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EULERIAN PAIRS AND EULERIAN RECURRENCE SYSTEMS

SHI-MEI MA, JUN MA, JEAN YEH, AND YEONG-NAN YEH

Abstract. In this paper, we characterize a duality relation between Eulerian recurrences and

Eulerian recurrence systems, which generalizes and unifies Hermite-Biehler decompositions of

several enumerative polynomials, including flag descent polynomials for hyperoctahedral group,

flag ascent-plateau polynomials for Stirling permutations, up-down run polynomials for sym-

metric group and alternating run polynomials for hyperoctahedral group. As applications, we

derive some properties of associated enumerative polynomials. In particular, we find that both

the ascent-plateau polynomials and left ascent-plateau polynomials for Stirling permutations

are alternatingly increasing, and so they are unimodal with modes in the middle.

Keywords: Eulerian polynomials, Eulerian pairs, Eulerian recurrence systems

1. Introduction

Given m,n ∈ N. When m ≤ n, let [m,n] = {m,m+1, . . . , n}. As usual, let [n] = {1, 2, . . . , n}.

The cardinality of a set A will be denoted by #A. Let Sn be the set of all permutations of [n]

and let π = π(1)π(2) · · · π(n) ∈ Sn. Let SB
n be the hyperoctahedral group of rank n. Elements

of SB
n are signed permutations π of the set ±[n] such that π(−i) = −π(i) for all i, where

±[n] = {±1,±2, . . . ,±n}. Let SD
n denote the group of even signed permutations, which is a

Coxeter group of type D of rank n. The group SD
n is the subgroup of SB

n consisting of signed

permutations with an even number of negative entries among π(1), π(2) . . . , π(n). Define

desA(π) := #{i ∈ [n− 1] : π(i) > π(i+ 1)},

desB(π) := #{i ∈ [0, n − 1] : π(i) > π(i+ 1), π(0) = 0},

desD(π) := #{i ∈ [0, n − 1] : π(i) > π(i+ 1), π(0) = −π(2)}.

The types A,B and D Eulerian polynomials are respectively defined by

An(x) =
∑

π∈Sn

xdesA(π), Bn(x) =
∑

π∈SB
n

xdesB(π), Dn(x) =
∑

π∈SD
n

xdesD(π).

There is a close connection among the three types of Eulerian polynomials [42, Lemma 9.1]:

Dn(x) = Bn(x)− n2n−1xAn−1(x) for n ≥ 2. (1)

Subsequently, Brenti [12, Theorem 4.7] obtained a q-analogue of (1). There are several recur-

rences for Dn(x) (see [15, 24]). The polynomials An(x), Bn(x) and Dn(x) have several common

properties, including unimodality, real-rootedness and γ-positivity (see [2, 24, 25, 35, 36, 44]).

This paper is motivated by the recent work of Hyatt [24] and Hwang, Chern and Duh [23].
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Let SB
n = B+

n ∪B−
n and SD

n = D+
n ∪D−

n , where

B+
n = {π ∈ SB

n : π(n) > 0}, B−
n = {π ∈ SB

n : π(n) < 0},

D+
n = {π ∈ SD

n : π(n) > 0}, D−
n = {π ∈ SD

n : π(n) < 0}.

Define

Pn(x) =

n−1∑

k=0

(
n

k

)
Bk(x)(x− 1)n−k−1, Qn(x) =

n−1∑

k=0

(
n

k

)
Dk(x)(x− 1)n−k−1.

Given a polynomial f(x) of degree n. Let f̃(x) = xnf(1/x). In [24], Hyatt found that

Bn(x) = Pn(x) + xnPn(1/x) = Pn(x) + xP̃n(x) for n ≥ 1, (2)

Dn(x) = Qn(x) + xnQn(1/x) = Qn(x) + xQ̃n(x) for n ≥ 2,

where

Pn(x) =
∑

π∈B+
n

xdesB(π), xnPn(1/x) =
∑

π∈B−

n

xdesB(π),

Qn(x) =
∑

π∈D+
n

xdesD(π), xnQn(1/x) =
∑

π∈D−

n

xdesD(π).

Motivated by (2), in the following we shall present a more natural decomposition of Bn(x).

Following [1], the flag descent number of π ∈ SB
n is defined by

fdes (π) :=




2desA(π) + 1, if π(1) < 0;

2desA(π), otherwise.

Clearly, fdes (π) = desA(π) + desB(π). The flag descent polynomial is defined by

Cn(x) =
∑

π∈SB
n

xfdes (π).

It follows from [1, Theorem 4.4] that

Cn(x) = (1 + x)nAn(x), (3)

and so Cn(x) is symmetric and unimodal. Let neg (π) := #{i ∈ [n] : π(i) < 0}. Consider the

q-flag descent polynomials

Cn(x, q) =
∑

π∈SB
n

xfdes (π)qneg (π).

Set SB
n = C+

n ∪ C−
n , where C+

n = {π ∈ SB
n : π(1) > 0} and C−

n = {π ∈ SB
n : π(1) < 0}. Define

CE
n (x, q) =

∑

π∈C+
n

xdesA(π)qneg (π), CO
n (x, q) =

∑

π∈C−

n

xdesA(π)qneg (π).

