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Modular Fuss-Catalan Numbers

Dixy Msapato

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom.

Abstract

The modular Catalan numbers Ck,n, introduced by Hein and Huang in 2016 count equi-
valence classes of parenthesizations of x0∗· · ·∗xn, where ∗ is a binary k-associative operation
and k is a positive integer. The classical notion of associativity coincides with 1-associativity,
in which case C1,n = 1 and the single 1-equivalence class has size given by the Catalan
number Cn. In this paper we introduce modular Fuss-Catalan numbers Cm

k,n which count
k-equivalence classes of parenthesizations of x0∗· · ·∗xn where ∗ is an m-ary k-associative op-
eration for m ≥ 2. Our main results are, an explicit formula for Cm

k,n, and a characterisation
of k-associativity.
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1 Introduction

The Catalan numbers are a ubiquitous sequence of natural numbers with a rich mathematical
history. They appear in mathematics in widely different contexts and count an ever growing
list of sequences of combinatorial sets, see [22] for more on Catalan numbers. The nth Catalan
number Cn, where n is a non-negative integer is given by the closed formula:

Cn =
1

n+ 1

(

2n

n

)

.

Suppose ∗ is an m-ary operation for m ≥ 1. An m-ary parenthesization of the m-ary product
x0 ∗ · · · ∗ xn is a parenthesization where each product is m-ary. For example, when m = 3 the
parenthesization ((x0 ∗x1 ∗x2)∗x3 ∗x4) is 3-ary whereas ((x0 ∗x1)∗x2 ∗x3 ∗x4) is not. The Fuss-
Catalan numbers are a natural generalisation of Catalan numbers introduced by Fuss in [11].
They can be thought of as “higher-dimensional” Catalan numbers. For example, the Catalan
number Cn counts the number of binary parenthesizations of the expression x0 ∗ · · · ∗xn, whereas
the Fuss-Catalan number Cm

n counts the number of m-ary parenthesizations of the expression
x0 ∗ · · · ∗ xn, where m and n are non-negative integers, such that m ≥ 1. The nth Fuss-Catalan
number with parameter m is given by the closed formula:

Cm
n =

1

(m− 1)n+ 1

(

mn

n

)

.
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When m = 2, we recover the Catalan numbers from the Fuss-Catalan numbers, that is to
say C2

n = Cn. The modular Catalan numbers, introduced in [15], count equivalence classes
of parenthesizations of x0 ∗ · · · ∗ xn, where ∗ is a binary operation satisfying the k-associative
law, which generalises the usual notion of associativity. In this paper we introduce and study a
higher-dimensional version of the modular Catalan numbers, which we call modular Fuss-Catalan
numbers.

Let X be a non-empty set with a binary operation ⋆ : X2 → X, and let n be a positive integer.
If ⋆ is associative, then the general associativity law states that the expression x1 ⋆ · · · ⋆ xn is
unambiguous for all x1, . . . , xn ∈ X. Which is to say, all possible parenthesizations of the
expression result in the same evaluation. The order of operation of a binary operation ⋆ is left-
justified if the order of operation is understood to be from left to right, in which case we write
x1 ⋆ · · · ⋆ xn to mean ((. . . ((x1 ⋆ x2) ⋆ x3) · · · ⋆ xn−1) ⋆ xn). From this point onwards, it will be
our convention to treat all binary operation as left-justified. Let k ≥ 1 be a positive integer.
There is a notion of k-associativity for binary operations which generalises the usual notion of
associativity. A binary operation ⋆ is k-associative if

(x1 ⋆ x2, ⋆ · · · ⋆ xk+1) ⋆ xk+2 = x1 ⋆ (x2 ⋆ · · · ⋆ xk+1 ⋆ xk+2) for all x1, . . . , xk+2 ∈ X.

By setting k = 1, we recover the classical notion of associativity for binary operations. In the
case where k > 1, the general associativity law no longer holds, which is to say in general the
evaluation of the expression x1 ⋆ x2 ⋆ · · · ⋆ xn depends on its parenthesization. The k-associative
binary operations are studied in [15].

Fix a positive integer m ≥ 2. An m-ary operation on X is a map ∗ : Xm → X. Another way
to generalise associativity of binary operations is to consider associative m-ary operations. An
m-ary operation ∗ is associative if for 1 ≤ j ≤ m− 1,

x1 ∗ · · · ∗ xj−1 ∗ (xj ∗ xj+1 ∗ · · · ∗ xj+(m−1)) ∗ xj+(m−1)+1 ∗ xj+(m−1)+2 ∗ · · · ∗ xm+(m−1)

= x1 ∗ · · · ∗ xj−1 ∗ xj ∗ (xj+1 ∗ · · · ∗ xj+(m−1) ∗ xj+(m−1)+1) ∗ xj+(m−1)+2 ∗ · · · ∗ xm+(m−1) (1)

for all x1, . . . , xm+(m−1) ∈ X, see for example [20, §1].
As in the case for associative binary operations, there is a general associativity law stating that

the expression x1∗· · ·∗xn is independent of m-ary parenthesization (see for example [1, Theorem
2.1]). Which is to say that all possible parenthesizations of the expression result in the same
evaluation. We note that n is not arbitrary in this case, but is of the form n = m+ g(m− 1) for
some integer g ≥ 1. Associative m-ary operations are important for the study of m-semigroups
and polyadic groups. These are generalisations of semigroups and groups where we consider
associative m-ary operations instead of associative binary operations. The m-semigroups were
introduced in [4] and polyadic groups were introduced in [20] and [21].

In this paper we will study m-ary k-associative operations, which are a further generalisation
of associative binary operations that combines the two generalisations above. The order of
operation of an m-ary operation ∗ is left-justified if the order of operation is understood to be
from left to right, hence for an integer g ≥ 1, we write x1 ∗ · · · ∗ xm+g(m−1) to mean

((. . . ((x1 ∗ · · · ∗xm)∗xm+1 ∗ · · · ∗xm+(m−1)) · · · ∗xm+(g−1)(m−1))xm+(g−1)(m−1)+1 . . . xm+g(m−1)).

From this point onwards, it will be our convention to treat all m-ary operations as left-justified.
An m-ary operation ∗ is k-associative if for 1 ≤ j ≤ m− 1, the following equality holds:

x1 ∗ · · · ∗ xj−1 ∗ (xj ∗ xj+1 ∗ · · · ∗ xj+k(m−1)) ∗ xj+k(m−1)+1 ∗ xj+k(m−1)+2 ∗ · · · ∗ xm+k(m−1)

= x1 ∗ · · · ∗ xj−1 ∗ xj ∗ (xj+1 ∗ · · · ∗ xj+k(m−1) ∗ xj+k(m−1)+1) ∗ xj+k(m−1)+2 ∗ · · · ∗ xm+k(m−1).

(2)
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We note that the terminology “k-associativity” is used by Wardlaw in [23] to mean associativity
of k-ary operations. This is not to be confused with the notion of k-associativity we consider
here, which is a generalisation of associativity for m-ary operations (and in the case of binary
operations coincides with the notion of k-associativity as introduced in [15]).

Let ∗ be a k-associativem-ary operation, and g ≥ 1 be a positive integer. For n = m+g(m−1)
and k > 1, the expression x1 ∗ · · · ∗ xn is ambiguous without a parenthesization to clarify the
order of operation, which is to say the general associativity law no longer holds. Let p and p′ be
two parenthesizations of x1 ∗ · · · ∗ xn. If we can obtain p′ from p via a sequence of finitely many
left side to right side applications of the k-associative property (2), then we write p �k p′. The
k-associative order is the induced partial order on the set of parenthesizations of x1∗· · ·∗xn. The
k-components are the connected components of the k-associative order. Two parenthesizations
of x1 ∗ · · · ∗ xn are k-equivalent if they lie in the same k-component. When k = 1 and m = 2, we
recover the well-known Tamari lattice (see for example [13]). In general, determining whether
two parenthesizations are k-equivalent is a non-trivial problem.

Cluster algebras are a class of commutative algebras defined combinatorially by a process
of iterated mutation. They were first introduced in 2001 by S. Fomin and A. Zelevinsky in a
series of seminal papers [8], [9], [2], [10] as an approach towards problems on total positivity [5]
and canonical bases in quantum groups. Since their inception, cluster algebras have become an
object of study in their own right. They find uses in many other areas including representation
theory [19], Poisson geometry [12] and integrable systems [24].

To define a cluster algebra over the field F = Q(u1, . . . , un) of rational functions in the
indeterminates u1, . . . , un, one starts with a seed. A seed is a pair (x̃, B̃) which consists of a set
of variables x̃ = {v1, . . . , vn}, which freely generates the field F, and an integer matrix B̃ called
the exchange matrix. By applying a certain mutation rule µk in a direction k, where 1 ≤ k ≤ n,

to the seed (x̃, B̃), we obtain another seed µk(x̃, B̃) = (x̃′, B̃
′
) consisting of a free generating set

of variables x̃′ and exchange matrix B̃
′
. Let S be the set of variables obtained from performing

all possible finite sequences of mutations to the seed (x̃, B̃). The cluster algebra with initial seed
(x̃, B̃), which we denote by A(x̃, B̃) is the subring of F generated by all the variables in S.

