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Abstract

Let R be a finite commutative chain ring, D2n be the dihedral group
of size 2n and R[D2n] be the dihedral group ring. In this paper, we
completely characterize left ideals of R[D2n] (called left D2n-codes) when
gcd(char(R), n) = 1. In this way, we explore the structure of some skew-
cyclic codes of length 2 over R and also over R × S, where S is an iso-
morphic copy of R. As a particular result, we give the structure of cyclic
codes of length 2 over R. In the case where R = Fpm is a Galois field, we
give a classification for left D2N -codes over Fpm , for any positive integer
N . In both cases we determine dual codes and identify self-dual ones.

Keywords: Left dihedral codes; Chain rings; Skew-cyclic codes; Automor-
phism; Dual codes; Self-dual codes.

1 Introduction

All rings in this paper are assumed to be finite commutative with identity except
otherwise stated. For many years, Galois fields was the mostly used alphabet for
classical codes until the authors of [18, 26] have discovered that many seemingly
non-linear binary codes are in fact images of linear (extended cyclic) codes over
the modular ring Z4. After that, many research works have been done on the
structure of different families of codes over rings. From among different rings,
the most attention has been paid to chain rings and from among linear codes,
the most attention has been paid to cyclic, costacyclic and skew-cyclic codes.

Cyclic codes of length n over a ring R are in correspondence with ideals of
the quotient ring Rn := R[x]/〈xn − 1〉. The ring Rn is in fact the group ring
R[G] where G = 〈x〉 is a cyclic group of size n. Cyclic groups are of the most
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simplest form among finite groups. A bit more generalization of cyclic groups
are abelian groups. Abelian groups are direct product of cyclic groups. When
G is an abelian group, the ideals of the group ring R[G] are called abelian codes
over R. Abelian codes over finite fields and finite chain rings have been studied
by many researchers [2, 15, 17, 21, 22, 27].

For the general case when G is an arbitrary finite group, R[G] is non-
commutative when G is non-abelian and the structure of R[G] becomes more
complicated. Moreover, when R[G] is non-commutative we have more objects to
classify, namely left ideals. We say to a left ideal of R[G], a left G-code. Gener-
ally, classification of left G-codes is a difficult task, but there are some research
works dealing with the classification of two-sided G-codes [6, 12, 16]. Also, for
some special cases of finite non-abelian groups, there are research works dealing
with the structure of left G-codes.

Let D2n =
〈
x, y | xn = y2 = 1, yx = x−1y

〉
be the dihedral group of size 2n.

Among the non-abelian groups, dihedral groups seems to be the most similar
groups to cyclic ones. While the existence of a good family of cyclic codes is
still an open problem, in [1], it is shown that for infinitely many block lengths
a random left D2n-code is an asymptotically good rate-half code with a high
probability. Also, in some papers [10, 24, 25], it is shown that some well-
known good linear codes are left D2n-codes. These results make left D2n-codes
interesting. In this field of research, the authors of [7], considered two-sided
ideals of Fq[D2n] when every prime factor of n divides q − 1. The authors of
[8] considered a more general case and classified all left ideals of Fq[D2n] when
gcd(n, q) = 1. This result was generalized to an special kind of chain rings in
[9], where the authors gave a characterization for left D2n-codes over the Galois
ring GR(p2,m), when gcd(p, n) = 1. In [10], the authors gave a classification of
binary left dihedral codes of length 8m and determined self-dual ones.

In the rest of this section, let R be a chain ring of characteristic pk. Let
n be a positive integer such that gcd(p, n) = 1. In this paper, we completely
classify left D2n-codes over R. We then, for any positive integer N , classify all
left D2N -codes over the Galois field Fpm . We also determine dual codes and
classify self-dual ones. These are in fact generalization to the results presented
in [8, 9, 10].

As we will see, to complete our classification we need to characterize some
skew-cyclic codes over R. Let θ be an automorphism of R. A linear code C
of length n over R is said to be skew-cyclic code with respect to θ or briefly
θ-cyclic code if

c = (c0, c1, . . . , cn−1) ∈ C =⇒ (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

The structure of skew-cyclic codes over fields is well-studied [3, 29, 5] but fewer
has been done for that over a chain ring [4, 19]. Let R[x; θ] be the skew poly-
nomial ring over R. In the case that the length n is divisible by the order of θ,
the polynomial xn − 1 became a central element and skew-cyclic codes have an
ideal structure. In fact they become left ideals of the ring R[x; θ]/〈xn − 1〉. In
this paper, when the order of θ divides 2, we characterize all skew-cyclic codes
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of length 2 over R, with respect to θ. When θ is the identity automorphism,
θ-cyclic codes coincides with cyclic codes. The structure of cyclic codes of length
n over R, in the case where gcd(p, n) = 1, is well-studied [13]. The situation
becomes more complicated when gcd(p, n) 6= 1. Many works have been done
in this case ([28, 14, 11, 30, 20, 31]) but the problem is not settled yet. In
particular, when p = 2, the structure of cyclic codes of length 2 over R is open.
Letting θ to be the identity map, we conclude the structure of such cyclic codes.

The structure of the paper is as follows. In the next section we give some
preliminaries about chain rings and codes over chain rings. In Section 3, we
give a general theorem on the structure of left D2n-codes over R for which
gcd(p, n) = 1. We also state our main classification theorem in this section but
the proof of the theorem can be completed using results of Sections 4 and 5.
More precisely, in Section 4 we will explore the structure of some skew-cyclic
codes of length 2 over R and in Section 5, we will explore the structure of some
skew-cyclic codes of length 2 over R×S, where S is isomorphic to R. In Section
6, we determine dual codes and classify self-dual ones. Section 7, deals with the
structure of left D2N -codes and their duals over any Galois field Fpm , where N
is an arbitrary positive integer. The paper is closed with a conclusion section.

2 Preliminaries

In this section we present some necessary preliminaries. Recall that all rings in
this paper are assumed to be finite, commutative and with identity. Let R be
a ring. R is said to be local if it has only one maximal ideal, say M . R is said
to be a chain ring if its ideals form a chain under inclusion. It is well-known
that R is a chain ring if and only if it is a local ring whose maximal ideal M is
principally generated. Let R be a chain ring with M = 〈γ〉. Since elements of
M are nilpotent, so γ is nilpotent. We denote the nilpotency index of γ, by s.
Hence γs = 0 and γi 6= 0 for 0 ≤ i ≤ s− 1.

Since the quotient ring R/M has no nontrivial ideal, it is a field, called the
residue field of R. We denote by K, the residue field of R. We also assume
that |K| = q = pm, where p is a prime and m, a positive integer. The field K

may not be a subfield of R, but there is a well-known coset representatives of
M in R, called the Trichmüller set, and we denote it by τm. More precisely,
R contains a unit element ζ with multiplicative order q − 1 for which τm =
{0, 1, ζ, ζ2, . . . , ζq−2}. We call ζ, the generator of τm. Since the set τm modulo
γ equals K, we do not make distinction between τm and K. Any element r in
R can be uniquely represented as r = r0 + γr1 + · · ·+ γs−1rs−1, where ri ∈ τm.
In this representation r is unit if and only if r0 6= 0. Using this representation,
we define the valuation of r to be the minimum integer 0 ≤ i ≤ s− 1 for which
ri 6= 0.

