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Abstract

In 1967 Harary, Hedetniemi, and Prins showed that every graph G admits a complete t-coloring for

every t with χ(G) ≤ t ≤ ψ(G), where χ(G) denotes the chromatic number of G and ψ(G) denotes the

achromatic number of G which is the maximum number r for which G admits a complete r-coloring.

Recently, Edwards and Rza̧żewski (2020) showed that this result fails for hypergraphs by proving that

for every integer k with k ≥ 9, there exists a k-uniform hypergraph H with a complete χ(H)-coloring

and a complete ψ(H)-coloring, but no complete t-coloring for some t with χ(H) < t < ψ(H). They also

asked whether there would exist such an example for 3-uniform hypergraphs and posed another problem

to strengthen their result. In this paper, we generalize their result to all cases k with k ≥ 3 and settle

their problems by giving several kinds of 3-uniform hypergraphs. In particular, we disprove a recent

conjecture due to Matsumoto and the third author (2020) who suggested a special family of 3-uniform

hypergraph to satisfy the desired interpolation property.
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1 Introduction

In this paper, all hypergraphs are considered simple. Let H be a hypergraph. The vertex set and the

hyperedge set of H are denoted by V (H) and E(H), respectively. A vertex subset of V (H) is said to be

independent, if there is no hyperedge of H including two different vertices of it. The incidence graph of H

refers to a bipartite graph G with V (G) = V (H) ∪ E(H) in which a vertex v ∈ V (H) and a hyperedge

e ∈ E(H) are adjacent in G if and only if v ∈ e. A hypergraph is said to be k-uniform, if the size of all of

hyperedges are the same number k. We say that a vertex set S covers a hyperedge e, if S includes at least

one vertex of e. A face hypergraph refers a hypergraph obtained from a embedded graph G whose vertices are
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the same vertices of G and there is a one-to-one correspondence between the faces of G and hyperedges of H

such that each hyperedge of H consists all vertices of its corresponding face. This concept was introduced

by Kündgen and Ramamurthi [5]. The minimum number of colors needed to color the vertices of H such

that any two vertices lying in the same hyperedge have different colors (proper property) is denoted by

χ(H). A complete t-coloring of a k-uniform hypergraph H is a coloring of whose vertices, using t colors,

such that any two vertices lying in the same hyperedge have different colors, and also every arbitrary set

of k different colors appears in at least one hyperedge. Note that an arbitrary uniform hypergraph may

have not a complete coloring, see [2]. If H has a complete t-coloring, we denote by ψ(H) the maximum

number of such integers t; otherwise, we define ψ(H) = 0. The numbers χ(H) and ψ(H) are called the

chromatic number and the achromatic number of H, respectively. It was proved in [3, 6] that a given uniform

hypergraph H may have not a complete χ(H)-coloring even if it admits a complete coloring. We say that

a hypergraph H satisfies interpolation property, if it admits a complete t-coloring for every integer t with

χ(H) ≤ s < t ≤ ψ(H), provided that H has a complete s-coloring.

In 1967 Harary, Hedetniemi, and Prins studied interpolation property for complete coloring of graphs

and established the following result.

Theorem 1.1.([4]) Every graph G admits a complete t-coloring for every t with χ(G) ≤ t ≤ ψ(G).

Recently, Edwards and Rza̧żewski (2020) showed that Theorem 1.1 cannot be developed to k-uniform

hypergraphs for all integers k with k ≥ 9.

Theorem 1.2.([3]) Let k be a positive integer with k ≥ 9. There exists a k-uniform hypergraph H which

has a complete χ(H)-coloring, and a complete ψ(H)-coloring, but no complete coloring for some t with

χ(H) < t < ψ(H).

In addition, they asked the following two problems for generalizing Theorem 1.2 to 3-uniform hyper-

graphs, and for studying a weaker version of interpolation property of complete coloring of hypergraphs.

Problem A (Edwards and Rza̧żewski (2020) [3]) Does there exist a 3-uniform example of a hypergraph

for which interpolation fails?

Problem B (Edwards and Rza̧żewski (2020) [3]) Does there exist a hypergraph H with a complete χ(H)-

coloring and a complete ψ(H)-coloring, but no complete t-coloring for every t satisfying χ(H) < t < ψ(H)

in which ψ(H) ≥ χ(H) + 2?

