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Abstract

Recently, Gnutzmann and Smilansky [5] presented a formula for the bond scattering
matrix of a graph with respect to a Hermitian matrix. We present another proof for
this Gnutzmann and Smilansky’s formula by a technique used in the zeta function
of a graph. Furthermore, we generalize Gnutzmann and Smilansky’s formula to a
regular covering of a graph. Finally, we define an L-fuction of a graph, and present a
determinant expression. As a corollary, we express the generalization of Gnutzmann
and Smilansky’s formula to a regular covering of a graph by using its L-functions.
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1 Introduction

Thara zeta functions of graphs started from Thara zeta functions of regular graphs by Thara [9].
Originally, Thara presented p-adic Selberg zeta functions of discrete groups, and showed that
its reciprocal is a explicit polynomial. Serre [I3] pointed out that the Thara zeta function
is the zeta function of the quotient T/T' (a finite regular graph) of the one-dimensional
Bruhat-Tits building 7" (an infinite regular tree) associated with GL(2, k).

A zeta function of a regular graph G associated with a unitary representation of the
fundamental group of G was developed by Sunada [16, 17]. Hashimoto [§] treated multi-
variable zeta functions of bipartite graphs. Bass [I] generalized Thara’s result on the Thara
zeta function of a regular graph to an irregular graph, and showed that its reciprocal is
again a polynomial. Various proofs of Bass’ Theorem were given by Stark and Terras [15],
Foata and Zeilberger [3], Kotani and Sunada [10]. Sato [12] defined the second weighted
zeta function of a graph by using not an infinite product but a determinant.

The spectral determinant of the Laplacian on a quantum graph is closely related to the
Thara zeta function of a graph(see [2 [, [5, 14]). Smilansky [I4] considered spectral zeta
functions and trace formulas for (discrete) Laplacians on ordinary graphs, and expressed
some determinant on the bond scattering matrix of a graph G by using the characteristic
polynomial of its Laplacian. Recently, Gnutzmann and Smilansky [5] presented a formula
for the bond scattering matrix of a graph with respect to a Hermitian matrix.

In this paper, we another proof for the Gnutzmann and Smilansky’s formula on the bond
scattering matrix of a graph with respect to a Hermitian matrix. by a technique used in
the zeta function of a graph, and treat some related topics. In Section 2, we review the
Thara zeta function and the bond scattering matrix of a graph G. In Section 3, we present
another proof for the Gnutzmann and Smilansky’s formula by a technique used in the zeta
function of a graph. In Section 4, we we express a new zeta function of G on the bond
scattering matrix of G with respect to a Hermitian matrix by using the Euler product. In
Section 5, we generalize the Gnutzmann and Smilansky’s formula to a regular covering of
G. In Section 6, we define an L-fuction of G, and present its determinant expression. As
a corollary, we express the generalization of the Gnutzmann and Smilansky’s formula to a
regular covering of G by using its L-functions.

2 The zeta functions and the bond scattering matrix of
a graph

Graphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V(G) of vertices and the set F(G) of unoriented
edges uv joining two vertices u and v. For uv € E(G), an arc (u,v) is the oriented edge
from u to v. Set D(G) = {(u,v), (v,u) | wv € E(G)}. For b = (u,v) € D(G), set u = o(b)
and v = t(b). Furthermore, let b=! = (v, u) be the inverse of b = (u,v).

A path P of length n in G is a sequence P = (by,--- ,b,) of n arcs such that b; € D(G),
t(b;) = o(bi+1)(1 <1i <n —1), where indices are treated mod n. Set | P |=n, o(P) = o(b1)
and t(P) = t(by). Also, P is called an (o(P), t(P))-path. We say that a path P = (by,--- ,by)
has a backtracking or back-scatter if by = b; * for some i(1 <i <n—1). A (v,w)-path is

called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle C = (by,--- ,b,) is
the cycle C~ = (b, -, by).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1,--+ ,em)
and Cy = (f1,---, fm) are called equivalent if there exists k such that f; = e;1 for all

j. The inverse cycle of C' is in general not equivalent to C. Let [C] be the equivalence
class which contains a cycle C. Let B" be the cycle obtained by going r times around a
cycle B. Such a cycle is called a power of B. A cycle C is reduced if both C' and C? have



no backtracking. Furthermore, a cycle C is prime if it is not a power of a strictly smaller
cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds
to a unique conjugacy class of the fundamental group m1(G,u) of G at a vertex u of G.
Furthermore, an equivalence class of prime cycles of a graph G is called a primitive periodic
orbit of G(see [14]).

The Ihara zeta function of a graph G is a function of a complex variable ¢ with | ¢ |
sufficiently small, defined by

Z(G,t) = Zg(t) = [ J(1 — ¢,
(7]
where [p] runs over all equivalence classes of prime, reduced cycles of G(see [9]).