It is known that the characteristic of R is a power of the prime p, say pk.
In this case, the Galois ring GR(pk,m) is a subring of R. More precisely we
have R = GR(pk,m)[x]/〈xe + pf(x), xs〉, where 1 ≤ e ≤ s is a positive integer
and g(x) := xe + pf(x) is a polynomial called the Eisenstein polynomial. From
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this representation for R, we can conclude that p ∈ 〈γe〉 and p /∈
〈
γe−1

〉
.

Consequently, p = ǫγe for some unit element ǫ in R. Since 0 = pk = ǫkγek we
have γek = 0 and hence ek ≥ s. We write s = e(k − 1) + v where 1 ≤ v ≤ e
is a positive integer. Integers p, k,m, s and v are called basic parameters of R
and we will use these notation frequently in this paper. We also fix and use the
notation e and ǫ for R.

A code of length n over R is a subset of Rn. The code is said to be linear if
it is a submodule of Rn. All codes in this paper are assumed to be linear. Let
µ be the map from R to K which sends r to r modulo γ. The map µ can be
naturally extended to Rn. Let C be a code of length n over R and 0 ≤ i ≤ s−1.
The i-th torsion code of C over K, denoted by Tori(C), is the code

Tori(C) = {µ(c) | γic ∈ C}.

It is known that |C| =
∏s−1

i=0 |Tori(C)|.
Now let R′ be another chain ring which includes R and identities of R and

R′ are the same. In this case, R′ is said to be an extension of R. If the maximal
ideal of R′ is M = 〈γ′〉, then R′ is said to be a separable extension of R if
γ = γ′. Let R′ be a separable extention of R. An automorphism f of R′ such
that f(r) = r for all r ∈ R, is called an R-automorphism of R′. The set of all
R-automorphisms of R′ is called the Galois group of R′ over R and is denoted
by GR(R

′). It is known that GR(R
′) is a cyclic group (see [23, Corollary XV.3])

and we have
GR(R

′) ∼= GR/M (R′/M).

In fact, there exists a primitive element ω of R′ over R such that η(ω) = ωq is
the generator of the cyclic group GR(R

′), where q = |R/M | (see [23, Theorem
VX.10]). Taking the generator of the Trichmüller set of R′ to be ω, we see that
for any r′ = r′0 + γr′1 + · · ·+ γs−1r′s−1 ∈ R′ we have

η(r′) = r′0
q
+ γr′1

q
+ · · ·+ γs−1rs−1

q.

If |R′/M| = q2m
′

then we call the R-automorphism ηm
′

, the Galois automor-
phism of order 2 of R′ over R.

3 Dihedral codes over chain rings

Let G be a finite group of size l and R be a ring. Choose an order g1, g2, . . . , gl
for the elements of G. The group ring R[G] is a ring whose elements are all
formal sums of the form r1g1 + r2g2 + · · · + rlgl, where ri ∈ R, for 1 ≤ i ≤ l.
The addition and multiplication in R[G] is done as

(
l∑

i=1

rigi

)

+

(
l∑

i=1

sigi

)

=

(
l∑

i=1

(ri + si)gi

)

(
l∑

i=1

rigi

)(
l∑

i=1

sigi

)

=

(
l∑

i=1

cigi

)

,
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where
ci =

∑

k,t:gkgt=gi

rkst.

Let R be a ring, R[y] be the ring of polynomials in y with coefficients in
R and θ be an automorphism of R. We denote by R[y; θ], the ring of skew
polynomials over R. Elements of R[y; θ] are precisely those of R[y], addition in
R[y; θ] is done similar to that in R[y] and multiplication in R[y; θ] is done by
the rule ya = θ(a)y, for a ∈ R. Clearly, when θ is non-identity then R[y; θ] is
non-commutative. It can be verified that if the order of θ divides n, then yn− 1
is a central element of R[y; θ], that is commute with all elements of R[y; θ].
Consequently, the ideal generated by yn−1 coincides with left multiples of yn−1
and is a two-sided ideal. Therefore, the quotient ring Rn,θ := R[y; θ]/〈yn − 1〉
is meaningful. Left ideals of Rn,θ are known as skew-cyclic codes with respect
to θ or θ-cyclic codes of length n over R.

The dihedral group of size 2n, denoted by D2n, is the group with the repre-
sentation D2n =

〈
x, y | xn = y2 = 1, yx = x−1y

〉
.

In the rest of this paper, let R be a chain ring of characteristic pk, maximal
ideal M = 〈γ〉 and nilpotency s. We also let n to be a positive integer for which
gcd(p, n) = 1. In this section we present some general facts about the structure
of the group ring R[D2n]. We start with the following lemma. The proof can
be simply derived from ordering D2n as 1, x, ..., xn−1, y, xy, ..., xn−1y and hence
we omit it.

Lemma 1. The ring R[D2n] can be viewed as the ring S[y; θ]/
〈
y2 − 1

〉
, where

S is the ring R[x]/〈xn − 1〉 and θ is the automorphism of S of order 2 which
sends f(x) to f(x−1). �

Recall that for a polynomial a(x) = a0 + a1x + · · · + adx
d in R[x] with

deg(a(x)) = d, we define the reciprocal of a(x), denoted by a∗(x), to be

a∗(x) := xda(1/x).

Now, since gcd(p, n) = 1, the polynomial xn− 1 factors uniquely as the product
of irreducible polynomials over R. Write

xn − 1 = f1(x)f2(x)...fr(x)fr+1(x)...fr+w(x),

where,

• for 1 ≤ i ≤ r, fi(x) is irreducible and f∗
i (x) = fi(x),

• for r + 1 ≤ i ≤ r + w, fi(x) = gi(x)g
∗
i (x) where gi(x) is irreducible with

g∗i (x) 6= gi(x).

Also, we have

S =

r+w⊕

i=1

Ai,
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where Ai :=
〈

f̂i(x)
〉

and f̂i(x) = (xn − 1)/fi(x). Now, for 1 ≤ i ≤ r, the

ideal Ai is a chain ring of size |R|deg(fi(x)) with an idempotent generator Ei(x)
which is its identity. The idempotent Ei(x) can be obtained easily. Since

gcd(fi(x), f̂i(x)) = 1, there are polynomials ai(x), bi(x) such that

ai(x)f̂i(x) + bi(x)fi(x) = 1.

Now it can be seen that Ei(x) = ai(x)f̂i(x). Another fact about Ai is that the
maximal ideal of Ai isMi = 〈γEi(x)〉 and its nilpotency is that for R, namely s.

Furthermore, for r+1 ≤ i ≤ r+w we have Ai = Ai1 ⊕Ai2 where Ai1 =
〈

ĝi(x)
〉

and Ai2 =
〈

ĝ∗i (x)
〉

. Both Ai1 and Ai2 are chain rings of size |R|deg(gi(x)) and

with idempotent generators Ei1(x) and Ei2(x) as their identities, respectively
(these idempotents can be obtained similarly to that obtained for Ai, 1 ≤ i ≤ r).
Note that the identity of Ai is Ei(x) = Ei1 (x) + Ei2(x).