In this paper, we generalize Theorem 1.2 to all cases k with k ≥ 3 by modifying some parts of their

proof. In Section 3, we answer Problem B positively by giving several kinds of 3-uniform hypergraphs,

which consequently shows that the answer of Problem A is positive. In particular, we form the following

stronger assertion.
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Theorem 1.3. There exists a 3-uniform hypergraph H with a complete χ(H)-coloring and a complete

ψ(H)-coloring, but no complete t-coloring for every t satisfying χ(H) < t < ψ(H) in which ψ(H) ≥ 2χ(H).

Recently, Matsumoto and the third author (2020) investigated complete coloring for a special family of

face hypergraphs using terms of facial complete coloring of planar triangulations. They put forward the

following conjecture in their paper to suggest a family of hypergraphs satisfying interpolation property. In

the rest of this paper, we disprove this conjecture by a particular hypergraph of order 12 which seems to be

the unique exceptional example for this conjecture. It is known that a planar triangulation is 3-colorable if

and only if whose degrees are even [7].

Conjecture 1.4.(Matsumoto and Ohno (2020) [6]) Let H be a 3-uniform face hypergraph obtained from a

planar triangulation. If H is 3-colorable, then it admits a complete t-coloring for every t with χ(H) ≤ t ≤
ψ(H).

2 The existence of uniform hypergraphs for which interpolation

property fails

The following theorem makes a stronger version for Theorem 1.2.

Theorem 2.1. Let k be a positive integer with k ≥ 3. There exists a k-uniform hypergraph H which

has a complete χ(H)-coloring and a complete ψ(H)-coloring, but no complete t-coloring for some t with

χ(H) < t < ψ(H).

Proof. We may assume that k ≥ 4, as the assertion holds for k = 3 with respect to Theorem 3.1.

Let r be a large enough integer number compared to k. Define H to be the k-uniform hypergraph with

V (H) = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ r} and E(H) = E1 ∪ E2 such that

E1 = {{vi,pi
: 1 ≤ i ≤ k} : (p1, . . . , pk) ∈ A and f(p1, . . . , pk) ≤ 1}, and

E2 = {{vi,pi
: 1 ≤ i ≤ k} : (p1, . . . , pk) ∈ A and p1 < · · · < pk},

where A denotes the set of all sequences (p1, . . . , pk) such that all pi are distinct and 1 ≤ pi ≤ r and

f(p1, . . . , pk) = |{(i, j) : |pi − pj | = 1 and 1 ≤ i < j ≤ k}|. We call the i-th part of H as the set of all

vertices vi,j with 1 ≤ j ≤ r, and call the j-th position of H as the set of all vertices vi,j with 1 ≤ i ≤ k.

According to this construction, one can prove the following three assertions:

(a1) There is no hyperedge including two vertices of the same position.

(a2) There is no hyperedge including two vertices of the same part.

(a3) For any two vertices in different parts and different positions, there is a hyperedge including them.
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We prove only the last assertion as the other ones are obvious. Let vi,j and vi′,j′ be two arbitrary vertices

of H in different parts and different positions so that i 6= i′ and j 6= j′. Since r is large enough, there is

an integer s with 1 ≤ s ≤ r such that {j, j′} ∩ {s, . . . , s + 2k + 2} = ∅. Consider the sequence (p1, . . . , pk)

satisfying pi = j, pi′ = j′, and pt = s+ 2t for every t ∈ {1, . . . , k} \ {i, i′}. Obviously, this sequence is in A
and f(p1, . . . , pk) ≤ 1. Thus the hyperedge corresponding to this sequence must be in E1. Note that this

hyperedge includes both of vi,j and vi′,j′ . Hence the claim holds.

To show that this hypergraph has a complete k-coloring, we take color set {c1, c2, . . . , ck} and for each

1 ≤ i ≤ k, we color all vertices in the i-th part with the color ci. By (a2) this is a proper coloring and

each hyperedge contains all k colors. For complete r-coloring, we take a color set {c1, c2, . . . , cr} and for

each 1 ≤ j ≤ r, we color all vertices in the j-th position with the color cj . According to (a1), it is a proper

coloring. In addition, if {cp1
, cp2

, . . . , cpk
} is a k-subset of {c1, c2, . . . , cr} with p1 < · · · < pk, then the

hyperedge {v1,p1
, v2,p2

, . . . , vk,pk
} of E2 contains this color set. Therefore, χ(H) = k and ψ(H) ≥ r.

Now, we show that H has no complete t-coloring for every integer t with k−2
k−1r+k+ 1 ≤ t < r. Suppose,

to the contrary, that H has a complete t-coloring using colors c1, . . . , ct. Define X to be the set of colors

appearing in at least two parts and define Y to be the set of colors appearing in only one part. We are

going to prove the following two assertions:

(b1) Each color of X appears in only one position and all vertices of this position colored only by this color.