Then we have

Cn(x, q) = CE
n (x2, q) + xCO

n (x2, q). (4)

Consider the type B q-Eulerian polynomials

Bn(x, q) =
∑

π∈SB
n

xdesB(π)qneg (π).
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The polynomials Bn(x, q) satisfy the recurrence

Bn+1(x, q) = ((1 + q)nx+ qx+ 1)Bn(x, q) + (1 + q)x(1− x)B′
n(x, q),

with B0(x, q) = 1 (see [12, Theorem 3.4]). Note that desB(π) = desA(π) for π ∈ C+
n and

desB(π) = desA(π) + 1 for π ∈ C−
n . Hence

Bn(x, q) = CE
n (x, q) + xCO

n (x, q).

Set CE
n (x, 1) = CE

n (x) and CO
n (x, 1) = CO

n (x). By (3), the polynomial Cn(x) is symmetric. Thus

CE
n (x) = xn−1CO

n (1/x) for n ≥ 1. Note that Bn(x, 1) = Bn(x) and Cn(x, 1) = Cn(x). We can

now conclude the following result from the discussion above.

Proposition 1. For n ≥ 1, we have

Cn(x) = CE
n (x2) + xCO

n (x2), Bn(x) = CE
n (x) + xCO

n (x). (5)

Comparing (2) with (5), we get the following result, and we give a proof of it for completeness.

Proposition 2. We have CE
n (x) = Pn(x) and CO

n (x) = P̃n(x).

Proof. Define

+B+
n = {π ∈ Bn : π(1) > 0, π(n) > 0},

+B−
n = {π ∈ Bn : π(1) > 0, π(n) < 0},

−B+
n = {π ∈ Bn : π(1) < 0, π(n) > 0},

−B−
n = {π ∈ Bn : π(1) < 0, π(n) < 0}.

Note that C+
n = +B+

n ∪ +B−
n and B+

n = +B+
n ∪ −B+

n . A bijection Φ from C+
n to B+

n is given as

follows:

(i) If π ∈ +B+
n , then let Φ(π) = π;

(ii) For π ∈ +B−
n , let k be the smallest index of π such that π(k) > 0 and π(k + 1) < 0.

Then we define Φ(π) = π(k + 1) · · · π(n)π(1) · · · π(k).

Note that desB (Φ(π)) = desB(π). Hence
∑

π∈C+
n

xdesB(π) =
∑

π∈B+
n

xdesB(π),

Along the same lines, it is easy to show that
∑

π∈C−

n
xdesB(π) =

∑
π∈B−

n
xdesB(π). �

Motivated by Proposition 1, in the following we shall establish a duality relation between

Eulerian recurrences and Eulerian recurrence systems. It is well known that the Eulerian poly-

nomials An(x) and Bn(x) satisfy the following recurrence relations:

An(x) = (nx+ 1− x)An−1(x) + x(1− x)A′
n−1(x),

Bn(x) = (2nx+ 1− x)Bn−1(x) + 2x(1− x)B′
n−1(x),

with the initial conditions A0(x) = B0(x) = 1 (see [12, 47]). In recent years, there has been

much work on the generalizations of Eulerian recurrences, see [5, 23, 46] and references therein.
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In [5], Barbero, Salas and Villaseñor systematically studied and classified the partial differential

equations that are satisfied by the generating function

f(x, y) =
∑

n,k≥0

∣∣∣∣
n

k

∣∣∣∣x
k y

n

n!
,

where the numbers
∣∣n
k

∣∣ satisfy the recurrence relation

∣∣∣∣
n

k

∣∣∣∣ = (αn+ βk + γ)

∣∣∣∣
n− 1

k − 1

∣∣∣∣+ (α′n+ β′k + γ′)

∣∣∣∣
n− 1

k

∣∣∣∣,

with
∣∣0
0

∣∣ = 1 and
∣∣n
k

∣∣ = 0 when n < 0 or k < 0. Very recently, Hwang, Chern and Duh [23]

considered the general Eulerian recurrence:

Pn(x) = (α(x)n + γ(x))Pn−1(x) + β(x)(1 − x)P ′
n−1(x), (6)

with P0(x), α(x), β(x) and γ(v) are given functions of x (they are often polynomials). They

studied the limiting distribution of the coefficients of Pn(x) for large n when the coefficients

are nonnegative. In particular, Hwang, Chern and Duh [23, Section 9.3] discussed the limiting

distribution of the coefficients polynomials that satisfy Eulerian recurrence systems.

Definition 3. Let {En(x)}n≥0 and {On(x)}n≥0 be two sequences of polynomials. We say that

the ordered pair of polynomials (En(x), On(x)) is a Eulerian pair if degEn(x) ≥ degOn(x) and

the polynomials En(x) and On(x) satisfy the Eulerian recurrence system:

{
En+1(x) = pn(x)En(x) + qn(x)E

′
n(x) + rn(x)On(x),

On+1(x) = un(x)On(x) + vn(x)O
′
n(x) + wn(x)En(x),

(7)

where E0(x), O0(x), pn(x), qn(x), rn(x), un(x), vn(x), wn(x) are given polynomials of low degrees.