Theorem 1 (Thara; Bass) Let G be a connected graph. Then the reciprocal of the IThara
zeta function of G is given by

Z(G,t) 7t = (1 —?) " Hdet(I — tA(G) + t3(D — 1)),
where r and A(G) are the Betti number and the adjacency matriz of G, respectively, and
D = (d;;) is the diagonal matriz with d; = v; = degu; where V(G) = {u1, -+ ,un}.

Let G be a connected graph and V(G) = {u1, -+, up}. Then we consider an n x n matrix
W = (w;j)i<ij<n With ij entry the complex variable w;; if (u;,u;) € D(G), and w;; = 0
otherwise. The matrix W = W(G) is called the weighted matriz of G. Furthermore, let
wlug, u;) = wij, ui,u; € V(G) and w(b) = w;j,b = (us,uj) € D(G). For each path P =
(€iy5-++ ,€4.) of G, the norm w(P) of P is defined as follows: w(P) = w(e;, )w(es,) - - - w(e;, ).

Let G be a connected graph with n vertices and m unoriented edges, and W = W(QG)
a weighted matrix of G. Two 2m x 2m matrices B = B(G) = (Be,f)e,fer(q) and Jo =
Jo(G) = (Je,f)e,rer(c) are defined as follows:

Be,f—{ w(f) if t(e) = o(f), Je,f_{ 1if f=¢,

0 otherwise, 0 otherwise.
Then the second weighted zeta function of G is defined by
Z,(G,w,t) = det(I, — t(B — Jo)) " .
If w(e) =1 for any e € D(G), then the zeta function of G is the Thara zeta function of G.

Theorem 2 (Sato) Let G be a connected graph, and let W = W (G) be a weighted matriz
of G. Then the reciprocal of the second weighted zeta function of G is given by

Z1(G,w,t)"t = (1 — )™ " det(L,, — tW(G) + t3(D — 1,,)),
where n =| V(G) |, m =| E(G) | and D = (di;) is the diagonal matriz with d;; =
Zo(b):ui w(e), V(G) = {ur, -+ ,un}.

Next, we state the bond scattering matrix of a graph. Let G be a connected graph with
n vertices and m edges, V(G) = {u1,...,un} and D(G) = {b1,...,bm,bm+1,.-.,bam} such
that by,4; = bj_l(l < j <m). The Laplacian (matriz) L = L(G) of G is defined by

L=L(G) = —A(G) + D.

Let A be a eigenvalue of L and ¢ = (¢1,...,1,) the eigenvector corresponding to A. For
each arc b = (u;,u;), one associates a bond wave function

V() = ape’™/* 4 a1 g = 41

under the condition
Yu(1) = ¥y, hp(—1) = 2.

We consider the following three conditions:



1. uniqueness: The value of the eigenvector at the vertex u;, ¥;, computed in the terms
of the bond wave functions is the same for all the arcs emanating from u;.

2. v is an eigenvector of L;

3. consistency: The linear relation between the incoming and the outgoing coefficients
(1) must be satisfied simultaneously at all vertices.

By the uniqueness, we have

ableur/4 + abfle—zﬂ'/4 — abQGzﬂ'/4 + abgle—ur/él R abdj e17r/4 + abgle—zw/4,
3J

where b1,bs, ..., bq; are arcs emanating from u;, and d; = deguy, i = v/—1.
By the condition 2, we have
d; |G
= (ape™ ™t 4 ape™) = (A= v) = Y (ap, ™t + ay-re7 Y,
k=1 : Vi k=1 :

<)

Thus, for each arc b with o(b) = u;,

where 5 )
(uj) _
o AN =i(0p-1,— ———"),
b,c ( ) (bl7 djl—l(l—)\/d]))

and 6,1 . is the Kronecker delta. The bond scattering matrizc U(A) = (Uey)e,ren(c) of G is
defined by
U,y = oI it t(f) = ole),
¢ 0 otherwise
By the consistency, we have

UNa=a,

where a = *(ay, , ap,, . - ., ap,,, ). This holds if and only if
det(Iz, — U(N)) = 0.

Theorem 3 (Smilansky) Let G be a connected graph with n vertices and m edges. Then
the characteristic polynomial of the bond scattering matriz of G is given by

det(Tom — U(N)) = Qmi;[iet(&i"_tz(ﬂ;) D) 10 - a0,

J=1 [p]

where [p] runs over all primitive periodic orbits of G, and

ap()\) _ Ul()t(bn))o.l()i(f?l;;ill)) . Ul(;;(,ll))ll))’ p= (blu bo, ... ubn)

1,bn

Mizuno and Sato [11] presented another proof for this Smilansky’s formula by using the
determinant expression of the second weighted zeta function of a graph.



