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ON WL-RANK OF DEZA CAYLEY GRAPHS

DMITRY CHURIKOV AND GRIGORY RYABOV

Abstract. The WL-rank of a digraph Γ is defined to be the rank of the coherent config-
uration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which
the WL-rank is equal to the number of vertices. The graphs from this family are divisible
design and integral.
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1. Introduction

Let V be a finite set and |V | = n. A coherent configuration X on V can be thought as
a special partition of V × V for which the diagonal of V × V is a union of classes (see [4,
Definition 2.1.3]). The number of classes is called the rank of X . Let Γ = (V,E) be a digraph
with vertex set V and arc set E. The WL-rank (the Weisfeiler-Leman rank) of Γ is defined
to be the rank of the smallest coherent configuration on the set V for which E is a union
of classes. The term “WL-rank of a digraph” was introduced in [1]. This term was chosen
because the coherent configuration of a digraph can be found using the Weisfeiler-Leman
algorithm [20]. Since the diagonal of V ×V is a union of classes of any coherent configuration
on V , we conclude that rkWL(Γ) ≥ 2 unless |V | = 1. One can verify that rkWL(Γ) ≤ 2 if
and only if Γ is complete or empty. On the other hand, obviously, rkWL(Γ) ≤ n2. From [1,
Lemma 2.1 (2)] it follows that if Γ is vertex-transitive then rkWL(Γ) ≤ n.

Let G be a finite group, |G| = n, and S an identity-free subset of G. The Cayley digraph

Cay(G, S) is defined to be the digraph with vertex set G and arc set {(g, sg) : s ∈ S, g ∈ G}.
If S is inverse-closed then Cay(G, S) is a Cayley graph. If Γ is a Cayley digraph over G then
Aut(Γ) ≥ Gright, where Gright is the subgroup of Sym(G) induced by right multiplications
of G. This implies that Γ is vertex-transitive and hence rkWL(Γ) ≤ n.

A k-regular graph Γ is called strongly regular if there exist nonnegative integers λ and µ
such that every two adjacent vertices have λ common neighbors and every two nonadjacent
vertices have µ common neighbors. The following generalization of the notion of a strongly
regular graph was introduced in [6] and goes back to [5]. A k-regular graph Γ on n vertices
is called a Deza graph if there exist nonnegative integers α and β such that any pair of
distinct vertices of Γ has either α or β common neighbors. The numbers (n, k, β, α) are
called the parameters of Γ. Clearly, if α > 0 and β > 0 then Γ has diameter 2. A Deza
graph is called a strictly Deza graph if it is nonstrongly regular and has diameter 2.

The WL-rank of a strongly regular graph is at most 3 (see [1, Lemma 2.1 (2)]). It is
a natural question how large the WL-rank of a Deza graph Γ can be. In this paper we
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are interested in the WL-rank of Deza Cayley graphs. The WL-rank of a nonstrictly Deza
Cayley graph can be sufficiently large. For example, an undirected cycle on n vertices is a
nonstrictly Deza graph of WL-rank [n

2
] + 1 (see [1]). However, strictly Deza graphs seem

close to strongly regular graphs. All known strictly Deza Cayley graphs over cyclic groups
have WL-rank at most 6 [1]. As it was said before, the WL-rank of any Cayley graph does
not exceed the number of vertices of this graph. It turns out that there exists an infinite
family of strictly Deza Cayley graphs whose WL-rank is equal to the number of vertices.
This follows from the theorem below which is the main result of this paper. The cyclic and
dihedral groups of order n are denoted by Cn and Dn respectively.

Theorem 1. Let k ≥ 3 be an odd integer, G ∼= D2k × C2 × C2, and n = |G|. There exists

a strictly Deza Cayley graph Γ over G such that rkWL(Γ) = n.