Let f(x) =
∑n

i=0 fix
i. Throughout this paper, we always let

fE(x) =

⌊n

2
⌋∑

k=0

f2kx
k, fO(x) =

⌊n−1

2
⌋∑

k=0

f2k+1x
k;

f e(x) =

⌊n

2
⌋∑

k=0

f2kx
2k, f o(x) =

⌊n−1

2
⌋∑

k=0

f2k+1x
2k+1.

Hence f(x) = fE(x2) + xfO(x2) = f e(x) + f o(x). As an extension of (6), we define a sequence

of polynomials Fn(x) by using the following general Eulerian recurrence:

Fn+1(x) = αn(x)Fn(x) + βn(x)F
′
n(x), (8)

where F0(x), αn(x) and βn(x) are given polynomials of low degrees. We can now present the

first main result of this paper.

Theorem 4. Let 〈En(x), On(x)〉 be a Eulerian pair that satisfies the Eulerian recurrence syetem (7),

and let Fn(x) be the polynomial defined by the recurrence (8). Then the polynomial Fn(x) has
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the expression Fn(x) = En(x
2) + xOn(x

2) if and only if the following conditions hold:

un(x) = pn(x) +
1

2x
qn(x), vn(x) = qn(x), wn(x) =

1

x
rn(x),

αn(x) = pn(x
2) +

1

x
rn(x

2), βn(x) =
1

2x
qn(x

2), βe
n(x) = 0.

Proof. By using Fn(x) = En(x
2) + xOn(x

2), we obtain

F ′
n(x) = 2xE′

n(x
2) +On(x

2) + 2x2O′
n(x

2).

Then it follows from (8) that

Fn+1(x) = αn(x)
(
En(x

2) + xOn(x
2)
)
+

βn(x)
(
2xE′

n(x
2) +On(x

2) + 2x2O′
n(x

2)
)
.

Comparing this with the expression Fn+1(x) = En+1(x
2) + xOn+1(x

2), we obtain

En+1(x
2) = αe

n(x)En(x
2) + xαo

n(x)On(x
2)+

βe
n(x)

(
On(x

2) + 2x2O′
n(x

2)
)
+ 2xβo

n(x)E
′
n(x

2),

On+1(x
2) =

1

x
αo
n(x)En(x

2) + αe
n(x)On(x

2)+

1

x
βo
n(x)

(
On(x

2) + 2x2O′
n(x

2)
)
+ 2βe

n(x)E
′
n(x

2).

Since (7) holds, then βe
n(x) = 0. Hence

{
En+1(x

2) = αe
n(x)En(x

2) + 2xβo
n(x)E

′
n(x

2) + xαo
n(x)On(x

2),

On+1(x
2) =

(
αe
n(x) +

1
xβ

o
n(x)

)
On(x

2) + 2xβo
n(x)O

′
n(x

2) + 1
xα

o
n(x)En(x

2).
(9)

By comparing (7) with (9), we immediately get the following relations:

pn(x
2) = αe

n(x), qn(x
2) = 2xβo

n(x), rn(x
2) = xαo

n(x),

un(x
2) = αe

n(x) +
1

x
βo
n(x), vn(x

2) = 2xβo
n(x), wn(x

2) =
1

x
αo
n(x),

which yield the desired result. This completes the proof. �

Let Fn(x) be the polynomials defined by the recurrence (8). When βe
n(x) = 0, we can get the

recurrence system 7 by using the following relations:

xαn(x) = xpn(x
2) + rn(x

2), 2xβn(x) = qn(x
2). (10)

A polynomial p ∈ R[x] is (Hurwitz or asymptotically) stable if every zero of p is in the open

left half plane LHP = {z : Re z < 0}; p is standard if its leading coefficient is positive. Suppose

that p, q ∈ R[x] both have only real zeros, that those of p are ξ1 6 · · · 6 ξn, and that those of q

are θ1 6 · · · 6 θm. We say that p interlaces q if deg q = 1+deg p and the zeros of p and q satisfy

θ1 6 ξ1 6 θ2 6 · · · 6 ξn 6 θn+1.

We also say that p alternates left of q if deg p = deg q and the zeros of p and q satisfy

ξ1 6 θ1 6 ξ2 6 · · · 6 ξn 6 θn.
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We use the notation p ≺ q for either “p interlaces q” or “p alternates left of q”. The next theorem

is a version of the classical Hermite-Biehler theorem.

Theorem 5 ([9, Theorem 4.1]). Let F (x) = FE(x2) + xFO(x2) ∈ R[x] be standard. Then F (x)

is stable if and only if both FE(x) and FO(x) are standard, have only nonpositive zeros, and

FO(x) ≺ FE(x).