Of particular interest to us are the cluster algebras of type An (where n is a positive integer),
and their combinatorics. The seeds of a cluster algebra of type An can be encoded as triangula-
tions of an (n + 3)-gon; see [6, Lemma 5.3.1]. Mutating a seed in a cluster algebra of type An

turns out to be equivalent to performing a flip on a diagonal of the corresponding triangulation;
see [6, Corollary 5.3.6]. The number of seeds of a cluster algebra of type An is equal to the
number of triangulations of an (n+3)-gon, which is the Catalan number Cn+1; see [6, Corollary
5.3.6]. Consider the graph whose vertices are triangulations of (n+3)-gons, and where there is an
edge between two triangulations T and T ′ if and only if we can obtain T ′ from T by performing
a flip on a diagonal of T or vice versa. This graph is a regular graph where each vertex has
degree n. In fact this graph is the 1-skeleton of the n-dimensional convex polytope known as
the associahedron, see for example [7, §1.2]. This 1-skeleton is usually realised as follows: the
vertices are binary parenthesizations of x1 ⋆ · · · ⋆ xn+2, and the edges represent applications of
the associativity rule. Because of this correspondence, k-associativity is of interest in the study
of cluster algebras. In particular, viewing k-associativity as a mutation rule, it might be possible
to generalise the definition of cluster algebras to a wider class of objects. If this is possible, then
m-ary k-associativity could extend this generalisation to a higher-dimensional setting.

Let A = (C〈u1, . . . , un〉,+, ·) be the free associative algebra over C in n indeterminates
u1, . . . , un. Let ω be an element of order k(m− 1) in A, that is to say ωk(m−1) = 1A, where 1A
is the multiplicative identity of A. We define an m-ary operation ◦ : Am → A in the following
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way for a1, . . . , am ∈ A:

a1 ◦ a2 ◦ · · · ◦ am = ωm−1 · a1 + ωm−2 · a2 + · · ·+ ω · am−1 + am.

It is easy to show that this operation is k-associative by direct calculation. Our first main result
is a characterisation of k-equivalence.

Theorem 1.1. Let ∗ : Xm → X be a k-associative m-ary operation on a set X where m ≥ 2 and
k ≥ 1 are integers. Suppose that p(x1∗· · ·∗xn) and p′(x1∗· · ·∗xn) are twom-ary parenthesizations
of the expression x1 ∗ · · · ∗xn, where n = m+g(m−1) for some positive integer g. It then follows
that p(x1 ∗ · · · ∗ xn) is k-equivalent to p′(x1 ∗ · · · ∗ xn) if and only if

p(u1 ◦ · · · ◦ un) = p′(u1 ◦ · · · ◦ un),

where the equality comes from evaluating the parenthesizations under ◦ in the algebra A.

We define the modular Fuss-Catalan number Cm
k,n to be the number of k-equivalence classes

of parenthesizations of x0 ∗ · · · ∗ xn. By the general associativity law, Cm
1,n = 1 and there is a

single 1-equivalence class whose size is given by the Fuss-Catalan number Cm
n = 1

(m−1)n+1

(

mn
n

)

.

The following is our second main result, which is a generalisation of [15, Proposition 2.10].

Theorem 1.2. The modular Fuss-Catalan number is given by the following explicit formula,

Cm
k,n =

∑

1≤l≤n
m−1|l

l

n

∑

m1+···+mk=n

m2+2m3+...(k−1)mk=
n−l
m−1

(

n

m1, . . .mk

)

.

This paper is organised as follows: we start in §2 by defining right k-rotations, left k-rotations
and k-equivalence for m-ary trees. These are the corresponding notions to k-associativity and
k-equivalence in the setting of m-ary trees from m-ary operations. In §3 we study k-equivalence
by appealing to m-Dyck paths. By translating the notions of k-associativity and k-equivalence
to m-Dyck paths, we were able to prove Theorem 3.15, a characterisation of k-equivalence for
m-Dyck paths. As a consequence, we prove Theorem 3.16, a characterisation of k-equivalence.
In §4, equipped with Theorem 3.16 we prove our first main result Theorem 4.4 (Theorem 1.1)
using some other results obtained in this section and §1. Finally in §5 we derived the explicit
formula in Theorem 1.2 using m-Dyck paths and a method adopted from [14, §5].

2 m-ary Trees

In studying k-equivalence, it is often more convenient to do so by appealing to other sequences
of combinatorial sets counted by the Fuss-Catalan numbers. In this section we will study k-
equivalence via m-ary trees. In order to do this, we use a known bijection between parenthesiz-
ations of m-ary expressions and m-ary trees outlined in [17, §0]. For the rest of this section, we
fix integers m ≥ 2, g ≥ 0, k ≥ 1, and n = m+ g(m− 1).

Definition 2.1. m-ary Tree [22, §4, A14(b)]. An m-ary tree is a rooted tree with the property
that each node either has 0 or m linearly ordered children. A leaf is a node with no children and
the unique node without a parent is the root of the tree. For a node with m-children, the lth

child refers to the lth node below when counting from left to right, and likewise the lth subtree
refers to the lth subtree below when counting from left to right.
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The objects we are calling m-ary trees in this paper are commonly referred to as full m-ary
trees in the wider literature. There are multiple ways in which we can traverse (systematically
examine the nodes of the tree so that each node is visited only once) the nodes of an m-ary tree.
In this paper, it will be our convention to traverse m-ary trees by the pre-order traversal method.
Recall that the pre-order traverse is defined recursively as follows.

Definition 2.2. Pre-order traverse[18, §2.3.1, page 319,336] If an m-ary tree is empty, then
do nothing. Otherwise,

• Visit the root

• Traverse the 1st subtree of the root

• Traverse the 2nd subtree of the root

• . . .

• Traverse the mth subtree of the root.

It will be our convention in this paper to draw m-ary trees with the root at the top and
leaves below the root. We shall denote the set of m-ary trees with n leaves by Bm

n . We will
enumerate the leaves by the order in which the leaves are visited in the pre-order traverse. Hence
enumerating by 1 the first leaf to be visited in the pre-order traverse, by 2 the second leaf to be
visited in the pre-order traverse, and so on up to n for the last leaf to be visited in the pre-order
traverse. We will endow the m-ary trees with an additional edge labelling with labels from the
set {l1, . . . , lm}. An edge will be given the label li if it links a node with its ith child. See the
figure below for an example.

l1 l2 l3

l1 l2 l3

l1 l2 l3

2 3 4

1

6

5

7

Figure 1: A labelled 3-ary tree.

Definition 2.3. Tag. Let t1, . . . , tm be m-ary trees. We define the tag of t1, . . . , tm to be the
m-ary tree t1 ∧ · · · ∧ tm, which has the tree ti as the subtree rooted at the ith child of the root
for 1 ≤ i ≤ n.

The following bijection is well-known, see for example [17, §0].
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Proposition 2.4. [17, §0] Let X be a non-empty set and let ∗ : Xm → X be an m-ary operation.
Take x1, . . . , xn in X. There is a bijection between the set of m-ary trees on n leaves and the
set of m-ary parenthesizations of the expression x1 ∗ · · · ∗ xn which is defined in the following
way. Let t be an m-ary tree with n leaves where the ith leaf of t is labelled εi. Consider the tree
t expressed as a bracketed tag of its leaves εi, where the εi are thought of as trees consisting of
just a root. The bijection maps t to the parenthesization obtained by replacing ∧ with ∗ and
replacing εi with xi. The inverse map from the set of m-ary parenthesizations of the expression
x1 ∗ · · · ∗ xn to m-ary trees with n leaves acts in the naturally opposite way.

Example 2.5. Let t be the tree in Figure 1. Thinking of the leaves of t as 3-ary trees consisting
of just a root, assign to each leaf i the label εi. We can write t as a tag of the leaves εi so
t = (ε1∧ (ε2∧ ε3∧ ε4)∧ ε5)∧ ε6∧ ε7. Under the bijection in Proposition 2.4 the tree t is assigned
to the parenthesization of the xi given by (x1 ∗ (x2 ∗ x3 ∗ x4) ∗ x5) ∗ x6 ∗ x7.

Definition 2.6. Right k-rotation. Let k ≥ 1 be a positive integer. Let t1, t2, . . . , t(m−1)+k(m−1)

be m-ary trees. Let 1 ≤ j ≤ m− 1. Suppose that t ∈ Bm
n has a subtree,

s = t1∧t2∧· · ·∧tj−1∧(tj∧tj+1∧· · ·∧tj+k(m−1))∧tj+k(m−1)+1∧tj+k(m−1)+2∧· · ·∧t(m−1)+k(m−1)

rooted at some node v in t. The right k-rotation of t at v is the operation of replacing s with
the subtree

s′ = t1∧t2∧· · ·∧tj−1∧tj∧(tj+1∧· · ·∧tj+k(m−1)∧tj+k(m−1)+1)∧tj+k(m−1)+2∧· · ·∧t(m−1)+k(m−1).

Remark 2.7. It should be clear that under the bijection in Proposition 2.4, right k-rotation of
m-ary trees corresponds to a left side to right side application of the k-associative rule in (2).
We can also define a left k-rotation dually by switching the roles of s and s′ in the definition
above. In this case, a left k-rotation corresponds to a right side to left side application of the
k-associative rule in (2).