3 The scattering matrix of a graph with respect to a
Hermitian matrix

Let G be a connected graph with n vertices and m edges, V(G) ={1,...,n} and D(G) =
{e1,...,em,emt1,...,€2m} such that e, ; = e; (1 < j < m). Furthermore, let an Hermi-
tian matrix H = H(G) = (Huv)uwev(a) be glven as follows:

hee* 1 if f = (u,v) € D(GQ),
Hy, = : :
0 otherwise,

where, for each f € D(G),
hf=hy12>0and vy =—v51 € [—7/2,m/2].

If H,, = Hy is real and negative, then we choose vy = n/2 if w > v and vy = —n/2 if
u < v. Set

h(u,v) = hyy = hy and v(u,v) = Yyo = vy for f = (u,v) € D(G).

Now, let A be an eigenvalue of H and ¥ = (¢1,...,%,,) the eigenvector corresponding
to . For each arc b = (u,v), one associates a bond wave function
ei’Yb

’Q/Jb(,f) = \/h_b

(abileiﬂm/4+abe—iww/4), =41

under the condition
wb(l) = wuuwb(_l) = "/J'U-

We consider the following three conditions:

1. uniqueness: The value of the eigenvector at the vertex u, v, computed in the terms
of the bond wave functions is the same for all the arcs emanating from w.

2. v is an eigenvector of H;

3. consistency: The linear relation between the incoming and the outgoing coefficients
(1) must be satisfied simultaneously at all vertices.

By the uniqueness 1, we have

ey by

(CL 7161.71'/4 + ablefirr/4) _

\/ hbl by \/ hb2
e ) )
_ d (a]b—le”r/4 + abdef’Lﬂ'/4) — U)u;
\/ hbd d
where by, bs, ..., by are arcs emanating from w, and d = degu, i = v/—1.
By the condition 2, we have

i /4 —im /4y
(abgle + ap,e ) =

(Huu - /\)1/}u + Z Hu'ﬂ/}v = O,

veE,
and so
eiVby 4 1 d ka - )
(Hyu — A) (ab e/t 4y e/ —= Z e/ gy, e T/,
v/ o, d Pt hb,c



where &, = {f € D(G) | o(f) = u}. Thus, for each arc b with o(b) = u,

by s

d
b/ R
a_ =iap — 22 Hu\u/j)\ —bZI‘ PRICTE e PR PN

where 4
Tu=> hy,.
k=1
Let e = b1, f = by, and
o (N) = i1y — 2\/h_8— Vhfei(vfﬂe)
ef T Y Hy, — A=l :
where -1 is the Kronecker delta. Then we have
ac= > o0 Ny (2)
o(f)=u
for each arc e such that t(e) = u. The bond scattering matriz U(X) = (Uey)e, rep(a) of G is
defined by
v, = Lol itte) = o(f),
c 0 otherwise

By the consistency 3, we have
UN)a=a,

where a = *(ap, , ap,, . . ., ap,,, ). This holds if and only if
det(Iom — U(N)) = 0.

We present another proof of Theorem 4 by using the technique on the Thara zeta function,
which is different from a proof in [5].

Theorem 4 (Gnutzmann and Smilansky) Let G be a connected graph with n vertices
1,...,n and m edges. Then, for the bond scattering matrix of G,

—1)"2™ det(AI,, — H)

[T (Hj; — A —ily)

det(Ip, — U(N)) = (

Proof. The argument is an analogue of Watanabe and Fukumizu’s method [I§].
Let G be a connected graph with n vertices and m edges, V(G) = {1,--- ,n} and

D(G) = {by,..., by, b7 ... b1}, Set d; = degj and
2

€t = —

I Hy; AT,

for each j = 1,...,n. Furthermore, for e € D(G), let

— \/h_eei'ye

Them we have
t(e .
Uéf( ))(/\) = i0e-1y — xt(e)w(e)w(f).
Now, we consider a 2m x 2m matrix B = (Bef)., e p(c) given by

_ J zopwlew(f) if t(e) = o(f),
By — { o)

otherwise



Let K = (K, ;) 1<i<2m;i<j<n be the 2m x n matrix defined as follows:

K — zyw(b;) if o(b;) = 7,
B0 otherwise.

Furthermore, we define two 2mxn matrices L = (Li,j)1§i§2m;1§j§n and M = (Mi,j)1§i§2m;1§j§n
as follows:

L. oo d wl) i) =g, e [ w(bi) i o(bi) =,
Y10 otherwise, “I 10 otherwise.

Note that
T 0
0 T
Furthermore, we have
L'K=8 @
and
‘ML = H. (5)
Note that
Hyy = w(u,v)2 if (u,v) € D(G).
But, since
—zyeyw(e)w(f) if t(e) = o(f) and f # e 1,
U =4 i —ayew(e)w(f) if f=e !,
0 otherwise,
we have
U(/\) =1iJo — B.