The Hermite-Biehler theorem has been widely used to study the distribution of zeros. In

this paper, we consider combinatorial aspects of the expression F (x) = FE(x2) + xFO(x2),

which we call the Hermite-Biehler decomposition of F (x). In Section 2, we collect the Hermite-

Biehler decompositions of several enumerative polynomials, including flag descent polynomials

for hyperoctahedral group, flag ascent-plateau polynomials for Stirling permutations, up-down

run polynomials for symmetric group and alternating run polynomials for hyperoctahedral group.

As applications of Theorem 4, we get some new properties of associated polynomials.

2. Eulerian recurrence systems and Hermite-Biehler decompositions

2.1. The flag descent polynomials.

It follows from [1, Theorem 4.3] that the flag descent polynomials Cn(x) satisfy the recurrence

Cn+1(x) = (2nx2 + x+ 1)Cn(x) + x(1− x2)C ′
n(x), (11)

with C0(x) = 1, C1(x) = 1 + x and C2(x) = 1 + 3x+ 3x2 + x3. Set

αn(x) = 2nx2 + x+ 1, βn(x) = x(1− x2).

Note that βe
n(x) = 0. It follows from (10) that

x(2nx2 + x+ 1) = xpn(x
2) + rn(x

2), 2x2(1− x2) = qn(x
2).

Hence pn(x) = 2nx+ 1, qn(x) = 2x(1 − x), rn(x) = x. By Theorem 4, we see that

un(x) = 2nx+ 1 + 1− x = (2n − 1)x+ 2, vn(x) = 2x(1− x), wn(x) = 1.

By Theorem 4 and Theorem 5, we get the second main result of this paper.

Theorem 6. For n ≥ 1, we have
{

CE
n+1(x) = (2nx+ 1)CE

n (x) + 2x(1 − x) d
dxC

E
n (x) + xCO

n (x),

CO
n+1(x) = ((2n − 1)x+ 2)CO

n (x) + 2x(1− x) d
dxC

O
n (x) + CE

n (x),
(12)

with the initial conditions CE
1 (x) = CO

1 (x) = 1. Moreover, both CE
n (x) and CO

n (x) have only

real negative zeros and CO
n (x) ≺ CE

n (x).

Define

CE(x, z) = 1 +
∞∑

n=1

CE
n (x)

zn

n!
, CO(x, z) =

∞∑

n=1

CO
n (x)

zn

n!
.

By rewriting (12) in terms of generating functions, we have
{

(1− 2xz) ∂
∂zC

E(x, z) = CE(x, z) + 2x(1− x) ∂
∂xC

E(x, z) + xCO(x, z),

(1− 2xz) ∂
∂zC

O(x, z) = (2− x)CO(x, z) + 2x(1 − x) ∂
∂xC

O(x, z) + CE(x, z).
(13)
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It is routine to check that

CE(x, z) =
x− e(x−1)z

x− e2(x−1)z
, CO(x, z) =

1− e(x−1)z

e2(x−1)z − x
. (14)

It is well known that the exponential generating functions of An(x) and Bn(x) are given as

follows (see [12, Theorem 3.4]):

A(x, z) :=

∞∑

n=0

An(x)
zn

n!
=

x− 1

x− e(x−1)z
=

(1− x)e(1−x)z

1− xe(1−x)z
,

B(x, z) :=

∞∑

n=0

Bn(x)
zn

n!
=

(1− x)e(1−x)z

1− xe2(1−x)z
.

We can now present the third main result of this paper.

Theorem 7. We have

A(x, 2z)

A(x, z)
= CE(x, z),

B(x, z)

A(x, z)
= 1 + xCO(x, z).

Proof. Note that

A(x, 2z) =
x− 1

x− e2(x−1)z
=

x− e(x−1)z

x− e2(x−1)z

x− 1

x− e(x−1)z
= CE(x, z)A(x, z),

which yields the first formula. Since

1 + xCO(x, z) =
1− xe(1−x)z

1− xe2(1−x)z
,

it follows that

B(x, z) =
(1− x)e(1−x)z

1− xe2(1−x)z
=

1− xe(1−x)z

1− xe2(1−x)z

(1− x)e(1−x)z

1− xe(1−x)z
=

(
1 + xCO(x, z)

)
A(x, z).

This completes the proof. �

An immediate consequence of Theorem 7 is the following corollary.

Corollary 8. For n ≥ 0, we have

2nAn(x) =
n∑

k=0

(
n

k

)
Ak(x)C

E
n−k(x),

Bn(x) = An(x) + x

n−1∑

k=0

(
n

k

)
Ak(x)C

O
n−k(x).

In [4], Bagno and Garber introduced the definition of flag excedance of signed permutations.

Let π ∈ SB
n . The flag excedance number of π is defined by

fexc (π) := 2#{i ∈ [n] : π(i) > i}+#{i ∈ [n] : π(i) < 0}.