Definition 2.8. Let t and t′ be m-ary trees with n leaves. If we can obtain t′ from t by applying
finitely many right k-rotations to t, then we write t �k t′. The k-associative order is the induced
partial order on Bm

n . The k-components are the connected components (connected components
of the Hasse diagram) of Bm

n under the k-associative order. Two m-ary trees with n leaves are
k-equivalent if they belong to the same k-component of Bm

n .

Example 2.9. The example below shows a right 2-rotation on a 3-ary tree. We apply the right
2-rotation at v.

t1 t2 t3

t4 t5

t6 t7

v

t2 t3 t4

t1

t5 t6

t7

v

Figure 2: The tree on the right is a result of a right 2-rotation of the tree on the left at v.
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The subtree rooted at v is s = (t1 ∧ t2 ∧ t3 ∧ t4 ∧ t5)∧ t6 ∧ t7 = ((t1 ∧ t2 ∧ t3)∧ t4 ∧ t5)∧ t6 ∧ t7.
The subtree s is then replaced by the subtree s′ = t1 ∧ (t2 ∧ t3 ∧ t4 ∧ t5 ∧ t6) ∧ t7 = t1 ∧ ((t2 ∧
t3 ∧ t4) ∧ t5 ∧ t6) ∧ t7 at v.

The following proposition is a generalisation of [15, Proposition 2.5].

Proposition 2.10. Let t be an m-ary tree such that we can perform a right k-rotation of t at
some node v. If k = pk′ for some positive integers p and k′, then the right k-rotation at v can
be decomposed into a sequence of p right k′-rotations of t. The same holds for left k-rotations

Proof. We argue by induction on p. The case for p = 1 is trivial. Suppose for induction that the
statement is true for some p ≥ 1. Suppose that k = (p+ 1)k′ for some positive integer k′.

Suppose we have a tree t which we can right k-rotate at some node v. Denote by s the subtree
of t rooted at v. For some 1 ≤ j ≤ m− 1,

s = t1 ∧ t2 ∧ · · · ∧ tj−1 ∧ (tj ∧ tj+1 ∧ · · · ∧ tj+pk′(m−1) ∧ tj+pk′(m−1)+1 ∧ · · · ∧ tj+k(m−1)) ∧
tj+k(m−1)+1 ∧ · · · ∧ t(m−1)+k(m−1).

The right k-rotation replaces the subtree s with the subtree s′ where
s′ = t1 ∧ t2 ∧ · · · ∧ tj−1 ∧ tj ∧ (tj+1 ∧ · · · ∧ tj+m−1 ∧ tj+m ∧ · · · ∧ tj+pk′(m−1) ∧ tj+pk′(m−1)+1 ∧
tj+pk′(m−1)+2 ∧ · · · ∧ tj+k(m−1) ∧ tj+k(m−1)+1) ∧ · · · ∧ t(m−1)+k(m−1).

We will show that the result of this right k-rotation can also be obtained by performing (p+1)
right k′-rotations.

Let r be the following subtree of s, which is rooted at the jth child of the root of s,

r = (tj ∧ tj+1 ∧ · · · ∧ tj+pk′(m−1) ∧ tj+pk′(m−1)+1 ∧ · · · ∧ tj+k(m−1)).

We can write

r = ((tj ∧ tj+1 ∧ · · · ∧ tj+m−1 ∧ tj+m ∧ · · · ∧ tj+pk′(m−1)) ∧ tj+pk′(m−1)+1 ∧ · · · ∧ tj+k(m−1))

since the tag operation is left-justified. Performing a right pk′-rotation of t at the jth child of
the root of s, we replace r with

r′ = (tj ∧ (tj+1 ∧ · · · ∧ tj+m−1 ∧ tj+m ∧ · · · ∧ tj+pk′(m−1) ∧ tj+pk′(m−1)+1) ∧ · · · ∧ tj+k(m−1)).

By the inductive hypothesis, this right pk′-rotation is the result of p right k′-rotations.
Set

u = (tj+1 ∧ · · · ∧ tj+m−1 ∧ tj+m ∧ · · · ∧ tj+pk′(m−1) ∧ tj+pk′(m−1)+1),

then
r′ = (tj ∧ u ∧ · · · ∧ tj+k(m−1)).

Thus the right pk′-rotation of t at the jth child of the root of s, replaces s with q at the node v

in t where,

q = t1∧t2∧· · ·∧tj−1∧(tj∧u∧tj+pk′(m−1)+2∧· · ·∧tj+k(m−1))∧tj+k(m−1)+1∧· · ·∧t(m−1)+k(m−1).

We then perform a right k′-rotation of t at v. This replaces q with the subtree,

q′ = t1∧t2∧· · ·∧tj−1∧tj∧(u∧tj+pk′(m−1)+2∧· · ·∧tj+k(m−1)∧tj+k(m−1)+1)∧· · ·∧t(m−1)+k(m−1).

It is easy to see that s′ = q′, therefore the result of performing the right k = (p + 1)k′-rotation
at v is precisely the result of performing (p+1) right-k′ rotations. The proof for left k-rotations
is similar.
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Definition 2.11. Path. Let t be an m-ary tree and n a positive integer. A path p in t of length
n from a node v to a node w is a sequence p = (v0, . . . , vn) of nodes such that v0 = v, vn = w

and (vi, vi+1) is an edge in t for 1 ≤ i ≤ n− 1.

Definition 2.12. Depth. Let t be an m-ary tree with n leaves and edges labelled by labels
from the set {l1, . . . , lm}. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let δlij (t) be the number of edges

labelled li in the unique path from the root to the jth leaf. Let δli(t) = (δli1 (t), . . . , δ
li
n (t)) and

set δ(t) = (δl1(t), . . . , δln(t)). The depth of t is the n-tuple δ(t).

Example 2.13. Let t be the tree in Figure 1. The depth of tree t is given by

δ(t) = ((2, 2, 1, 1, 1, 0, 0), (0, 1, 2, 1, 0, 1, 0), (0, 0, 0, 1, 1, 0, 1)).

The following lemmas are easy to verify.

Lemma 2.14. Suppose that t is an m-ary tree with n leaves and depth (δl1(t), . . . , δlm(t)). It
then follows that δlmn (t) 6= 0 and δlin (t) = 0 for i 6= m. Dually, δl11 (t) 6= 0 and δli1 (t) = 0 for i 6= 1.

This is because the unique path from the root to the nth leaf involves choosing the mth child
at each stage. Similarly for the dual statement.

Lemma 2.15. Suppose that t is an m-ary tree with n leaves and depth (δl1(t), . . . , δlm(t)). It

then follows that δ
lm−1

n−1 (t) = 1, moreover for 1 ≤ i ≤ m− 2, we have that δlin−1(t) = 0.

This is because the unique path from the root to the (n− 1)th leaf involves choosing the mth

child at every stage but one, in which case, we choose the (m− 1)th child.
We shall prove the following result in the next section. This result is the m-ary tree analogue

of Theorem 1.1.

Theorem 2.16. Suppose that t and t′ are a pair of m-ary trees with n leaves with depths
(δl1(t), . . . , δlm(t)) and (δl1(t′), . . . , δlm(t′)) respectively. It then follows that t and t′ are k-
equivalent if and only if

m−1
∑

i=1

(m− i)δli(t) ≡

m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1)

where the addition on the n-tuples is componentwise.

The strength of the theorem is that it allows us to determine the k-equivalence of m-ary trees
from simply reading their depths. The case m = 2 is known, see [15, Proposition 2.11]). We shall
prove the case for general m ≥ 2. To do this, we appeal to another sequence of combinatorial
sets counted by the Fuss-Catalan numbers, the m-Dyck paths. The setting of m-Dyck path turns
out to be a more natural setting for studying k-equivalence. We will first prove Theorem 3.15,
which is the analogue of Theorem 1.1 for m-Dyck paths. Theorem 3.15 itself is a consequence of
Proposition 3.13 and Proposition 3.14. Having proved Theorem 3.15, the theorem above is an
easy corollary.

3 m-Dyck Paths

In this section we prove Theorem 2.16. In order to do so, we appeal to a generalisation of Dyck
paths known as m-Dyck paths to further study k-equivalence. We prove the theorem by first
proving an m-Dyck path version of it. For the rest of this section, we fix integers m ≥ 2, g ≥ 0,
k ≥ 1 and n = m+ g(m− 1).
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Definition 3.1. m-Dyck Path. An m-Dyck path is a lattice path in Z2 starting at (0, 0)
consisting of up-steps (m,m) and down-steps (1,−1), which remains above the x-axis and ends
on the x-axis. The length of a Dyck path is defined to be the number of down-steps it has.

Definition 3.2. Translated m-Dyck Path. Let a, b be non-negative integers both not equal
to 0. A translated m-Dyck path is a lattice path in Z2 starting at the point (a, b) consisting of
up-steps (m,m) and down-steps (1,−1), which remains above the line y = b and ends on the
line y = b.

We denote the set of m-Dyck paths of length n by Dm
n . Where it is convenient, we refer to

these paths as Dyck paths instead of m-Dyck paths. When referring to a translated m-Dyck path
that is a sub path of a larger m-Dyck path, we will call it a sub m-Dyck path or just sub-Dyck
path. The following lemma is straight forward, so we state it without proof.