(b2) Each part has only one color from Y so that |Y | = k and |X| = t− k.

Consider a color x ∈ X. If x ∈ X occurred in more than one position, then by the definition of X, there

must be two vertices having the same color x with different parts and different positions. Thus by (a3)

there is a hyperedge including both of them. This shows that the coloring is not proper, a contradiction.

Thus all occurrences of x are in the same position. Now, since |X| < r, there is one position whose colors

are not in X. In other words, there are k vertices with different parts whose colors are in Y . On the other

hand, each part contains at most one color of Y ; otherwise, if two colors of Y are in the same part, then

by (a2) there is no hyperedge including them which is impossible. Therefore, |Y | = k and |X| = t − k.

Consequently, we can define yi to be the unique color in Y appearing in the i-th part, where 1 ≤ i ≤ k.

Assume that the color x ∈ X appears in the j-th position. We are going to show that all vertices of this

position are colored by this color. If we consider a given arbitrary vertex vi,j of this position, then there is

one hyperedge of H containing all colors of the set {y1, . . . , yi−1, x, yi+1, . . . , yk}. Let (p1, . . . , pk) ∈ A be the

sequence corresponding to this hyperedge. Obviously, the color of vt,pt
must be yt for every t ∈ {1, . . . , k}

with t 6= i. Thus the color x must be appeared on the i-th part, and so the vertex vi,j must be colored with

x. Therefore, all of vertices of the j-th position are colored with the color x. Hence the assertions hold.

Obviously, there are r − |X| positions are not colored by colors of X. Since r − |X| ≤ r/(k − 1) − 1,

we can conclude that there are k − 1 consecutive positions {s, s + 1, . . . , s + k − 2} of H colored only

with colors of X. Define Z to be the set of all those k − 1 colors along with the color y2. By the

assumption, there is a hyperedge e ∈ E(H) including all colors of Z. Let (p1, . . . , pk) ∈ A be the sequence
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corresponding to this hyperedge. Obviously, by (b2), the vertex v2,p2
must be colored by y2. We know that

{p1, . . . , pk} \ {p2} = {s, s+ 1, . . . , s+ k − 2}. Since k ≥ 4, there must be three integers a, b, c ∈ {1, . . . , k}
such that {pa, pb, pc} = {s, s+ 1, s+ 2}. Thus f(p1, . . . , pk) ≥ 2 and so e /∈ E1. Moreover, according to the

situation of the position containing the color y2, we have either max{p1, p3} < p2 or p2 < min{p1, p3} and

so e /∈ E2. This is a contradiction. Hence the theorem is proved. �

3 Answering to Problem B by 3-uniform hypergraphs

In this section, we are going to answer to Problem 4 in [3] by giving several kinds of 3-uniform hypergraphs.

3.1 A hypergraph of order 9

A positive answer to Problem B is given in the following theorem.

Theorem 3.1. There exists a 3-uniform hypergraph H of order 9 with a complete χ(H)-coloring and

a complete ψ(H)-coloring, but no complete t-coloring for every t satisfying χ(H) < t < ψ(H) in which

ψ(H) ≥ χ(H) + 2.

Proof. Let H be the 3-uniform hypergraph of order 9 whose incidence graph is shown in Figure 1. If

H has a complete k-coloring for k ≥ 6, then it has at least twenty hyperedges. However, H has exactly

ten hyperedges and hence ψ(H) ≤ 5. In fact, H has a complete 3-coloring and a complete 5-coloring (see

Figures 1 and 2, respectively). Therefore, χ(H) = 3 and ψ(H) = 5.

1

2 3

3 21 1

2 3

Figure 1: A complete 3-coloring of H

1

2 3

4 55 4

3 2

Figure 2: A complete 5-coloring of H

Next, we show that H has no complete 4-coloring. Suppose, to the contrary, that H has a complete

4-coloring using colors c1, . . . , c4. Since H has nine vertices, there exists at least one color appearing on at

least three vertices of H, say color c1. Note that those vertices with the same color form an independent
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set. It is easy to check that there are exactly three independent sets of H with size three (which shown as

vertices numbered by 1, 2 and 3 in Figure 1). Since the vertices of every such vertex set cover all hyperedges

of H, the triad {c2, c3, c4} does not appear on any hyperedge of H. Hence H has no complete 4-coloring

and so it is a desired hypergraph. �

3.2 A 3-regular 3-uniform hypergraph of order 15

Another positive answer to Problem B is given in the next theorem.

