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A path in an edge-colored graph is rainbow if no two edges of it are colored the same, 
and the graph is rainbow-connected if there is a rainbow path between each pair of its 
vertices. The minimum number of colors needed to rainbow-connect a graph G is the 
rainbow connection number of G , denoted by rc(G).
A simple way to rainbow-connect a graph G is to color the edges of a spanning tree
with distinct colors and then re-use any of these colors to color the remaining edges of 
G . This proves that rc(G) ≤ |V (G)| − 1. We ask whether there is a stronger connection 
between tree-like structures and rainbow coloring than that is implied by the above trivial 
argument. For instance, is it possible to find an upper bound of t(G) − 1 for rc(G), where 
t(G) is the number of vertices in the largest induced tree of G? The answer turns out to be 
negative, as there are counter-examples that show that even c · t(G) is not an upper bound 
for rc(G) for any given constant c.
In this work we show that if we consider the forest number f(G), the number of vertices 
in a maximum induced forest of G , instead of t(G), then surprisingly we do get an upper 
bound. More specifically, we prove that rc(G) ≤ f(G) + 2. Our result indicates a stronger 
connection between rainbow connection and tree-like structures than that was suggested 
by the simple spanning tree based upper bound.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected, simple and finite graph. Consider any edge-coloring of G . A path in G is said to be rainbow if no 
two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between each pair of its 
vertices. If there is a rainbow shortest path between every pair of its vertices, we say that G is strongly rainbow-connected. 
The minimum number of colors required to rainbow-connect G is known as the rainbow connection number of G , and 
denoted as rc(G). Similarly, the minimum number of colors needed to strongly rainbow-connect G is the strong rainbow 
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connection number of G , denoted as src(G). These measures of rainbow connectivity were introduced by Chartrand et 
al. [5] in 2008. The concept has gathered significant attention from both combinatorial and algorithmic perspectives. Indeed, 
the work of Chartrand et al. [5] has already amassed more than 400 citations. In addition to being a theoretically interesting 
way of strengthening the usual notion of connectivity, rainbow connectivity has potential applications in networking [3], 
layered encryption [7], and broadcast scheduling [9].

While introducing the parameters, Chartrand et al. [5] established basic bounds along with exact values of the parameters 
for some structured graphs. To repeat their results, recall that the diameter of G , denoted by diam(G), is the length of a 
longest shortest path in G . Now, it is straightforward to verify that diam(G) ≤ rc(G) ≤ src(G) ≤ m, where m is the number 
of edges of G . In other words, both rc(G) and src(G) are always sandwiched between one and m. The extremal cases are 
not difficult to see: rc(G) = src(G) = 1 if and only if G is complete; rc(G) = src(G) = m if and only if G is a tree. The authors 
also determined the exact rainbow connection numbers for cycle graphs, wheel graphs, and complete multipartite graphs.

Much of the research on rainbow connectivity has focused on finding bounds on the parameters, either in terms of the 
number of vertices n or some other well-known parameters. It follows that rc(G) ≤ n − 1 by taking a spanning tree and 
coloring its edges with distinct colors, and repeating an already used color for the other edges. For 2-connected graphs, 
Ekstein et al. [8] showed that rc(G) ≤ �n/2�, and this is tight as witnessed by e.g., odd cycles. Further, it has turned out 
that domination is a useful concept when deriving upper bounds on rc(G) (see e.g., [2,11,4]). Specifically, Krivelevich and 
Yuster [11] showed that rc(G) ≤ 20n

δ
, later improved by Chandran et al. [4] to rc(G) ≤ 3n

δ+1 +3, where δ denotes the minimum 
degree of G . Moreover, the latter authors derived that when δ ≥ 2, then rc(G) ≤ γc(G) + 2, where γc(G) is the connected 
domination number. For some structured graph classes, this leads to upper bounds of the form rc(G) ≤ diam(G) + c, where 
c is a small constant. For instance, it follows that rc(G) ≤ diam(G) + 1 when G is an interval graph and rc(G) ≤ diam(G) + 3, 
when G is an AT-free graph, both bounds holding when δ ≥ 2. Basavaraju et al. [1] show that for every bridgeless graph G
with radius r, rc(G) ≤ r(r + 2), and for a bridgeless graph with radius r and chordality (length of a largest induced cycle) k, 
rc(G) ≤ rk.

In addition to domination, various authors (see e.g., [2]) have noted trees to be useful in bounding rc(G). As mentioned 
earlier, rc(G) ≤ n − 1 follows by coloring the edges of a spanning tree of G with distinct colors. Moreover, Kamčev et al. [10]
proved that rc(G) ≤ diam(G1) + diam(G2) + c, where G1 = (V , E1) and G2 = (V , E2) are connected spanning subgraphs 
of G and c ≤ |E1 ∩ E2|. For a more comprehensive treatment, we refer the curious reader to the books [6,14] and the 
surveys [13,15] on rainbow connectivity.

In light of the above results, it makes sense to search for bounds on rc(G) in terms of other graph parameters, that 
possibly arise from “tree-related” and “dominating” graph structures. Intuitively, a graph structure that has both character-
istics is a maximum induced forest of a graph. Hence, the question arises whether one can bound rc(G) in terms of its
forest number f(G), the number of vertices in the largest induced forest in the graph. We answer this in the affirmative by 
proving the following theorem.

Theorem 1. A connected graph G with forest number f(G) has rc(G) ≤ f(G) + 2.

Observe that the bound is tight up to an additive factor of 3 due to trees that have rc(G) = n − 1 = f(G) − 1. Our 
bound improves the upper bound of n − 1 obtained by coloring the edges of a spanning tree in distinct colors, except when 
f(G) ≥ n − 2. We leave as an open problem the question of whether the stronger upper bound of f(G) − 1 is true.

One might be tempted to conjecture a strengthening of our bound, namely that rc(G) is at most t(G), the number of 
vertices in the largest induced tree in the graph. However, this turns out to be not true. To see this, one can consider a 
graph G obtained by taking a Kk for any k ≥ 3 with a pendant vertex attached to each of its vertices. Then, we have that 
rc(G) = k whereas t(G) = 4.

Finally, we note that the complement of an induced forest is a feedback vertex set. The feedback vertex set number is the 
size of the smallest set of vertices in a graph whose removal leaves an induced forest. Hence, Theorem 1 directly implies 
the following.

Corollary 1. A connected graph G with feedback vertex set number fvs(G) has rc(G) ≤ |V (G)| − fvs(G) + 2.

1.1. Overview of our techniques

Here, we give a summary of the ideas used for proving Theorem 1. We first fix a maximum induced forest F of G and 
define H to be the graph obtained from G by contracting each connected component of F , each of which is a tree, into a 
single vertex. Thus H consists of tree vertices and non-tree vertices. An edge from a non-tree-vertex u to a tree-vertex xT is 
classified as a 2-edge if u has at least two edges to the tree T (the tree that was contracted into the tree-vertex xT ), and 
as a 1-edge otherwise. We fix a carefully chosen spanning tree of H , root it at some (contracted) tree-vertex, and direct all 
the edges towards root. We call this the skeleton B . The inner skeleton B1 is defined to be B minus the leaves of B that are 
non-tree vertices.

We color all the edges of the forest F with distinct colors (call them forest colors), then associate with each tree of 
F , an additional color called its surplus color, and also keep aside two global surplus colors. Note that this makes the total 
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number of colors f(G) + 2 as required. The idea is to color the edges of G that appear in the inner skeleton B1 using the 
surplus colors in such a way that between any pair of vertices in B1 there is a rainbow path using edges of B1 and F . 
However, this turned out to be not always possible; in some cases we had to use some special edges outside B1 that we 
call shortcut edges. After rainbow-connecting vertex-pairs in inner skeleton B1, we connect the vertices outside of the inner 
skeleton to the inner skeleton using the two global surplus colors. The hard part of the proof is in making the coloring of 
B1 work with one surplus color per tree. For this, we do a case analysis to color the edges around a vertex in B1. The cases 
are differentiated mainly on the basis of the number of edges and the number of 2-edges incident on a vertex.

1.2. Preliminaries

For a graph G , a subgraph G1 of G , and any E ′ ⊆ E(G), we use E ′(G1) to denote E ′ ∩ E(G1). For a vertex v of (di)graph 
G , we use degG(v) to denote the degree of v in G . We use distG(u, v) to denote number of vertices in any shortest path 
between u and v in G . For graph G and S ⊆ V (G), we define G \ S := G[V (G) \ S]. We use uv for an edge between u
and v and for a directed edge from u to v , we use −→uv . For the latter, we may omit the arrow, when the direction is not 
relevant. For a directed graph G , we denote by G̃ , the underlying undirected graph of it. Since, for a forest F , each connected 
component is a tree, we will use the phrases “tree of F” and “connected component of F” analogously. An in-arborescence
is a directed graph with a special root vertex such that all vertices have a unique directed path to the root vertex. For a 
tree T and vertices u and v in T , we use Tuv to denote the unique path in T between u and v . The following is a general 
easy-to-see observation about trees that we use in the proof.

Observation 1. Let v1 , v2 , and v3 be three vertices in any tree T , and let e be an edge in T v2 v3 . Then either T v1 v2 or T v1 v3 does not 
contain the edge e.

2. Proof of Theorem 1

Let G = (V , E) be a connected graph. Our goal is to prove that rc(G) ≤ f(G) + 2.
Let F be a maximum induced forest of G that has the smallest number of connected components (trees) out of all the 

maximum induced forests of G . Let F = V (F) be the set of vertices in F . Let T be the set of connected components (trees) 
of F and let t = |T |. Let S := V \ F . Also, let f = |V (F )| = f(G). We call an edge uv of G a tree-edge if both u and v belong 
to the same tree in T ; otherwise, the edge is called a non-tree edge.

Let H be the graph obtained from G by contracting each connected component of F to a single vertex (see Fig. 1). 
Formally, we define H as:

V (H) := VT ∪ S, where

VT := {xT : T ∈ T }and

E(H) := E(G[S]) ∪ {uxT : u ∈ S, T ∈ T , u has at least one edge to V (T ) in G} .

We call the vertices in VT the tree vertices and the vertices in S the non-tree vertices of H . Notice that VT is an 
independent set in H , because there are no edges in G between any two distinct connected components of F . We partition 
the edges of H into the following two sets:

E1 := E(G[S]) ∪ {uxT : u ∈ S, T ∈ T , u has exactly one edge to V (T ) in G}and

E2 := {uxT : u ∈ S, T ∈ T , u has at least two edges to V (T ) in G} .