Now, it can be easily seen that the restriction of θ to each component ring
Ai, denoted by θi, is an automorphism of Ai. More precisely, for 1 ≤ i ≤ r, the
ring Ai is a separable extension of R〈Ei(x)〉 and θi is the identity automorphism
of Ai (when deg(fi(x)) = 1) or an automorphism of Ai of order 2 which fixes
R〈Ei(x)〉. Hence θi is identity or the Galois automorphism of order 2 of Ai over
R〈Ei(x)〉. Note that when f∗

i (x) = fi(x) and deg(fi(x)) ≥ 2 then deg(fi(x))
must be an even number. Also, for r + 1 ≤ i ≤ r + w, θi is the automorphism
of Ai = Ai1 ⊕ Ai2 which sends a + b to ϕ−1(b) + ϕ(a), where ϕ : Ai1 −→ Ai2

is a ring isomorphism which sends a(x) to a(x−1). Now we have proven the
following theorem.

Theorem 2. With notation as above, we have

R[D2n] =
S[y; θ]

〈y2 − 1〉

=
(
⊕r+w

i=1 Ai)[y; θ]

〈y2 − 1〉

=

r⊕

i=1

Ai[y; θi]

〈Ei(x)y2 − Ei(x)〉

r+w⊕

i=r+1

Ai[y; θi]

〈Ei(x)y2 − Ei(x)〉
,

where for 1 ≤ i ≤ r, either θi is the identity automorphism of Ai (when
deg(fi(x)) = 1) or the Galois automorphism of order 2 of Ai over R〈Ei(x)〉,
and for r+1 ≤ i ≤ r+w, θi is the automorphism of Ai = Ai1 ⊕Ai2 which sends
a+ b to ϕ−1(b) +ϕ(a) and ϕ : Ai1 −→ Ai2 is the ring isomorphism which sends
a(x) to a(x−1). �

In Section 4, we will completely explore the structure of left ideals of the
rings Ai[y; θi]/

〈
Ei(x)y

2 − Ei(x)
〉
when 1 ≤ i ≤ r and in Section 5 we will do

that for r+1 ≤ i ≤ r+w. In fact, we first give the structure of θi-cyclic codes of
length 2 overAi, 1 ≤ i ≤ r, in Section 4, and then give the structure of θi-cyclic
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codes of length 2 over Ai = Ai1 ⊕ Ai2 , r + 1 ≤ i ≤ r + w, in Section 5. Using
results of these two sections, we can conclude the following theorem which is
the main structural theorem on dihedral codes over chain rings.

Theorem 3. Let C be a left D2n-code over R, that is a left ideal of R[D2n].
Then we have C =

⊕r+w
i=1 Ci, where

A) for 1 ≤ i ≤ r, Ci is of one of the following forms:

A1) Ci =
〈
γbiEi(x)

〉
where 0 ≤ bi ≤ s. Also we have

|Ci| = q2deg(fi(x))(s−bi).

A2) Ci =
〈
γaiEi(x)(y + ri(x)), γ

biEi(x)
〉
, where 0 ≤ ai < bi ≤ s and

ri(x) is a unit in Ai for which ri(x)ri(x
−1) = Ei(x) mod γbi−ai . Also

we have
|Ci| = qdeg(fi(x))(2s−ai−bi),

and the polynomials ri(x) can be obtained using Propositions 5 and
7 in Section 4.

B) for r + 1 ≤ i ≤ r + w, Ci is of one of the following forms:

B1) Ci = 〈γaiEi1(x) + γciEi2 (x)〉, where 0 ≤ ai, ci ≤ s. Also we have

|Ci| = q2deg(gi(x))(2s−ai−ci).

B2) Ci =
〈
(γaiEi1(x) + γciEi2(x)) + (γbiαi(x))y

〉
, where 0 ≤ ai ≤ s− 1,

1 ≤ ci ≤ s, max{0, ai + ci − s} ≤ bi ≤ ci − 1 and αi(x) is a unit in
Ai1 mod γci−bi . Also we have

|Ci| = q2deg(gi(x))(2s−ai−ci).

Proof. The proof follows from Theorems 4, 10 and 11. �

4 θi-cyclic codes of length 2 over Ai for 1 ≤ i ≤ r

As we mentioned, in this section we explore the structure of θi-cyclic codes of
length 2 over the chain rings Ai, 1 ≤ i ≤ r. To this end, for simplicity, we
represent the chain ring Ai with R, the generator of the maximal ideal of Ai,
namely γEi(x), with Γ and the identity of Ai, namely Ei(x), with 1. We also
consider a more general case and instead of θi, we use an arbitrary automorphism
Θ of R for which ord(Θ) ∈ {1, 2}.

We use s for the nilpotency of Γ and d for the degree of fi(x). Note that the
residue field of R is Fqd . For 1 ≤ t ≤ s, let Rt be the chain ring R/〈Γt〉. Even
though, in general, Rt is not a subring of R, we may consider it as a subset of
R. Set

Wt,Θ := {r ∈ Rt | rΘ(r) = 1 mod Γt}.

Let us denote the quotient ring R[y; Θ]/
〈
y2 − 1

〉
by S. In the next theorem we

give a complete classification for left ideals of S which is based on the setsWt,Θ.
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Theorem 4. Any left ideal I of S is of one of the following unique forms:

(1) I =
〈
Γb
〉
for some 0 ≤ b ≤ s.

(2) I =
〈
Γa(y + r),Γb

〉
where 0 ≤ a < b ≤ s and r ∈Wb−a,Θ.

Moreover, in case (1) we have |C| = q2d(s−b) and in case (2) we have

|C| = qd(2s−(a+b)).

Proof. Let I be an ideal of S. Let a be the minimum valuation of leading
coefficients of elements of degree one in I, and b be the minimum valuation
of elements of degree zero (constants) in I. Hence there exist polynomials
f1(y) = Γay + Γcα and g(y) = Γb in I such that α ∈ R is zero or a unit. Since
Θ is an automorphism of R, we have Θ(Γ) = βΓ for some unit β ∈ R. Now
since β−byΓb = Γby ∈ I, we have a ≤ b. First, we show that I = 〈f1(y), g(y)〉.
To see this, assume that h(y) = Γu1α1y+Γu2α2 is an arbitrary element of I. If
α1 = 0 or α2 = 0 then clearly we have h(y) ∈ 〈g(y)〉. Assume that both of α1

and α2 are units. Since u1 ≥ a we have

f2(y) := Γu1−aα1f1(y)− h(y) = Γu2α2 − Γu1−a+cαα1 ∈ I.

Since f2(y) is constant, there exist α3 in R and non-negative integer u3 such
that f2(y) = Γu3α3. Consequently u3 ≥ b and hence f2(y) = Γu3−bα3g(y).
Therefore

h(y) = Γu1−aα1f1(y)− Γu3−bα3g(y) ∈ 〈f1(y), g(y)〉.

Now if a = b then easily we can see that f1(y) ∈
〈
Γb
〉
and hence I =

〈
Γb
〉
.