Lemma 3.3. For every m-Dyck path D of length n, we can write

D = Nd1S . . . SNdnS,

where N denotes the up-step (1, 1) and S denotes the down-step (1,-1). Note that when m 6= 1
the up-steps (1,1) are not steps on the path D since by definition up-steps of D are of the form
(m,m). Here Ndi is taken to mean a sequence of di consecutive up-steps N . The di are non-
negative integer multiples of m such that d1 + · · ·+ dn = n, and d1 + · · ·+ dj ≥ j for 1 ≤ j < n.
The latter conditions on the di are because the m-Dyck paths start at (0, 0) and end on the
x-axis whilst remaining above the x-axis. Moreover the n-tuple d(D) = (d1, . . . , dn) is unique to
each m-Dyck path D.

Figure 3: A 3-Dyck path with 2 (3,3) up-steps. D = N3SN3SN0SN0SN0SN0S.

Let D = Nd1S . . . SNdnS be an m-Dyck path of length n. When expressing D in this way,
if di = 0, we will omit Ndi from the expression. In this form we will also write Sl to mean a
sequence of l consecutive S steps. For example, D = N3SN3SN0SN0SN0SN0S = N3SN3S5.

We can express any m-ary tree as the tag of the m-ary sub-trees rooted at the children of
the root. Therefore, for t an m-ary tree with n leaves, we write

t = t1 ∧ · · · ∧ tm,

where for 1 ≤ i ≤ m each ti is an m-ary tree with ni leaves and n1 + · · ·+ nm = n.
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Let ε be the element of the singleton set Bm
0 , so ε is the m-ary tree which consists of just

a root. Let Bm be the set m-ary trees with any appropriate number of leaves, and likewise
let Dm−1 be the set of (m − 1)-Dyck paths of any appropriate length. We construct a map
σm : Bm → Dm−1 from the set of m-ary trees to the set of (m − 1)-Dyck paths. We define σm

inductively in the following way,

σm(t) =

{

N0S0 if t = ε;

Nm−1σm(t1)Sσm(t2)S . . . Sσm(tm) otherwise.

This construction generalises a well known map between binary trees (2-ary trees) and Dyck
paths (1-Dyck paths); see for example [3, Page 58, Tamari Lattice, Paragraph 2].

Example 3.4. Consider the following 3-ary tree t = ε ∧ ε ∧ (ε ∧ ε ∧ ε). We calculate σ3(t),

σ3(t) = N2σ3(ε)Sσ3(ε)Sσ3(ε ∧ ε ∧ ε)

= N2N0S0SN0S0SN2σ(ε)Sσ(ε)Sσ(ε)

= N2S2N2S2.

See Figure 4 below.

σ3

t = ε ∧ ε ∧ (ε ∧ ε ∧ ε)

σ3(t) = N2S2N2S2

Figure 4: The image under σ3 of the 3-ary tree t = ε ∧ ε(ε ∧ ε ∧ ε).

Lemma 3.5. The map σm : Bm → Dm−1 sends m-ary trees with n leaves to (m−1)-Dyck paths
of length n− 1.

Proof. We argue by induction. Recall that n = m+ g(m− 1) for some integer g ≥ 0. We prove
the result by induction on g. When g = 0 there is only one tree to consider, namely t = ε∧· · ·∧ε.

t

ε ε ε
. . . . . . . . .

It is easy to see that σm(t) = Nm−1Sm−1 which is an (m− 1)-Dyck path of length m− 1.
Now suppose that the result holds for n = m + g′(m − 1) with 0 ≤ g′ ≤ g. We consider

the g + 1 case. If t is an m-ary tree with m + (g + 1)(m − 1) leaves, then we may write
t = t1∧ · · · ∧ tm with the ti ∈ Bm

ni
and n1+ · · ·+nm = m+(g+1)(m−1). By definition σm(t) =

Nm−1σm(t1)Sσm(t2)S . . . Sσm(tm) and by the inductive hypothesis, each σ(ti) is an (m − 1)-
Dyck paths of length ni−1. In the expression for σm(t) we have m−1 down-steps S following the
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Nm−1 inbetween the σm(ti). Therefore, the length of σm(t) is (n1−1)+ · · ·+(nm−1)+(m−1)
which is equal to m+ (g + 1)(m− 1)− 1 as required.

What is left is to show that σm(t) is weakly above the x-axis. By Lemma 3.3, each σm(ti) can

be written in the form σm(ti) = Ndi
1S . . . SN

di
niS, where di1+ · · ·+dini

= ni, and di1+ · · ·+dir ≥ r

for 1 ≤ r < ni. We can likewise write that σm(t) = Nd1S . . . SNdnS where d1 = (m − 1) + d11
and dn = 0, and for 2 ≤ h < n either dh = 0 or dh = diu for some appropriate i and u. Since
there are m− 1 down-steps S following the Nm−1 inbetween the σm(ti), and the σm(ti) are all
weakly above the x-axis. It follows that d11 + · · ·+ dj ≥ j − (m− 1), therefore d1 + · · ·+ dj ≥ j,
for 1 ≤ j ≤ n, where there is equality if j = n. Thus σm(t) is weakly above the x-axis, hence the
map σm is indeed from Bm

n to Dm−1
n−1 .

By the lemma above, σm induces a map σm,n : B
m
n → Dm−1

n−1 . This map is in fact a bijection
between Bm

n and Dm
n−1. For any tree t = t1 ∧ · · · ∧ tm, where for 1 ≤ i ≤ m each ti is an m-ary

tree with ni leaves and n1 + · · ·+ nm = n. The map σm,n is defined as follows:

σm,n(t) = Nm−1σm,n1(t1)Sσm,n2(t2)S . . . Sσm,nm
(tm).

Proposition 3.6. The map σm,n : B
m
n → Dm−1

n−1 is a bijection.

Proof. It is well known that both the finite sets Bm
n and Dm−1

n−1 have cardinality 1
(m−1)n+1

(

mn
n

)

,

see for example [16, §3]. Therefore, in order to show that σm,n is a bijection, it suffices to show
that it is a surjection. We argue by induction on n. When n = 0, it is trivial.

If D ∈ Dm−1
n−1 , then the first step of D is an up-step Nk1(m−1) where k1 ≥ 1 is an integer,

so we can write D = Nm−1Nk1(m−1)−(m−1) . . . S as in Lemma 3.3. Let (x′
1,m − 2) be the first

point on D with y-coordinate m − 2 after the point (m − 1,m − 1). The step in D ending at
(x′

1,m − 2) must be a down-step S starting at (x1, y1) = (x′
1 + 1,m − 1). The part of D from

(m − 1,m − 1) to (x1, y1) is a translated (m − 1)-Dyck path D1, so we see that the path D

starts as Nm−1D1S. Let (x′
2,m − 3) be the first point on D with y-coordinate m − 3 after

the point (x′
1,m − 2). As above, the step in D ending at (x′

2,m − 3) must be a down-step S

starting at (x2, y2) = (x′
2 − 1,m− 2). The part of D from (x′

1,m− 2) to (x2, y2) is a translated
(m − 1)-Dyck path D2. Therefore, D = Nm−1D1SD2S . . . S, and continuing this argument we
see that can be write D = Nm−1D1SD2S . . .DmS, where the Di are translated (m − 1)-Dyck
paths for 1 ≤ i ≤ m.

Regarding the translated (m−1)-Dyck paths Di as (m−1)-Dyck paths, they each have length
ni < n for 1 ≤ i ≤ m. Hence by the inductive hypothesis, for each Di there exists an m-ary tree
ti such that Di = σm,ni

(ti). It then follows that D = σm,n(t1 ∧ t2 ∧ · · · ∧ tm).

Going forward, we drop the subscripts on σm,n and just write σ when it is clear what is meant
from the context.

Proposition 3.7. Suppose t is an m-ary tree with n leaves and depth (δl1(t), . . . , δlm(t)). It
follows that σ(t) = Nd1S . . . SNdn−1SNdn where the di are given by

d1 = (m− 1)δl11 (t),

dj =

(

m
∑

i=1

(m− i)(δlij (t)− δlij−1(t))

)

+ 1, for 2 ≤ j ≤ n.

Proof. Recall that n satisfies the equation n = m+ g(m− 1) for some integer g ≥ 0. We prove
the result by induction on g. When g = 0 there is only one tree to consider, namely t = ε∧· · ·∧ε.
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t

ε ε ε
. . . . . . . . .

For this tree, δlij = δij , where the right side is the usual Kronecker delta function. We also

have that σ(t) = Nm−1SN0SN0S . . .N0SN0 = Nm−1Sm−1. We now need to verify that the
exponents of the Ns satisfy the relations above. Indeed d1 = m − 1 = (m − 1)δl11 . Moreover
m
∑

i=1

(m− i)(δlij − δlij−1) + 1 = (m− j)− (m− (j − 1)) + 1 = (m−m) + ((j − 1)− j) + 1 = 0 = dj

for 2 ≤ j ≤ n.
Now suppose that the result holds for n = m + g′(m − 1) for all g′ ≤ g. We consider the

g + 1 case. Let t be an m-ary tree with n = m + (g + 1)(m − 1) leaves. We may then write
t = t1 ∧ · · · ∧ tm where each ti is the subtree rooted at the ith child of the root of t. Each subtree
ti has ni < n leaves and n1 + · · · + nm = n. In writing t as the tag of its sub-trees at the root,
we partition the leaves of t. We identify each leaf of t with a pair (h, j) if it lies in the subtree
th and it is the jth leaf in the pre-order traverse of th where 1 ≤ j ≤ nh. Therefore, for the leaf
identified by (h, j),

δlih,j(t) =

{

δlih,j(th) + 1 if i = h;

δlih,j(th) otherwise.
(3)

By the inductive hypothesis σ(th) = Ndh,1SNdh,2 . . . SNh,nh , where

dh,1(th) = (m− 1)δl1h,1(th)

and

dh,j(t) =

m
∑

i=1

(m− i)(δlih,j(th)− δlih,j−1(th)) + 1, for 2 ≤ j ≤ nh.