The edges in E1 are called 1-edges while those in E2 are 2-edges. See Fig. 1 for an illustration of the above definitions. We 
define a function fT : VT → T that maps a tree-vertex to its corresponding tree, i.e., fT (xT ) = T . For each edge in H , we 
define its representatives in G as follows. Consider first a 2-edge e between u ∈ S and xT ∈ VT . By definition of a 2-edge, 
u has at least two edges to V (T ) in G . We arbitrarily choose two of these edges as the representatives in G of the 2-edge 
e and denote them by (e)1 and (e)2. For a 1-edge e between u ∈ S and xT ∈ VT , there is a unique edge between u and 
V (T ) in G , by the definition of a 1-edge. We call this edge the representative of uxT in G , and denote it (e)1. For a 1-edge 
e between u ∈ S and v ∈ S , we call uv its own representative in G . For simplicity, we might simply say representatives
instead of representatives in G . Whenever we say a representative, it is implicitly assumed that we are talking about an edge 
in G . For a 2-edge uxT with representatives uv1 and uv2, we call the vertices v1 and v2, the foots of uxT . The unique 
path between v1 and v2 in T is called the foot-path of uxT . For a 1-edge uxT (whose one endpoint is a tree-vertex) with 
representative uv , we call the vertex v , the foot of uxT .

A skeleton is an in-arborescence obtained by taking a spanning tree of H with an arbitrary node of VT fixed as its root 
with all edges directed towards the root. Given a skeleton B with root r, we define the level of each node v , denoted by 
�B(v), as its distance (in terms of number of vertices) to r in B . Note that �B(r) = 1 per this definition. For a skeleton B , we 
define its configuration vector as the following vector:
3



L. Sunil Chandran, D. Issac, J. Lauri et al. Discrete Mathematics 345 (2022) 112829
Fig. 1. (a) A graph G is partitioned into a maximum induced forest F and S = V (G) \ V (F). The connected components (trees) of F are T1, T2, T3 and 
T4. The edges between two black vertices, corresponding to vertices in V (F), are tree-edges. (b) The graph H obtained after contracting the connected 
components of F . We draw a 2-edge with 2 lines and a 1-edge with a single line.

Fig. 2. (a) A skeleton B , where xT3 is the root. For vertex v , xT2 and xT4 are the children. (b) The inner skeleton B1 := B[V (B) \ LS ].

〈 |E2(B)|,n2,n3, . . . ,n|V | 〉,
where ni denotes the number of vertices in level i in B .

We now fix a skeleton B such that it has the lexicographically highest configuration vector out of all possible skeletons. 
The parent of a non-root vertex v in B , denoted by par(v), is the unique out-neighbor of v in B . The children of v are 
the in-neighbors of v in B . Whenever we say the parent (or child), we mean the parent (or child) in B , even if B is not 
mentioned explicitly. We call a directed edge −→uv in B , a 1-edge (or 2-edge respectively), if uv is a 1-edge (or 2-edge 
respectively) in H . Let L S be the set of vertices of S that are leaves of B and let B1 be the sub-arborescence of B defined 
as B1 := B[V (B) \ L S ]. We call B1 the inner skeleton. Let B̃1 be the underlying undirected tree of B1. These concepts are 
illustrated in Fig. 2.

We now prove a lemma and three corollaries that are useful for our coloring procedure.

Lemma 1. Every vertex in S has at least one 2-edge incident on it in B.

Proof. Suppose for the sake of contradiction that v is a vertex in S that has only 1-edges incident on it in B . There exists a 
T ∈ T such that v has at least two edges to T in G , because otherwise, G[F ∪ {v}] is a forest, contradicting the maximality 
of F . Therefore, vxT is a 2-edge in H . Let C be the connected component of B \ v that contains the vertex xT . Let e be 
the unique edge in B between v and C . Note that e is a 1-edge by assumption. Removing e from B and adding 2-edge vxT

gives a skeleton with higher number of 2-edges than B . This is a contradiction to the choice of B . �
The above lemma has the following corollaries.

Corollary 2. For every vertex in L S , the unique edge incident on it in B is a 2-edge.

Corollary 3. Every leaf of B1 is a tree-vertex.

Proof. Suppose for the sake of contradiction that there is a leaf v of B1 that is a non-tree-vertex. Clearly, v /∈ L S by the 
definition of B1. Hence, v is not a leaf of B . Then, there must be a vertex u in L S that has an edge to v in B . Since both u
and v are in S , the edge uv is a 1-edge. This is a contradiction to Corollary 2. �
Corollary 4. For each 1-edge −→uv in B1 , either u is a tree-vertex, or a child u′ of u in B1 is a tree-vertex with u′u being a 2-edge.

Proof. Suppose that u is not a tree-vertex. Then there is an incoming 2-edge on u in B , because its outgoing edge is a 
1-edge and there has to be at least one 2-edge incident on it due to Lemma 1. Let the other endpoint of this edge be u′ . 
Since at least one of the endpoints of a 2-edge has to be a tree-vertex, u′ is a tree-vertex. Since u′ is a tree-vertex, it has to 
be in B1. �
4
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We define a mapping h from G to H as follows. For a vertex v in V (G), if v ∈ S then define h(v) := v , otherwise (i.e., 
if v ∈ F ) define h(v) := xT , where T ∈ T is the tree containing v . For a non-tree edge e = uv in G , we define h(e) to be 
the edge h(u)h(v). For a vertex subset U of V (G), we define h(U ) to be 

⋃
a∈U h(a). For an edge subset E ′ of E(G), we 

define h(E ′) to be 
{

h(e) : e ∈ E ′ and e is a non-tree edge
}

. For a subgraph G ′ of G , we define h(G ′) as the subgraph of H
with vertex set h(V (G ′)) and edge set h(E(G ′)).

Let the palette of colors be {1,2, . . . , f + 2}. We call colors f + 1 and f + 2 the global surplus colors, and denote them 
by g1 and g2 respectively. We reserve g1 and g2 to color the edges incident on L S . We will first give a coloring of some 
edges of G using colors {1,2, . . . , f } such that there is a rainbow path between every pair of vertices in V (G) \ L S . Then we 
will extend the coloring to L S using the global surplus colors. We give our coloring procedure as a list of coloring rules.

For a, b ∈ V (G) \ L S , let Q ab denote the unique path in the inner skeleton B1 between h(a) and h(b). For each such pair 
of vertices (a, b), we will maintain a subgraph Pab of G . Each Pab is initialized to ∅. After the application of each coloring 
rule, we will apply a path rule for each pair (a, b), which (possibly) adds some newly colored edges to Pab . We say that an 
edge in B1 is colored if its representatives in G are colored (we will make sure that for a 2-edge, either both representatives 
are colored or both are uncolored at any point of time). Whenever an edge in B1 gets colored by a coloring rule and if it 
is in Q ab , we make sure that we add exactly one of its representatives to Pab in the subsequent path rule. Whenever it 
happens during a path rule that two edges u1 v1 and u2 v2 are in Pab such that both v1 and u2 are in some T ∈ T , but u1
and v2 are not in T , then we add the path T v2u1 to Pab (if it is not already included). Similarly, if it happens that there is an 
edge uv in Pab such that v, a ∈ V (T ) (v, b ∈ V (T ) resp.) but u /∈ V (T ), we add the path T va (T vb resp.) to Pab . Also, if both 
a and b are in the same tree T , then we add the path Tab to Pab (during Path Rule 1 below). Thus, when all the coloring 
rules and path rules have been applied, we will have that for all a, b ∈ V (G) \ L S , it holds that Pab is a path between a and 
b. We will prove that Pab is also a rainbow path. For this, we will maintain the following invariant.

Invariant 1. For each pair a, b ∈ V (G) \ L S , no two edges in Pab have the same color.

We will prove that the invariant still holds after each path rule. Since new edges are added to Pab only during path 
rules, this means that the invariant always holds. We also maintain the following three auxiliary invariants. But they are 
rather straightforward to check from the coloring and path rules and hence we will not explicitly prove them.

Invariant 2. For any 2-edge in B, either both representatives of it are colored or both are uncolored.

A vertex in B1 is said to be completed if all the incident edges on it in B1 are colored and is said to be incomplete
otherwise.

Invariant 3. For an incomplete tree-vertex xT , the colors of E(T ) are disjoint from the colors of the rest of the graph G.

Invariant 4. A nonempty subset of internal edges of a tree T is contained in Pab only if a representative of each edge in Q ab that is 
incident on xT (there can be at most two of such edges as Q ab is a path) is in Pab.

Now, we start with the coloring and path rules.

Coloring Rule 1. Color all the edges in F with distinct colors 1, 2, . . . , f − t.

Path Rule 1. For each a, b ∈ V (G) \ L S , if a and b are in the same tree T for some T ∈ T , then add the path Tab to Pab.

It is easy to see that Invariant 1 is satisfied after the above Path rule as the color of each edge is distinct so far.
For each tree T ∈ T , we designate a color in [ f − t + 1, f ] as its surplus color, denoted by s(T ). More specifically, the 

surplus color of ith tree in T is defined as the color f − t + i. Also, the colors of the edges of T (colored by Coloring Rule 1) 
are called the internal colors of T .

Coloring Rule 2. For each 1-edge −→uv in B: if u is a tree-vertex, then color (uv)1 with s( fT (u)); otherwise, i.e., if u is not a tree-vertex, 
by Corollary 4, there is at least one child of u in B1 that is a tree-vertex; pick one such tree-vertex xT and color (uv)1 with color s(T ).

Note that after Coloring Rule 2, any tree-vertex xT such that T is just a single vertex, is completed.

Path Rule 2. Do the following for each a, b ∈ V (G) \ L S . For each 1-edge e in Q ab, add (e)1 to Pab. Next, we add edges inside trees as 
follows.

• If for some tree T it holds that a ∈ V (T ) and there is a 1-edge uxT in Q ab, then add the path T wa to Pab, where w is the foot of 
the edge uxT in T .
5
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Fig. 3. Illustration of Coloring Rule 3 applied on a tree-vertex xT with 2-edge degree 4. Here, ci = s(Ti).

• If for some tree T it holds that b ∈ V (T ) and there is a 1-edge uxT in Q ab, then add the path T wb to Pab, where w is the foot of 
the edge uxT in T .

• If for some tree T there are two 1-edges uxT and vxT in Q ab, add the path T wz to Pab, where w is the foot of the edge uxT in T
and z the foot of the edge vxT in T .

Lemma 2. Invariant 1 is satisfied so far. Moreover, each color is used at most for one edge in G.