Furthermore, if A and B are an r X s and an s X r matrix, respectively, then we have
det(I, — AB) = det(I; — BA).
Thus,
det(Ig,, —uwUWN)) = det(Iyy — u(iJo — B))
= det(Ig,, — iuJg + uL *K)

det(Igm +uLL tK(Izm — i’u,.]o)_l) det(Igm — Z’u.]o)

= det(In +u tK(IQm — iuJo)ilL) det(Igm - ZUJ())

Arrange arcs of D(G) as follows: by, b ", ..., bm,b'. Then we have

1 —uw ... 0
—iu 1
det(Ioy, —iudo) =det(| . ) )= (1+u*)™.
0



Furthermore,

1 —iu 0
—iU 1
(Igm — ’L'uJo)il = .
0
1 0
. w1
0

Therefore, it follows that
det(Izm — uU(N))

= det(I, + K (Iop + iudo)L) (1 + u?)™

_u
14+u?

= (1+u2)m "det((1 +u)I, + u ‘KL + iu? 'KJoL).

But, we have
'KL = X'ML = XH.

Furthermore, we have

'KJ)L = X!MJ,L.
Then, for u,v € V(G), we have

(*MJIoL) s
S D SNV W 1S Y 9
= Ouv Dp(ey=g (€)1 w(e™h)
= Ouv Dg(e)ymu VI Vhee T

= 57“/ Zo(e):u he = 5quu

Now, let
I 0
Dy = )
0 Ty
Then
'KJoL = XDy.
Thus,

det(Iyy, — uU(N)) = (1 4+u*)™ " det((1 + v*)I, + uXH + iu?*XDy).



Substituting © = 1, we obtain
det(I,, — U(N))

— 2™ " det(2, + XH +iXDy,)

= 2m—ndet([ 2+i1“uﬁ mhuve%%w D
_ om
B T (Huu——ily) det(—=M\I, + H)

- 3:1((;11):—2;1—1‘1“10 det(AL, — H).

4 The Euler product with respect to the scattering ma-
trix

We present the Euler product for the determinant formula of the scattering matrix U()) of
a graph.

Theorem 5 Let G be a connected graph with m edges, and H = H(G) = (Huv)u,vev ()
an Hermitian matrix defined in Section 2. Then the characteristic polynomial of the bond
scattering matriz of G induced from H is given by

det(Ioy — uU(N) = [T — weu!),
(€]

let ¢ Tuns over all equivalence classes of prime cycles in G, and
we = 0( (61)) (t(ez)) Eei(?f))’ C = (by,bg,...,by)

Proof. Let D(G) = {b1,- -+ ,bam} such that by,; = bj_l(l <j <m). Set U=TU(\).
Since
log det(I — uF) = Trlog(I — uF),

for a square matrix F, we have

8
ﬁ

log det(I — uU) = Trlog(I — «wU)

k=1
Here,
U*) = we,
c
where C runs over all cycles of length k in G, and
we = 0( (61)) (t(egz)) . .U((ii(:{c)), C = (by,bo,...,by)

Thus,
uilogdet(I, —uU) = Y52, Tr(UF)u*

= Ecwculcl7

where C' runs over all cycles in G.

10



Now, let C' be any cycle in G. Then there exists exactly one prime cycle D such that
C =D
Thus, we have

d o0
u log det (I, — uU) ZZU}%UMD‘,
D k=1

and so,

d
d—logdet(Igm—uU E E wkuk‘D‘ L
D k=1

where D runs over all prime cycles in G. Therefore, it follows that

logdet(Ia, —uU) = =3 5307, k|D| utlPl
[e%S) D
= =D 2kt k||D||w utl?!
= = Xip X Fwhut!?

= > plog(l - wpulP.

Hence,

det(Iy,, —uU(N)) = H(l — weul,
[C]

5 Scattering matrix of a regular covering of a graph

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € D(G)} denote the
neighbourhood of a vertex v in G. A graph H is a covering of G with projection 7 : H — G
if there is a surjection m : V(H) — V/(G) such that 7|y, : N(v') — N(v) is a bijection
for all vertices v € V(G) and v' € 7~ !(v). When a finite group II acts on a graph G, the
quotient graph G/II is a graph whose vertices are the IT-orbits on V(G), with two vertices
adjacent in G/II if and only if some two of their representatives are adjacent in G. A
covering m : H — G is regular if there is a subgroup B of the automorphism group Aut H
of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and T' a finite group. Then a mapping a : D(G) — T is an ordinary
voltage assignment if a(v,u) = a(u,v)~! for each (u,v) € D(G). The pair (G,q) is an
ordinary voltage graph. The derived graph G¢ of the ordinary voltage graph (G, «) is defined
as follows: V(G*) = V(G) x I and ((u, h), (v,k)) € D(G¥) if and only if (u,v) € D(G)
and k = ha(u,v). The natural projection m : G* — G is defined by 7(u,h) = u. The
graph G is a deriwed graph covering of G with voltages in I' or a I'-covering of G. Note
that |[Eq, p)| = || for each (u,h) € V(G*). The natural projection 7 commutes with the
right multiplication action of the a(e),e € D(G) and the left action of I on the fibers:
g(u,h) = (u,gh),g € ', which is free and transitive. Thus, the I'-covering G* is a | I" |-fold
regular covering of G with covering transformation group I'. Furthermore, every regular
covering of a graph G is a I'-covering of G for some group I' (see [6]).

