
DISSECTING THE SQUARE INTO SEVEN OR NINE

CONGRUENT PARTS

GERARDO L. MALDONADO AND EDGARDO ROLDÁN-PENSADO

Abstract. We give a computer-based proof of the following fact: If a square is
divided into seven or nine convex polygons, congruent among themselves, then the
tiles are rectangles. This confirms a new case of a conjecture posed first by Yuan,
Zamfirescu and Zamfirescu and later by Rao, Ren and Wang. Our method allows
us to explore other variants of this question, for example, we also prove that no
rectangle can be tiled by five or seven congruent non-rectangular polygons.

1. Introduction

Let P and T be convex polygons. We say that P can be tiled by n copies of T if
there are convex polygons T1 . . . , Tn, all congruent to T such that P =

⋃
Ti and the

Ti have disjoint interiors.
When can a polygon P be tiled by n copies of T? In this paper we are mainly

interested in the case when P is either a square or a rectangle.
It is easy to see that a square can always be tiled by n congruent rectangles. This

can be done by dividing the square by n−1 vertical lines. When n is not prime, there
are many other ways in which this can be done and tiles need not be constructed
with vertical lines. However, it is not known if there is an odd number n and a
non-rectangular tile T for which a square can be tiled by n copies of T . The standing
conjecture, as stated in [RRW20], is as follows.

Conjecture 1. If n is an odd positive integer, then a square can be tiled by n
congruent copies of a convex polygon T only if T is a rectangle.

This conjecture, for n = 3, was posed as a problem by Rabinowitz in the journal
Crux Mathematicorum and was answered by Maltby [Mal91]. Maltby later generalized
his result by showing that it is impossible to tile a rectangle by 3 copies of T unless
T is also a rectangle [Mal94].

For n = 5, Conjecture 1 was verified by Yuan et al. [YZZ16]. They attribute a
similar problem to Danzer, who conjectured that a square may not be tiled by 5
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congruent polygons (convex or not), except when T is a rectangle. Danzer’s conjecture
remains open. They also posed Conjecture 1 for prime numbers n.

Apart from these two special cases, it is known that if a square can be tiled by
an odd number of copies of T , then T cannot be a triangle. This follows from the
work of Thomas and Monsky [Tho68, Mon70] who, independently, proved that a
square cannot be tiled by an odd number of triangles with the same area. Recently
Rao et al. showed that T may not have more than 6 sides and that T may not be a
right-angle trapezoid [RRW20].

In this paper we give a computer-based proof of the validity of Conjecture 1 for
n = 7 and n = 9.

Theorem 2. Let n = 7 or n = 9, then a square cannot be tiled by n copies of a
convex polygon T unless it is a rectangle.

Using the same techniques, we are able to prove the following result for rectangles.

Theorem 3. Let n = 5 or n = 7, then no rectangle can be tiled by n copies of a
convex polygon T unless it is also a rectangle.

Using slight modifications to our method, we are able to classify all tilings of
the square using non-rectangular equiangular convex polygons. Here, two convex
polygons are equiangular if there is a bijection between their vertices, respecting the
order of the vertices, such that the angles at corresponding vertices be equal.

Theorem 4. There are 31 ways (in the sense described in Section 3) in which a
square can be tiled by 5 non-rectangular equiangular convex polygons.

Having this list, we are able to answer the first three open problems stated at the
end of [YZZ16].

The rest of the paper is devoted to proving these theorems. The main layout is as
follows. We assume that a square or rectangle P can be tiled by n copies of a convex
polygon T which is not a rectangle. In Section 2 we deduce properties that the tiles
should have. In Section 3 we construct a polyhedral graph associated to a tiling of P .
In Section 4 we describe the algorithm we used to see which of these graphs could
be obtained by a tiling of P by congruent tiles. If there are no such graphs then
the tiling does not exist. In Section 5 we mention the modifications needed to prove
Theorem 4 and give several examples of such tilings. We give some final remarks in
Section 6.