If a < b then we claim that a must be equal to c. To see this, first note that if
a > c then

Θ(α)−1β−cyf1(y) = Γcy + Γaβa−cΘ(α)−1 ∈ I,

which is a contradiction with the choice of a. Now if a < c then since we have

Γc−af1(y) = Γcy + Γ2c−aα ∈ I,

we conclude that

Θ(α)−1β−cyf1(y)− Γc−af1(y) = Γa(βa−cΘ(α)−1 − Γ2(c−a)α) ∈ I. (4.1)

Since c > a, βa−cΘ(α)−1 − Γ2(c−a)α is a unit and hence we deduce that Γa ∈ I
which is a contradiction with the choice of b and the fact that a < b. Therefore
we must have a = c and f1(y) = Γa(y+α). Now if α = 0 then we conclude that
Γa ∈ I which is a contradiction. Hence α is a unit. Moreover, from Equation
(4.1), we conclude that

Γa(Θ(α)−1 − α) = 0 mod Γb−a,
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or equivalently αΘ(α) = 1 mod Γb−a. Write α = α0+α1Γ+ · · ·+αs−1Γ
s−1. Set

r := α0+α1Γ+ · · ·+αb−a−1Γ
b−a−1 and f(y) := Γa(y+r). Clearly, r ∈ Wb−a,Θ,

f(y) ∈ I and I = 〈f(y), g(y)〉. For uniqueness, note that clearly g(y) is unique.
If F (y) = Γa(y + r′) be an alternative for f(y) then we have

f(y)− F (y) = Γa(r − r′).

Hence Γb−a must divide r − r′ and therefore r = r′.
On the other hand, similar arguments show that if we consider

I =
〈
Γa(y + r),Γb

〉
,

where 0 ≤ a < b ≤ s and r ∈Wb−a,Θ then a is the minimum valuation of leading
coefficients of elements of degree one in I, and b is the minimum valuation of
elements of degree zero (constants) in I. So such an I is in the unique form.
Also ideals of the form I =

〈
Γb
〉
where 0 ≤ b ≤ s are in the unique form.

Consequently all distinct ideals of S are precisely those listed in parts (1) and
(2) of the theorem.

For the cardinality assertion note that |I| =
∏s−1

i=0 |Tori(I)|. Now, in case
(1) we have |Tori(I)| = 1 for 0 ≤ i ≤ b− 1 and |Tori(I)| = q2d for b ≤ i ≤ s− 1.
Also in case (2) we have |Tori(I)| = 1 for 0 ≤ i ≤ a − 1, |Tori(I)| = qd for
a ≤ i ≤ b− 1 and |Tori(I)| = q2d for b ≤ i ≤ s− 1. The proof is now completed.
�

To complete the classification, we need to determine the sets Wt,Θ. In the
next of the section, we completely determine these sets when Θ is the identity
or the unique Galois automorphism of R of order 2. Let m′ = md and τm′ be
the Trichmüller set of R and τ∗m′ denotes the unit elements in τm′ . Since Wt,Θ

is subgroup of R∗ and R∗ ∼= τ∗m′ × (1 + ΓR) we may write Wt,Θ
∼=W

(1)
t,Θ ×W

(2)
t,Θ

where W
(1)
t,Θ is a subgroup of τ∗m′ and W

(2)
t,Θ is a subgroup of 1 + ΓR.

Now, let id denotes the identity automorphism ofR. In the next proposition,
we will obtain Wt,id for 1 ≤ t ≤ s and calculate |Wt,id|. Recall that p = ǫΓe

form some unit ǫ ∈ R and some positive integer e.

Proposition 5. If q is odd then for each 1 ≤ t ≤ s we have W
(1)
t,id = {1,−1}

and W
(2)
t,id = {1}. Hence |Wt,id| = 2. If q is even then we have

(I) If 1 ≤ t ≤ 2e then W
(1)
t,id = {1} and W

(2)
t,id = {1 + Γ⌈t/2⌉r | r ∈ R⌊t/2⌋}.

Hence |Wt,id| = qd⌊t/2⌋.

(II) If 2e + 1 ≤ t ≤ s then W
(1)
t,id = {1} and W

(2)
t,id = {±1 + Γt−er | r ∈ Re}.

Hence |Wt,id| = 2qde.

Proof. Clearly, W
(1)
t,id is {1,−1} when q is odd and {1} when q is even. We

hence focus on W
(2)
t,id. Let r ∈ W

(2)
t,id. Write r = 1 + Γlr0 where r0 is zero or a

unit. We have

1 = r2

= 1 + Γlr0(2 + Γlr0).
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Hence Γlr0(2 +Γlr0) = 0. If q is odd then 2+Γlr0 is a unit and hence we must
have Γlr0 = 0. Therefore, 1 is the only solution for r. Now let q be even. Since
2 = ǫΓe, where ǫ is a unit in R and e is a positive integer, we have

0 = Γlr0(2 + Γlr0)

= r0(ǫΓ
l+e + Γ2lr0).

Hence we have r0 = 0 or, r0 6= 0 and

ǫΓl+e + Γ2lr0 = 0. (4.2)

Now we have four possibilities:

(A) min{l+ e, 2l} ≥ t.

(B) l + e ≥ t and 2l < t.

(C) l + e < t and 2l ≥ t.

(D) max{l+ e, 2l} < t.

Clearly cases (B), (C) lead to contradiction. Also if (A) holds then clearly (4.2)
holds. But (A) implies that l ≥ t − e and also l ≥ t/2. Now if t − e > t/2 or
equivalently e < t/2 then l varies between t− e and t− 1. Also if e ≥ t/2 then
l varies between ⌈t/2⌉ and t− 1. Consequently case (I) and a part of case (II)
are covered. Finally, we discuss on (D). In this case, if l + e 6= 2l then again
we lead to a contradiction from (4.2). Hence l + e = 2l or equivalently l = e.
Therefore Equation (4.2) becomes Γ2e(ǫ + r0) = 0. Hence Γt−2e | (ǫ + r0) and
thus r0 = −ǫ+ r1Γ

t−2e. Consequently r = 1+Γer0 = 1+Γe(−ǫ+Γt−2er1) and
hence r = −1 + Γt−er1. This completes the proof. �

Now we are able to conclude the structure of cyclic codes of length 2 over
chain rings. We show a chain ring with R and use all notation previously fixed
for that.

Corollary 6. Let C be a cyclic code of length 2 over R, that is an ideal of the
ring R[y]/

〈
y2 − 1

〉
. If q is odd then C is of one of the following unique forms:

1) C =
〈
γb
〉
for some 0 ≤ b ≤ s.

2) C =
〈
γa(y ± 1), γb

〉
where 0 ≤ a < b ≤ s.

Also, if q is even then C is of one of the following unique forms:

1) C =
〈
γb
〉
for some 0 ≤ b ≤ s.

2) C =
〈
γa(y + r), γb

〉
where 0 ≤ a < b ≤ s, 1 ≤ b − a ≤ 2e and

r ∈ {1 + γ⌈(b−a)/2⌉r′ | r′ ∈ R⌊(b−a)/2⌋}.

3) C =
〈
γa(y + r), γb

〉
where 0 ≤ a < b ≤ s, b− a > 2e and

r ∈ {±1 + γb−a−er′ | r′ ∈ Re}.
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Now, let m′ = 2l be an even integer and Θ be the order 2 Galois automor-

phism of R. Let τm′ = {0, 1, ζ, ζ2, . . . , ζq
d−2}, where ζ is an element of order

qd − 1 in R. In the next proposition, we will obtain Wt,Θ for all 1 ≤ t ≤ s.