By definition, σ(t) = Nm−1σ(t1)Sσ(t2) . . . Sσ(tm), so

σ(t) = Nm−1Nd1,1SNd1,2S . . . SNd1,n1SNd2,1SNd2,2S . . .Nd2,n2SNd3,1S . . . SNdm,nm

= N (m−1)+d1,1SNd1,2S . . . SNd1,n1SNd2,1SNd2,2S . . .Nd2,n2SNd3,1S . . . SNdm,nm

Now we verify that the exponents of the Ns satisfy the required relations. We see that

(m− 1) + d1,1 = (m− 1) + (m− 1)δl11,1(t1) = (m− 1)(δl11,1(t1) + 1) = (m− 1)δl11,1(t),

so the first exponent satisfies the required relation. We also see that

dh,j =

m
∑

i=1

(m−i)(δlih,j(th)−δli
h,(j−1)(th))+1 =

m
∑

i=1

(m−i)(δlih,j(t)−δli
h,(j−1)(t))+1, for 2 ≤ j ≤ nh,

by (3), therefore the dj,h also satisfy the required relation for t.
The only exponents left to verify are the dh,1 for 2 ≤ h ≤ m. In this case, the leaf (h−1, nh−1)

is the rightmost leaf in the subtree th−1, so by Lemma 2.14, δlih−1,nh−1
(th−1) = 0 when i 6= m.

Therefore, by (3), δlih−1,nh−1
(t) = 0 when i 6= m,h− 1, so δ

lh−1

h−1,nh−1
(t) = 1. The leaf (h, 1) is the

leftmost leaf in the subtree th, so by a dual statement of Lemma 2.14, δlih,1(th) = 0 when i 6= 1.

Therefore, by (3), δlih,1(t) = 0 when i 6= 1, h and δlhh,1(t) = 1. It follows that,
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m
∑

i=1

(m− i)(δlih,1(t)− δlih−1,nh−1
(t)) + 1 = (m− 1)δl1h,1(th) + (m− h)− (m− (h− 1))

− (m−m)δlmh−1,nh−1
(th−1) + 1

= (m− 1)δl1h,1(th)

= dh,1

therefore the dh,1 also satisfy the required relations for 2 ≤ h ≤ m. This completes the proof.

Remark 3.8. It is important to note that dn = 0 in Proposition 3.7 since otherwise D is not a
Dyck path. We can observe that dn = 0 by referencing Lemma 2.14 and Lemma 2.15. Hence in
the proposition above, σ(t) is indeed a Dyck path. Also note that since dn = 0, this form of σ(t)
is the same as that given in Lemma 3.3.

The bijection betweenm-ary trees with n leaves and (m−1)-Dyck paths of length n−1 induces
an operation corresponding to k-rotation on Dyck paths, which we shall call a k-compression.
Recall in the definition of a right k-rotation we replace a sub-tree of the form,

s = t1 ∧ t2 ∧ t3 ∧ · · · ∧ tj−1 ∧ (tj ∧ tj+1 ∧ · · · ∧ tj+k(m−1)) ∧ tj+k(m−1)+1 ∧ · · · ∧ t(m−1)+k(m−1)

by a subtree of the form,

s′ = t1 ∧ t2 ∧ · · · ∧ tj ∧ (tj+1 ∧ tj+2 · · · ∧ tj+k(m−1)+1) ∧ tj+k(m−1)+2 ∧ · · · ∧ t(m−1)+k(m−1).

It is easy to see that

σ(s) = Nm−1D1SD2S . . .Dj−1SN
k(m−1)DjSDj+1S . . . SDm+k(m−1),

and
σ(s′) = Nm−1D1SD2S . . .Dj−1SDjSN

k(m−1)Dj+1S . . . SDm+k(m−1),

where Di = σ(ti).

Definition 3.9. Right k-Compression. Let k ≥ 1 and 1 ≤ j ≤ m − 1 be positive integers.
Let D be an (m − 1)-Dyck path of length n − 1. Suppose D contains a sub-Dyck path of the
form

X = Nm−1D1SD2S . . .Dj−1SN
k(m−1)DjSDj+1S . . . SDm+k(m−1),

where the Di are (possibly translated) Dyck paths which may be empty. A right k-compression
at X is the operation of replacing X with the sub-Dyck path

X ′ = Nm−1D1SD2S . . .Dj−1SDjSN
k(m−1)Dj+1S . . . SDm+k(m−1).

A left k-compression is the inverse operation of replacing X ′ with X. Let D,D′ be (m− 1)-
Dyck paths of length n−1. Write D �k D′ to mean that D′ can be obtained from D by applying
finitely many right k-compressions. The k-associative order is the induced partial order onDm−1

n−1 .

The k-components are the connected components of Dm−1
n−1 under the k-associative order. Two

(m− 1)-Dyck paths of length n− 1 are k-equivalent if they belong to the same k-component.
Let M ⊂ Nn be the set of n-tuples of non-negative integers (e1, . . . , en) satisfying the following

relations,
e1 + · · ·+ en = n− 1,
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(m− 1)|ei for 1 ≤ i ≤ n,

e1 + · · ·+ ej−1 ≥ j − 1 for all 2 ≤ j ≤ n.

Notice that it follows from the first and last relation that en = 0.

Proposition 3.10. The map d : Dm−1
n−1 → M maps an (m − 1)-Dyck path of length (n − 1)

D = Nd1S . . . SNdn to the n-tuple d(D) = (d1, . . . , dn). This map is a bijection.

Proof. Let D = Nd1S . . . SNdn be an (m − 1)-Dyck path. Let d(D) = (d1, . . . , dn). Note that
dn = 0 by Remark 3.8, so the form of D is precisely as in Lemma 3.3. By Lemma 3.3 the tuple
(d1, . . . , dn−1) is unique, so the map d is well-defined. Since D is an (m − 1)-Dyck path, by
definition (m− 1)|di. All Dyck paths start and end on the x-axis, therefore they must go up the
same number of times as they go down. Hence if a path has length n−1, which is the number of
down-steps S, then d1 + · · ·+ dn = n− 1. By definition, Dyck paths cannot go below the x-axis,
this is to say that d1 + · · ·+ dj−1 ≥ j − 1 for all j ≥ 2.

Let f : M → Dm−1
n−1 be the map given by f(e1, . . . , en) = Ne1S . . . SNen . This is a (m − 1)-

dyck path by the arguments similar to those above. It is easy to see that f(d(D)) = D, and
d(f((e1, . . . , en))) = (e1, . . . , en). Therefore, d is indeed a bijection.

Proposition 3.11. LetD,D′ be (m−1)-Dyck paths of length n−1 with d(D) = (d1, . . . , dn) and
d(D′) = (d′1, . . . , d

′
n). Suppose that we can obtain D′ from D by applying a right k-compression

to D. There then exist 1 ≤ j < i ≤ n such that d′i = di + k(m − 1), d′j = dj − k(m − 1) and
d′h = dh for h 6= i, j.

Proof. Recall from the definition of right k-compression, there exists a sub-dyck path

X = Nm−1D1SD2S . . .Da−1SN
k(m−1)DaSDa+1S . . . SDm+k(m−1)

in D which we then replace with the sub-dyck path

X ′ = Nm−1D1SD2S . . .Da−1SDaSN
k(m−1)Da+1S . . . SDm+k(m−1)

to get D′. In replacing X with X ′ we are simply moving the substring Nk(m−1) from the
immediate left of the (possibly translated) Dyck path Da to the immediate left of (possibly
translated) Dyck path Da+1. Write D = Nd1S . . . SNdn . Since we have the sub-dyck path X

in D, we have the sub-strings Nk(m−1)Da = NdjS . . . S and Da+1 = Ndi . . . S in D for some
1 ≤ j < i ≤ n. Therefore, in replacing X with X ′ to get D′ (moving the Nk(m−1) up-steps)
we can observe that we have the sub-strings Da = Ndj−k(m−1)S . . . S and Nk(m−1)Da+1 =
Ndi+k(m−1)S . . . S in the Dyck path D′. This proves the statement of the proposition.

Remark that if we replace right k-compression with left k-compression in the proposition
above, we get that j > i instead.

Corollary 3.12. Let D,D′ be (m−1)-Dyck paths of length n−1. If D and D′ are k-equivalent,
then d(D) ≡ d(D′) mod k(m− 1).

Proof. This is an immediate consequence of Proposition 3.11.

Let D be an m-Dyck path of length n. A dyck path D is k-minimal if it is minimal in its
k-equivalence class. That is to say there does not exist a Dyck path D′ ∈ Dm

n such that D′ �k D.
Let p = (x, y) in Z2 be a point on the m-Dyck path D. The level of the point p is the integer y,
and we say that p is on the yth level.
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Proposition 3.13. An (m− 1)-Dyck path D is minimal if and only if for d(D) = (d1, . . . , dn),
we have that di < k(m− 1) for all i 6= 1.