Let excA(π) = #{i ∈ [n] : π(i) > i}. Then fexc (π) = 2exc A(π)+neg (π). It is well known that
∑

π∈SB
n

xfdes (π) =
∑

π∈SB
n

xfexc (π), (15)

which has been extended to colored permutations and affine Weyl groups. Ordinary and q-

generalizations of (15) have been pursued by several authors, see [19, 33, 38] for instance. For
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example, Mongelli [33] derived some basic properties of the flag excedance polynomials of classi-

cal and affine Weyl groups. In particular, Mongelli [33, p. 1221-1222] presented a combinatorial

proof of (15). Recall that SD
n is the Coxeter group of type D. According to [33, Corollary 5.1],

∑

π∈SD
n

xfexc (π) =
1

2
((1 + x)nAn(x) + (1− x)nAn(−x)) . (16)

By (15), we see that

Cn(x) =
∑

π∈SD
n

xfexc (π) +
∑

π∈SB
n \SD

n

xfexc (π).

Let C(x, z) :=
∑∞

n=0Cn(x)
zn

n! . It follows from (3) that C(x, z) = A(x, (1 + x)z). By using (16),

we immediately get
∞∑

n=0

∑

π∈SD
n

xfexc (π)
zn

n!
=

1

2
(C(x, z) + C(−x, z)) = CE(x2, z).

Thus
∞∑

n=0

∑

π∈SB
n \SD

n

xfexc (π)
zn

n!
= xCO(x2, z).

So we get the following result, which gives a connection between Coxeter groups SB
n and SD

n .

Proposition 9. Let C+
n = {π ∈ SB

n : π(1) > 0}. Then we have
∑

π∈SD
n

xfexc (π) =
∑

π∈C+
n

x2desA(π).

A combinatorial proof of Proposition 9 would be interesting.

2.2. Flag ascent-plateau polynomials for Stirling permutations.

Stirling permutations were introduced by Gessel and Stanley [21]. A Stirling permutation of

order n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that for each i, 1 ≤ i ≤ n, all

entries between the two occurrences of i are larger than i. The reader is referred to [7, 22, 29, 31]

for the recent study on Stirling permutations.

Denote by Qn the set of Stirling permutations of order n. Let σ = σ1σ2 · · · σ2n ∈ Qn.

The ascent-plateau number, left ascent-plateau number and flag ascent-plateau number of σ are

respectively defined by

ap (π) = #{i ∈ [2, 2n − 1] : π(i− 1) < π(i) = π(i+ 1)},

lap (π) = #{i ∈ [2n − 1] : π(i− 1) < π(i) = π(i+ 1), π(0) = 0},

fap (π) =

{
2ap (σ) + 1, if σ1 = σ2;

2ap (σ), otherwise.

Clearly, fap (σ) = ap (σ) + lap (σ). The flag ascent-plateau polynomials Ln(x) are defined by

Ln(x) =
∑

σ∈Qn

xfap (σ).

The polynomials Ln(x) satisfy the recurrence relation

Ln+1(x) = (x+ 2nx2)Ln(x) + x(1− x2)L′
n(x), (17)
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with L0(x) = 1 (see [31, p. 14]). The first few Ln(x) are

L1(x) = x,

L2(x) = x+ x2 + x3,

L3(x) = x+ 3x2 + 7x3 + 3x4 + x5.

Set Qn = Q+
n ∪ Q−

n , where Q+
n = {σ ∈ Qn : σ1 < σ2} and Q−

n = {σ ∈ Qn : σ1 = σ2}. Then

Ln(x) = LE
n (x

2) + xLO
n (x

2) =
∑

σ∈Q+
n

x2ap (σ) + x
∑

σ∈Q−

n

x2ap (σ). (18)

From (17), we see that αn(x) = x+ 2nx2, βn(x) = x(1− x2) and βe
n(x) = 0. Using (10), we

obtain x(x+ 2nx2) = xpn(x
2) + rn(x

2) and 2x2(1− x2) = qn(x
2). Hence

pn(x) = 2nx, qn(x) = 2x(1 − x), rn(x) = x,

un(x) = 2nx+ 1− x = (2n − 1)x+ 1, vn(x) = 2x(1− x), wn(x) = 1.

Therefore, by Theorem 4, we can now present the fouth main result of this paper.

Theorem 10. For n ≥ 1, we have
{

LE
n+1(x) = 2nxLE

n (x) + 2x(1 − x) d
dxL

E
n (x) + xLO

n (x),

LO
n+1(x) = ((2n − 1)x+ 1)LO

n (x) + 2x(1− x) d
dxL

O
n (x) + LE

n (x),
(19)

with the initial conditions LE
1 (x) = 0 and LO

1 (x) = 1.

The ascent-plateau polynomials and left ascent-plateau polynomials are defined by

Mn(x) =
∑

σ∈Qn

xap (π), Nn(x) =
∑

σ∈Qn

xlap (π).

According to [28, Theorem 2, Theorem 3], we have

M(x, t) =
∑

n≥0

Mn(x)
tn

n!
=

√
x− 1

x− e2t(x−1)
,

N(x, t) =
∑

n≥0

Nn(x)
tn

n!
=

√
1− x

1− xe2t(1−x)
.