Proof. It is clear that during Coloring Rule 1, all edges are colored distinct. In Coloring Rule 2, we use the surplus colors, 
which are disjoint from the colors used in Coloring Rule 1. It is also not difficult to see that during Coloring Rule 2, the 
surplus color of a tree-vertex is used for only one 1-edge. �

For a colored edge e ∈ E(G), we define c(e) to be the color of e. For a subgraph G ′ of G , we define c(G ′) to be the set of 
colors used in E(G ′). We call the number of 2-edges of B1 incident on a vertex, the 2-edge degree of it. For any two vertices 
u and v , the connected component of B1 \ u containing v is denoted by ST(u, v). Note that ST(u, v) is a subtree of B1. We 
fix a closest (breaking ties arbitrarily) tree-vertex to v in ST(u, v) in B̃1 and denote it by CT(u, v). Note that at least one 
tree-vertex exists in ST(u, v) because all leaves of B1 are tree vertices by Corollary 3. Also note that if v is a tree-vertex, 
then CT(u, v) = v .

Coloring Rule 3. For each tree-vertex xT with 2-edge degree at least 4 (see Fig. 3 for an illustration). Let q be the 2-edge degree of 
xT . Let w0 , w1 , w2, . . . , wq−1 be the other endpoints of the 2-edges incident on xT . For i ∈ [0, q − 1], let xTi := CT(xT , wi) and let 
ci := s(Ti). For each i ∈ [0, q − 1], color the edge (xT wi)1 with c((i+2) mod q) and the edge (xT wi)2 with c((i+3) mod q) .

The following lemma follows from the way in which we have colored the edges incident on xT in Coloring Rule 3.

Lemma 3. For each tree-vertex xT on which Coloring Rule 3 has been applied as above, for all distinct i, j ∈ [0, q − 1], there is a 
rainbow path from wi to w j in G that uses only the colors from 

({
c0, c1, . . . , cq−1

} \ {
ci, c j

}) ∪ c(T ). Moreover, for any i ∈ [q − 1]
and some u ∈ V (T ), there is a rainbow path in G from u to wi that uses only colors from 

({
c0, c1, . . . , cq−1

} \ {ci}
) ∪ c(T ).

Proof. Let ui and vi be the endpoints in T of (xT wi)1 and (xT wi)2 respectively, for each i ∈ {0,1, . . . ,q − 1}. First, we prove 
that there is a rainbow path from wi to w j with the required colors as claimed by the lemma. Suppose for the sake of 
contradiction that there was no such path. Consider the following three paths between wi and w j : P := wiui Tui u j u j w j , 
P ′ := wi vi T vi v j v j w j , and P ′′ := wi vi T vi u j u j w j . By our assumption, each of these paths, is either not a rainbow path, or 
uses a color that is not in 

({
c0, c1, . . . , cq−1

} \ {
ci, c j

}) ∪ c(T ). Also, from Coloring Rules 1 and 3, we know that the only 
colors that are not in 

({
c0, c1, . . . , cq−1

} \ {
ci, c j

}) ∪ c(T ) that any of these three paths can use are ci and c j . Thus, each of 
P , P ′ and P ′′ is either not a rainbow path or uses ci or c j . However, we know that the paths Tui u j , T vi v j , and T vi u j are all 
rainbow paths due to Coloring Rule 1, and moreover the colors used by them are disjoint from 

{
c0, . . . , cq−1

}
. For the path 

P , this means that either c(wiui) = c(u j w j) or 
{

c(wiui), c(u j w j)
} ∩ {

ci, c j
} �= ∅. That is, either c(i+2) mod q = c( j+2) mod q

or 
{

c(i+2) mod q, c( j+2) mod q
} ∩ {

ci, c j
} �= ∅. That is, either i = j or {(i + 2) mod q, ( j + 2) mod q} ∩ {i, j} �= ∅. But we know 

that (i + 2) mod q �= i and that ( j + 2) mod q �= j. Therefore, either (i + 2) mod q = j or ( j + 2) mod q = i. Without loss of 
generality assume that (i + 2) mod q = j.

By using the same reasoning as above for path P ′ , we derive that either (i + 3) mod q = j or ( j + 3) mod q = i. Since we 
already have that (i + 2) mod q = j, it should be the latter case, i.e, ( j + 3) mod q = i.

Now consider the third path P ′′ . We have that either c(wi vi) = c(u j w j) or 
{

c(wi vi), c(u j w j)
} ∩ {

ci, c j
} �= ∅. That is, 

either c(i+3) mod q = c( j+2) mod q or 
{

c(i+3) mod q, c( j+2) mod q
} ∩ {

ci, c j
} �= ∅. That is, either (i + 3) mod q = ( j + 2) mod q

or {(i + 3) mod q, ( j + 2) mod q} ∩ {i, j} �= ∅. Substituting that (i + 3) mod q = (((i + 2) mod q) + 1) mod q = ( j + 1)

mod q and that i = ( j + 3) mod q, we get that either ( j + 1) mod q = ( j + 2) mod q or {( j + 1) mod q, ( j + 2) mod q} ∩
6
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{( j + 3) mod q, j} �= ∅. Since j, ( j + 1) mod q, ( j + 2) mod q, and ( j + 3) mod q are distinct for q ≥ 4, we have a contradic-
tion.

Next, we prove the second part of the lemma, i.e., we prove that there is a rainbow path from u to wi with the colors 
claimed by the lemma. Suppose for the sake of contradiction that there was no such path. Consider the path P ′′′ := wiui Tui u . 
We know that the path Tui u uses only colors from c(T ) and is rainbow, and that the edge wiui is colored c(i+2) mod q . Also, 
c(i+2) mod q �= ci as (i +2) mod q �= i. Thus P is a rainbow path and uses only the colors in 

({
c0, c1, . . . , cq−1

} \ {ci}
)∪c(T ). �

Path Rule 3. For each xT on which Coloring Rule 3 has been applied as above and for each a, b ∈ V (G) \ L S such that Q ab contains xT

(we say that the path rule is being applied on the pair (xT , Pab)), do the following.

Case 1: There are two 2-edges incident on xT in Q ab.

Let wi and w j be the neighbors of xT in Q ab. Add to Pab the rainbow path from wi to w j as given by Lemma 3.

Case 2: There is one 2-edge and one 1-edge incident on xT in Q ab.

Let xT wi be the 2-edge. Let u be the endpoint in T of the representative of the 1-edge. There is a rainbow path from wi to u as given 
by Lemma 3. Add this path to Q ab. (Note that the representative of the 1-edge has been already added to Pab during Path Rule 2).

Case 3: xT is an endpoint of Q ab and the only edge incident on xT in Q ab is a 2-edge.

Let wi be the neighbor of xT in Q ab. We know one of a or b is in T . From this vertex (a or b whichever is in T ) to wi , there is a 
rainbow path as given by Lemma 3. Add this path to Pab.

The following lemma follows from Lemma 3 and Path Rule 3.

Lemma 4. Suppose for some a, b ∈ V (G) \ L S and for some tree T ′ ∈ T , Pab contains an edge e that was colored with s(T ′) during the 
application of Coloring Rule 3 on some tree-vertex xT . Then, T ′ �= T and Q ab does not intersect ST(xT , xT ′ ).

Proof. Since s(T ′) was used during the application of Coloring Rule 3 on xT , the vertex xT ′ should have been taken as xTi

(in Coloring Rule 3) for some i and s(T ′) was taken as ci (in Coloring Rule 3). Since Ti �= T , it is clear that T ′ �= T . Suppose 
Q ab intersects ST(xT , xT ′ ) for the sake of contradiction. That is, Q ab intersects ST(xT , xTi ). Then the color ci was not used 
in Path Rule 3 according to Lemma 3. That means e was not colored with ci , which is a contradiction. �
Lemma 5. Invariant 1 is not violated during Path Rule 3.

Proof. Suppose Invariant 1 is violated during the application of Path Rule 3 on the pair (xT , Pab). Then there exist edges e
and e′ in Pab having the same color after the application of the path rule. We can assume without loss of generality that e
was added during the application of Path Rule 3 on (xT , Pab). That means e was colored during the application of Coloring 
Rule 3 on xT . Then either e ∈ E(T ) or h(e) = wi xT for some i ∈ [0, q − 1]. Since each color in c(T ) has been used only in 
one edge in G , we have that h(e) = wi xT for some i ∈ [0, q − 1] and hence c(e) = s(T j) for some j ∈ [0, q − 1] \ i. Also Q ab
does not intersect ST(xT , xT j ) by Lemma 4. Since the application of Path Rule 3 on (xT , Pab) added a rainbow path to Pab , 
the edge e′ was not added during this application. Since each color in c(F ) has been used for only one edge in G so far, we 
know that e′ was not added during Path Rule 1. Hence, the following two cases are exhaustive and in both cases we derive 
a contradiction.

Case 1: e′ was added during the application of Path Rule 3 on (xT ′ , Pab) for some tree T ′ �= T .

Since Pab contains e′ , we have that Q ab contains h(e′). Since e′ was added during the application of Path Rule 3 on 
(xT ′ , Pab), either e′ ∈ E(T ′) or h(e′) is incident on xT ′ . In either case, xT ′ is in Q ab . Since Q ab does not intersect ST(xT , xT j ), 
we have that xT ′ is not in ST(xT , xT j ). This implies that distB̃1

(xT ′ , xT ) < distB̃1
(xT ′ , xT j ). But then during the application of 

Coloring Rule 3 on xT ′ , the color s(T j) would never be used as xT j �= CT(xT ′ , v) for any vertex v . Thus, the color of e′ is not 
s(T j). But we know that c(e′) = c(e) = s(T j), a contradiction.

Case 2: e′ was added during the application of Path Rule 2 on Pab .

This means e′ is the representative of a 1-edge and was colored during Coloring Rule 2. Since e′ is colored with s(T j), we 
have that h(e′) should either be the outgoing edge of xT j or the outgoing edge of the parent of xT j , from Coloring Rule 2. 
This implies that h(e′) is in ST(xT , xT j ), as the parent of xT j is a non-tree-vertex. But then Q ab does not contain h(e′) as 
Q ab does not intersect ST(xT , xT j ). Thus Pab does not contain e′ , which is a contradiction. �
Coloring Rule 4. For each tree-vertex xT with 2-edge degree exactly 3 (see Fig. 4), let w1 , w2 , and w3 be the other endpoints of the 
three 2-edges incident on xT . Further, for i ∈ {1,2,3}, let xTi = CT(xT , wi), let ui and vi be the foots of xT wi in T , let Pi := Tui vi , and 
let ci := s(Ti).
7
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Fig. 4. A scenario in which Coloring Rule 4 is applicable on xT .

Fig. 5. Case 1 of Coloring Rule 4.

Fig. 6. Cases 2 and 3 of Coloring Rule 4. (a) Case 2. Note that P1, P2, and P3 are not necessarily disjoint. (b) Case 3, scenario 1. Note that u1 = u3 and 
v1 = v3. (c) Case 3, scenario 2. Note that u1 = u3, v1 = u2 and v3 = v2.