Proposition 7. Let A be the subgroup
〈

ζp
l−1
〉

then for all 1 ≤ t ≤ s we have

W
(1)
t,Θ = A. Also, if t = 1 then W

(2)
t,Θ = {1}. Moreover for 2 ≤ t ≤ s we have

(I) if q is even then for each r ∈W
(2)
t−1,Θ there exist a coset Dr of the additive

subgroup Fpl in Fq for which we have

W
(2)
t,θ = {r + Γt−1δ | r ∈ W

(2)
t−1,Θ, δ ∈ Dr}.

(II) if q is odd then for each r ∈ W
(2)
t−1,Θ there exist a coset Dr of the additive

subgroup {0} ∪ ζ2(p
l−1)F∗

pl in Fq for which we have

W
(2)
t,Θ = {r + Γt−1δ | r ∈ W

(2)
t−1,Θ, δ ∈ Dr}.

Consequently we have |Wt,Θ| = (pl + 1)pl(t−1), for all 1 ≤ t ≤ s.

Proof. Clearly we have W
(1)
t,Θ = A. Let a ∈ W

(2)
t,Θ and write a = r + Γt−1δ

where r ∈ (1+ΓRt−2) and δ ∈ τm. Noting that r = 1+Γr′ for some r′, we have

1 = aΘ(a)

= rΘ(r) + Γt−1(δ +Θ(δ)).

Hence we need to have rΘ(r) = 1 mod Γt−1 and therefore, there exist βr ∈ τm
such that rΘ(r) = 1 + Γt−1βr. Consequently we have

1 = 1 + Γt−1(δ + Θ(δ) + βr).

Thus we need to have δ + Θ(δ) + βr = 0 mod Γ. Let us define f : Fq → Fpl by
f(α) = α+Θ(α). Clearly f is an additive homomorphism between two additive
groups. Now, we need to find all solutions of the equation f(δ) = −βr, for a
given βr. But when q is even, the kernel of f is K = Fpl and thus the solutions
are all δ in the coset Dr of the additive subgroup Fpl of Fq for which f takes
the value −βr on that coset. The solutions can be obtained for the case q is

odd, by noting that the kernel of f is K = {0} ∪ ζ2(p
l−1)F∗

pl . The proof is now
completed. �

Remark 8. As we mentioned, we consider a general automorphism of R which
is of order 2 or the identity map. But in our study we need only two possibilities
for Θ. Since for 1 ≤ i ≤ r, fi(x) is a self-reciprocal polynomial, the degree of
fi(x), d, is equal to one or is an even integer. When d = 1, the automorphism
θi becomes the identity automorphism of Ai and when d 6= 1, it must be an
even integer and Θ becomes the unique Galois automorphism of order 2 of R
over R〈Ei(x)〉. Hence Propositions 5 and 7 suffices for completely determining
θi-cyclic codes of length 2 over Ai, when 1 ≤ i ≤ r.
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Remark 9. As we can see from Propositions 5 and 7, cardinality of Wt,Θ

strongly depends on Θ. Also its of worth mentioning that, there are other kinds
of automorphisms of order 2 for a finite chain ring, rather than the Galois one.
For example, let p be an odd prime, l be a positive integer and R be the chain
ring Fp2l [u]/

〈
u2
〉
. Let Θ be the automorphism of R which sends a+ub to a−ub.

Clearly this automorphism is not the Galois automorphism. Also, easily one can
check that |W1,Θ| = 2. Let a+ bu be in W2,Θ. Hence we must have

1 = (a+ bu)(a− bu)

= a2.

Therefore we conclude that a ∈ {1,−1} and b ∈ Fp2l which proves that |W2,Θ| =
2p2l.

5 θi-cyclic codes of length 2 over Ai for r + 1 ≤

i ≤ r + w

In this section we explore the structure of θi-cyclic codes of length 2 over the
rings Ai, r + 1 ≤ i ≤ r + w. To this end, we consider a bit more general case.
Since for r + 1 ≤ i ≤ r + w, we have Ai = Ai1 ⊕ Ai2 where Ai1 and Ai2 are
two isomorphic chain rings, for simplicity, we represent the chain ring Ai1 with
R and Ai2 with R′, the generator of the maximal ideal of Ai, namely γEi1(x),
with Γ, the size of the residue field of R with qd = pmd, d = deg(gi(x)), and
the nilpotency of Γ by s. We also use the external direct product of R and R′,
denoted by R×R′, instead of the direct sum. Recall that, for r+1 ≤ i ≤ r+w,
θi is the automorphism of Ai = Ai1 ⊕ Ai2 which sends a + b to ϕ−1(b) + ϕ(a),
where ϕ : Ai1 −→ Ai2 is a ring isomorphism which sends a(x) to a(x−1).
Here, we consider a bit more general case and let Θ to be the automorphism
of R×R′ which sends (r, r′) to (ϕ−1(r′), ϕ(r)) where ϕ : R −→ R′ is any ring
isomorphism.

Set T := R × R′. Clearly Θ is an automorphism of T of order 2. Let us
show the identity of T , namely (Ei1(x), Ei2 (x)), by 1. In what follows in this
section, we classify left ideals of the quotient ring T [y; Θ]/

〈
y2 − 1

〉
, that is Θ-

cyclic codes of length 2 over T . First we show in the following theorem that the
ring T [y; Θ]/

〈
y2 − 1

〉
is isomorphic to the ring of 2× 2 matrices over R, namely

M2(R). This is a key result in our classification, since then we characterize
left ideals of the ring M2(R), by using the Morita Equivalence and Theorem 11
which deals with the classification of linear codes of length 2 over a finite chain
ring.

Theorem 10. Two rings T [y; Θ]/
〈
y2 − 1

〉
and M2(R) are isomorphic.

Proof. Define the map ψ : T [y; Θ]/
〈
y2 − 1

〉
−→M2(R) by

ψ ((r1, r
′
1) + (r2, r

′
2)y) =

(
r1 r2

ϕ−1(r′2) ϕ−1(r′1)

)

.
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It can be easily seen that ψ is a ring isomorphism and we are done. �

Two rings A and B are said to be Morita equivalence if there is a one to
one correspondence between the set of A-modules and the set of B-modules. It
is known that, for a chain ring A, A and Mn(A) are Morita equivalence. For
our case, the chain ring R is Morita equivalence with M2(R). More precisely,
left ideals of M2(R) are in correspondence with R-modules of R × R, that is
linear codes of length 2 over R. In fact, the generator matrix of a linear code
of length 2 over R can be considered as the generator of the corresponding left
ideal of M2(R). In order to complete our classification, we need to characterize
all distinct linear codes of length 2 over the chain ring R. We do this in the
following theorem.

Theorem 11. The generator matrix G of any linear code C of length 2 over
the chain ring R is of one of the following forms.

1) Type I:

G =

(
Γa 0
0 Γc

)

,

where 0 ≤ a, c ≤ s.