Clearly, Mn(x) = xnNn

(
1
x

)
. Moreover, according to [29, Proposition 1], we have

2nxAn(x) =

n∑

i=0

(
n

i

)
Ni(x)Nn−i(x),

Bn(x) =
n∑

i=0

(
n

i

)
Ni(x)Mn−i(x).

It is well known that An(x) and Bn(x) are both unimodal (see [2] for instance). Motivated by

the above convolution formulas, it is natural to explore the unimodality of Mn(x) and Nn(x).

Let f(x) =
∑n

i=0 fix
i. We say that f(x) is unimodal if there exists an index 0 ≤ k ≤ n such

that f0 ≤ f1 ≤ · · · ≤ fk ≥ fk+1 ≥ · · · ≥ fn. Such an index k is called a mode of f(x). In the

past decades, it is a fundamental problem to determine the location of modes of a sequence of
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combinatorial polynomials, see [14, 43] for instance. Following [37, Definition 2.9], we say that

f(x) is alternatingly increasing if

f0 ≤ fn ≤ f1 ≤ fn−1 ≤ · · · f⌊n+1

2
⌋.

Clearly, alternatingly increasing property is a stronger property than unimodality. Very recently,

there has been much work on the alternatingly increasing property of Ehrhart polynomials

(see [6, 10, 40]). In the rest part of this subsection, we shall show that both Mn(x) and Nn(x)

are alternatingly increasing.

If f(x) is symmetric and deg f(x) = n, then it can be expanded as

f(x) =

⌊n/2⌋∑

k=0

γkx
k(1 + x)n−2k,

and it is said to be γ-positive if γk ≥ 0 for 0 ≤ k ≤ ⌊n2 ⌋. If f(x) is γ-positive, then f(x) is

unomidal and symmetric. Following [31, Definition 15], if

f(x) = (1 + x)ν
n∑

k=0

λkx
k(1 + x2)n−k

and λk ≥ 0 for all 0 ≤ k ≤ n, then we say that f(x) is semi-γ-positive, where ν = 0 or ν = 1.

Therefore, if f(x) is semi-γ-positive, then

f(x) = (1 + x)ν




⌊n/2⌋∑

k=0

λ2kx
2k(1 + x2)n−2k +

⌊(n−1)/2⌋∑

k=0

λ2k+1x
2k+1(1 + x2)n−1−2k




= (1 + x)ν(f1(x
2) + xf2(x

2)),

and both f1(x) and f2(x) are γ-positive (see [31, Proposition 16]).

We now recall a very recent result on the flag ascent-plateau polynomials.

Proposition 11 ([31, Theorem 19]). The polynomial Ln(x) is semi-γ-positive. More precisely,

for n ≥ 1, we have

Ln(x) =

n∑

k=1

Ln,kx
k(1 + x2)n−k,

where the numbers Ln,k satisfy the recurrence relation

Ln+1,k = kLn,k + Ln,k−1 + 4(n − k + 2)Ln,k−2, (20)

with the initial conditions L0,0 = 1 and Ln,0 = 0 for n ≥ 1.

It follows from (18) that

Mn(x) = LE
n (x) + LO

n (x), Nn(x) = LE
n (x) + xLO

n (x). (21)

Since degLn(x) = 2n − 1, we have degLE
n (x) = degLO

n (x) = n − 1. Note that LE
n (0) = 0 and

LO
n (0) = 1. By using Proposition 11, we get that both LE

n (x) and LO
n (x) are γ-positive for any

n ≥ 1. More precisely, we have
{

LE
n (x) =

∑
σ∈Q+

n
xap (σ) =

∑⌊n/2⌋
k=1 Ln,2kx

k(1 + x)n−2k, ,

LO
n (x) =

∑
σ∈Q−

n
xap (σ) =

∑⌊(n−1)/2⌋
k=0 Ln,2k+1x

k(1 + x)n−1−2k.
(22)
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In conclusion, we now present the fifth main result of this paper.

Theorem 12. For any n ≥ 1, both Mn(x) and Nn(x) are alternatingly increasing, and so they

are unimodal with modes in the middle.

Proof. It follows from (22) that both LE
n (x) and LO

n (x) are symmetric and unimodal. When

n = 2m+ 1, assume that

LE
2m+1(x) = ℓ1x+ ℓ2x

2 + · · ·+ ℓm−1x
m−1 + ℓmxm + ℓmxm+1 + ℓm−1x

m+2 + · · · ℓ2x
2m−1 + ℓ1x

2m,

LO
2m+1(x) = 1 + ℓ̃1x+ ℓ̃2x

2 + · · ·+ ℓ̃m−1x
m−1 + ℓ̃mxm + ℓ̃m−1x

m+1 + · · ·+ ℓ̃1x
2m−1 + x2m.

Then M2m+1(x) = LE
2m+1(x) + LO

2m+1(x) =
∑2m

i=0M2m+1,ix
i, where

M2m+1,i =





1, if i = 0;

ℓi + ℓ̃i, if 1 ≤ i ≤ m;

ℓ2m−i+1 + ℓ̃2m−i, if m+ 1 ≤ i ≤ 2m− 1;

ℓ1 + 1, if i = 2m.