Case 1: There exists an edge uv in T such that the cut (V 1, V 2) induced by uv in T is such that for all i ∈ {1, 2, 3}, |V 1 ∩ {ui, vi} | = 1
and |V 2 ∩ {ui, vi} | = 1. (For an illustration, see Fig. 5).

Without loss of generality, let ui and vi be the foots of xT wi in V 1 and V 2 respectively for each i ∈ {1,2,3}. Let c be the color of 
uv. Color u1 w1 with c3 , v1 w1 with c2 , u2 w2 with c, v2 w2 with c1 , u3 w3 with c, and v3 w3 with c, as shown in Fig. 5.

Case 2: There exist distinct edges e1, e2, e3 such that ei ∈ E(Pi) for each i ∈ {1,2,3}. (For an illustration, see Fig. 6 (a)).

Color both the representatives of xT wi with the color of ei for each i ∈ {1,2,3}.

Case 3: Case 1 and 2 do not apply.

Because Case 1 and 2 do not apply, there exist i, j ∈ {1, 2, 3} such that E(Pi) ∩ E(P j) = ∅, because otherwise E(P1) ∩ E(P2) ∩
E(P3) �= ∅ using the Helly property of trees4 and then any edge in this intersection qualifies as uv of Case 1. So, without loss of 
generality assume that E(P1) ∩ E(P2) = ∅. Also, note that E(P3) ⊆ E(P1) ∪ E(P2) because otherwise Case 2 applies. So, without loss 
of generality assume that E(P3) ∩ E(P1) �= ∅. But then E(P3) ∩ E(P1) = E(P1) and P1 consists of a single edge so that Case 2 does 
not apply. Let this edge be e1. Note that e1 = u1 v1 . Furthermore, at least one of the end-vertices of P1 and P3 coincide so that Case 2 
does not apply. Thus, assume without loss of generality that u1 = u3 . Let e2 be any edge in P2 . Without loss of generality assume that 

4 We use the following Helly property of trees: if T1, T2, . . . , Tk are subtrees of a tree T that pairwise intersect each other on at least one edge, then 
there is an edge of T that is common to all of T1, T2, . . . , Tk .
8
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v1 is the closer vertex among u1 and v1 to path P2 in T . The two possible scenarios in this case are shown in Fig. 6 (b) and (c). Color 
w1u1 and w1 v1 with c(e1), w2u2 and w2 v2 with c(e2), w3u3 with c(e2) and w3 v3 with c(e1).

The following lemma follows from the way in which we have colored the edges incident on xT in Coloring Rule 4. The 
lemma is easy to verify (with the help of Figs. 5 and 6, and using Observation 1) and hence we state it without proof.

Lemma 6. For each tree-vertex xT on which Coloring Rule 4 has been applied as above, for distinct i, j ∈ {1,2,3}, there is a rainbow 
path from wi to w j in G that uses only the colors from ({c1, c2, c3} \ {

ci, c j
}
) ∪ c(T ). Also, for any i ∈ {1,2,3}, and any z ∈ V (T ), 

there is a rainbow path from z to wi , that uses only the colors from ({c1, c2, c3} \ {ci}) ∪ c(T ).

Path Rule 4. For each xT on which Coloring Rule 4 has been applied as above and for each Pab such that Q ab contains xT (we say that 
the rule is being applied on the pair (xT , Pab)), do the following.

Case 1: xT has two 2-edges incident in Q ab.

Let wi and w j be the neighbors of xT in Q ab. Add to Pab the rainbow path from wi to w j as given by Lemma 6.

Case 2: xT has exactly one 2-edge and exactly one 1-edge incident in Q ab.

Let xT wi be the 2-edge and let z be the endpoint in T of the 1-edge. Add to Pab the rainbow path from wi to z as given by Lemma 6.

Case 3: xT is an endpoint of Q ab and has one 2-edge incident in Q ab.

Let wi be the neighbor of xT in Q ab. We know one of a or b is in T . From this vertex (a or b, whichever is in T ) to wi , there is a 
rainbow path as given by Lemma 6. Add this path to Pab.

The following lemma follows from Lemma 6 and Path Rule 4. The proof is similar to that of Lemma 4 and is omitted.

Lemma 7. Suppose for some a, b ∈ V (G) \ L S and for some tree T ′ ∈ T , Pab contains an edge e that was colored with s(T ′) during the 
application of Coloring Rule 4 on some tree-vertex xT . Then, T ′ �= T and Q ab does not intersect ST(xT , xT ′ ).

Lemma 8. Invariant 1 is not violated during Path Rule 4.

Proof. Suppose for the sake of contradiction that Invariant 1 is violated during the application of Path Rule 4 on the pair 
(xT , Pab) as above. Then there exist edges e and e′ in Pab having the same color. We can assume without loss of generality 
that e was colored during the application of Coloring Rule 4 on xT . This means e ∈ E ′ := E(T ) ∪ R , where R is defined as the 
set of representatives of w1xT , w2xT , and w3xT . Since the application of Path Rule 4 on (xT , Pab) added a rainbow path to 
Pab , the edge e′ was not added during this application and hence e′ /∈ E ′ . Each color in c(T ) have been used only in E ′ so 
far. That means c(e) = c(e′) /∈ c(T ). Hence e ∈ E ′ \ E(T ) = R . Without loss of generality assume that e is a representative of 
w1xT . Now, c(e) = s(T j) where j ∈ {2, 3}. Without loss of generality assume that c(e) = s(T2). This also means c(e′) = s(T2). 
That means e′ was colored during Coloring Rules 2, 3 or 4. Hence the following two cases are exhaustive and in each case 
we prove a contradiction.

Case 1: e′ was colored during the application of Coloring Rules 3 or 4 on xT ′ , for some tree T ′ �= T .

Since Pab contains e′ , we have that Q ab contains h(e′). Since e′ was colored during the application of Coloring Rules 3
or 4 on xT ′ , either e′ ∈ E(T ′) or h(e′) is incident on xT ′ , and hence xT ′ is in Q ab . Since Q ab does not intersect ST(xT , xT2 )

by Lemmas 4 and 7, we have that xT ′ is not in ST(xT , xT2 ). Then distB̃1
(xT ′ , xT ) < distB̃1

(xT ′ , xT2 ). But then during the 
application of Coloring Rule 3 or 4 on xT ′ , the color s(T2) would never be used as xT2 �= CT(xT ′ , v) for any vertex v . Thus, 
the color of e′ is not s(T2). But we know that c(e′) = c(e) = s(T2), a contradiction.

Case 2: e′ was colored during the application of Coloring Rule 2.

This means e′ is the representative of a 1-edge. Since e′ is colored with s(T2), we have that h(e′) should either be the 
outgoing edge of xT2 or the outgoing edge of the parent of xT2 , from Coloring Rule 2. This implies that h(e′) is in ST(xT , xT2 ), 
as the parent of xT2 is a non-tree edge. But then Q ab does not contain h(e′) as Q ab does not intersect ST(xT , xT2 ), by 
Lemmas 4 and 7. Thus Pab does not contain e′ , which is a contradiction. �
Coloring Rule 5. For each non-tree-vertex u with degree at least 3 in B1 (see Fig. 7), let q be the number of children of u (note that 
q ≥ 2 as degree of u is at least 3), let u1, u2, . . . , uq be the children of u and let xTi be CT(u, ui). Let −→uv be the outgoing edge from u in 
B1 . If uv is a 1-edge, due to Coloring Rule 2, we know that there exists an i ∈ [q] such that ui is a tree-vertex (and hence Ti = fT (ui)), 
and uv is colored with s(Ti). Hence, if uv is a 1-edge, assume without loss of generality that u1 is a tree-vertex (and hence xT1 = u1)

and that uv is colored with s(T1).
9
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Fig. 7. Three examples of Coloring Rule 5. Here ci = s(Ti). The edges that were colored before the application of the rule are drawn as densely dotted lines.

• If u1u is uncolored (then u1u is a 2-edge due to Coloring Rule 2, implying that u1 is a tree-vertex and hence T1 = fT (u1)), then 
color (u1u)1 with s(T1) and (u1u)2 with s(T2).

• For each 2 ≤ i ≤ q, if uiu is uncolored (then uiu is a 2-edge due to Coloring Rule 2, implying that ui is a tree-vertex and hence 
Ti = fT (ui)), then color both its representatives with s(Ti).

• If uv is uncolored (in which case it is a 2-edge due to Coloring Rule 2) then color (uv)1 with s(T1) and (uv)2 with s(T2).

Path Rule 5. For each non-tree-vertex u on which Coloring Rule 5 has been applied as above and for each Pab such that Q ab contains 
u (we say that the rule is being applied on the pair (u, Pab)), execute the following two parts (in the mentioned order).

Part 1

• If Q ab contains edge u1u and u1u is colored during the application of Coloring Rule 5 on u, do the following. If the other neighbor 
(if any) of u in Q ab is u2 , then add (u1u)1 (which has color s(T1)) to Pab. Otherwise, add (u1u)2 (which has color s(T2)) to Pab.

• For each i ∈ [2, q], if Q ab contains edge uiu and uiu is colored during the application of Coloring Rule 5 on u, add (uiu)1 (which 
has color s(Ti)) to Pab.

• If Q ab contains edge uv and uv is colored during the application of Coloring Rule 5 on u: if the other neighbor (if any) of u in Q ab
is u1 and u1u is a 1-edge, then add (uv)2 (which has color s(T2)) to Pab; otherwise add (uv)1 (which has color s(T1)) to Pab.

Part 2

• For each tree-vertex xT such that the degree of xT in h(Pab) became 2 during the addition of above edges in Part 1, let x and y be 
the endpoints in T of the two edges of Pab incident on T . Add Txy to Pab.

• For each tree-vertex xT ∈ {h(a),h(b)} such that the degree of xT in h(Pab) became 1 during the addition of above edges in Part 1, 
let x be the endpoint in T of the edge of Pab incident on T . If xT = h(a), add Tax to Pab; otherwise (i.e., if xT = h(b)), add Tbx to 
Pab.

Lemma 9. Invariant 1 is not violated during Path Rule 5.

Proof. Suppose Invariant 1 is violated during the application of Path Rule 5 on the pair (u, Pab) as above. Then there exist 
edges e and e′ in Pab having the same color. We can assume without loss of generality that e was colored during the 
application of Coloring Rule 5 on u. Suppose e was added during Part 2 of Path Rule 5. Observe that if we add a path 
inside a tree T in Part 2, then xT was incomplete before the application of Coloring Rule 5. By Invariant 3, this implies that 
the internal colors of T were not used anywhere else so far. Thus, the color of e is unique, in particular c(e′) �= c(e), a 
contradiction. Thus, the edge e was not added during Part 2. Then e was added during Part 1 and hence c(e) = c(e′) = s(Ti)

for some i ∈ [q]. Then e′ was colored during one of Coloring Rules 5, 4, 3, or 2.