Let G be a connected graph, ' be a finite group and « : D(G) — T be an ordinary
voltage assignment. In the I'-covering G, set v, = (v,g) and e, = (e,g), where v €
V(G),e € D(G),g €T. For e = (u,v) € D(G), the arc e, emanates from u, and terminates
at Vga(e)- Note that €y = (e~ 1)qa(e)

11



Let G be a connected graph, ' be a finite group and « : D(G) — T be an ordinary
voltage assignment. Furthermore, let H = H(G) = (Huv)u,vev(c) be an Hermitian matrix

such that _
0o - hge*s if f = (u,v) € D(G),
w 0 otherwise,

where, for each f € D(G),
hf=hs1>0and vy =—v51 € [—7/2,m/2].

We give the function  : D(G*) — R and 4 : D(G*) — [-7/2,7/2] induced from h and
v, respectively, as follows:

B(ug,vk) = hyw and F(ug, k) = Yup tf (u,v) € D(G) and k = ga(u,v).

Furthermore, we consider the Hermitian matrix H = H(G*) = (Hugyop, )ugorev(agey of G*
induced from H. At first, let

Hy,u, = Hyu for each g € T
For (ug,vi) € D(G®), we have

7 21 (ug,vE) __ 24
Hyyo, = hlug, vp)e? 7o) = p, e,

Thus,
hype*usve if (u,v) € D(G) and k = ga(u,v),
Hy o), = H,. ifu=vand k =g,
0 otherwise.

Next, we consider the bond wave function of the regular covering G* of G. Let V(G) =
{vi,...,vn}, D(G) = {e1,. . em,e; .. extband T' = {g1 = 1,92,...,9,}. Let X be
a eigenvalue of H = H(G®), and let ¢ = (¢y, g, - - s Do gps s Ponigrs -+ Pung,) be the
eigenvector corresponding to A, where ¢,, 4, corresponds to the vertex (v, g;) (1 <i<mn;1 <
J < p) of G*. Furthermore let by = (vy, 24a(5)) be any arc of G, where b = (v, z) € D(G),
g € I'. Then the bond wave function of G¢ is

e

b, () = (ay 1™/ 4 ap, e ) @ = £1, i = V=T

=

under the condition
d)bg(]‘) = d)vg and ¢b9 (_1) = ¢Z90<(b)'
By (1), we have

_ Y = reg Y hbg H(Fog+Teq) Qe

ab;I = Z(Sl);leg - 220(69):1)9 vaug—)\ Ty, €g

(vg)

= Eo(eg):vg Ubgeg Qe

for each arc by with o(b,) = v,, where

(va) _ 6,-1, —2 Lty teg) g
€g

g = 10, —
bgeg 9 €g —A—1
Hypoy — A— iy,

and

heg = H(eg)v :Yeg = :Y(eg)'

12



By the definitions of i, 4 and H, we have

Mei(7b+7e) — O'(U) = O'(t(b))
Hm; = ZFU be be .

oy ) =idy1. -2

Note that 8(%9) = &,. Thus,
Gz 3 of®a,,.
o(eg)=vg

Therefore, the bond scattering matrix U(\) = (U|(e,, In))e, . faen(Gey of G is given by

Uleg, fn) = { gf(itf(E)) if t(frn) = o(eq),

otherwise.

But, we have
2

Ty, = ——————— =Ty
9 Hyy — A —1ly,

for vy € V(G®). Furthermore, let w : D(G*) — C be given as follows:

w(eq) = \/ﬁegeﬁeg for each eqg € D(G?).
Then we have _
eg) = Vhee"e = w(e), eg € D(GY).
For g € T, let the matrix H, = (Hqﬂ({,)) be defined by

17l hyve?we if a(u,v) = g and (u,v) € D(G),
w10 otherwise.

Furthermore, let U, = (UY(e, f)) be given by

v e,y = J oG i He) = o) and a(e) = .
0 otherwise,

Let My & --- @& Mj be the block diagonal sum of square matrices My, ..., M. If M; =
My = -.- = My = M, then we write soM = M; @ --- ® M. The Kronecker product
A @ B of matrices A and B is considered as the matrix A having the element a;; replaced
by the matrix a;;B.