Note that the graphs from Theorem 1 are divisible design integral graphs (see Section 4).
We finish the introduction with the brief outline of the paper. If Γ = Cay(G, S) then

the WL-rank of Γ is equal to the rank of the smallest S-ring over G for which S is a
union of basic sets. The necessary background of S-rings and Cayley graphs is provided in
Section 2. In Section 3 we construct the required family of strictly Deza Cayley graphs and
prove Theorem 1. In Section 4 we prove that each graph from the constructed family is an
integral divisible design graph (Lemma 4.1), has the same parameters as the grid graph but
not isomorphic to it (Lemma 4.2), and can be identified efficiently (Lemma 4.3).

The authors would like to thank prof. I. Ponomarenko for the valuable comments which
help us to improve the text significantly.

2. Preliminaries

In this section we provide a background of S-rings and Cayley graphs. In general, we
follow to [1, 16, 17], where the most of definitions and statements is contained.

2.1. S-rings. Let G be a finite group and ZG the integer group ring. The identity element
of G and the set of all nonidentity elements of G are denoted by e and G# respectively. If
X ⊆ G then the element

∑
x∈X

x of the group ring ZG is denoted by X . An easy straightfor-

ward computation implies that G2 = |G|G. The set {x−1 : x ∈ X} is denoted by X−1.
A subring A ⊆ ZG is called an S-ring (a Schur ring) over G if there exists a partition

S = S(A) of G such that:
(1) {e} ∈ S;
(2) if X ∈ S then X−1 ∈ S;
(3) A = Span

Z
{X : X ∈ S}.

The notion of an S-ring goes back to Schur [18] and Wielandt [19].
The elements of S are called the basic sets of A and the number rk(A) = |S| is called the

rank of A. The group ring ZG is an S-ring over G corresponding to the partition of G into
singletons and rk(ZG) = |G|.

The following lemma provides a well-known property of S-rings (see, e.g. [16, Lemma 2.4]).

Lemma 2.1. Let A be an S-ring over a group G. If X, Y ∈ S(A) then XY ∈ S(A)
whenever |X| = 1 or |Y | = 1.

Lemma 2.2. Let A be an S-ring over a group G and X ⊆ G such that 〈X〉 = G. Suppose

that {x} ∈ S(A) for every x ∈ X. Then A = ZG.
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Proof. Let us prove that {g} ∈ S(A) for every g ∈ G. Since 〈X〉 = G, there exist
x1, . . . , xk ∈ X and ε1, . . . εk ∈ {−1, 1} such that g = xε1

1 . . . xεk
k . We proceed by induction

on k. Let k = 1. If ε1 = 1 then {g} ∈ S(A) by the assumption of the lemma; if ε1 = −1 then
{g} ∈ S(A) by the assumption of the lemma and the second property from the definition
of an S-ring. Now let k ≥ 2. By the induction hypothesis, we have {xε1

1 . . . x
εk−1

k−1 } ∈ S(A)

and {xεk
k } ∈ S(A). So {g} = {xε1

1 . . . x
εk−1

k−1 }{x
εk
k } ∈ S(A) by Lemma 2.1. �

A set X ⊆ G is called an A-set if X ∈ A or, equivalently, X is a union of some basic sets
of A. The set of all A-sets is denoted by S∗(A). Obviously, if X ∈ S∗(A) and |X| = 1 then
X ∈ S(A). It is easy to check that if X, Y ∈ S∗(A) then

X ∩ Y,X ∪ Y,X \ Y, Y \X,XY ∈ S∗(A). (1)

A subgroup H ≤ G is called an A-subgroup if H ∈ S∗(A). For every A-set X , the groups
〈X〉 and rad(X) = {g ∈ G : Xg = gX = X} are A-subgroups.

Lemma 2.3. [19, Proposition 22.1] Let A be an S-ring over G, ξ =
∑
g∈G

cgg ∈ A, where

cg ∈ Z, and c ∈ Z. Then {g ∈ G : cg = c} ∈ S∗(A).