It is clear that 1 ≤ ℓ1 + 1 ≤ ℓ1 + ℓ̃1 ≤ ℓ2 + ℓ̃1 ≤ · · · ≤ ℓm + ℓ̃m, i.e.,

M2m+1,0 ≤ M2m+1,2m ≤ M2m+1,1 ≤ M2m+1,2m−1 ≤ · · · ≤ M2m+1,m.

Note that N2m+1(x) = LE
2m+1(x) + xLO

2m+1(x) =
∑2m+1

i=0 N2m+1,ix
i, where

N2m+1,i =





0, if i = 0;

ℓ1 + 1, if i = 1;

ℓi + ℓ̃i−1, if 2 ≤ i ≤ m;

ℓ2m−i+1 + ℓ̃2m−i+1, if m+ 1 ≤ i ≤ 2m;

1, if i = 2m+ 1.

It is clear that 0 < 1 ≤ ℓ1 + 1 ≤ ℓ1 + ℓ̃1 ≤ ℓ2 + ℓ̃1 ≤ · · · ≤ ℓm + ℓ̃m, i.e.,

N2m+1,0 ≤ N2m+1,2m+1 ≤ N2m+1,1 ≤ N2m+1,2m ≤ · · · ≤ N2m+1,m+1.

Therefore, both M2m+1(x) and N2m+1(x) are alternatingly increasing, the mode of M2m+1(x)

is m and that of N2m+1(x) is m + 1. In the same way, one can verify that both M2m(x) and

N2m(x) are alternatingly increasing with the mode m. This completes the proof. �

2.3. The up-down run polynomials for symmetric group.

Let π ∈ Sn. The up-down runs of a permutation π ∈ Sn are the alternating runs of π endowed

with a 0 in the front (see [18, 31]). Let udrun (π) denote the number of up-down runs of π. The

interior peak number and left peak number of π are respectively defined by

ipk (π) = #{i ∈ [2, n − 1] : π(i− 1) < π(i) > π(i+ 1)},

lpk (π) = #{i ∈ [n− 1] : π(i− 1) < π(i) > π(i+ 1), π(0) = 0}.

Define

Wn(x) =
∑

π∈Sn

xipk (π), W n(x) =
∑

π∈Sn

xlpk (π).
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The polynomials Wn(x) and Wn(x) satisfy the recurrence rleations

Wn+1(x) = (nx− x+ 2)Wn(x) + 2x(1 − x)W ′
n(x),

Wn+1(x) = (nx+ 1)W n(x) + 2x(1 − x)W
′
n(x),

with W1(x) = W 1(x) = 1 (see [26, 34]). Note that degW n(x) ≥ degWn(x). Then we set

pn(x) = nx+ 1, qn(x) = 2x(1− x), rn(x) = 0.

Note that pn(x) +
1
2xqn(x) = nx− x+ 2. Then by using Theorem 4, we can define

αn(x) = pn(x
2) +

1

x
rn(x

2) = nx2 + 1, βn(x) =
1

2x
qn(x

2) = x(1− x2).

Therefore, we immediately get the following result, which has been proved in [26].

Proposition 13. Let {Rn(x)}n≥1 be a sequence of polynomials defined by

Rn+1(x) = (nx2 + 1)Rn(x) + x(1− x2)R′
n(x), (23)

with R1(x) = 1 + x. Then Rn(x) = Wn(x
2) + xWn(x

2).

The up-down run polynomials Tn(x) are defined by

Tn(x) =
∑

π∈Sn

xudrun (π).

The polynomials Tn(x) satisfy the recurrence relation

Tn+1(x) = x(nx+ 1)Tn(x) + x
(
1− x2

)
T ′
n(x), (24)

with initial conditions T0(x) = 1 and T1(x) = x (see [27, 41]). Comparing (27) with (24), it is

easy to check that

Rn(x) =
1 + x

x
Tn(x).

Set S+
n = {π ∈ Sn : π(n− 1) > π(n)} and S−

n = {π ∈ Sn : π(n− 1) < π(n)}. We define

TE
n (x) =

∑

π∈S+
n

xlpk (π), TO
n (x) =

∑

π∈S−

n

xlpk (π).

By definition, we get the following result.

Proposition 14. For n ≥ 1, we have
{

Tn(x) = TE
n (x2) + xTO

n (x2),

Wn(x) = TE
n (x) + TO

n (x).

From (24), we see that αn(x) = nx2 + x, βn(x) = x(1 − x2) and βe
n(x) = 0. Using (10), we

obtain x(nx2 + x) = xpn(x
2) + rn(x

2) and 2x2(1− x2) = qn(x
2). Hence

pn(x) = nx, qn(x) = 2x(1 − x), rn(x) = x,

un(x) = nx+ 1− x = (n− 1)x+ 1, vn(x) = 2x(1 − x), wn(x) = 1.

By using (24) and [32, Theorem 2], we see that Tn(x) have only real nonpositive zeros.