The code we used is available at https://github.com/XGEu2X/TilingSquare/.
The Readme.md file in this repository contains a small explanation of how the code
works. It is possible to print out parts of the proof to see the steps taken to reach
our conclusions.

https://github.com/XGEu2X/TilingSquare/
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Figure 1. Three types of impossible tiles corresponding to parts (2)
and (3) of Lemma 5. In the first two pictures, the diameter of any
convex body contained in C is smaller than the diameter of Ti. In the
last picture, the interior angles of Ti are all greater than π/4.

2. Properties of tilings

We start by listing four properties that the tiles should have if they are to
successfully tile a unit square. The first three properties are combinatorial and help
to reduce the number of cases that must be analyzed later. The last property is
geometric and is used later in the algorithm.

Lemma 5. Let n ≥ 3 be an odd integer and let P be a rectangle. Let s0, s1, s2, s3 be
the (closed) sides of P ordered cyclically, where the indices are taken mod 4. If P
can be tiled by n copies T1, . . . , Tn of a convex body T , then the following hold:

(1) T has at least 4 sides.
(2) If a tile Ti intersects two consecutive sides sk and sk+1 of P , then Ti contains

the vertex of P common to sk and sk+1.

Furthermore; if P is a square, T has exactly 4 sides and is not a rectangle then:

(3) A tile Ti cannot have two sides a, b such that a ⊂ sk and b ⊂ sk+2 for some
k.

(4) T does not have two consecutive right angles.

Proof. As mentioned before, if P is a square then (1) follows immediately from the
main results in [Tho68, Mon70]. If P is a rectangle then we can apply a linear
transformation which sends it to a square. Since linear transformations preserve
areas, the same result holds.

Part (4) is Theorem 1.2 in [RRW20].
To prove (2), assume that Ti intersects sides sk and sk+1 but does not intersect

the corner contained in sk ∩ sk+1. There are two cases to consider here. If Ti touches
two opposite corners of P , as in Figure 1 (left), then the diameter of Ti equals the
diameter of P . Consider the connected components of P \ Ti: there are at least two
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of them or Ti would cover half of P . One of these components must be properly
contained in one of the right triangles obtained by splitting P by its diagonal, but
any tile Tj contained in this component must have diameter smaller than P . This
leads to a contradiction. The argument when Ti does not touch two opposite corners
of P , as in Figure 1 (middle), is similar. Let Tj be a tile containing the corner of P
common to sk and sk+1. Then the diameter of Tj must be smaller than the diameter
of Ti, leading to a contradiction.

Finally, assume that (3) does not hold. We consider two cases, the first is when
some corner of P is incident with exactly one tile, then T must have a right angle.
Since Ti has two parallel sides, it has two consecutive right angles which contradicts
(4). The second case is when every corner of P is incident with at least two tiles.
Then T must have an interior angle of at most π/4. But since Ti has two vertices
on sk and its other two vertices on sk+2, all of its interior angles are strictly greater
than π/4 which is a contradiction. This is exemplified in Figure 1 (right). �

3. The graph associated to a tiling

In this section we construct a polyhedral graph that contains the combinatorial
structure of a tiling of the square.

Let T1, . . . , Tn be convex polygons which tile a square or rectangle P with closed
sides S1, S2, S3, S4 in cyclic order.

Construct a graph G = (V,E), where V = {S1, . . . , S4, T1, . . . , Tn}. The edges of
this graph are defined by the following rules:

• {A,B} ∈ E if A,B ∈ V and A ∩B is a segment of positive length.
• {Si, Sj} ∈ E if i− j ≡ 1 (mod 4).

G contains all the combinatorial properties of the tiling.
We can think of G as the dual of a pyramid with a square or rectangular base

in which the base has been tiled in the same way as P . Furthermore, the following
proposition gives us one more useful property.

Proposition 6. The graph G is 3-connected.

Proof. Let v1,v2 ∈ V , each vi is either a tile or a side of P . We must prove that for
every selection of these vertices, G′ = G− v1 − v2 is connected. It is enough to prove
that, for each Ti ∈ V (G′) and each Sj ∈ V (G′), there is a path between Ti and Sj .
In this way, any two vertices of G′ may be connected by a path through some Sj or
some Ti. Let p be a point in the interior of a Ti ∈ V (G′).