Theorem 6 Let G be a connected graph with n vertices v1,...v, and m unoriented edges,
T be a finite group and o : D(G) — T be an ordinary voltage assignment. Set | T’ |= p
Furthermore, let p1 = 1,p9,--- , pi be the irreducible representations of I', and f; be the
degree of p; for each i, where f1 = 1.

If the I'-covering G* of G is connected, then, for the bond scattering matriz of G,

det(Ig,n, — U(N)) = det(Ia,, — H det(Tomys, — > pi(h) Q) Un)’
h

9mp (1) det(AL, |
I evie)Huu = A =iy Hdt)\I"ﬂ > ri(h) Q) Hn — 1, Q) diag(H

hel’

where
Hy\ 0, 0

diag(H) = .
0 H'un'un

13



Proof . Let | I |= p. By Theorem 4, for the bond scattering matrix of G, we have

2mp(— 1) det(AL, — H(G®))
Mocy o) Huu — A— T,

Let D(G) = {e1,...,€m;Em+1,--.,€2m} such that ey, ; = ej_l(l <j<m)andT ={1=
91,92, 9p}- Arrange arcs of G* 1npb10cks (e1,1),..., (e2m, 1); (€1, 92), - -, (€2m, 92); - 5
(€1,9p), - -, (€2m, gp). We consider the matrix U(\) under this order. For h € T, the matrix
P, = (pgl)) is defined as follows:

det (I, — UN)) =

(h) 1 if gih =g,
i ] 0 otherwise.

Suppose that pl(-?) =1,ie., g; = gih. ThenU(ey,, fy,) # Oifand only if (e, g;) = o(f, g:).

Furthermore, t(e, g;) = o(f, g:) if and only if (o(f), g;) = o(f, g;) = t(e, g:) = (t(e), giar(e)).
Thus, t(e) = o(f) and a(e) = g; 'g; = g; "gih = h. Thus, we have

N =Y P, U

hel

Furthermore, we have
diag(H(G®)) = I, (X) diag(H

Let p be the right regular representation of I'. Furthermore, let p1 = 1, p2,...,pr be
all inequivalent irreducible representations of I'; and f; the degree of p; for each i, where
fi = 1. Then we have p(g) = P, for g € I'. Furthermore, there exists a nonsingular matrix
P such that P~'p(g)P = (1) ® fa 0 p2(9) ® - -- ® fx o pi(g) for each g € T'(see [12]). Thus,

we have

P'P,P = (1)@ fr0p2(g) @ @ fr o pr(g).
Putting F = (P! ® I ) UN) (P ® I, ), we have

F=Y {(1)® f20pg)® & fio pilg)} Q) Uy

gel

Note that U(A) = 3 Uy and 1+ f5 + - + f7 = p. Therefore it follows that

det(Tamp — U(N)) = det(Izy, — H det(Iomp, — Y pi(g) Q) Uy)
g

Next, let V(G) = {v1,...,v,}. Arrange vertices of G* in p blocks: (v1,1),..., (vn, 1);
(v1,92)s -+, (Un,92);. .5 (V1,9p), - - -, (Vn, gp). We consider the matrix H(G®) under this or-
der.

Suppose that pl(?) =1, ie, g; = gih. Then ((u,g:), (v,g;)) € D(G®) if and only if
(u,v) € D(G) and g; = gia(u,v). If g; = gia(u,v), then a(u,v) = g; *g; = g; 'g:h = h.

Thus we have
=Y Py QH, + 1, Q) diag(H)
her

Putting E = (P! ® L,)H(G*)(P ®1,), we have

E=Y {(1)®f2opa(h) @ - @ fr o pr(h)} QHy + 1, Q) diag(H

hel

14



Note that H(G) = >, . Hy + diag(H). Therefore it follows that

det(M,, — H(G®)) = det(M, — H(G))

% TT g det(ALy, — Yer pilh) @ Hy, — Ly, @ diagH)

Hence,
~ k
det(Tzmp — U(N)) = det(Izm — UN)) [ det(@ams, — > pi(h) Q) Un)’
=2 h
k
2P (1) det(A,, — H(G)) , _
= : det(\Lyy, — > pi(h) R Hy, — Iy, (X) diagH) .
M (s 3= L1 = 21 T 11,
O

6 L-functions of graphs

Let G be a connected graph with n vertices and m unoriented edges, I" be a finite group
and a : D(G) — T be an ordinary voltage assignment. Furthermore, let H = H(G) =
(Huv)uwev(ay be an Hermitian matrix such that

hee*1 if f = (u,v) € D(G),
Hy, = : :
0 otherwise,

where, for each f € D(G),
hy=hp1>0and vy ==y € [-7/2,7/2].