Let L ✂ U ≤ G. A section U/L is called an A-section if U and L are A-subgroups. If
S = U/L is an A-section then the module

AS = SpanZ {X
π : X ∈ S(A), X ⊆ U} ,

where π : U → U/L is the canonical epimorphism, is an S-ring over S.
Let S = U/L be an A-section of G. The S-ring A is called the S-wreath product or

generalized wreath product of AU and AG/L if L E G and L ≤ rad(X) for each basic set X
outside U . In this case we write A = AU ≀S AG/L. If L > {e} and U < G then the S-wreath
product is called nontrivial. The notion of the generalized wreath product of S-rings was
introduced in [7]. Since L ≤ rad(X) for each basic set X outside U , the basic sets of A
outside U are in one-to-one correspondence with the basic sets of AG/L outside S. Therefore

rk(AU ≀S AG/L) = rk(AU) + rk(AG/L)− rk(AS). (2)

The automorphism group Aut(A) of A is defined to be the group
⋂

X∈S(A)

Aut(Cay(G,X)).

Since Aut(Cay(G,X)) ≥ Gright for every X ∈ S(A), we conclude that Aut(A) ≥ Gright. It
is easy to check that Aut(A) = Gright if and only if A = ZG.

2.2. Cayley graphs. Let S ⊆ G, e /∈ S, and Γ = Cay(G, S). The WL-closure WL(Γ) of
Γ can be thought as the smallest S-ring over G such that S ∈ S∗(A) (see [1, Section 5]). If
A = WL(Γ) then rkWL(Γ) = rk(A) by [1, Lemma 5.1]. From [4, Theorem 2.6.4] it follows
that Aut(Γ) = Aut(A).

Lemma 2.4. [1, Lemma 5.2] Let G be a group of order n, S ⊆ G such that e /∈ S, S = S−1,

and |S| = k, and Γ = Cay(G, S). The graph Γ is a Deza graph with parameters (n, k, β, α)
if and only if S2 = ke + αXα + βXβ, where Xα ∪Xβ = G# and Xα ∩Xβ = ∅. Moreover,

Γ is strongly regular if and only if Xα = S or Xβ = S.
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3. Proof of Theorem 1

Let k ≥ 3 be an integer, G = (〈a〉 ⋊ 〈b〉) × 〈c〉 × 〈d〉, where |a| = k, |b| = |c| = |d| = 2,
and bab = a−1, and n = |G|. The groups 〈a〉, 〈c〉, and 〈a〉 ⋊ 〈b〉 are denoted by A, C, and
H respectively. Clearly, H ∼= D2k, G ∼= D2k × C2 × C2, |H| = 2k, and |G| = 8k. Put

S = b(A \ {a−1}) ∪ c(A ∪ {b}) ∪ {db, dcba−1}.

One can see that S = S−1 and |S| = 2(k + 1). Put Γ = Cay(G, S). Note that Γ is
2(k + 1)-regular.

Lemma 3.1. In the above notations, the graph Γ is a strictly Deza graph with parameters

(8k, 2(k + 1), 2(k − 1), 2).

Proof. The straightforward computation in the group ring ZG using the equalities A2 = kA,
bA = Ab, bab = a−1, cg = gc, and dg = gd, where g ∈ G, implies that

S2 = 2(k + 1)e+ 2(k − 1)(A# + cbA) + 2(b+ c)A+ 2dCH. (3)

Indeed,
S2 = (bA+ cA− ba−1 + cb+ db+ dcba−1)2 =

= 4e + (2(k − 1)e+ 2(k − 1)cb+ 2b+ 2c+ 2d+ 2dc+ 2db+ 2dcb)A =

= 2(k + 1)e+ 2(k − 1)(A# + cbA) + 2(b+ c)A+ 2dCH.

From Lemma 2.4 and Eq. (3) it follows that Γ is a nonstrongly regular Deza graph with
parameters (8k, 2(k + 1), 2(k − 1), 2), X2(k−1) = A# ∪ cbA, and X2 = bA ∪ cA ∪ d(C ×H).
This means that Γ is a strictly Deza graph. �

All Deza Cayley graphs with at most 60 vertices, including the graphs from the con-
structed family for k ≤ 7, were enumerated in [10].