Case 1: e′ was colored during the Coloring Rule 5.

Note that during the application of Path Rule 5 on (u, Pab), we have added at most two edges to Pab . And, if we have 
added two edges, they are of different colors. Thus e′ was not added to Pab during the application of Path Rule 5 on 
(u, Pab) and hence was not colored during the application of Coloring Rule 5 on u. So, e′ was colored during the application 
of Coloring Rule 5 on some non-tree-vertex u′ �= u. Notice that for any tree T ∈ T , s(T ) is used during the application of 
Coloring Rule 5 only when the rule is applied to an ancestor of xT in B1. Hence, both u and u′ are ancestors of xTi . Without 
loss of generality, assume that u′ is closer than u to xTi . Then, u cannot have any tree vertices as children because otherwise 
xTi �= CT(u, ui). Then, the only edges colored during the application of Coloring Rule 5 on u, are the representatives of uv . 
Thus h(e) = uv .

Case 1.1 e = (uv)2.
10
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We know that e = (uv)2 is colored with s(T2) by Coloring Rule 5. Thus, c(e′) = c(e) = s(T2) and Ti = T2. Since the edge 
(uv)2 is added during application of Path Rule 5 on (u, Pab), the neighbors of u in Q ab are v and u1, by Path Rule 5. Since 
u′ ∈ Q ab , we have that u′ is a descendant of u1 and not u2 in B1. This implies Ti = T1 �= T2, a contradiction.

Case 1.2 e = (uv)1.

Since the edge (uv)1 is added during application of Path Rule 5 on (u, Pab), either u1 is not a neighbor of u in Q ab , or 
uu1 is a 2-edge, by Path Rule 5. But uu1 cannot be a 2-edge as both u and u1 are non-tree vertices. (Recall that we said 
all children of u are non-tree vertices in Case 1). Hence u1 is not a neighbor of u in Q ab . Since u′ ∈ Q ab , this implies that 
Ti �= T1, and hence c(e) = c(e′) = s(Ti) �= s(T1). But we know that e = (uv)1 is colored with s(T1), by Coloring Rule 5. Thus, 
we have a contradiction.

Case 2: e′ was colored during the Coloring Rules 4 or 3.

Let T ′ be the tree on which e′ is incident. Then e′ was colored with s(Ti) during the application of Coloring Rules 4 or 3
on xT ′ . Then Q ab does not intersect ST(T ′, Ti) due to Lemmas 7 and 4. Since xTi = CT(u, ui), there is no other tree-vertex 
in the path from u to xTi . Thus, u is in ST(T ′, Ti). Hence, we have that u is not in Q ab . We know that e is adjacent on u
as every edge colored during the application of Coloring Rule 5 on u is incident on u. But then e /∈ Pab as u is not in Q ab . 
This is a contradiction.

Case 3: e′ was colored during the Coloring Rule 2.

This means that e′ is a 1-edge.

Case 3.1 h(e′) = uv .

In the case when uv is a 1-edge, we selected u1 during Coloring Rule 5 in such a way that c(uv) = s(T1). Thus c(e) =
c(e′ = uv) = s(T1). The only edges that can be potentially colored with s(T1) during the application of Coloring Rule 5 on u
are (uv)1 and (uu1)1. Since e and e′ are distinct we have e = (u1u)1. But since uv is in Q ab , we would have added (u1u)2
and not (u1u)1 to Pab during Path Rule 5. Thus we have a contradiction.

Case 3.2. h(e′) �= uv .

Then e′ is on the path between xTi and u. Also, xTi is not a child of u. Then, the only possibility for e to have color s(Ti)

is if i = 2 and e = (u1u)2. Then Q ab contains both u1 and u2. In that case, we would have added (u1u)1 and not (u1u)2 to 
Pab during Path Rule 5. Hence, e �= (u1u)2, a contradiction. �
Coloring Rule 6. For each incomplete tree-vertex xT having 2-edge degree exactly 1: let e be the only 2-edge incident on xT , pick an 
edge e1 in the foot-path of e, color the representatives of e with the color of e1.

Path Rule 6. For each tree-vertex xT on which Coloring Rule 6 has been applied as above and for each Pab such that Q ab contains h(e)
(we say that the path rule is being applied on the pair (xT , Pab)), do the following.

We pick vertex w as follows. If a ∈ V (T ), let w := a, and if b ∈ V (T ) let w := b. (Note that both a and b cannot be in T as Q ab
contains h(e)). If a, b /∈ V (T ) then there is an edge e2 �= e of Q ab incident on xT . Furthermore, since e is the only 2-edge incident on 
xT , the edge e2 is a 1-edge. In this case, let w be the endpoint of (e2)1 in T .

By Observation 1, there is a path in T that excludes e1 , from w to one of the foots of e. Let this foot be z. Add the path in T between 
w and z to Pab. Also add to Pab the representative of e having z as its endpoint in T .

Lemma 10. Invariant 1 is not violated during Path Rule 6.

Proof. Let E N be the set of new edges added to Pab during the application of Path Rule 6 to (xT , Pab) and let E O be the 
set of already included edges in Pab before this application. Suppose Invariant 1 is violated for the sake of contradiction. 
Then either there are two edges in E N with the same color or c(E N ) ∩ c(E O ) �= ∅. Recall that E N consists of E(T wz) and 
a representative of e, say (e) j . Note that c((e) j) = c(e1) by Coloring Rule 6. So, all the edges in E N are colored from c(T ), 
the internal colors of T . Recall that e1 is not in T wz by our choice of z. Thus the edges in E N all have distinct colors. So, it 
has to be the case that c(E O ) ∩ c(E N) �= ∅. Since c(E N ) ⊆ c(T ), this implies that c(E O ) ∩ c(T ) �= ∅. Let d be an edge in E O

with color in c(T ). Since the representative of at least one edge of Q ab incident on xT (namely e) was not added to Pab
before the application of Path Rule 6, we have that E(T ) ∩ E O = ∅ by Invariant 4. Thus d /∈ E(T ) but has color in c(E(T ))

and d ∈ E O . By Invariant 3, this implies that xT was complete before the application of Coloring Rule 6, making the rule not 
applicable on xT , a contradiction. �
Coloring Rule 7. For each tree-vertex xT such that the 2-edge degree of xT is exactly 2 and E(T ) contains at least 2 edges, let e1 and 
e2 be the 2-edges incident on xT , let w and z be the other endpoints of e1 and e2 , respectively, and let P1 and P2 be the foot-paths of 
e1 and e2 , respectively.
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Fig. 8. Coloring Rule 7. (a) Case 1 (b) Case 2.

Case 1: |E(P1 ∪ P2)| ≥ 2. (See Fig. 8 (a)).

Pick distinct edges e and e′ from P1 and P2 respectively. If (e1)1 and (e1)2 are uncolored, color them with color of e and if (e2)1
and (e2)2 are uncolored, color them with color of e′.
Case 2: Case 1 does not hold. (See Fig. 8 (b)).

Clearly, P1 and P2 both are a single edge and they are the same edge. Let this edge be e = uv. Pick any other edge e′ in T (such an 
edge exists because we said that the rule is applicable only if E(T ) contains at least two edges). Without loss of generality, assume that 
e′ is closer to v than u in T . If uw and v w are uncolored, color them with color of e. If uz and vz are uncolored, color them with colors 
of e′ and e, respectively.

Lemma 11. Consider a tree-vertex xT on which Coloring Rule 7 has been applied as above. There is a rainbow path in G from w to z
using only the colors in c(T ). Also, from any vertex x ∈ V (T ), there is a rainbow path to both w and z using only the colors in c(T ).

Proof. If Case 2 of Coloring Rule 7 has been applied then this is rather easy to see as follows. The path wuz is a rainbow 
path from w to z. Also for the second statement, note that at least one of Txu or Txv avoids e. Then at least one of the 
paths Txu followed by uw or uz, or Txv followed by v w or vz, is a rainbow path (it avoids e and if it contains e′ , then it is 
the second case and c(e′) is used only once).

So, it only remains to prove the lemma when Case 1 of Coloring Rule 7 is applied. Let w1, w2 be the foots of e1 and z1, z2
be the foots of e2. To prove the first statement, it is sufficient to prove that at least one of the four paths T w1 z1 , T w1 z2 , T w2 z1

and T w2 z2 contains neither e nor e′ . Given this, it is easy to show the necessary rainbow path from w to z: if the path 
T wi z j contains neither e nor e′ then the path w wi T wi z j z j z is the required path. So for the sake of contradiction assume 
that each T wi z j contains either e or e′ . Without loss of generality assume that T w1 z1 contains e. Let y be the last vertex on 
T w1 z1 that is in P1 (while going from w1 to z1). Now, T yz1 and T yw2 do not contain e and hence T z1 w2 = T yz1 ∪ T yw2 does 
not contain e. This implies that T z1 w2 contains e′ . Let y′ be the last vertex on T z1 w2 that is in P2 (while going from z1 to 
w2). Now, T y′z2 and T w2 y′ contains neither e nor e′ and hence T w2 z2 = T y′z2 ∪ T w2 y′ contains neither e nor e′ .

To prove the second statement, observe that there is a rainbow path from x to either w1 or w2 not containing e, and a 
rainbow path from x to either z1 or z2 not containing e′ , due to Observation 1. �
Path Rule 7. For each tree-vertex xT on which Coloring Rule 7 has been applied as above and for each Pab such that Q ab contains at 
least one of e1 and e2 (we say that the path rule is being applied on the pair (xT , Pab)), do the following.

If Q ab contains both e1 and e2 then let y1 := w and y2 := z. If Q ab contains only e1 and not e2 then let y1 := w. If Q ab contains 
only e2 and not e1 then let y1 := z. If a ∈ V (T ), let y2 := a, and if b ∈ V (T ), let y2 := b. (Note that both a and b cannot be in T as 
Q ab contains e1 or e2). If a, b /∈ V (T ) and only one of e1, e2 is in Q ab, then there is an edge e′′ /∈ {e1, e2} incident on xT in Q ab; and 
since e1 and e2 are the only 2-edges incident on xT , the edge e′′ is a 1-edge; let y2 be the endpoint of (e′′)1 in T . Add to Pab the path 
between y1 and y2 given by Lemma 11.

Lemma 12. Invariant 1 is not violated during Path Rule 7.