2) Type II:

G =

(
Γa Γbα
0 Γc

)

,

where 0 ≤ a ≤ s− 1, 1 ≤ c ≤ s, max{0, a+ c− s} ≤ b ≤ c− 1 and α is a
unit in R mod Γc−b.

Moreover, in each case we have |C| = qd(2s−a−c).

Proof. For 1 ≤ i ≤ 2, let πi : C −→ R be the projection map on i-th
component. Let I(1) be π1(C). Since I

(1) is an ideal of R, there exists 0 ≤ a ≤ s
such that I(1) = 〈Γa〉. Also there exists a codeword c(1) = (Γa,Γbα) in C for
which α is zero or a unit. Now let I(2) := {π2(v) | v ∈ C, π1(v) = 0}. Again I(2)

is an ideal of R and hence there exists integer c such thatI(2) = 〈Γc〉. Also there
exists a codeword c(2) = (0,Γc) in C. It is easy to verify that the set {c(1), c(2)}
generates C. If α 6= 0 we also may assume that α is a unit in R mod Γc−b.
Again, easily it can be proved that such a set of generators of C is unique.
Therefore, C has the unique generator matrix of the form

G =

(
Γa Γbα
0 Γc

)

,

where I(1) = 〈Γa〉, I(2) = 〈Γc〉 and α is zero or a unit in R mod Γc−b. Moreover,
since (0,Γs−a+b) lies in C we need to have s − a + b ≥ c. Conversely, one can
see that, for any code C with a generator matrix of the form given above and
satisfying the given conditions on a, b, c, α, we have I(1) = 〈Γa〉, I(2) = 〈Γc〉 and
C is in the unique form. Separating two cases α = 0 and α 6= 0 we get the result.
For the cardinality assertion, note that for 0 ≤ i < c, we have Tori(C) = {0}
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and for c ≤ i ≤ a we have Tori(C) is generated by the single vector (0, 1) and
finally, for a + 1 ≤ i ≤ s we have Tori(C) is a whole two-dimensional space
Fqd × Fqd . Hence we have |C| = qd(a−c)q2d(s−a) = qd(2s−a−c) as desired. The
proof is now completed. �

Remark 12. If C is a linear code of length 2 over R, then its corresponding
ideal I in M2(R) is formed from all matrices whose rows are codewords of C.
Hence we have |ψ−1(I)| = |I| = |C|2.

6 Dual codes

In this section, we first investigate the duals of the codes described in Theorem
4 and then will give a classification for self-dual codes. Let

a = (a1,1, a1,2, . . . , a1,n, a2,1, . . . , a2,n) ,
b = (b1,1, b1,2, . . . , b1,n, b2,1, . . . , b2,n)

be two elements of R2n. For i = 1, 2, we also set ai(x) :=
∑n

j=1 ai,jx
j−1 and

bi(x) :=
∑n

j=1 bi,jx
j−1. The Euclidean inner product of a and b is defined to

be
∑n

j=1

∑2
i=1 ai,jbi,j and is denoted by [a, b]. For a linear code C of length 2n

over R, we define the Euclidean dual of C to be
{
b ∈ R2n | [a, b] = 0, ∀a ∈ C

}

and denote it by C⊥. We say that C is self-dual if C = C⊥.

Lemma 13. With notation as above, if

(a1(x) + a2(x)y)
(
b1
(
x−1

)
+ b2(x)y

)
= 0

in S[x]/〈xn − 1〉, then we have [a, b] = 0. Also, if we set I :=< a1(x)+a2(x)y >
and J :=< b1(x) + b2(x)y >, then we have J ⊆ I⊥.

Proof.

(a1(x) + a2(x)y)
(
b1(x

−1) + b2(x)y
)

= a1(x)b1(x
−1) + a2(x)b2(x

−1) + (a1(x)b2(x) + a2(x)b1(x))y

=





n∑

j=1

2∑

i=1

ai,jbi,j + g1x+ · · ·+ gn−1x
n−1



 + h(x)y mod (xn − 1)

where h(x) ∈ S and for 1 ≤ t ≤ n− 1 we have gt ∈ R. Therefore if

(a1(x) + a2(x)y)
(
b1
(
x−1

)
+ b2(x)y

)
= 0,

then we must have [a, b] = 0. Now, let

a(x) + b(x)y = (a′1(x) + a′2(x)y) (a1(x) + a2(x)y) ∈ I
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and c(x) + d(x)y = (b′1(x) + b′2(x)y) (b1(x) + b2(x)y) ∈ J . We have

(a(x) + b(x)y)
(
c
(
x−1

)
+ d(x)y

)
=

(a′1(x) + a′2(x)y) (a1(x) + a2(x)y)
(
b1
(
x−1

)
b′1
(
x−1

)
+ b2(x)b

′
2

(
x−1

)
+

(
b′1(x)b2(x) + b′2(x)b1

(
x−1

))
y
)
=

(a′1(x) + a′2(x)y) (a1(x) + a2(x)y)
(
b1
(
x−1

)
+ b2(x)y

)

︸ ︷︷ ︸

=0

(
b′1
(
x−1

)
+ b′2(x)y

)
= 0.

This implies that J ⊆ I⊥ and the proof is completed. �

The following corollary follows easily from Lemma 13 and hence we omit the
proof.

Corollary 14. Let I =< a1(x)+a2(x)y, a3(x) > and J =< b1(x)+b2(x)y, b3(x) >.
If all four conditions below hold then we have J ⊆ I⊥.

(1) (a1(x) + a2(x)y)
(
b1
(
x−1

)
+ b2(x)y

)
= 0.

(2) a3(x)
(
b1
(
x−1

)
+ b2(x)y

)
= 0.

(3) (a1(x) + a2(x)y) b3
(
x−1

)
= 0.

(4) a3(x)b3
(
x−1

)
= 0. �

Now we are able to determine duals of the codes described in Theorem 4.
We do this in the following theorem.

Theorem 15. Let C =
⊕r+w

i=1 Ci be a left D2n-code over R. Then we have

C⊥ =
⊕r+w

i=1 Di, where

A) for 1 ≤ i ≤ r, Di is of one of the following forms:

A1) If Ci =
〈
γbiEi(x)

〉
then Di =

〈
γs−biEi(x)

〉
. Also we have

|Di| = q2deg(fi(x))bi .

A2) If Ci =
〈
γaiEi(x)(y + ri(x)), γ

biEi(x)
〉
then

Di =
〈
γs−biEi(x)(y − ri(x)), γ

s−aiEi(x)
〉
.

Also we have |Di| = qdeg(fi(x))(ai+bi).

B) For r + 1 ≤ i ≤ r + w, Di is of one of the following forms:

B1) If Ci = 〈γaiEi1(x) + γciEi2 (x)〉 thenDi = 〈γs−ciEi1(x) + γs−aiEi2(x)〉.
Also we have |Di| = q2deg(gi(x))(ai+ci).

B2) If Ci =
〈
(γaiEi1 (x) + γciEi2(x)) + (γbiαi(x)y

〉
then

Di =
〈
(γs−ciEi1 (x) + γs−aiEi2 (x)) + (γs+bi−ai−ci(−αi(x))y

〉
.