Put A1 = 〈a2〉. If k is odd then A1 = A; if k is even then |A : A1| = 2. The group A1 is
normal in G. So one can form the group L = A1 ⋊ 〈cb〉 which is isomorphic to D2k if k is
odd and to Dk if k is even. It can be verified in a straightforward way that L is normal in G.
Put U = 〈L, ca, da〉 and S = U/L. Since L ∩ 〈ca〉 = L ∩ 〈da〉 = A1, we obtain |U : L| = 4.

Lemma 3.2. In the above notations, WL(Γ) = ZG if k is odd and WL(Γ) = ZU ≀S Z(G/L)
if k is even.

Proof. Let A = WL(Γ). Put V = A# ∪ cbA. From Eq. (3) it follows that every element of
V enters the element S2 with coefficient 2(k−1) and any other element of G enters S2 with
coefficient distinct from 2(k − 1). Together with S ∈ S∗(A) and Lemma 2.3, this implies
that V ∈ S∗(A). So

V ∩ S = {cb} ∈ S(A) (4)

by Eq. (1). Since S, {cb} ∈ S∗(A), Eq. (1) implies that cbS, Scb ∈ S∗(A). So

S1 = (cbS \ Scb) ∩ S = {ca} ∈ S(A) (5)

by Eq. (1). Now from Eqs. (1) and (5) it follows that

S2 = (cbS \ Scb) \ S1 = {da−1} ∈ S(A) (6)

Due to Eqs. (1) and (5), we obtain S1S1 = {a2} ∈ S(A). Since a2 is a generator of A1,
Lemma 2.2 yields that

AA1
= ZA1. (7)
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Let k be odd. Then A1 = A and G = 〈A, cb, ca, da−1〉. From Eqs. (4)-(7) and Lemma 2.2
it follows that A = ZG.

Let k be even. The partition of G into sets

{g}, g ∈ U, La, Lc, Ld, Lcda

defines the S-ring B over G such that B = ZU ≀S Z(G/L). Note that S = Lc ∪ SU , where

SU = b(A \ (A1 ∪ {a−1})) ∪ c((A \A1) ∪ {b}) ∪ {db, dcba−1} ⊆ U.

So S ∈ S∗(B) and hence B ≥ A.
Let us prove that B ≤ A. Observe that da ∈ da−1A1. So

{da} ∈ S(A) (8)

by Eqs. (6)-(7) and Lemma 2.1. Eqs. (4), (5), (7), (8), and Lemma 2.2 imply that U is an
A-subgroup and

AU = ZU = BU . (9)

Since S ∈ S∗(A) and U ∈ S∗(A), Eq. (1) implies that

S \ U = Lc ∈ S∗(A). (10)

From Eqs. (1), (5), (6), (8), and (10) it follows that

La = Lc{ca}, Ld = Lc{ca}{da−1}, Lcda = Lc{da} ∈ S∗(A).

Together with Eq. (9), this implies that every basic set of B is an A-set and hence B ≤ A.
Thus, B = A and we are done. �

Remark. If k is odd then Aut(Γ) = Aut(ZG) = Gright. If k is even then Aut(Γ) =
Aut(ZU ≀SZ(G/L)) is the canonical generalized wreath product of Uright by (G/L)right (see [8,
Section 5.3] for the definitions).

Lemma 3.3. In the above notations, rkWL(Γ) = 8k = n if k is odd and rkWL(Γ) = 4k+4 =
n
2
+ 4 if k is even.

Proof. If k is odd then WL(Γ) = ZG by Lemma 3.2 and hence rkWL(Γ) = rk(ZG) = 8k.
Let k be even. Then WL(Γ) = ZU ≀S Z(G/L) by Lemma 3.2. Since |L| = k and |U : L| = 4,
we have |U | = 4k and hence rk(ZU) = 4k. Observe that |G/L| = 8 and |S| = |U/L| = 4.
So rk(Z(G/L)) = 8 and rk(ZS) = 4. Therefore

rkWL(Γ) = rk(ZU ≀S Z(G/L)) = rk(ZU) + rk(Z(G/L))− rk(ZS) = 4k + 4

by Eq. (2). �

Theorem 1 follows from Lemma 3.1 and Lemma 3.3.