If v1 and v2 are both sides of P , then choose a segment l from p to any point
in the relative interior of Sj 6= v1, v2. The segment l is contained in P \ (v1 ∪ v2).
By taking the graph induced by tiles that intersect l (including Sj) we obtain a
connected subgraph of G′ which contains Ti and Sj . Therefore G′ is connected.
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F1

F2

F3

F4

Figure 2. A tiling (black) and its associated graph (red).

Otherwise, consider a line l separating the relative interiors of v1 and v2. Let l′

be the line parallel to l that contains p. Since v1 and v2 are convex, the intersection
between l′ and (v1 ∪ v2) is a segment, a point or the empty set. In any case, there is
a segment contained in l′ connecting p and a side Sj 6= v1, v2 which does not intersect
v1 ∪ v2. As above, this implies that G′ is connected. �

Steinitz’s theorem [Grü07] states that the family of polyhedral graphs (corre-
sponding to convex polytopes) is precisely the family of 3-connected planar graphs.
Therefore, our graph G is a polyhedral graph.

Note that the degree of a tile T in G may not correspond to the number of sides of
T as a polygon. However, the number of sides of T is a lower bound for the degree
of T in G.

In this way we have associated a graph to each convex tiling of the square by tiles
of at least 4 sides. This graph has a distinguished set of vertices S which form a
cycle. Figure 2 shows an example of a tiling with its associated graph G.

In what follows, we study pairs (G,S) where G = (V,E) is a 3-connected planar
graph with n+ 4 vertices, and S ⊂ V induces a 4-cycle in G. Since these graphs come
from tilings of the square, we simply refer to the vertices of G in S as sides and the
vertices in V \ S as tiles. We say that two pairs (G,S) and (G′, S′) are isomorphic if
there is an isomorphism φ between G and G′ such that φ(S) = S′.

To avoid confusion in the future, the union of the sets of vertices of the polygons
Ti are called tiling-vertices. The set of tiling-vertices in the boundary of a tile Ti
are called the tiling-vertices of Ti; the tile Ti has internal angles at each of these,
although some may be equal to π.
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Remark. In practice, we need to generate all such graphs using plantri [BM07]. To
facilitate this, we add an extra vertex S0 to G which is adjacent to the vertices in S.
Since we deal mostly with quadrilateral tiles, we can specify that this new graph has
minimum degree 4. It also simplifies checking isomorphisms, since we only need this
new vertex to be fixed.

4. Exploring the tilings

Let P be either a rectangle with sides of length 1 and r, or the unit square (in
which case we take r = 1 as a constant). Let S be the set of sides of P . Assume that
P can be tiled by copies T1, . . . , Tn of a convex body T which is not a rectangle. By
part (1) of Lemma 5, T has at least 4 sides. Therefore, as described in Section 3,
there is a pair (G,S) associated to this tiling where G is a 3-connected planar graph
on n+ 4 vertices such that its tiles have minimum degree 4.

Using plantri it is possible to generate all graphs G with these properties with
n ≤ 9. Once this is done, we search each graph G to find the possible distinguished
4-cycles. A single graph may have several possible distinguished 4-cycles, so we use
the isomorphism algorithm in NetworkX [HSS08] to avoid including two pairs (G,S)
which are isomorphic.

Now we filter these lists by using part (2) of Lemma 5. Since this is a purely
combinatorial statement, it is easy to check it directly on (G,S).

At this point, the number of sides of T becomes relevant. We split the analysis
into cases. If T is a quadrilateral then we use part (3) of Lemma 5 to filter the list
once more. If not, then the tiles in (G,S) necessarily have degree at least 5, so we
may discard the graphs that do not satisfy this.

In order to filter this list further, we must use geometrical properties of T such as
the values of its angles and side-lengths. Let p1, p2, . . . , pk be the vertices of T , αi

the internal angle of T at pi and ti be the length of the segment pipi+1. The angles
must satisfy the equation α1 + α2 + · · ·+ αk = (k − 2)π.