Proof. Let E N be the set of new edges added to Pab during the application of Path Rule 7 to (xT , Pab) and let E O be the 
set of already included edges in Pab before this application. Suppose Invariant 1 is violated for the sake of contradiction. 
Then either there are two edges in E N with the same color or c(E N ) ∩ c(E O ) �= ∅. By Lemma 11, all edges in E N are colored 
from c(T ) and have distinct colors. So, it has to be the case that c(E O ) ∩ c(E N ) �= ∅. Since c(E N ) ⊆ c(T ), this implies that 
c(E O ) ∩ c(T ) �= ∅. Let d be an edge in E O with color in c(T ). The representative of at least one edge of Q ab incident on 
xT was not in Pab before the application of Path Rule 7 on (xT , Pab), because otherwise the path rule is not applicable 
on (xT , Pab). Then, by Invariant 4, we have that E(T ) ∩ E O = ∅. Thus d /∈ E(T ) but has color in c(E(T )) and d ∈ E O . But 
then by Invariant 3, we have that xT was completed before the application of Coloring Rule 7, thereby making the rule not 
applicable on xT , which is a contradiction. �
12
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Fig. 9. Coloring Rule 8. (a) Case 1 where c1 = s(T ) and c2 = c(uv). (b) Case 2 where c2 = c(uv) and c3 is the color of the representative of an arbitrarily 
chosen 1-edge incident on xT .

Coloring Rule 8. For each incomplete tree-vertex xT having degree at least 3 in B1: We can assume that Coloring Rules 3, 4, 6, 7 are 
not applicable on xT as otherwise xT would have been completed. If xT has at least three 2-edges incident on it, then Coloring Rule 3 or 
4 would have been applicable on xT . If it has 2-edge degree 1, then Coloring Rule 6 would have been applicable on xT . If it has 2-edge 
degree 0, then it would have been completed after Coloring Rule 2. Hence, we can assume that xT has 2-edge degree exactly 2. Now, if 
|E(T )| ≥ 2, Coloring Rule 7 becomes applicable on xT . Hence, we can assume that the tree T is an edge. Let uv be this edge. Let the two 
2-edges incident on xT be yxT and zxT .

Case 1: Both yxT and zxT are incoming to xT (see Fig. 9 (a)).

Then the outgoing edge of xT in B1 (if any) is a 1-edge, say −−→xT w. Assume without loss of generality that its representative is v w. 
Let c1 = s(T ) and c2 be the color of uv. Note that v w is colored with c1 due to Coloring Rule 2. If yu and yv are uncolored, color them 
with c1 and c2 respectively. If zu and zv are uncolored, color both of them with c2.

Case 2: One of the 2-edges, say yxT , is outgoing from xT (see Fig. 9 (b)).

Let c2 be the color of uv and c3 be the color of representative of any 1-edge incoming on xT . Note that at least one such 1-edge 
exists as the degree of xT is at least 3. If yu and yv are uncolored, color them with c3 and c2 respectively. If zu and zv are uncolored, 
color both of them with c2.

Path Rule 8. For each tree-vertex xT on which Coloring Rule 8 has been applied as above and for each Pab such that Q ab contains at 
least one of yxT and zxT (we say that the path rule is being applied on the pair (xT , Pab)), do the following:

• If Q ab contains both yxT and zxT then add yu and uz to Pab.
• If Q ab contains only yxT and not zxT then let y1 := y. If Q ab contains only zxT and not yxT then let y1 := z. If a ∈ V (T ), let 

y2 := a, and if b ∈ V (T ) let y2 := b. (Note that both a and b cannot be in T as Q ab contains yxT or zxT ). If a, b /∈ V (T ) and only 
one of yxT , zxT is in Q ab then there is an edge e′′ /∈ {yxT , zxT } incident on xT in Q ab. Further, since yxT and zxT are the only 
2-edges incident on xT , the edge e′′ is a 1-edge. Note that (e′′)1 is already added to Pab in Path Rule 2. Let y2 be the endpoint of 
(e′′)1 in T .
Note that in all cases y2 ∈ {u, v} and y1 ∈ {y, z}. Hence, the edge y1 y2 exists. Add the edge y1 y2 to Pab.

Lemma 13. Invariant 1 is not violated during Path Rule 8.

Proof. Suppose the invariant is violated. Then there exist edges e and e′ in Pab having the same color. We can assume 
without loss of generality that e was colored during the application of Coloring Rule 8 on (xT , Pab). We added at most two 
edges during the application of Path Rule 8 on xT and if we added two edges we have made sure they have distinct colors. 
Thus e′ was not added during the application of Path Rule 8 on (xT , Pab). The colors that are possible for e are c1, c2 and 
c3 according to Coloring Rule 8.

Case 1: c(e) = c(e′) = c2.

Recall c2 = c(uv). If e′ = uv , then by Invariant 4, the representatives of all the edges of Q ab incident on xT are in Pab
even before the application of Path Rule 8 on (xT , Pab). Then Path Rule 8 is not applicable on (xT , Pab). Thus e′ /∈ E(T )

but c(e′) ∈ c(E(T )). Then by Invariant 3, xT was completed before the application of Coloring Rule 8, making the rule not 
applicable on xT . Thus, such an e′ does not exist.
13
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Case 2: c(e) = c(e′) = c1 = s(T ).

This means e = yu and that Case 1 of Coloring Rule 8 (see Fig. 9 (a)) was applied on xT . The only coloring rules so far 
that use surplus colors are Coloring Rules 8, 5, 4, 3, and 2.

Case 2.1 e′ was colored during Coloring Rule 2.

Note that this means e′ is a 1-edge and the only way e′ can have color s(T ) is if e′ = v w . But, in Path Rule 8, we add 
yu = e to Pab only when v w is not in Q ab . Thus we have a contradiction.

Case 2.2 e′ was colored during Coloring Rules 4 or 3.

Let T ′ be the tree on which e′ is incident. Since e′ was colored with s(T ) during Coloring Rules 4 or 3, we know that 
Q ab does not intersect ST(xT ′ , xT ) due to Lemmas 7 and 4. Then Q ab does not contain xT and hence Pab does not contain 
e, which is a contradiction.

Case 2.3 e′ was colored during Coloring Rule 5.

Then h(e′) is a 2-edge in the path from xT to root of B1. Since e′ is in Q ab , this means that xT w is in Q ab . But then by 
Path Rule 8, we would have added yv instead of yu = e to Pab , a contradiction.

Case 2.4 e′ was colored during Coloring Rule 8.

The only application of Coloring Rule 8 that uses s(T ) is the application on xT . But since e′ was not colored during this 
application, we have a contradiction.

Case 3: c(e) = c(e′) = c3.

This means e = uy and that Case 2 of Coloring Rule 8 was applied on xT . Let x be the neighbor of xT such that xxT

is the 1-edge incident on xT whose representative is colored with c3. By Coloring Rule 2, there exists a tree T ′ that is a 
descendant of x such that s(T ′) = c3. The only coloring rules so far that use surplus colors are Coloring Rules 8, 5, 4, 3, and 
2.

Case 3.1 e′ was colored during Coloring Rule 2.

This means e′ is a 1-edge. Since xxT is the only 1-edge with color s(T ′) by Lemma 2, we have that e′ = xxT . Hence, xxT

is in Q ab . But if xxT is in Q ab , we would have added v y and not uy in Path Rule 8. This is a contradiction to e = uy.

Case 3.2 e′ was colored during Coloring Rules 4 or 3.

Let T ′′ be such that e′ is adjacent on xT ′′ . Since e′ was colored with s(T ′) during Coloring Rules 4 or 3, we have that 
Q ab does not intersect ST(xT ′′ , xT ′ ) due to Lemmas 7 and 4. Since Pab contains e that is incident on xT , we have that Q ab
contains xT . This implies that xT /∈ ST(xT ′′ , xT ′ ) implying that xT ′′ is on the path between xT and xT ′ . But then s(T ′′) and 
not s(T ′) would have been used to color xxT , a contradiction.

Case 3.3 e′ was colored during Coloring Rule 5 or 8.

Since e′ is colored with s(T ′), by Coloring Rule 5 and 8 this implies e′ is in ST(xT , xT ′ ) = ST(xT , x), implying that Q ab
contains x. But then we would have added v y and not uy = e to Pab according to Path Rule 8, a contradiction. �

The following Lemma follows from the previous coloring rules.

Lemma 14. Consider an edge e in B1 that remains uncolored after the application of Coloring Rules 1 through 8. Let xT and v be the 
endpoints of e (Note that due to Coloring Rule 2, e is a 2-edge, and hence one of its endpoints is a tree-vertex). Then, both xT and v
have degree exactly 2 in B1 , both edges incident on xT are 2-edges, and T consists of a single edge.

Proof. Suppose u ∈ {v, xT } has degree not equal to 2 in B1. First, suppose the degree was greater than 2. Then Coloring 
Rule 8 or 5 would have been applicable on u, and hence u would have been completed. Therefore, u has degree 1 in B1. 
By Corollary 3, every leaf of B1 is a tree-vertex. Hence, u is a tree-vertex and u = xT . But then Coloring Rule 6 would have 
been applicable on xT , and xT would have been completed. Thus, e is already colored, which is a contradiction. Hence, xT

and v have degree 2 in B1.
Now, suppose xT has only one 2-edge incident in B1. Then, Coloring Rule 6 would have been applied on xT and xT

would have been completed. Thus, both edges incident on xT in B1 are 2-edges. If T contained at least two edges, Coloring 
Rule 7 would have been applied on xT and xT would have been completed. Hence, T contains only one edge. �
Coloring Rule 9. For each tree-vertex xT with exactly one uncolored 2-edge e incident on it: note that it follows by Lemma 14 that the 
tree T comprises of a single edge e′. Let e = vxT and e′ := u1u2 . Color (e)1 = vu1 and (e)2 = vu2 with the color of e′.
14
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Fig. 10. Coloring Rule 10.

Path Rule 9. For each tree-vertex xT on which Coloring Rule 9 has been applied as above and for each Pab such that Q ab contains e
(we say that the path rule is being applied on the pair (xT , Pab)), do the following:

First we pick vertex w ∈ V (T ) = {u1, u2} as follows: if a ∈ V (T ), let w := a; if b ∈ V (T ) let w := b; (note that both a and b cannot 
be in T as Q ab contains e); if a, b /∈ V (T ) then there is an edge e2 �= e of Q ab incident on xT ; furthermore, since e is the only uncolored 
edge incident on xT , a representative of the edge e2 is already in Pab; let w be the endpoint in T of this representative of e2.
Add v w to Pab.

Lemma 15. Invariant 1 is not violated during Path Rule 9.

Proof. The edge added to Pab during the application of Path Rule 9 to (xT , Pab) has color c(e′) ∈ c(T ). If the invariant is 
violated, then there was an edge e′′ in Pab already with color c(e′). By Invariant 4 e′ was not already in Pab as the edge e
incident on xT is in Q ab and the representative of e was not added to Pab before. Thus e′′ �= e′ but c(e′′) = c(e′). Since xT

was incomplete before the application of current coloring rule, by Invariant 3, none of the colors in c(T ) were used before 
anywhere outside of T . So, such an e′′ does not exist, a contradiction. �
Lemma 16. Consider a 2-edge e incident on tree-vertex xT that remains uncolored after the application of Rules 1 to 9. Then, xT has 
degree exactly 2 in B1 , T contains only one edge, and the other edge incident on xT is an uncolored 2-edge.