Let p be a unitary representation of I' and d its degree. The L-function of G associated
with p and « is defined by

Zu (G, A, p,a) = det(Izma — > p(h) Q) Un) ™"
hel

If p =1 is the identity representation of I', then
Zy(G,\1,a) = det(Iy,, — U)~L.

A determinant expression for the L-function of G associated with p and « is given as
follows. For 1 <i4,j <mn, the (3, j)-block F; ; of a dn x dn matrix F is the submatrix of K
consisting of d(i — 1) 4+ 1,...,di rows and d(j — 1) + 1,...,dj columns.

Theorem 7 Let G be a connected graph with n vertices and m unoriented edges, I' be a
finite group and « : D(G) — T be an ordinary voltage assignment. If p is a unitary
representation of I' and d is the degree of p, then the reciprocal of the L-function of G
associated with p and o is

md(__1\nd
I V(;(H(w 1_) T det(ALny — Y plg) Q) Hy — 14 (X) diag(H)).

gel’

ZH(G7 )\7 P, a)_l =

Proof. The argument is an analogue of Watanabe and Fukumizu’s method [I§].
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Let V(G) = {v1,...,v,} and D(G) = {e1,...,em,€m+1, ---,€2m} such that ey ; =
e; (1 < i < m). Note that the (e, f)-block (X ger Ug @ p(9))er of >0 ,cr Ug @ p(g) is

given by
U, R ol9)es = { pla(e)alf™ i t(e) = o(),

0 otherwise.
gel d

For g € T, two 2m x 2m matrices B, = (Bi“?)e’feD(G) and J, = (Jé‘(}))e)feD(G) are
defined as follows: '

B _ zopyw(e)w(f) ift(e) = o(f) and ale) = g, 3@ _ 1 if f=e"!and ale) =g,
ef 0 otherwise, ef 0 otherwise.

Then we have
U, =1iJ, - By for gel.

Let K = (Kij) 1<i<2m;1<j<n be the 2md x nd matrix defined as follows:

K. zy,wle;)Ig  if o(e;) = vy,
T 04 otherwise.

Furthermore, we define two 2md xnd matrices L = (Lij)lgiSQm;lgjgn and M = (Mij)lgiSQm;lgjgn
as follows:

L. e wlej)p(ale;)) if tle;) = vy, M. e w(e)Iy if oe;) = vy,
K 04 otherwise, K 04 otherwise.

Then we have
K= M(X®Id) = MX,,

Xd:X®Id.

where

Furthermore, we have

L'K=> B,X)p(h)=B, (6)
heT
and
‘ML =% H, Q) r(9), (7)
gel’
where
B, ~ 3B, o)
gel’
Thus,
det(Izpmaq — u der p(g) ® Ug) = det(Izma —u der Uy ® p(g))
= det(Iyma —u ) er(idy — Bg) @ p(9))
= det(Izma —ud  cr Jg @ p(9) +ud,cr By Q p(9)).
Now, let
J,=> 3, n(9)-
gel’
Note that
Ji = Iong.
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Then we have

But, we have

det(Ipq — iud,) = det(

Furthermore, we have

Thus, we have

Now, we have

Furthermore,

det(Izma —ud_ cr p(9) @ Ug)

det(Iymg — iud, + uB,)

det(Ioma + uB,(Iama — iud,) 1) det(Iama — iud )
det(Iomag + uL *K(Ioma — iud,) ™) det(Izma — iud,)

det(Lg + u 'K (Iopg — iud,) " L) det(Iomg — iud ).

1, —iup(aler) 0
—iuplaer™)) Ly
0

(Igmd — iqu)_l

I, —iup(a(er)) 0
| et L
0
I, tup(aler)) 0
| uelale™) I,
T T4®
0

= 1-|—1u2 (I2md + qup)

det(Tama —ud_,cr p(9) @ Uy)

(1 +u?)™det(Lg + u/(1 +u?) "K(Izpq + iud,)L)

(1 +u?)md=nd det((1 + u?)L,q + u "KL + iu? 'KJ,L).
"KL =X, "ML =X4> Hy Q) nl9).

gel’

"KJ,L = X, 'MJ,L.

17
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Then we have
(tMJ,L),,

= 57“’ Zo(e):u(tM)ue(JP)eefl (L)eflv
= Guv Yoo(e)—u W(e)Lap(ale))w(e " )p(ale™1))
= dw Zo(e):u \/h_eei% \/h_ee_”eld

= 57“/ Zo(e):u helg = 5quuId-

Thus,
'KJ,L = X(Dr X 1),
where
T, 0
Dr =
0 r,

Therefore, it follows that

det(Izma —ud_ cr p(9) @ Ug)

= (1+u?) =4 det((1 4+ u) g + uXa Y e Hy @ plg) + iu?Xa(Dr @ 1a)).