Also we have |Di| = q2deg(gi(x))(ai+ci).
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Proof. First note that any Di is in its unique form described in Theorem 4.
Moreover we have

|C||D| =

r∏

i=1

|Ci||Di|

r+w∏

i=r+1

|Ci||Di| = q2s(
∑r

i=1
deg(fi)(x)+2

∑r
i=1

deg(gi)(x)) = |R|2n

and hence |D| = |C⊥|. Now by Lemma 13 and Corollary 14, one can easily
verify that Di ⊆ C⊥

i for every 1 ≤ i ≤ r + w. Therefore

D =

r+w⊕

i=1

Di ⊆

r+w⊕

i=1

C⊥
i ⊆ C⊥.

Consequently D = C⊥ and the proof is completed. �

We now classify self-dual codes in the following corollary.

Corollary 16. Let C =
⊕r+w

i=1 Ci be a self-dual left D2n-code over R. We have
the following possibilities:

• If char(R) = 2 and s is even, then

A) for 1 ≤ i ≤ r, Ci is of one of the following types:

A1) Type I: Ci =
〈
γs/2Ei(x)

〉
.

A2) Type II: Ci = 〈γaiEi(x)(y + ri(x)), γ
s−aiEi(x)〉, where 0 ≤ ai <

s/2 and ri(x) ∈ Ai is such that

ri(x)ri(x
−1) = Ei(x) mod γs−2ai .

B) for r + 1 ≤ i ≤ r + w, Ci is of one of the following types:

B1) Type III: Ci = 〈γaiEi1(x) + γs−aiEi2(x)〉, where 0 ≤ ai ≤ s.

B2) Type IV: Ci =
〈
(γaiEi1 (x) + γs−aiEi2(x)) + (γbiαi(x))y

〉
, where

0 ≤ ai ≤ s − 1, 0 ≤ bi ≤ s − ai − 1 and αi(x) is a unit in
Ai1 mod γs−ai−bi .

• If char(R) = 2 and s is odd, then for 1 ≤ i ≤ r, Ci is of Type II and for
r + 1 ≤ i ≤ r + w, Ci is of Type III or IV.

• If char(R) 6= 2 and s is even, then for 1 ≤ i ≤ r, Ci is of Type I and for
r + 1 ≤ i ≤ r + w, Ci is of Type III.

• If char(R) 6= 2 and s is odd, then there is no self-dual code in this case.

�
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7 Dihedral codes over finite fields

In this section we will explore the structure of left ideals of FpmD2N , where
N = pln with gcd(n, p) = 1. We also determine dual codes and classify self-dual
ones. Note that we can write

xN − 1 = f1(x)
pl

f2(x)
pl

...fr(x)
pl

fr+1(x)
pl

...fr+w(x)
pl

,

where,

• for 1 ≤ i ≤ r, fi(x) is irreducible and f∗
i (x) = fi(x),

• for r + 1 ≤ i ≤ r + w, fi(x) = gi(x)g
∗
i (x) where gi(x) is irreducible with

g∗i (x) 6= gi(x).

Also we have the following lemma.

Lemma 17. The ring FpmD2N can be viewed as the ring S[y; θ]/
〈
y2 − 1

〉
, where

S is the ring Fpm [x]/
〈
xN − 1

〉
and θ is the automorphism of S of order 2 which

sends f(x) to f(x−1). �

We have S =
⊕r+s

i=1 Ai where Ai :=
〈

(xN − 1)/fi(x)
pl
〉

. Now, for 1 ≤ i ≤ r,

the ideal Ai is a chain ring of size pmpldeg(fi(x)) with an idempotent generator
Ei(x) which is its identity. The maximal ideal of Ai is Mi = 〈Ei(x)fi(x)〉 and
its nilpotency is pl. Moreover, for r + 1 ≤ i ≤ r + w we have Ai = Ai1 ⊕ Ai2

where Ai1 =
〈

(xN − 1)/gi(x)
pl
〉

and Ai2 =
〈

(xN − 1)/g∗i (x)
pl
〉

. Both Ai1

and Ai2 are chain rings of size pmpldeg(gi(x)) and with idempotent generators
Ei1(x) and Ei2(x) as their identities (and hence the identity of Ai is Ei(x) =
Ei1(x)+Ei2 (x)), respectively. Now, it can be easily seen that the restriction of θ
to each component ring Ai, denoted by θi, is an automorphism of Ai. Moreover,
for r + 1 ≤ i ≤ r + w, θi is the automorphism of Ai = Ai1 ⊕ Ai2 which sends
a+ b to ϕ−1(b)+ϕ(a), where ϕ : Ai1 −→ Ai2 is a ring isomorphism which sends
a(x) to a(x−1). Now we have proven the following theorem.

Theorem 18. With notation as above, we have

FpmD2N =
S[y; θ]

〈y2 − 1〉

=
(
⊕r+w

i=1 Ai)[y; θ]

〈y2 − 1〉

=

r⊕

i=1

Ai[y; θi]

〈Ei(x)y2 − Ei(x)〉

r+w⊕

i=r+1

Ai[y; θi]

〈Ei(x)y2 − Ei(x)〉
,

where for 1 ≤ i ≤ r we have θi is the automorphism of Ai which sends a(x)
to a(x−1), and for r + 1 ≤ i ≤ r + w we have θi is the automorphism of
Ai = Ai1 ⊕ Ai2 which sends a + b to ϕ−1(b) + ϕ(a) and ϕ : Ai1 −→ Ai2 is the
ring isomorphism which sends a(x) to a(x−1). �
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Theorem 19. Let C be a dihedral code of length 2N over Fpm , that is a left

ideal of FpmD2N . Then we have C =
⊕r+w

i=1 Ci, where

A) for 1 ≤ i ≤ r, Ci is of one of the following forms:

A1) Ci =
〈
(Ei(x)fi(x))

bi
〉
for some 0 ≤ bi ≤ pl. Also we have

|Ci| = p2mdeg(fi(x))(p
l−bi).

A2) Ci =
〈
(Ei(x)fi(x))

ai (y + ri(x)), (Ei(x)fi(x))
bi
〉
, where

0 ≤ ai < bi ≤ pl

and ri(x) ∈ Ai is such that ri(x)ri(x
−1) = Ei(x) mod (Ei(x)fi(x))

bi−ai .
Also we have

|Ci| = pmdeg(fi(x))(2p
l−(ai+bi)).

B) for r + 1 ≤ i ≤ r + w, Ci is of one of the following forms:

B1) Ci = 〈(Ei1(x)g
∗
i (x))

ai + (Ei2 (x)gi(x))
ci 〉, where 0 ≤ ai, ci ≤ s. Also

we have
|Ci| = p2mdeg(gi(x))(2p

l−ai−ci).

B2) Ci =
〈
((Ei1 (x)g

∗
i (x))

ai + (Ei2(x)gi(x))
ci) + ((Ei1 (x)g

∗
i (x))

biαi(x))y
〉
,

where 0 ≤ ai ≤ s − 1, 1 ≤ ci ≤ s, max{0, ai + ci − s} ≤ bi ≤ ci − 1
and αi(x) is a unit in Ai1 mod (Ei1 (x)gi(x))

ci−bi . Also we have

|Ci| = p2mdeg(gi(x))(2p
l−ai−ci).

