of En is permutational. As
permutational maps are linear, we have that Aut(En,⊕) ⊆ LinZ(En) = Sn, and we have proved:

Theorem 5.5. [14, Theorem 4.3] Aut(En,⊕) = Sn.

Notice that Ên, as a rational polyhedral cone, satisfies the following properties: it is very
full, non-negative, pointed, max-closed and each non-negativity inequality determines a facet.
The next example shows that even all of these properties of a polyhedral cone are not enough
to guarantee that each additive automorphism is also a ⊕-automorphism.

Example 5.5:Consider the cone C = {x ∈ Q3 | x1 + x2 > x3, x1, x2, x3 > 0}. The following hold:

a. C is very full, pointed, non-negative, max-closed.

b. Each nonnegativity inequality of C determines a facet.

c. There is an additive automorphism of CZ which is not permutational and does not preserve ⊕.

Clearly (a) is satisfied. Fact (b) is proved by the respective interior points (0, 2, 1), (2, 0, 1), (1, 1, 0).
The extreme rays of C are

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1, 0, 1), v4 = (0, 1, 1).

Let ψ ∈ GL(3,Z) be given by the matrix





1 1 −1
0 0 1
0 1 0





Then ψ fixes v1 and v4 and interchanges v2 and v3. As it permutes extreme rays, it leaves C
invariant, and is an additive automorphism of CZ. On the other hand, ψ(v1 ⊕ v3) 6= ψ(v1) ⊕ ψ(v3),
showing (c).
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