Proof. Suppose that di < k(m − 1) for all i 6= 1 and D is not minimal. We can then left k-
compress D to obtain another dyck path D′. By Proposition 3.11 there is some j > 1 such that
the j-th entry of d(D′) is d′j = dj − k(m− 1). By the assumption that di < k(m− 1) for i 6= 1,
we must have that d′j < 0, a contradiction. Thus D must be minimal.

Recall D is of the form D = Nd1S . . . SNdiS . . . SNdn . Suppose that D is minimal and there
exists some i 6= 0 such that di ≥ k(m−1). We will show that D is not minimal by demonstrating
that we can left k-compress D. That is to say we will show that there is a sub-Dyck path X ′ in
D which required to perform a left k-compression, where

X ′ = Nm−1D1SD2S . . .Dj−1SDjSN
k(m−1)Dj+1S . . . SD(m−1)+k(m−1)

for 1 ≤ j ≤ (m− 1).
Suppose the up-stepNdi starts at some point (b, l) and ends at (b+di, l+di). The immediately

preceding down-step S starts at (b − 1, l + 1) and ends at (b, l). Let 0 ≤ x ≤ b − 1 be maximal
such that the point (x, l) is on the Dyck path D. By the maximality, the point (x, l) is part of
an up-step. Let U to be the up-step in D beginning at (x, l) if (x, l) is at the start of an up-step;
otherwise let U to be the up-step containing (x, l). Let (x1, y1) be the end point of the up-step
U . Let (x0, y0) = (x1 − (m− 1), y1 − (m− 1)), this is the start point of the up-step U . See the
figure below.

(x1, y1)

(x, l) l

l + 1

(b, l)

(b+ di, l + di)

(x0, y0)

S

Ndi

Let (x2, y2) be the point at which it is the first time the Dyck path goes below the level y1
after the point (x1, y1). That is y2 = y1 − 1. We can then observe that subpath D1 starting
from (x1, y1) and ending at (x2− 1, y2+1) is a translated (m− 1)-Dyck path. Note that it could
happen that (x1, y1) = (x2 − 1, y2 + 1), in this case D1 is just the empty (m− 1)-Dyck path.

Let (x3, y3) be the point at which it is the first time the Dyck path goes below the level y1−1
after the point (x2, y2), that is y3 = y1−2. We define D2 to be the path starting from (x2, y2) to
(x3−1, y3+1). As before D2 is a translated m-Dyck path which starts and ends on the (y1−1)th

level.
Let j = y1−l. We can repeat this procedure to define translatedm-Dyck pathsD3, D4, . . . , Dj .

Here each m-Dyck path Dr starts at the point (xr, yr) and ends at the point (xr+1−1, yr+1+1),
where the start and end points are defined as above and yr+1 = yr − 1 = y1 − r. Note that the
translated m-Dyck path Dj begins on the level yj = y1 − (j − 1) = l + 1, so the last point of
Dj is (xj+1 − 1, l + 1) for some xj+1 − 1 ≤ b. We claim that (xj+1 − 1, l + 1) = (b − 1, l + 1).
The point (b− 1, l + 1) is the last time we are on the (l + 1)th level before the Ndi up-step. By
construction, there is a down-step from (xj+1 − 1, l+ 1) to (xj+1, l). By the maximality of x we
have that xj+1 = b or xj+1 = x. Note that xj+1 ≥ x1 > x, so we have that xj+1 = b.
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So far we have constructed a subpath from (x0, y0) to (b, l + 1) given by

X ′′ = Nm−1D1SD2S . . . SDjS,

where the S down-steps are the down steps from (xi−1, yi+1) to (xi, yi). Note that yi = y1−(i−1)
for 2 ≤ i < j and the S after Dj is the one from (b− 1, l+ 1) to (b, l). The Nm−1 is the up-step
U from (x0, y0) to (x1, y1).

Since di ≥ k(m − 1), there is an up-step Nk(m−1) from (b, l) to (xj+1, yj+1) = (b + k(m −
1), l+ k(m− 1)). We define Dj+1 to be the path from (xj+1, yj+1) to (xj+2 − 1, yj+2 +1) where
(xj+2, yj+2) is the point at which the Dyck path first sits on level l+k(m−1)−1 after (xj+1, yj+1).
In the same fashion we define the (m−1)−j+k(m−1) sub paths Dj+2, Dj+3 . . . D(m−1)+k(m−1).
These are all translated m-Dyck paths by the same arguments as above. By how we construct
the Dyck paths, we see that the path D(m−1)+k(m−1) ends on level y0 = y1 − (m− 1).

We have thus successfully constructed the sub-Dyck path of D,

X ′ = Nm−1D1SD2S . . .Dj−1SDjSN
k(m−1)Dj+1S . . . SD(m−1)+k(m−1).

As before the S are the intermediate down steps between the Di and the Di may also be
empty.

We illustrate the constructive proof above with an example for the case where k = 2 and
m = 3.

(x1, y1)

(x, l) = (x0, y0)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)(b, l)

The Nm−1 = N2 up-step is the one from (x0, y0) to (x1, y1). The translated 2-Dyck paths D1

and D2 are the empty paths N0S0 at (x1, y1) and (x2, y2) respectively. The Nk(m−1) = N2(2)

up-step is the one from (b, l) to (x3, y3). The rest of the translated 2-Dyck paths D3, . . . , D6 are
the empty paths at (x4, y4), . . . , (x7, y7) respectively. Therefore, X

′ in this case is the whole path
above.

We now show that minimal m-Dyck paths do exist and that they are unique in each k-
equivalence class.

Proposition 3.14. Every k-equivalence class contains a unique minimal Dyck path.

Proof. To show existence, we consider the bijection d : Dm−1
n−1 → M from Proposition 3.10 where

d(D) = (d1, . . . , dn). Endow Nn with the standard lexicographic order. By Proposition 3.11, d
is order reversing. That is D ≺k D′ implies that d(D′) <lex d(D). Recall that the lexicographic
order is a partial order therefore it has no cycles because of anti-symmetry. Hence suppose that
there is a k-equivalence class with no minimal Dyck path. Take D belonging to such a class and
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repeatedly left k-compress it. Since there is no minimal element in this class, we can do this
indefinitely. As a result we obtain the descending chain.

· · · ≺k D(a) ≺k · · · ≺k D1 ≺k D.

Applying d to the descending chain, we get the ascending chain.

d(D) <lex d(D1) <lex · · · <lex d(Da) <lex . . .

Since Dm−1
n−1 is finite, this ascending chain must be a cycle. Since the lexicographic order is

anti-symmetric, this cycle must contain only one element. Therefore, if a k-equivalence class
does not have a minimal element, it only contains one Dyck path in which case that Dyck path
is trivially minimal. This is a contradiction to our assumption. Thus every k-equivalence class
has a minimal Dyck path.

Suppose we have two minimal Dyck paths D and D′ in an equivalence class. By Proposition
3.13 all but the first entries of d(D) and d(D′) are strictly less than k(m − 1). But since D

and D′ are k-equivalent, d(D) ≡ d(D′) mod k(m − 1). This means all but the first entries of
d(D) and d(D′) are equal. The equality of these entries forces the first entries to also be equal
since clearly it cannot be the case otherwise. Therefore, d(D) = d(D′) which implies D = D′.
Therefore, the minimal Dyck paths are unique in their equivalence classes.

Theorem 3.15. Suppose that D and D′ are m-Dyck paths of length n. The m-Dyck paths D
and D′ are k-equivalent if and only if d(D) ≡ d(D′) mod k(m− 1).

Proof. Suppose that D and D′ are k-equivalent. Furthermore, suppose without loss of generality
that we obtain D′ from D by application of a finite sequence of k-compressions. From Propos-
ition 3.11, we see that a k-compression maps d(D) to an n-tuple which is congruent to d(D)
modulo k(m − 1). Therefore, since d(D′) an n-tuple which is a result of a finite sequence of
k-compressesions on D, then d(D) ≡ d(D′) mod k(m− 1).

Suppose now that d(D) ≡ d(D′) mod k(m− 1). Consider their respective minimal represent-
atives in their k-equivalence classes Dmin and D′

min respectively. It then follows that

d(Dmin) ≡ d(D) ≡ d(D′) ≡ d(D′
min) mod k(m− 1).

Therefore, d(Dmin) ≡ d(D′
min) mod k(m − 1), hence by Proposition 3.13 we obtain that

d(Dmin) = d(D′
min) which means Dmin = D′

min. Therefore, D and D′ belong to the same
k-equivalence class. Therefore, we conclude D and D′ are k-equivalent.

Theorem 3.16. Suppose that t and t′ are a pair of m-ary trees with n leaves and depth
(δl1(t), . . . , δlm(t)), (δl1(t′), . . . , δlm(t′)) respectively. The trees t and t′ are k-equivalent if and
only if

m−1
∑

i=1

(m− i)δli(t) ≡
m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1),

where the addition on the n-tuples is componentwise.