Substituting v = 1, we obtain

det(Tama — - ,cr p(9) @ Uy)
= 207 det(2Lna + Xa 3 yer Hy @ p(9) + iXa(Dr @ L))

= 2m=mddet(Xy) det(2X ;' + X, cp Hy @ p(g) + iDr Q@ La).

Then we have

2nd
[Tuevie)y(Huu = A —ilw)®

X' =X X)L,
X'+ Dr®Iy)uy = (2HFw=2=0w 4T ) Q14

(Hyuw — A) Q1.

det(Xq) = det(X Q) L) = (det(X))* =

Furthermore, since

we have

That is,
2X ;"' +iDr Q) 1y = —Mpa + diag(H) Q) La.
Therefore, it follows that

det(Tama — 3 ger P(9) @ Uy)

27nd

Hugv(c)(Huu*)\*ZFu)d det(_)‘Ind + del“ Hg ® p(g) + diag(H) ® Id)

__1\ndomd .
nuev(g)(ll)iuf,)\,ipu)d det(/\Ind - deF p(g) ® H!] - Id ® dlag(H))'
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O
By Theorems 6 and 7 the following result holds.

Corollary 1 Let G be a connected graph with m edges, T be a finite group and o : D(G) —
T be an ordinary voltage assignment. Then

det(IQ’r‘np - ﬂ(A)) = H ZH(Gu )‘7 12 CY)_ degp7
p

where p runs over all inequivalent irreducible representations of T' and p =| T |.

7 Example

We give an example. Let G = K3 be the complete graph with three vertices 1,2,3 and six
arcs eq, g, €3, 61_1, 62_1, 63_1, where e1 = (v1,v2),e2 = (v2,v3), e3 = (vs, v1). Furthermore, let

a beQia be2io¢
H=| be 2 a be?ie | |
b672m¢ b672za a

where a > 0, b > 0 and a € [-F, §). Then we have

2
T TN i
Set x = m Considering U(A) under the order eq, es, e, efl, e;l, e;l, we have
—xbe¥™  _gpe?i®  _phe?ic i—xb —xb —xb
—zbe?t®  _—ghe?i®  _gphe?ic —xb i —xb —xb
—zbe?'®  _—ghe?i®  _gphe?ic —xb —xb i—xb
U = i—xb —zb —xb —gxbe~ % _ghe~2i  _gpphe—2ic
—xb i —xb —xb —gxbe~ % _ghe—2i  _gphe—2ic
—xb —xb i—axb —xbe 2 _ghe2® _gpe2ia
By Theorem 4, we have
3
det(Is — U(N)) = % det(AI3 — H)
A — a —be?ie —beQZ:O‘
ﬁ _b672za A—a _be2za

_be—2ia _be—2ia \A—a

(a )\ 21b)3 {( )3 — 3()2()\ — a) — b?’(e?ia + e—2ia)}

o LA — ) = 3b* (A — a) — 2b° cos 20,

Next. let I' = Zz = {1,7,72}(r> = 1) be the cyclic group of order 3, and let « :
D(K3) — Z3 be the ordinary voltage assignment such that a(e;) = 7, a(e; ) = 72 and
alez) = aley') = ale3) = a(ez ') = 1. Then the Zs-coverng K§ of K3 is the cycle graph of
length 9.

The characters of Z3 are given as follows: x;(77) = (£9)7,0 < i,j < 2, where £ = 71%‘/7_3
Then we have

0 0  beie 0 beie 0 0 00
H, = 0 b2 | H,=|0 0 0| ,Ho=]be% 0 0
b2 peZa 0 0 0 0 00
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Now, by Theorem 7,

3/_1\3 . )
G (K3, A, x1,0) ™ = g det(Als — Y27 xa (77)H,, — diag(H))
\—a _bge%a _be2ia
= ﬁ —b&%e M N—a  —be*™
_pe 2t _pe2ic A—a
= oz LA —@)? = 3D (X — a) — (€™ + £ %)}
= (a—X— 2zb3{( )3_3b2()\_a)_2b3COS2(a+7T/3)}'
Similarly, we have
3(_1)3 . )
(s, X, x2,0) ™" = gy deb(Ns — 3270 xa(r/)Hs — diag(H)
\—a _b§2e2ia _be2ia
= Goomwp | MeTT A—a  —be*e
_pe2ia —pe2ia A—a
= o (A —a)? = 302\ — @) — b¥(E2e™ + e}
= oo l(A = a)® = 32 (A — a) — 20° cos 2(a + 27/3)}.

(a ;\5122117)9 {(A—a)® = 3b*(\ — a) — 2b° cos 2a}
x {(A—a)® = 3b3(A —a) — 2b% cos 2(a + 7/3) H{(A —
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