Theorem 3.2. There exists a 3-uniform 3-regular hypergraph of order 15 with a complete χ(H)-coloring

and a complete ψ(H)-coloring, but no complete t-coloring for every t satisfying χ(H) < t < ψ(H) in which

ψ(H) ≥ χ(H) + 2.

Proof. Let H be the hypergraph with the vertex set {vi,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 5} consisting of those

hyperedges eij with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 5 in which

eij = {vi,j+1} ∪ {vt,j : 1 ≤ t ≤ 3, t 6= i},

where vi,6 = vi,1. The incidence graph of this hypergraph is shown in Figure 3. Obviously, H is 3-uniform

and 3-regular. If H has a complete k-coloring for k ≥ 6, then H must have at least twenty hyperedges.

However, H has exactly fifteen hyperedges and hence ψ(H) ≤ 5. In fact, H has a complete 3-coloring and

a complete 5-coloring (see Figures 3 and 4, respectively). Therefore, χ(H) = 3 and ψ(H) = 5.

1 1 1 1 1

2 2

3 3 3 3 3

2 2 2

Figure 3: A complete 3-coloring of H

1 1 3 5 5

2 4

3 5 2 2 3

4 1 4

Figure 4: A complete 5-coloring of H

Suppose, to the contrary, that H has a complete 4-coloring using colors c1, . . . , c4. Since |V (H)| = 15,

there exists a color appearing on at least four vertices, say c1. Define Xi = {vi,j : 1 ≤ j ≤ 5} for each i

with 1 ≤ i ≤ 3. According to the construction of H, it is not difficult to check that every independent set of

size four must be a subset of X1, X2, or X3. Hence the color c1 only appears on vertices of a set Xt where

1 ≤ t ≤ 3. If c1 appears on five vertices, then it must appear on all vertices of Xt. In this case, the triad

{c2, c3, c4} does not appear, because all hyperedges of H are covered by the vertices of Xt. Therefore, each

color appears on at most four vertices. Since H has 15 vertices, every color must appear on four vertices,

except one color which appears on three vertices. We may assume that for each i ∈ {1, 2, 3}, the color ci

appears on exactly four vertices of Xi. Then the remaining three vertices are colored by c4 so that each Xi

includes exactly one of them. Let us define Yj = {vi,j : 1 ≤ i ≤ 3} for each j with 1 ≤ j ≤ 5. It is easy
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to check that if a vertex in Xi and a vertex in Xi′ are colored by the same color provided that i 6= i′, both

of them cannot be in the set Yj ∪ Yj+1 for all j ∈ {1, . . . , 5}; where Y6 = Y1. Now, since three vertices are

colored by c4 and each Xi includes exactly one of them, we derive a contradiction. Therefore, H has no

complete 4-coloring and it is a desired hypergraph. �

3.3 Answering to a stronger version of Problem B

Our aim in this subsection is to present a 3-uniform 3-colorable hypergraph having a complete 6-coloring but

no complete t-coloring for each t ∈ {4, 5}. To find such a hypergraph, we first made a complete 3-uniform

hypergraph H of order 6 with size
(
6
3

)
so that for any triad of vertices, there is a hyperedge including

all of them. Next, we tried to generate new hypergraphs by splitting every vertex into two vertices and

examine the other necessary properties using a special computer search. By this way, we succeeded to

prove the following assertion. This method was already used to make the hypergraph stated in the proof of

Theorem 3.1.

Theorem 3.3. There exists a 3-uniform hypergraph H with a complete χ(H)-coloring and a complete

ψ(H)-coloring, but no complete t-coloring for every t satisfying χ(H) < t < ψ(H) in which ψ(H) ≥ 2χ(H).

Proof. Let H be the 3-uniform hypergraph whose incidence graph is shown in Figure 5. If H has a

complete k-coloring for k ≥ 7, then it has at least thirty-five hyperedges. However, H has exactly twenty

hyperedges and hence ψ(H) ≤ 6. In fact, H has a complete 3-coloring and a complete 6-coloring (see

Figures 5 and 6, respectively). Therefore, χ(H) = 3 and ψ(H) = 6.

1

2

3

1

2

3 1

2

3

1

2

3

Figure 5: A complete 3-coloring of H.

1

2

3

4

5

6 2

1

4

3

6

5

Figure 6: A complete 6-coloring of H.