Proof. Suppose that t and t′ are k-equivalent, then their corresponding Dyck paths D = σ(t)
and D′ = σ(t′) respectively are also k-equivalent. Therefore, by Theorem 3.15, d(D) ≡ d(D′)
mod k(m− 1). By Proposition 3.7,

d1 = (m− 1)δl11 (t),

17



dj =
m
∑

i=1

(m− i)(δlij (t)− δlij−1(t)) + 1, for j > 1.

Since d1 ≡ d′1 mod k(m − 1), we have that (m − 1)δl11 (t) ≡ (m − 1)δl11 (t′) mod k(m − 1).
Furthermore, we observe that from the structure of the of m-ary trees that δli1 (t) = 0 and
δli1 (t

′) = 0 for i 6= 1. Thus

(m− 1)δli1 (t) ≡ (m− 1)δli1 (t
′) mod k(m− 1) for 1 ≤ i ≤ m,

hence
m
∑

i=1

(m− 1)δli1 (t) ≡
m
∑

i=1

(m− 1)δli1 (t
′) mod k(m− 1).

From the fact that,

d2 =
m
∑

i=1

(m− i)(δli2 (t)− δli1 (t)) + 1 ≡ d′2 =
m
∑

i=1

(m− i)(δli2 (t
′)− δli1 (t

′)) + 1 mod k(m− 1),

we conclude that,

m
∑

i=1

(m− i)δli2 (t) ≡

m
∑

i=1

(m− i)δli2 (t
′) mod k(m− 1).

From this congruence and the congruence

d3 =

m
∑

i=1

(m− i)(δli3 (t)− δli2 (t)) + 1 ≡ d′3 = d3 =
m
∑

i=1

(m− i)(δli3 (t
′)− δli2 (t

′)) + 1,

we conclude that,
m
∑

i=1

(m− i)δli3 (t) ≡

m
∑

i=1

(m− i)δli3 (t
′) mod k(m− 1).

Continuing in this manner we obtain the following,

m
∑

i=1

(m− i)δlij (t) ≡

m
∑

i=1

(m− i)δlij (t
′) mod k(m− 1), for 1 ≤ j ≤ n.

This is the same as saying,

m−1
∑

i=1

(m− i)δli(t) ≡
m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1).

Now for the converse, suppose that

m−1
∑

i=1

(m− i)δli(t) ≡

m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1).

This implies that,

m
∑

i=1

(m− i)δlij (t) ≡
m
∑

i=1

(m− i)δlij (t
′) mod k(m− 1), for 1 ≤ j ≤ n.
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This further implies that

d1 = (m− 1)δl11 (t) ≡ d′1 = (m− 1)δl11 (t) mod k(m− 1)

dj =

m
∑

i=1

(m− i)(δlij (t)− δlij−1(t)) + 1 ≡ d′j =
m
∑

i=1

(m− i)(δlij (t
′)− δlij−1(t

′)) + 1 mod k(m− 1).

Therefore, by Theorem 3.15, D = σ(t) and D′ = σ(t′) are k-equivalent which implies that t and
t′ are k-equivalent.

4 An Application to m-ary operations

The main aim of this section is to prove Theorem 1.1. To do so, we introduce a particular
k-associative m-ary operation which will be denoted by ◦. This operation will be used to eval-
uate m-ary parenthesizations and we will show that this operation characterises k-equivalence.
This is to say that two parenthesizations will be k-equivalent (k-associative) if and only if their
evaluations under this operation are equal. For the rest of this section, we fix integers m ≥ 2,
g ≥ 0, k ≥ 1 and n = m+ g(m− 1).

Let A = C〈u1, . . . , un〉 be the free unital associative algebra over C in n indeterminates
u1, u2, . . . , un. We define a binary operation ◦ on A as follows. Let ω be an element of A of order

k(m− 1), for example ω = e
2πi

k(m−1) . For a, b in A, we define a ◦ b = ω · a+ b, where · and + are
the multiplication and addition operations in A respectively. This is taken to be a left-justified
operation. Sometimes we will omit the · for convenience. The binary operation ◦ on A induces
an m-ary operation on Am defined in the following way,

a1 ◦ a2 · · · ◦ am = ωm−1 · a1 + ωm−2 · a2 + · · ·+ ω · am−1 + am. (4)

It is easy to see by direct calculation that the following two lemmas are true.

Lemma 4.1. The binary operation ◦ on A is k(m− 1)-associative.

Lemma 4.2. The m-ary operation on Am induced by the binary operation ◦ on A is k-
associative.

Let X be a non-empty set and let ∗ : Xm → X be an m-ary operation. Take x1, . . . , xn

in X. Recall that there is a bijection between the set of m-ary trees on n leaves and the
set of m-ary parenthesizations of the expression x1 ∗ · · · ∗ xn, see Proposition 2.4. We will write
pt = p(x1 ∗· · ·∗xn)t to be the m-ary parenthesization of the expression x1 ∗· · ·∗xn corresponding
to the m-ary tree t. We denote the evaluation of pt with respect to ◦ by p(u1 ◦ · · · ◦ un)t. When
there is no risk of confusion, we omit the subscript t.

Lemma 4.3. Suppose that p(x1 ∗ · · · ∗ xn)t is an m-ary parenthesization of x1 ∗ · · · ∗ xn corres-
ponding to the m-ary tree on n leaves t, which has depth δ(t) = (δl1(t), . . . , δlm(t)) be the depth
of t. It follows that

p(u1 ◦ · · · ◦ un)t = ω

m∑

i=1
(m−i)δ

li
1 (t)

· u1 + ω

m∑

i=1
(m−i)δ

li
2 (t)

· u2 + · · ·+ ω

m∑

i=1
(m−i)δ

li
n (t)

· un.

Proof. Recall that n satisfies the equation n = m+ g(m− 1) for some integer g ≥ 0. We prove
the result by induction on g. When g = 0 there is only on tree to consider, namely t = ε∧· · ·∧ε.
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t

ε ε ε
. . . . . . . . .

For this tree, δlij = δij , where the right side is the usual Kronecker delta function. it is easy to
see that the statement holds in this case by the definition of u1 ◦ · · · ◦ um in (4).

Now suppose that the result holds for n = m+ g′(m−1) for all g′ ≤ g. We consider the g+1
case. Let t be an m-ary tree with n = m+ (g+1)(m− 1) leaves. We may write t = t1 ∧ · · · ∧ tm
where each ti is the subtree rooted at the ith child of the root of t. Each subtree ti has ni < n

leaves and n1 + · · · + nm = n. In writing t as the tag of its sub-trees at the root, we partition
the leaves of t. We identify each leaf of t with a tuple (h, j) if it lies in the subtree th and it is
the jth leaf in the pre-order traverse of th, where 1 ≤ j ≤ nh. Therefore, for the leaf identified
with (h, j),

δlih,j(t) =

{

δlih,j(th) + 1 if i = h;

δlih,j(th) otherwise.
(5)

From the equation above, it follows that,

(m− i)δlih,j(t) =

{

(m− i)δlih,j(th) + (m− i) if i = h;

(m− i)δlih,j(th) otherwise.
(6)

The identification of the leaves with the tuples (h, j) gives another labelling of the variables us,
where 1 ≤ s ≤ n. Since the variable us corresponds to the sth leaf of t, and the sth leaf is
identified with (h, j), we write u(h,j) for us. Hence

p(u1 ◦ u2 ◦ · · · ◦ un)t = p(u(1,1) ◦ u(1,2) . . . u(m,nm))t.

It is then easy to see that,

p(u(1,1) ◦ u(1,2) ◦ · · · ◦ u(m,nm))t =p(u(1,1) ◦ · · · ◦ u(1,n1))t1 ◦ p(u(2,1) ◦ · · · ◦ · · · ◦ u(2,n2))t2◦

· · · ◦ p(u(m,1) ◦ · · · ◦ u(m,nm))tm

= ωm−1p(u(1,1)◦· · ·◦u(1,n1))t1+ωm−2p(u(2,1)◦· · ·◦· · ·◦u(2,n2))t2+· · ·+p(u(m,1)◦· · ·◦u(m,nm))tm .

By in the inductive assumption,

p(u(h,1) ◦ u(h,2) ◦ · · · ◦ u(h,nh))th =ω

m∑

i=1
(m−i)δ

li
(h,1)

(th)
· u(h,1) + ω

m∑

i=1
(m−i)δ

li
(h,2)

(th)
· u(h,2)+

· · ·+ ω

m∑

i=1
(m−i)δ

li
(h,nh)

(th)
· u(h,nh)

from which it follows that,

ωm−hp(u(h,1) ◦ u(h,2) ◦ · · · ◦ u(h,nh))th = ω

m∑

i=1
(m−i)δ

li
(h,1)

(th)+(m−h)
· u(h,1)+

ω

m∑

i=1
(m−i)δ

li
(h,2)

(th)+(m−h)
· u(h,2) + · · ·+ ω

m∑

i=1
(m−i)δ

li
(h,nh)

(th)+(m−h)
· u(h,nh).

20



By equation (6),

(

m
∑

i=1

(m− i)δli(h,j)(th)

)

+ (m− h) =







m
∑

i=1
i 6=h

(m− i)δli(h,j)(th)






+ (m− h)δlh(h,j)(th) + (m− h)

=







m
∑

i=1
i 6=h

(m− i)δli(h,j)(t)






+ (m− h)δlh(h,j)(t)

=

m
∑

i=1

(m− i)δli(h,j)(t)

Therefore,

p(u(1,1) ◦ u(1,2) ◦ · · · ◦ u(m,nm))t =ω

m∑

i=1
(m−i)δ

li
(1,1)

(t)
· u(1,1) + ω

m∑

i=1
(m−i)δ

li
(1,2)

(t)
· u(1,2)+

· · ·+ ω

m∑

i=1
(m−i)δ

li
(m,nm)

(t)
· u(m,nm),

as required. This completes the proof.