4. Some properties of Γ

In this section we collect some properties of the graph Γ constructed in the previous
section.

A k-regular graph on n vertices is called a divisible design graph (DDG) with parameters
(n, k, α, β,m, l) if its vertex set can be partitioned intom classes of size l, such that every two
distinct vertices from the same class have α common neighbors and every two vertices from
different classes have β common neighbors. For a divisible design graph, the partition into
classes is called a canonical partition. The notion of a divisible design graph was introduced
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in [12] as a generalization of (v, k, λ)-graphs [15]. For more information on divisible design
graphs, we refer the readers to [12, 14].

A graph is called integral if all eigenvalues of its adjacency matrix are integers. The
investigations on integral graphs goes back to [13]. More information on spectra of graphs
and integral graphs can be found in [3].

Lemma 4.1. The graph Γ is an integral divisible design graph.

Proof. From [14, Theorem 1.1] it follows that Γ is a divisible design graph if and only if,
in the notations of Lemma 2.4, X2 ∪ {e} or X2(k−1) ∪ {e} is a subgroup of G. Moreover,
the canonical partition of G is a partition into the right cosets by this subgroup. Eq. (3)
implies that X2(k−1) ∪ {e} = A ∪ cbA. Since A is normal in G, |cb| = 2, and acb = a−1, the
set X2(k−1) ∪ {e} is a subgroup of G isomorphic to D2k. Therefore Γ is a divisible design
graph with parameters (8k, 2(k + 1), 2(k − 1), 2, 4, 2k).

Since Γ is a divisible design graph, one can calculate eigenvalues of its adjacency matrix
from its parameters by the formulas from [12, Lemma 2.1]. It turns out that the set of
eigenvalues of the adjacency matrix of Γ is equal to {2(k+ 1),±2(k− 1),±2}. This implies
that Γ is integral. �

Recall that the (l×m)-grid is the line graph of the complete bipartite graph Kl,m (see [2,
p. 440]).

Lemma 4.2. The graph Γ has the same parameters as the (4 × 2k)-grid but it is not

isomorphic to the (4× 2k)-grid.

Proof. Let Γ′ be the graph isomorphic to the (4 × 2k)-grid. The graph Γ′ has parameters
(8k, 2(k+1), 2(k− 1), 2) by [12, Construction 4.8]. However, due to [4, Example 3.2.12], we
obtain rkWL(Γ

′) = 4 and Aut(Γ′) ∼= Sym(4)× Sym(2k). So Γ is not isomorphic to Γ′. �

The Weisfeiler-Leman dimension dimWL(∆) of a graph ∆ is defined to be the smallest
positive integer m for which ∆ is identified by the m-dimensional Weisfeiler-Leman algo-
rithm [11, Definition 18.4.2]. If dimWL(∆) ≤ m then the isomorphism between ∆ and any
other graph can be verified in time nO(m) using the Weisfeiler-Leman algorithm [20]. The
Weisfeiler-Leman dimension of Deza circulant graphs was studied in [1].

Lemma 4.3. The Weisfeiler-Leman dimension of Γ is equal to 2.

Proof. The S-ring WL(Γ) is separable in the sense of [1, Section 4.2]. Indeed, if k is odd
then WL(Γ) = ZG by Lemma 3.2 and the required follows from [4, Theorem 2.3.33]. If
k is even then WL(Γ) = ZU ≀S Z(G/L) by Lemma 3.2 and the required follows from [4,
Theorem 3.4.23]. The separability of WL(Γ) and [9, Theorem 2.5] imply that dimWL(Γ) ≤
2. Since Γ is regular but nonstrongly regular, dimWL(Γ) 6= 1 by [1, Lemma 3.2]. Thus,
dimWL(Γ) = 2. �
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