Proof. The proof follows from Theorems 4, 10, 11 and 18. �

Remark 20. For 1 ≤ i ≤ r, the authomorphism of Ai is not the Galois auto-
morphism. Also it is not the identity map even if deg(fi(x)) = 1. For example,
Let N = 4, p = 2 and m = 1. In this case we have xN − 1 = x4 + 1 = (x + 1)4

and A1 = 〈1〉 = S = F2[x]/
〈
x4 + 1

〉
. Also θ1 : A1 −→ A1 sends a(x) to a(x−1)

and hence we have θ1(x) = x3. This shows that θ1 is not the identity map.
Moreover, θ1 does not fix the generator of the maximal ideal of A1, namely
x+ 1 since θ1(x+ 1) = x3 + 1. As a consequence, Propositions 5 and 7 can not
be used to determine polynomials ri(x) in sub-case A2 of Theorem 19.

We now determine dual codes in the following theorem.

Theorem 21. Let C =
⊕r+w

i=1 Ci be a left D2N -code over Fpm . Then we have

C⊥ =
⊕r+w

i=1 Di, where

A) for 1 ≤ i ≤ r, Di is of one of the following forms:

A1) If Ci =
〈
(Ei(x)fi(x))

bi
〉
then Di =

〈

(Ei(x)fi(x))
pl−bi

〉

. Also we

have |Di| = p2mdeg(fi(x))bi .
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A2) If Ci =
〈
(Ei(x)fi(x))

ai (y + ri(x)), (Ei(x)fi(x))
bi
〉
then

Di =
〈

(Ei(x)fi(x))
pl−bi(y − ri(x)), (Ei(x)fi(x))

pl−ai

〉

.

Also we have |Di| = pmdeg(fi(x))(ai+bi).

B) For r + 1 ≤ i ≤ r + w, Di is of one of the following forms:

B1) If Ci = 〈(Ei1 (x)g
∗
i (x))

ai + (Ei2(x)gi(x))
ci 〉 then

Di =
〈

(Ei1(x)g
∗
i (x))

pl−ci + (Ei2 (x)gi(x))
pl−ai

〉

.

Also we have |Di| = p2mdeg(gi(x))(ai+ci).

B2) If Ci =
〈
((Ei1 (x)g

∗
i (x))

ai + (Ei2(x)gi(x))
ci ) + ((Ei1(x)g

∗
i (x))

biαi(x))y
〉

then

Di =

〈

((Ei1
(x)g∗

i (x))
pl−ci + (Ei2

(x)gi(x))
pl−ai ) + ((Ei1

(x)g∗

i (x))
pl+bi−ai−ciαi(x))y

〉

.

Also we have |Di| = p2mdeg(gi(x))(ai+ci).

Proof. The proof follows from Theorems 15 and 19. �

The following corollary classifies self-dual codes. For the proof it suffices to note
that s = pl and p is the characteristic of S. In fact s is even if and only if p = 2.

Corollary 22. Let C =
⊕r+w

i=1 Ci be a self-dual left D2N -code over Fpm . We
have the following possibilities:

• If p = 2, then

A) for 1 ≤ i ≤ r, Ci is of one of the following types:

A1) Type I: Ci =
〈

(Ei(x)fi(x))
2l−1

〉

.

A2) Type II: Ci =
〈

(Ei(x)fi(x))
ai(y + ri(x)), (Ei(x)fi(x))

2l−ai

〉

,

where 0 ≤ ai < 2l−1 and ri(x) ∈ Ai is such that

ri(x)ri(x
−1) = Ei(x) mod γ2

l−2ai .

B) for r + 1 ≤ i ≤ r + w, Ci is of one of the following types:

B1) Type III: Ci =
〈

(Ei1(x)g
∗
i (x))

ai + (Ei2 (x)gi(x))
2l−ai

〉

, where

0 ≤ ai ≤ 2l.
B2) Type IV:

Ci =

〈

((Ei1
(x)g∗

i (x))
ai + (Ei2

(x)gi(x))
2l−ai ) + ((Ei1

(x)g∗

i (x))
biαi(x))y

〉

,

where 0 ≤ ai ≤ 2l − 1, 0 ≤ bi ≤ 2l − ai − 1 and αi(x) is a unit

in Ai1 mod (Ei1(x)g
∗
i (x))

2l−ai−bi .
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• If p 6= 2, then there is no self-dual code in this case.

�

Example 23. In this example we restate that the doubly-even self-dual binary
codes with parameters (24, 12, 8) (the Golay code) and (48, 24, 12), are binary
left D2N -codes that are principally generated. Note that these results previously
obtained in [24, 25]. Since x3 + 1 = (x + 1)(x2 + x + 1) and both x + 1 and
x2 + x+1 are self-reciprocal, we are in the case A of Theorem 18 and it suffices
to determine the polynomials r1(x), r2(x) with integers a1, a2, b1, b2. For the
binary Golay code, we set b1 = b2 = 4 (hence the code is principally generated)
and

r1(x) = x10 + x8 + x5 + x4 + x2 + x

and
r2(x) = x11 + x10 + x9 + x7 + x6 + x5 + x3 + x2 + x.

Easily one can see that the generator matrix of the corresponding code (as a
quasi-cyclic code) is [1, r1(x)E1(x) + r2(x)E2(x)], where E1(x) = x8 + x4 and
E2(x) = x8 + x4 + 1. Also, for the binary code with parameters (48, 24, 12), we
set b1 = b2 = 8 (again the code is principally generated) and

r1(x) = x23 + x21 + x17 + x16 + x10 + x9 + x8 + x7 + x5 + x2

and
r2(x) = x22 + x20 + x16 + x14 + x12 + x8 + x6 + x4 + 1.

Again, the generator matrix of this code in its quasi-cyclic form is

[1, r1(x)E1(x) + r2(x)E2(x)],

where E1(x) = x16 + x8 and E2(x) = x16 + x8 + 1.

8 Conclusion and remarks

The complete structure of dihedral codes over finite chain rings with character-
istic coprime with the half of the length, was explored. As a conclusion, the
structure of dihedral codes of arbitrary length over finite fields was given. To
derive a full characterization in this case, one need to compute elements r in
a chain ring R with maximal ideal generated by γ of nilpotency s such that
rθ(r) = 1 mod γt, where θ is an special automorphism of R and 1 ≤ t ≤ s.
This seems to be a challenging open problem in a general form such that θ is an
arbitrary automorphism of R. A variation of this problem has been introduced
in [10, 32].

20



References

[1] L.M.J. Bazzi, S.K. Mitter, Some randomized code constructions from group
actions, IEEE Trans. Inform. Theory, 52 (2006) 3210–3219.

[2] P. Bhattacharya, On a class of abelian codes, Information Sciences 33 (1984)
173–179

[3] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra
Eng., Commun. Comput, 18(4) (2007) 379–389.

[4] D. Boucher, P. Sole and F. Ulmer, Skew constacyclic codes over Galois rings,
Adv. Math. Commun, 2(3) (2008) 273–292.

[5] D. Boucher, F. Ulmer, Codes as modules over skew polynomial rings, Lect.
Notes Comp. Sci, 5921 (2009), 38–55.
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