Recall that if v is a tiling-vertex of a tile Ti, then the internal angle of Ti at v is
either π or one of the αj . For every tiling-vertex v, the sum of the internal angles at
v of the tiles that contain v must be either 2π, π or π/2 depending on whether v is
in the interior, on a side or on a vertex of P . This is shown in Figure 3. Therefore,
the angles α1, α2, . . . , αk must satisfy a system of non-homogeneous linear equations.

Something similar happens for the side-lengths of T . For every side s of P , take
the tiles Ti adjacent to s. The sum of the sides of these tiles contained in s must add
up to the length of s which is either 1 or r. We do not fix the value of r but treat it
as a variable. So this gives us four non-homogeneous linear equations for the ti and,
if applicable, r.
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tl1

tl2

αi1

αi3αi2

tj1

tj2

Figure 3. In this tiling we see that αi1 + αi2 + αi3 = 2π, and
tj1 + tj2 = tl1 + tl2 .

Furthermore, if two tiles Ti and Tj intersect in a segment v1v2 such that v1 and v2
are consecutive corners of both Ti and Tj , then we can deduce an equation of the
form tk = tl. More generally, if there is a line ` which contains a side of the tiles
Ti1 , . . . , Til and Tj1 , . . . , Tjl′ such that the Tim and Tjm′ are on different sides of ` and
the Tim cover the same segment of ` as the Tjm′ , then we may deduce another linear
equation for the ti (see Figure 3).

In the quadrilateral case we may also check non-linear equations which involve
both sides and angles of T . The area of T is r/n, so

t1t2 sin(α2) + t3t4 sin(α4) = t2t3 sin(α3) + t4t1 sin(α1) = 2r/n

and by computing the length of the diagonals of T we obtain

t21 + t22 − 2t1t2 cos(α2) = t23 + t24 − 2t3t4 cos(α4)

t22 + t23 − 2t2t3 cos(α3) = t24 + t21 − 2t4t1 cos(α1).

All of these equations must be satisfied. The problem is that, from the graph G,
we do not know which tiling-vertices of a tile Ti correspond to which vertices of T . If
the degree of Ti in G is larger than 4 then we must also decide which tiling-vertices
of Ti have internal angles equal to π. We could try computing all possibilities but
the number of cases is too large even for a single graph, so instead we do something
slightly more efficient which allows us to discard most of the remaining graphs.

Each angle of T is labeled by a, r or o depending on whether the angle is acute,
right or obtuse. We also label the angles of each tile Ti at each tiling-vertex of Ti with
a, r,o,p depending on whether the angle is acute, right, obtuse or plain (meaning
that the internal angle at this point is π). We call the label of an angle its angle-type.
We use the fact that the angles of each Ti that are not labeled with p must appear
in the same cyclic order as the angles of T .

There are several ways in which the internal angles of T can be labeled. This
depends on whether P is a square or a rectangle, but they are easy to list. For
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Figure 4. This is a representation of a tiling where the angles of T
are labeled as aror. At this point we are only working with the graph
G, so the angles in this representation may not correspond to the
actual angles of the tiles and some angles may even be plain. In this
case there is only one possibility for the angle-types of the angles that
lie in the boundary of P . From there it follows that the red angles
must be labeled with r and the purple angles with o.

example, if T is a quadrilateral, the internal angles of T , ordered cyclically and
without taking orientation into account, can be labeled in exactly 9 different ways:
aaao, aaro, aaoo, arao, aror, aroo, aoao, aoro and aooo. In this case we are
using property (4) of Lemma 5 to discard labels with two consecutive right angles.
Since T is not a rectangle, we do not include rrrr. If T has 5 sides, the number of
ways to label the angles is greater.