Proof. By Lemma 14 it follows that xT has degree exactly 2 in B1, T contains only one edge, and the other edge incident 
on xT is a 2-edge. If this other 2-edge is colored, then Coloring Rule 9 would have been applied on xT and xT would have 
been completed. �
Coloring Rule 10. For each incomplete tree-vertex xT whose parent’s outgoing edge is a 2-edge: (See Fig. 10 for an Illustration). Let v1
be the parent of xT . From Lemma 16, it follows that xT has degree exactly 2 in B1 , has one incoming and one outgoing 2-edge incident 
on it, both the 2-edges are uncolored, and the tree T is just a single edge. Let e1 and e2 respectively be the outgoing and incoming 
2-edges of xT . Let e be the only edge in T . Let v2 be the other endpoint of e2. Let u1 be the endpoint of (e1)1 and (e2)1 in T . Let u2
be the endpoint of (e1)2 and (e2)2 in T . From Lemma 14, we know that v1 and v2 have degree exactly 2. Let −−−→v1xT ′ be the outgoing 
2-edge from v1 and let −−→w v2 be the incoming edge on v2 in B1 .
Color (e2)1 and (e2)2 with the color of e, and color (e1)1 and (e1)2 with s(T ).

Path Rule 10. For each tree-vertex xT on which Coloring Rule 10 has been applied as above and for each Pab such that Q ab contains 
e1 or e2 (we say that the path rule is being applied on the pair (xT , Pab)), do the following.

• If Q ab contains both e1 and e2 , add v1u1 and u1 v2 to Pab.
• If Q ab contains exactly one edge among e1 and e2 , then either a or b is in V (T ). Also both of them cannot be in V (T ). Let z be the 

one among a or b that is in V (T ). If Q ab contains e1 , add v1z to Pab; otherwise, i.e., if Q ab contains e2 , add v2z to Pab.

Lemma 17. Invariant 1 is not violated during Path Rule 10.

Proof. Suppose for the sake of contradiction that the invariant is violated. Then there exist distinct edges d1 and d2 in Pab
having the same color. We can assume without loss of generality that d1 was colored during the application of Coloring 
Rule 10 on xT . We added at most two edges during the application of Path Rule 10 on xT , and in the cases where we added 
two edges, the two edges have distinct colors. Thus, d2 was not added during the application of Path Rule 10 on xT and 
hence was not colored during the application of Coloring Rule 10 on xT .

The colors that are possible for d1 are s(T ) and c(e).

Case 1: c(d1) = c(d2) = c(e).
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Fig. 11. Coloring Rule 11. (a) Case 1; here the edge v1 v2 is drawn as a thick dotted line to highlight that it is not in B1, and the edge w v2 is drawn with 
one solid line and one dotted line to denote that it could be a 1-edge or a 2-edge (b) Case 2; here w = xT ′ .

This is not possible since the color of e has not been used to color any other edges so far by Invariant 3, and e is not in 
Pab by Invariant 4.

Case 2: c(d1) = c(d2) = s(T ).

This means h(d1) = v1xT . The only coloring rules so far that use the surplus colors of trees are Coloring Rules 2, 3, 4, 5, 
8, and 10. Hence, d2 was colored with s(T ) during one of them.

Case 2.1 d2 was colored during Coloring Rule 2.

This means that d2 is a 1-edge. According to Coloring Rule 2, the only 1-edge that can be colored with s(T ) is either 
the outgoing edge of xT or the outgoing edge of the parent of xT . However, both of them are 2-edges and hence we have a 
contradiction.

Case 2.2 d2 was colored during Coloring Rules 4 or 3.

Let T ′′ be such that d2 is adjacent on xT ′′ . Then, by Lemmas 7 and 4, we know that Q ab does not intersect ST(xT ′′ , xT ), 
in particular Q ab does not contain xT . Since h(d1) = v1xT , this implies Pab does not contain d1, which is a contradiction.

Case 2.3 d2 was colored during application of Coloring Rule 5.

From Coloring Rule 5, this implies that d2 was colored during application of Coloring Rule 5 on some ancestor v ′ of xT

such that there are no other tree vertices in the path from xT to v ′ . Then, the only possibility for v ′ is v1 as the parent of 
v1 is a tree-vertex. However, we know that v1 has degree 2 in B1, and hence Coloring Rule 5 could not have been applied 
on v1. Thus, we have a contradiction.

Case 2.4 d2 was colored during application of Coloring Rule 8.

Since d2 is colored with s(T ) during Coloring Rule 8, Case 1 of the rule (see Coloring Rule 8) was applied on xT and 
hence the outgoing edge from xT is a 1-edge. However, this is a 2-edge and hence we have a contradiction.

Case 2.5 d2 was colored during Coloring Rule 10.

Since d2 was not colored during the application of Coloring Rule 10 on xT , we have that d2 was colored during the 
application of Coloring Rule 10 on some xT ′′ �= xT . But then d2 is not colored with s(T ), a contradiction. �
Coloring Rule 11. For each incomplete tree-vertex xT : from Lemma 16, it follows that xT has degree exactly 2 in B1 , has one incoming 
and one outgoing 2-edge incident on it, both the 2-edges are uncolored, and the tree T is just a single edge. Let e1 and e2 respectively 
be the outgoing and incoming 2-edges of xT . Let v1 be the other endpoint of e1 and v2 be the other endpoint of e2. Let e = u1u2 be the 
16
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only edge in T . Without loss of generality, u1 be the endpoint of (e1)1 and (e2)1 in T , and u2 be the endpoint of (e1)2 and (e2)2 in T . 
From Lemma 14, we know that v1 and v2 have degree exactly 2. Let −→v1 y be the outgoing edge from v1 and −−→w v2 be the incoming edge 
on v2 in B1 . We have that v1 y is a 1-edge because otherwise Coloring Rule 10 would have been applicable on xT , and xT would have 
been already completed.

Case 1: There is an edge between v1 and v2 in G. (See Fig. 11 (a) for an illustration).

Color the representatives of e1 and e2 with c(e). Color v1 v2 with c(e). We say that v1 v2 is a shortcut edge. Note that shortcut 
edges are the only colored edges in G that are not representatives of edges in B.

Case 2: Case 1 does not apply. (See Fig. 11 (b) for an illustration).

We will prove in Lemma 24 that w v2 is a 2-edge in this case. Let T ′ = fT (w). Color (e1)1 and (e1)2 with s(T ′) and color (e2)1
and (e2)2 with color of e.

Path Rule 11. For each tree-vertex xT on which Coloring Rule 11 has been applied as above and for each Pab such that Q ab contains 
e1 or e2 (we say that the path rule is being applied on the pair (xT , Pab)), do the following.

• If Q ab contains both e1 and e2: if v1 v2 ∈ E(G), add v1 v2 to Pab; otherwise add v1u1 and v2u1 to Pab.
• If Q ab contains exactly one edge among e1 and e2 , then either a or b is in V (T ). Also, both of them cannot be in V (T ). Let z be the 

one among a or b that is in V (T ). If Q ab contains e1 , add v1z to Pab. If Q ab contains e2 , add v2z to Pab.

Lemma 18. Invariant 1 is not violated during Path Rule 11.

Proof. Suppose for the sake of contradiction that the invariant is violated. Then there exist distinct edges d1 and d2 in Pab
having the same color. We can assume without loss of generality that d1 was colored during the application of Coloring 
Rule 11 on xT . We added at most two edges during the application of Path Rule 11 on xT , and in the cases where we added 
two edges, the two edges have distinct colors. Thus d2 was not added during the application of Path Rule 11 on xT and 
hence was not colored during Coloring Rule 11 on xT .

The colors that are possible for d1 are c(e) and s(T ′).

Case 1: c(d1) = c(d2) = c(e).

This is not possible since the color of e has not been used to color any other edges so far by Invariant 3, and e is not in 
Pab by Invariant 4.

Case 2: c(d1) = c(d2) = s(T ′).

This means h(d1) = e1 and that Case 2 of Coloring Rule 11 was applied on xT . The only coloring rules so far that use the 
surplus colors of trees are Coloring Rules 2, 3, 4, 5, 8, 10, and 11. Hence, d2 was colored with s(T ′) during one of them.

Case 2.1 d2 was colored during Coloring Rule 2.

This means d2 is a 1-edge and h(d2) is either xT ′ v2 or v2xT . But since both xT ′ v2 and v2xT are 2-edges (since Case 2 of 
Coloring Rule 11 was applied on xT ), this is not possible.

Case 2.2 d2 was colored during Coloring Rules 4 or 3.

Let T ′′ be the tree such that d2 is adjacent to xT ′′ . By Lemmas 7 and 4, we know that Q ab does not intersect ST(xT ′′ , xT ′ ). 
Then xT is not in ST(xT ′′ , xT ′ ). This implies xT ′′ is in the path from xT to xT ′ . But the only vertex in the path from xT to xT ′
is v2, a non-tree-vertex. Thus, we have a contradiction.

Case 2.3 d2 was colored during application of Coloring Rule 5.

From Coloring Rule 5, this implies that d2 was colored during application of Coloring Rule 5 on some ancestor v ′ of xT ′
such that there are no other tree vertices in the path from xT ′ to v ′ . Then, the only possibility for v ′ is v2 as the parent of 
v2 is a tree-vertex. However, we know that v2 has degree 2 in B1, and hence Coloring Rule 5 could not have been applied 
on v2. Thus, we have a contradiction.

Case 2.4 d2 was colored during application of Coloring Rule 8.

Since d2 is colored with s(T ′) during Coloring Rule 8, Case 1 of the rule (see Coloring Rule 8) was applied on xT ′ and 
hence the outgoing edge from xT ′ is a 1-edge. However, this is a 2-edge and hence we have a contradiction.

Case 2.5 d2 was colored during application of Coloring Rule 10.

Since c(d2) = s(T ′), from Coloring Rule 10 we get that d2 was colored during the application of Coloring Rule 10 on xT ′ . 
In Lemma 25, we will prove that Coloring Rule 10 was not applied on xT ′ . Thus, we have a contradiction.
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Fig. 12. An illustration of the proof of Lemma 19. The densely dotted edges denote the edges of H that are not in B . (a) The scenario given by the 
precondition of the lemma, and (b) the transformation to new skeleton B ′ as described in the proof.

Fig. 13. An illustration of the transformation in the proof of Lemma 20. The densely dotted edges denote the edges of H that are not in B . (a) The scenario 
given by the precondition of the lemma, and (b) the transformation to the new skeleton B ′ as described in the proof.