Next, we show that H has neither a complete 4-coloring nor a complete 5-coloring. According to the

construction of H, it is not hard to check that there are exactly three independent sets X1, X2 and X3
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of size four (which shown as vertices numbered by 1, 2 and 3 in Figure 5, respectively). Moreover, every

independent set of size three must be a subset of X1, X2, or X3. Suppose, to the contrary, that H has a

complete 4-coloring using colors c1, . . . , c4. First, we assume that there exists a color appearing on at least

four vertices of H, say color c1. Since H has no independent sets of size five, the color c1 must appear on all

four vertices of a set Xi, where i ∈ {1, 2, 3}. Since these four vertices cover all hyperedges of H, the triad

{c2, c3, c4} does not appear on any hyperedge of H, a contradiction. Now, since H has 12 vertices, we may

assume that every color appears on exactly three vertices of H. On the other hand, H has at most three

disjoint independent sets of size three, a contradiction. Therefore, H has no complete 4-coloring.

Suppose, to the contrary, that H has a complete 5-coloring using colors c1, . . . , c5. As we have observed

above, no color can appear on at least four vertices. Since H has 12 vertices, there must be a color appearing

on exactly three vertices of H, say c1. Call the set of all vertices having the color c1 by S. Since the size of

S is three, it must be a subset of X1, X2, or X3, say X1. We may assume that the unique vertex in X1 \S is

colored by c2. Since X1 covers all hyperedges of H, the triad {c3, c4, c5} does not appear on any hyperedge

of H, a contradiction. Therefore, H has no complete 5-coloring and it is a desired hypergraph. �

4 An exceptional example for Conjecture 1.4

A counterexample of Conjecture 1.4 is given in the following theorem which answers Problem A as well.

This hypergraph was first found by writing a C++ code for checking complete coloring of hypergraphs and

by applying it on the specified outputs of plantri program due to Brinkmann and McKay [1]. Note that this

face hypergraph is unique by searching among all 3-colorable planar triangulations on up to 23 vertices.

Theorem 4.1. There is a 3-uniform 3-colorable face hypergraph of order 12, obtained from a planar trian-

gulation, having a complete 6-coloring but with no complete 5-coloring.

Proof. Let H be the 3-uniform face hypergraph obtained from the planar triangulation shown in Figure 7.

If H has a complete k-coloring for k ≥ 7, then H has at least thirty-five hyperedges. However, H has exactly

twenty hyperedges and hence ψ(H) ≤ 6. In fact, H has a complete 3-coloring and a complete 6-coloring

(see Figures 7 and 8, respectively). Therefore, χ(H) = 3 and ψ(H) = 6.

Suppose, to the contrary, that H has a complete 5-coloring using colors c1, . . . , c5. For every i with

1 ≤ i ≤ 6, we call those two vertices of H specifying by the number i in Figure 8 by vi and wi such that wi

is the inner one. We may assume that w1, w2, and w3 are colored by c1, c2, and c3, respectively. We may

also assume that each of the colors c4 and c5 appears on at least one of w4, w5, and w6; otherwise, it is

enough to change the colors of them to make this property along with maintaining the property of complete

5-coloring. According to the features of the hypergraph H, we can also assume that w4, w5, and w6 are

colored by c4, c5, and c2, respectively. It is not difficult to check that for a given arbitrary proper coloring

of the octahedron, every pair of colors is contained in at most two kinds of triads appeared on faces of the

octahedron. Thus the octahedron v1v2 · · · v6 has at most two kinds of colored faces including both of c3 and
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1

2 3

3

2

1

1

2 3

3 2

1

Figure 7: A complete 3-coloring of H

1

2 3

6

5

4

2

3 1

5 4

6

Figure 8: A complete 6-coloring of H

c4. Since there exist three remaining triads containing c3 and c4, one can conclude that the color c4 must

appear on either v4 or v6. Similarly, with respect to the colors c1 and c5 on this octahedron, one can also

conclude that the color c5 must appear on either v4 or v5. To complete the proof, we shall consider three

cases.

Case A: The vertex v4 is colored by c2.

In this case, the vertices v5 and v6 must be colored by c5 and c4, respectively. Since at least one face is

colored by the triad {c1, c4, c5}, the color c1 must also appear on the vertex v1. Consequently, it is easy to

see that the triad {c3, c4, c5} cannot appear, which is a contradiction.

Case B: The vertex v4 is colored by c4.

In this case, the vertex v5 must be colored by c5 and so the vertex v6 must be colored by c1. Since at least

one face is colored by the triad {c3, c4, c5}, the color c3 must also appear on the vertex v3. Consequently, it

is easy to see that the triad {c1, c3, c5} cannot appear which is again a contradiction.

Case C: The vertex v4 is colored by c5.

The proof of this case is similar to Case B (by exchanging the colors c4 and c5 and using the symmetry of

H).

Hence the proof is completed. �
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