There are several conditions which the angle-types of the tiles must satisfy. For
example, assume that vk is a tiling-vertex of Ti. If vk is also a corner of P , then the
angle-type of Ti at vk is either a or r, depending on whether there are other tiles
containing vk or not. To state another example, assume that Ti and Tj are the only
two tiles containing a tiling-vertex vk which lies on a side of P . Then either the
angle-types of Ti and Tj at vk are both r or one is a and the other is o. See Figure 4
for an example of a tiling with some angle-types.

In order to avoid listing these properties individually, we introduce the following
definitions. Let ε > 0 be a small real number. Define minang(Ti, vk) as ε, π/2, π/2+ε
or π depending on whether the angle-type of Ti at vk is a, r, o, or p, respectively.
Likewise, define maxang(Ti, vk) as π/2− ε, π/2, π − ε or π depending on whether
the angle-type of Ti at vk is a, r, o, or p. If ε is small enough, then values of the
angles of Ti at vk are in the interval [minang(Ti, vk),maxang(Ti, vk)]. Thus, for every
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tiling-vertex vk we have that∑
Ti3vk

maxang(Ti, vk) ≥ α(vk),

∑
Ti3vk

minang(Ti, vk) ≤ α(vk),

where α(vk) is π/2, π or 2π if vk is in a corner, side or interior of P , respectively. In
practice, this allows us to decide the angle-types of the tiles fairly quickly, even if we
do not know the values of the angles of T . Another useful observation comes from
noting that each of the previous sums has at most n terms; since we only work with
n ≤ 9, any value of ε smaller than π/18 allows us to discriminate between valid and
invalid assignations of angle-types.

Now we are ready to filter the list of pairs (G,S). For each of these pairs, select
one of the possible angle-type assignations for the internal angles of T . For each tile
Ti, we wish to decide which tiling-vertices of Ti correspond to which vertices of T .
So we assign to (Ti, vk), where vk is a tiling-vertex of Ti, a vertex of T or a mark
indicating that the angle-type of Ti at vk is p. In order to do this, we use a deep
search algorithm to explore the tree of possibilities. The process is divided into three
main steps:

Selection: Select a tile Ti and one of its tiling-vertices vk such that (Ti, vk) is
unassigned.

Assignation: Makes a list of valid assignations for (Ti, vk) taking into account
the conditions that the angle-types must satisfy, described above.

Equation verification: For each assignation, check if a new equation for the
angles or the sides of T is generated. If so, verify that the equations still
have solutions. This is done with Sympy [MSP+17] which works symbolically
instead of numerically, this guarantees that we do not discard equations when
solutions actually do exist. If possible, check that the non-linear equations
are not violated. This final step is done numerically, so a small tolerance is
allowed.

The surviving assignations are added to the stack for further exploration.
The order in which the tiles and tiling-vertices are explored is important. We

always start with the corners of the rectangle and the tiles that contain them. We
continue with tiles adjacent to a side of P and tiling-vertices in this side in a cyclic
order. In many cases, exploring these pairs of tiles and tiling-vertices is enough to
discard (G,S) for a given angle-type labeling of T .

This does not eliminate all possible pairs (G,S), so we also check the additional
geometric conditions. These are described in the following statements.
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π
4

α3

t1

t2

t3

t4

t1

α4

t2

t3

t4

α1

Figure 5. The quadrilaterals in Lemma 7

Lemma 7. Let T be a quadrilateral with area A and let αi and ti be as above. If T
is labeled with angle-types aror and α1 = π/4, as in the left part of Figure 5, then

√
2A < t1, t4 ≤ 2

√
A.

If instead T is labeled with angle-types arro, as in the right part of Figure 5, then

t1 = t3 + t4 cos(α1),

t2 = t4 sin(α1).

Proof. It is easy to see that t4 = (t1 + t2)/
√

2 and t3 = (t1 − t2)/
√

2, therefore

t1t2 +
t21 − t22

2
= 2A.

Thinking of t1 as a function of t2 and taking the derivative with respect to t2 yields

t′1 =
t2 − t1
t2 + t1

.

Since α1 = π/4, we have 0 < t2 < t1, so t′1 is negative and the extremal values for t1
occur when t2 = 0 and t2 = t1 which gives the desired result.