Combining Theorem 4 and Theorem 5, we obtain the sixth main result of this paper.
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Theorem 15. For n ≥ 1, we have
{

TE
n+1(x) = nxTE

n (x) + 2x(1 − x) d
dxT

E
n (x) + xTO

n (x),

TO
n+1(x) = ((n− 1)x+ 1)TO

n (x) + 2x(1− x) d
dxT

O
n (x) + TE

n (x),
(25)

with the initial conditions TE
1 (x) = 0 and TO

1 (x) = 1. Moreover, both TE
n (x) and TO

n (x) have

only real negative zeros and TO
n (x) ≺ TE

n (x).

2.4. Alternating run polynomials for signed permutations.

Let π ∈ SB
n . The peak number and valley number of π are respectively defined by

pk (π) = #{i ∈ [n− 1] : π(i− 1) < π(i) > π(i+ 1), π(0) = 0},

val (π) = #{i ∈ [n− 1] : π(i− 1) > π(i) < π(i+ 1), π(0) = 0}.

Recall that C+
n = {π ∈ SB

n : π(1) > 0}. We define

Un(x) =
∑

π∈C+
n

xpk (π), Vn(x) =
∑

π∈C+
n

xval (π).
(26)

According to [17, Corollary 7], the polynomials Un(x) and Vn(x) satisfy the following system

of Eulerian recurrences:
{

Un+1(x) = (2nx+ 1)Un(x) + 4x(1 − x)U ′
n(x) + xVn(x),

Vn+1(x) = (2nx− 2x+ 3)Vn(x) + 4x(1− x)V ′
n(x) + Un(x),

with U0(x) = 1 and V0(x) = 0. Note that degUn(x) ≥ degVn(x). Thus (Un(x), Vn(x)) is a

Eulerian pair. Put

pn(x) = 2nx+ 1, qn(x) = 4x(1 − x), rn(x) = x,

un(x) = 2nx− 2x+ 3, vn(x) = 4x(1− x), wn(x) = 1.

Then αn(x) = pn(x
2) + 1

xrn(x
2) = 2nx2 + x + 1 and βn(x) =

1
2xqn(x

2) = 2x(1 − x2). Then by

using Theorem 4, we immediately get the following result.

Proposition 16. Let {Hn(x)}n≥0 be a sequence of polynomials defined by

Hn+1(x) = (2nx2 + x+ 1)Hn(x) + 2x(1− x2)H ′
n(x), (27)

with H0(x) = 1. Then Hn(x) = Un(x
2) + xVn(x

2).

Let altrun (π) = pk (π) + val (π) be the number of alternating runs of π. The alternating run

polynomials for signed permutations are given as follows:

H̃n(x) =
∑

π∈C+
n

xaltrun (π).

Zhao [45] showed that H̃n+1(x) = (2nx2 + 3x − 1)H̃n(x) + 2x
(
1− x2

)
H̃ ′

n(x) for n > 1, with

H̃1(x) = x. It is routine to verify that

Hn(x) =
1 + x

x
H̃n(x)

for n ≥ 1, which has been proved in [17, Theorem 8].
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3. Concluding remark

In this paper, we consider the combinatorial aspects of the Hermite-Biehler decompositions of

several enumerative polynomials. Let {fn(x)}n≥0 be a sequence of polynomials with nonnegative

coefficients. Suppose that

fn+1(x) =
(
a1n+ a2 + (b1n+ b2)x+ (c1n+ c2)x

2
)
fn(x) + dx(1− x2)f ′

n(x). (28)

where a1, a2, b1, b2, c1, c2, d ∈ R. Then

αn(x) = a1n+ a2 + (b1n+ b2)x+ (c1n+ c2)x
2, βn(x) = dx(1− x2).

It follows from (10) that

pn(x) = a1n+ a2 + (c1n+ c2)x, qn(x) = 2dx(1− x), rn(x) = (b1n+ b2)x.

By using Theorem 4, we obtain

un(x) = a1n+ a2 + d+ (c1n+ c2 − d)x, vn(x) = 2dx(1 − x), wn(x) = b1n+ b2,

and then we can derive the recurrence system of the polynomials fE(x) and fO(x).

Besides the polynomials discussed in Section 2, many other enumerative polynomials also

satisfy the recurrence (28), see [5, 46, 47] for instance. We end this paper by giving an example.

Following [3, Definition 1], a tree-like tableau is a Ferrers diagram where each cell contains either

0 or 1 point with some constraints. The symmetric tableaux are tree-like tableaux which are

invariant with respect to reflection through the main diagonal of their diagram. Let b(n, k) be the

number of symmetric tableaux of size 2n+1 with k diagonal cells, and let bn(x) =
∑n+1

k=1 b(n, k)x
k.

It follows from [3, Proposition 18] that

bn+1(x) = (n+ 1)x(1 + x)bn(x) + x(1− x2)b′n(x),

with the initial condition b0(x) = x. By using the recurrence system of the polynomials bEn (x)

and bOn (x), one can easily derive that bEn (1) = bOn (1) = 2n−1n! for n ≥ 1. We leave the details to

the reader. Thus it may be interesting to further explore properties of bEn (x) and bOn (x).
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