We are now able to prove our first main result of the paper.

Theorem 4.4. Suppose that p = p(x1 ∗ · · · ∗ xn)t and p′ = p′(x1 ∗ · · · ∗ xn)t′ are two m-ary
parenthesizations of x1∗· · ·∗xn corresponding to the m-ary trees on n leaves t and t′ respectively.
It then follows that p and p′ are k-equivalent with respect to k-associativity if and only if,

p(u1 ◦ · · · ◦ un)t = p′(u1 ◦ · · · ◦ un)t′ .

Proof. Suppose the parenthesizations p and p′ are k-equivalent. It follows that the trees t and t′

are also k-equivalent. By Theorem 3.16,

m−1
∑

i=1

(m− i)δli(t) ≡

m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1).

Therefore,
p(u1 ◦ u2 · · · ◦ un)t = p′(u1 ◦ u2 · · · ◦ un)t′

by Lemma 4.3.
Suppose that

p(u1 ◦ u2 · · · ◦ un)t = p′(u1 ◦ u2 · · · ◦ un)t′ ,

then

ω

m∑

i=1
(m−i)δ

li
1 (t)

· u1 + ω

m∑

i=1
(m−i)δ

li
2 (t)

· u2 + · · ·+ ω

m∑

i=1
(m−i)δ

li
n (t)

· un

=

ω

m∑

i=1
(m−i)δ

li
1 (t′)

· u1 + ω

m∑

i=1
(m−i)δ

li
2 (t′)

· u2 + · · ·+ ω

m∑

r=1
(m−i)δ

li
n (t′)

· un.
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Since u1, . . . , un are algebraically independent and hence linearly independent in A, the coeffi-
cients of the ui on each side of the equation must be equal.
Hence

ω

m∑

i=1
(m−i)δ

li
j
(t)

= ω

m∑

i=1
(m−i)δ

li
j
(t′)

for 1 ≤ j ≤ n.

Since ω has order k(m− 1) this implies,

m−1
∑

i=1

(m− i)δli(t) ≡

m−1
∑

i=1

(m− i)δli(t′) mod k(m− 1).

Hence t and t′ are k-equivalent by Theorem 3.16 which implies that p and p′ are also k-equivalent
by Remark 2.7.

Example 4.5. In example 2.9 we saw that the 3-ary parenthesization ((x1x2x3)x4x5)x6x7 is
2-equivalent to x1((x2x3x4)x5x6)x7. Let us check the theorem above for this example.
The depth of the first tree is

(δl1 = (3, 2, 2, 1, 1, 0, 0), δl2 = (0, 1, 0, 1, 0, 1, 0), δl3 = (0, 0, 1, 0, 1, 0, 1)).

Therefore, the valuation of ((x1x2x3)x4x5)x6x7 with respect to ◦ is

ω6x1 + ω5x2 + ω4x3 + ω3x4 + ω2x5 + ωx6 + x7.

The depth of x1((x2x3x4)x5x6)x7 is

(δl1 = (1, 2, 1, 1, 0, 0, 0), δl2 = (0, 1, 2, 1, 2, 1, 0), δl3 = (0, 0, 0, 1, 0, 1, 1)),

hence the valuation of x1((x2x3x4)x5x6)x7 with respect to ◦ is

ω2x1 + ω5x2 + ω4x3 + ω3x4 + ω2x5 + ωx6 + x7.

Since ω has order 4 the valuations are equal.

5 Modular Fuss-Catalan Number

Recall that we define the modular Fuss-Catalan number Cm
k,n to be the number of k-equivalence

classes of parenthesizations of x0 ∗ · · · ∗ xn. In the previous sections we saw that k-associativity
corresponds to k-rotation and k-compression. Therefore, Cm

k,n also counts the k-equivalence
classes of (m − 1)-Dyck paths of length n. In this section we follow the strategy of [14, §5] to
derive an explicit formula for Cm

k,n, see Theorem 1.2. By Proposition 3.14, each k-equivalence
class has a unique minimal element. Therefore, to count the number of k-equivalence classes, we
just need to count the number of minimal elements. For the rest of this section, we fix integers
m ≥ 2, g ≥ 0, k ≥ 1 and n = m+ g(m− 1).

Assume that l is a positive integer in {1, . . . , n} such that (m−1) divides l. Let N denote the
up-step (1, 1) and S denote the down-step (1,−1) in Z2. Denote by C

′m
k,n,l the set of all strings

(lattice paths) of the form N lSN i1SN i2 . . . SN in such that i1 + i2 + · · · + in = n − l where
(m − 1)|ip for all 1 ≤ p ≤ n and 0 ≤ i1, . . . , in < k(m − 1). Thus C′m

k,n,l is a set of lattice paths
of length n where the first up-step is of size l. For integers 1 ≤ j ≤ k, denote by mj the number
of (j − 1)(m− 1)s appearing among the i1, . . . , in ∈ {0,m− 1, 2(m− 1), . . . , (k − 1)(m− 1)}.
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It is easy to see that

|C′m
k,n,l| =

∑

m1+···+mk=n

m2+2m3+···+(k−1)mk=
n−l
m−1

(

n

m1,m2, . . . ,mk

)

.

For a string w = N lSN i1SN i2 . . . SN in in C
′m
k,n,l and j in {0, 1, . . . , n− 1} we define

w•j = N lSN ij+1S . . . SN inSN i1S . . . SN ij .

Let C
m
k,n,l be the subset of strings in C

′m
k,n,l which are (m − 1)-Dyck paths of length n. Since

(m − 1)-Dyck paths can be thought of as 1-Dyck paths where up-steps come in multiples of
m − 1, the following lemmas follow by similar arguments to Lemma 5.5 and Lemma 5.6 from
[14], which can be thought of as the m = 2 case. Thus we will state the followings lemmas
without proof.

Lemma 5.1. For a string w in C
′m
k,n,l the set {0 ≤ j ≤ n− 1 : w•j ∈ C

m
k,l,n} has cardinality l.

Let φ be the following map,

φ : Cm
k,n,l × {0, 1, . . . , n− 1} → C

′m
k,n,l,

(w, j) 7→ w•j .

Lemma 5.2. For a string w in C
′m
k,n,l, the fibre φ−1(w) of φ over w has cardinality |φ−1(w)| = l.

By Proposition 3.14, the modular Fuss-Catalan number counts the number of minimal (m−1)-
Dyck paths. Moreover by Proposition 3.13, minimal Dyck paths D satisfy d(D) = (d1, . . . , dn)
where di < k(m− 1) for i 6= 1. Combining the results of Proposition 3.13, Proposition 3.14 and
Lemma 5.2,

|Cm
k,n,l| =

l

n
|C′m

k,n,l|.

Let Cm
k,n be the set of minimal (m− 1)−Dyck paths, then

|Cm
k,n| =

∑

1≤l≤n
(m−1)|l

|Cm
k,n,l|.

Therefore,

Cm
k,n = |Cm

k,n| =
∑

1≤l≤n
m−1|l

l

n

∑

m1+···+mk=n

m2+2m3+···+(k−1)mk=
n−l
m−1

(

n

m1, . . .mk

)

is the number of minimal (m−1)-Dyck paths of length n, so by Proposition 3.6, it is the number
of minimal m-ary trees of length n+ 1. This completes the proof of Theorem 1.2.

Example 5.3. In this example, we will count the number of 2-equivalence classes of 3-ary trees
with 7 leaves. There are twelve 3-ary trees altogether. See the figure below for the complete list.
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T1 T2 T3

T4 T5 T6 T7

T8 T9 T10

T11 T12

Figure 5: The complete list of the 3-ary trees with 7 leaves.

Observe that the trees T1, T2 and T3 in the top row correspond to the following parenthesiz-
ations

((x1 ∗ x2 ∗ x3) ∗ x4 ∗ x5) ∗ x6 ∗ x7,

x1 ∗ ((x2 ∗ x3 ∗ x4) ∗ x5 ∗ x6) ∗ x7,

x1 ∗ x2 ∗ ((x3 ∗ x4 ∗ x5) ∗ x6 ∗ x7)

respectively. We can see that we get the tree T2 from the tree T1 by a 2-rotation at the root of
T1, and likewise we get the tree T3 from the tree T2 by a 2-rotation at the root of T2. Therefore
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T1, T2 and T3 belong to the same 2-equivalence class. Further observe that the other trees cannot
be 2-rotated because they do not contain a subtree of form required to perform a 2-rotation. We
conclude that C3

2,6 = 10. Let us check this against the explicit formula of Theorem 1.2.

C3
2,6 =

∑

1≤l≤6
2|l

l

6

∑

m1+m2=6
m2=

6−l
2

(

6

m1,m2

)

=
2

6

(

6

4, 2

)

+
4

6

(

6

5, 1

)

+
6

6

(

6

6, 0

)

=
1

3
(15) +

2

3
(6) + 1(1)

= 10.
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