The second part is straightforward. �

Lemma 8. Let T be a quadrilateral which tiles P and has two angles labeled as r.
Assume some tile Ti has a vertex on corner of P with angle-type a, then the acute
angle of T must be π/3 or π/4.

Proof. Let αa and αo be the values of the acute and obtuse angles of T . In the
tiling, the number of obtuse angles must be equal to the number of acute angles.
Note that no obtuse angle coincides with a corner of P and any obtuse angle which
coincides with a side of P shares a vertex with exactly one acute angle of a different
tile. Since there is an acute angle which coincides with a corner, there exists a
tiling-vertex v in the interior of P incident to more obtuse angles than acute angles.
Assume that the number of acute, obtuse and right angles incident to v are Na,
No and Nr, respectively. The sum of angles in each interior tiling-vertex is 2π, so
Noαo + Naαa + Nrπ/2 = (No − Na)αo + Naπ + Nrπ/2 = 2π. Since αo > π/2, we
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have that No −Na ≤ 3, so αo is of the form pπ/(2q) with 1 ≤ p ≤ 4 and 1 ≤ q ≤ 3.
From here we may conclude that the only possible values for αo are 2π/3 and 3π/4
and therefore αa is π/3 or π/4. �

When P is a square and n ≤ 9 is an odd integer or when P is a rectangle and
n ≤ 7 is an odd integer, every pair (G,S) is discarded with this method. This proves
Theorems 2 and 3.

5. Equiangular pieces

Using the same method, we explore another variant of the conjecture. At the end
of [YZZ16] there are four open problems:

(1) Does every dissection of the square into five similar convex tiles use right
isosceles triangles or rectangles as tiles?

(2) Does every dissection of the square into five equiangular convex polygons use
only angles measuring π/4, π/2, 3π/4?

(3) Find all dissections of the square into five equiangular non-rectangular convex
polygons.

(4) Is every dissection of the square into n congruent convex tiles necessarily the
“standard” one (i.e. dividing it by n− 1 vertical or horizontal lines) if n ≥ 3
is a prime number?

Our only contribution to the fourth problem is that of Theorem 2. However, we
are able to solve the other three. The first two questions have a negative answer, this
can be seen immediately after solving the third problem.

By slightly modifying the algorithm described in Section 4, we are able to list
all the possible equiangular tilings (in the sense described in Section 3). These are
shown in Figures 6 and 7.

The equivalence relation we use might not be the one one might expect. For
example, in Figure 7 there are four pairs of tilings enclosed in dashed rectangles. The
two tilings in each rectangle have the same pair (G,S), but one might argue that
they are geometrically distinct.

The 31 ways referred to in Theorem 4 can be separated into two types of tiling;
then ones in which the tiles are triangles and the ones in which they are quadrilaterals.

Figure 6 shows the 12 ways in which a square can be tiled using 5 similar triangles.
The tiles in each case are right triangles, let α be the smallest angle of the triangles
in each case. The top three tilings in Figure 6 (green) have tan(α) = a ≈ 0.56984,
where a is the real root of the polynomial a3 − a2 + 2a− 1. The tilings in the middle
row (red) have tan(α) = 1/2. The bottom tilings (purple) have tan(α) = 1.

The quadrilateral case is shown in Figure 7. Here each pair (G,S) can be realized as
a continuum of tilings as there are always several degrees of freedom. As mentioned



DISSECTING THE SQUARE INTO SEVEN OR NINE CONGRUENT PARTS 12

Figure 6. Equiangular tilings with five triangles.

Figure 7. Equiangular tilings using five quadrilaterals. The angles
of the tiles are of the form α, π/2, π/2, π − α.

before, the tiles which are enclosed in dashed rectangles are equivalent and are
included only to illustrate what the equivalence means. In total, there are 19 families
of tilings of the square into 5 equiangular quadrilaterals such that the elements of each
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class produce the same pair (G,S). The families represented in the first row of Figure
7 (green) have angles π/4, π/2, π/2, 3π/4. The rest have angles α, π/2, π/2, π − α,
where α can be chosen, in all but two tilings, in the interval (0, π/4) and can sometimes
take more values. The first two tilings (blue) are the exception; α can only be taken
in the interval (0, arctan(1/2)).

In order to prove Theorem 4, we slightly modify the algorithm described in Section
4.

The obvious change is to ignore the side-lengths, so the equations only involve
angles. Another helpful change, which greatly improves the running time of our
algorithm, is to use more angle-types when tiling with triangles. In this case, instead
of using a to label an acute angle, we use the labels (sa), (ma) and (la) which
correspond to acute angles smaller than π/4, equal to π/4 and greater than π/4,
respectively. Analogously, we replace o with (so), (mo) and (lo) which correspond to
obtuse angles smaller than 3π/4, equal to 3π/4 and greater than 3π/4, respectively.
Since Lemma 5 does not apply in this case, we use the following observations.

Lemma 9. Let n ≥ 3 be an odd integer and P be a square. Let s1, s2, s3, s4 be the
(closed) sides of P ordered cyclically, where the indices are taken mod 4. If P can
be tiled by convex polygons T1, . . . , Tn which are equiangular and the Ti are triangles,
then the following hold:

(1) If a tile Ti intersects a side sk in a segment of positive length and one of its
vertices v is in sk+2, then the angle α of Ti at v satisfies α < π/2.

(2) If a tile Ti contains a side sk and intersects sk+1 (or sk−1) in a segment of
positive length, then the angle α at the vertex of Ti in sk−1 (or sk+1) of Ti
satisfies α ≤ π/4.

(3) A tile Ti cannot have two sides a, b such that a ⊂ sk and b ⊂ sk+2 for some
k.

If instead the Ti are quadrilaterals, then

(4) A tile intersecting three consecutive sides of P in segments of positive length,
cannot have an angle α ≤ π/4.

Proof. In (1), the two sides adjacent to v have length at least 1, so the side in sk is the
smallest side of Ti. Thus, the smallest angle of Ti is α and therefore α ≤ π/3 < π/2.
Statement (2) is straightforward from the fact that Ti is a right triangle and α is its
smallest angle. Statement (3) follows from the fact that, in a triangle, every side is
adjacent to the other two. Finally, in (4), suppose Ti intersects sk, sk+1 and sk+2.
Since Ti is a quadrilateral, sk+1 must be one of its sides and the vertices of Ti which
are not in sk+1 are in sk and sk+2. Therefore, the two angles incident to sk+1 are
right angles and each of the other two are greater than π/4. �
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After running the modified program, we are left with 15 graphs in the triangular
case and 27 graphs in the quadrilateral case. Of these, 3 graphs for the triangular
case and 8 graphs for the quadrilateral do not produce valid tilings. This can easily
be checked by hand. All these graphs can be seen in our repository, it is also possible
to examine the unrealizable and unfiltered graphs.

6. Final remarks

We decided to use Python in order to make the code more accessible. The execution
time turned out not to be an issue. Since each graph can be explored separately, the
code is easily parallelizable. Proving Theorem 2 for n = 9 takes a couple of days in a
modern home computer, the rest of cases take at most a few of hours.

In Theorems 2 and 3, the number of tiles may not be increased using our method.
The number of graphs to be analyzed is simply too large. As for the equiangular case
with 7 tiles, our algorithm produces around 2000 possible valid graphs, however we
were unable to find a systematic way of deciding whether a graph is valid or not.

Notice that this method can be used to find tilings (using congruent or equiangular
pieces) of other polygons. We may use other observations in the way of Lemma 5
to optimize the process. It might be necessary to consider labellings using different
angle-types. What is important is to check that the underlying graph is 3-connected
or that there is some other condition which allows us to generate the list of possible
graphs.

Returning to the general conjecture, we noticed that when the angles of T are
(cyclically) labeled as aror, we usually had to go deeper in the tree of possibilities
before we could completely discard a given pair (G,S). We tried to rule out this case
in general but failed. It seems that the corresponding tiles have more structure so it
may be possible to discard them by other means.
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