Case 2.6 d2 was colored during application of Coloring Rule 11.

Since c(d2) = s(T ′), from Coloring Rule 11, we get that d2 was colored during the application of Coloring Rule 11 on xT . 
Moreover, h(d2) = e1. Recall that we have h(d1) = e1 too. Since we picked only one representative of e1 into Pab by Path 
Rule 11, we have that d1 = d2. This is a contradiction to the fact that d1 and d2 are distinct. �

Now we proceed towards proving Lemmas 24 and 25 that were used above. For this we need to prove some auxiliary 
lemmas first.

Lemma 19. Let v be a non-tree-vertex and xT1 be a tree-vertex that is a descendant of v in B1 . If vxT1 is a 2-edge in H then xT1 is a 
child of v in B1 .

Proof. See Fig. 12 for an illustration of the proof. Suppose xT1 is not a child of v in B1. Let −−→xT1 z be the outgoing edge 
of xT1 in B1. Let B ′ be the skeleton obtained by deleting −−→xT1 z from B and adding −−→xT1 v . Going from B to B ′ , the number 
of 2-edges is non-decreasing, the level of all vertices in the subtree rooted at xT1 decrease by 1 and the level of all other 
vertices remain the same. Thus B ′ has a lexicographically higher configuration vector than B . Thus we have a contradiction 
to the choice of B . �
Lemma 20. Let xT be a vertex on which Coloring Rule 11 is being applied. Let v1 be as defined in Coloring Rule 11. The vertex v1 has 
no 2-edge in H to any vertex except xT .

Proof. See Fig. 13 for an illustration of the proof. Suppose for the sake of contradiction that v1 has a 2-edge in H to a 
tree-vertex xT1 ∈ V (H) \ {xT }. The edge v1 y is a 1-edge as otherwise Coloring Rule 10 would have been applicable on xT

and xT would have been completed already. Thus xT1 �= y. Then the edge v1xT1 is not in B1 as y and xT are the only 
neighbors of v1 in B1. Since xT1 is a tree-vertex, it is not in L S (recall that L S is the set of non-tree leaves of H). Thus, since 
the edge v1xT1 is not in B1, it is not in B also (recall B1 = B \ L S ). Thus, v1xT1 ∈ E(H) \ E(B). Also xT1 is not a descendant 
of v1 due to Lemma 19. Thus, xT1 ∈ ST(v1, y). Then, by deleting the 1-edge −→v1 y from B and adding the 2-edge −−−→v1xT1 , we 
get a skeleton B ′ that has a higher number of 2-edges than B and hence has a lexicographically higher configuration vector. 
Thus we have a contradiction to the choice of B . �
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Fig. 14. An illustration of the transformation in the proof of Lemma 21. The densely dotted edges denote the edges of H that are not in B and the edge 
w v2 is drawn with 1 solid line and 1 dotted line to denote that it could be a 1-edge or a 2-edge. (a) The scenario given by the precondition of the lemma, 
and (b) the transformation to the new skeleton B ′ as described in the proof.

Fig. 15. An illustration of the transformation in the proof of Lemma 22. The densely dotted edges denote the edges of H that are not in B . (a) The scenario 
before the transformation, and (b) the transformation to the new forest F ′ as described in the proof where T is removed and a new tree including v, u2

and the vertices of T1 are added.

Lemma 21. Let xT be a vertex on which Coloring Rule 11 is being applied. Let v2, w be as defined in Coloring Rule 11. Then, v2 has no 
2-edge in H to any vertex in V (H) \ {w, xT }.

Proof. See Fig. 14 for an illustration of the proof. Suppose for the sake of contradiction that v2 has a 2-edge in H to a 
tree-vertex xT1 ∈ V (H) \ {xT , w}. Then the edge v2xT1 is not in B1 as the only neighbors of v2 in B1 are xT and w . Since 
xT1 is a tree-vertex, it is not in L S (recall that L S is the set of non-tree leaves of H). Thus, since the edge v2xT1 is not in 
B1, it is not in B also (recall B1 = B \ L S ). Thus, v2xT1 ∈ E(H) \ E(B1). Also xT1 is not a descendant of v2 due to Lemma 19. 
Clearly, then xT1 ∈ ST(v2, xT ). Since xT1 �= xT , and the degree of xT and v1 in B1 is 2, we have that the edge v1 y is on the 
path from v2 to xT1 in B1. Then, by deleting the 1-edge v1 y from B and adding the 2-edge v2xT1 , we get a skeleton B ′ that 
has a higher number of 2-edges and hence has a lexicographically higher configuration vector. Thus we have a contradiction 
to the choice of B . �
Lemma 22. Let v be a non-tree-vertex having degree 2 in B1 such that the neighbors of v in B1 are a tree-vertex xT and a vertex x′ , 
and the tree T consists of a single edge u1u2 . If v does not have a 2-edge to any tree-vertex except xT in H, then v does not have edges 
to any tree-vertex in H except xT .

Proof. See Fig. 15 for an illustration. Suppose v has an edge in H to a tree-vertex xT1 �= xT . Note that vxT1 is not a 2-edge 
by assumption. Thus vxT1 is a 1-edge. We define the forest F ′ as F ′ := (F \ {u1}) ∪ {v} and F ′ := G[F ′]. We claim that F ′
is a forest with fewer trees than F , which is a contradiction to the choice of F . (Recall that out of all maximum induced 
forests, we picked F to be one having the fewest number of trees). Since v has at most one edge to any tree in G[F \ {u1}], 
it is clear that F ′ is indeed a forest. The number of trees in F ′ is at least one smaller than that of F because {u2, v}∪ V (T1)

induces a single tree in F ′ . �
Lemma 23. Let xT be a vertex on which Coloring Rule 11 is being applied. Let v1, v2, y, w be as defined in Coloring Rule 11.

1. v1 has no edge in H to any tree-vertex except xT (which also implies that y is a non-tree-vertex), and
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Fig. 16. An illustration of the transformation in the proof of Lemma 25. (a) The initial scenario before transformation, and (b) the transformation to the 
new forest F ′ as described in the proof where T and T ′ are removed and a new tree including u4, u2, v1, v2 is added, thereby reducing the number of 
trees.

2. if w v2 is a 1-edge, vertex v2 has no edge in H to any tree-vertex except xT (which also implies that w is a non-tree-vertex in this 
case).

Proof. The first statement follows from Lemmas 20, and 22 and the fact that v1 y is a 1-edge, and the second statement 
follows from Lemmas 21 and 22. �
Lemma 24. Let xT be a vertex on which Coloring Rule 11 is being applied and suppose the precondition of Case 1 of the rule is not 
satisfied. Let v2 and w be as defined in Coloring Rule 11. Then, w v2 is a 2-edge.

Proof. Suppose for the sake of contradiction that w v2 is a 1-edge. Let v1, u1, u2 be also as given in Coloring Rule 11 (see 
Fig. 11). Let F ′ = (F \ {u1} ∪ {v1, v2}). Let F ′ = G[F ′]. To see that F ′ is a forest, observe that by Lemma 23, both v1 and v2
are not adjacent in H to any tree-vertex except xT . Then since |F ′| > |F |, we have that F is not a maximum induced forest, 
a contradiction. �
Lemma 25. Let xT be a vertex on which Coloring Rule 11 is being applied and suppose the precondition of Case 1 of the rule is not 
satisfied. Let T ′ be as defined in Coloring Rule 11 (see Fig. 11b). Then, xT ′ is not a vertex on which Coloring Rule 10 was applied.

Proof. Suppose for the sake of contradiction that Coloring Rule 10 was applied on xT ′ . Then xT ′ has degree 2 in B1 and T ′
consists of a single edge. Let this edge be u3u4 (see Fig. 16a). Observe that the representatives of the outgoing edge of xT ′
are u3 v2 and u4 v2. Let F ′ := (F \ {u1, u3} ∪ {v1, v2}) and F ′ := G[F ′]. Note that |F ′| = |F |. We claim that F ′ is a forest with 
fewer trees than F , thereby showing a contradiction to the choice of F . (Recall that out of all maximum induced forests, 
we picked F to be one having the fewest number of trees). To see that F ′ is indeed a forest, observe that v1 does not 
have an edge to any tree-vertex in H except xT (by Lemma 23), v1 and v2 are not adjacent in G (since the precondition of 
Case 1 of Rule 11 is not satisfied), and that v2 does not have an edge in H to any tree-vertex in B1 except xT and xT ′ (by 
Lemma 21). It is clear from construction that F ′ has at least one tree less than F , which concludes the proof. �

Thus we have proved the Lemmas that we used in Coloring Rule 11.
By the end of Coloring Rule 11, we have colored the representatives of all edges in B1. We may have also colored some 

additional edges of G that are not in B1, namely the shortcut edges (during Coloring Rule 11). We next show that the 
vertices in B1 are now rainbow connected through these colored edges.
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Lemma 26. For any pair of vertices v1, v2 ∈ V (G) \ L S , Pab is a rainbow path between v1 and v2 in G and uses only colors in [ f ].

Proof. There are no more incomplete tree-vertices because Coloring Rule 11 is applicable on each incomplete tree-vertex 
and each tree-vertex on which the rule is applied is completed during the rule. This means there are no uncolored 2-edges 
in B1. Also, Coloring Rule 2 colors all 1-edges in B1. Thus, each edge in B1, and hence their representatives in G , have been 
colored.

Whenever an edge in B1 is colored by a coloring rule and if it is in Q ab , we have added exactly one of its representatives 
to Pab in the proceeding path rule, except possibly Path Rule 11 where we might have added a shortcut edge instead. In the 
case when a shortcut edge is added, the shortcut edge shortcuts the two consecutive edges in Q ab whose representatives 
were not added to Pab and hence the path is not broken.

Also, whenever a tree T has two edges of Pab incident on it, we have added the path between the endpoints of the 
edges in the tree to Pab . And, whenever a tree T with a ∈ V (T ) has one edge of Pab incident on it, we have added the path 
between the endpoints of the edge and a in the tree to Pab . Similarly, whenever a tree T with b ∈ V (T ) has one edge of 
Pab incident on it, we have added the path between the endpoints of the edge and b in the tree to Pab . If there is a tree T
with a, b ∈ V (T ) we added the path between the endpoints of a and b in the tree to Pab during Path Rule 1. It follows that 
Pab is indeed a path between a and b in G . Since Invariant 1 holds, we know that Pab is a rainbow path. Since we have 
used only the colors from 1 to f so far, the lemma follows. �

So, now we only need to worry about how to rainbow connect vertices in L S between themselves and to the other 
vertices. For this, we give the following coloring rule.

Coloring Rule 12. For each v ∈ L S , let e be the unique 2-edge incident on v which exists by Lemma 1. Color (e)1 with g1 = f + 1 and 
(e)2 with g2 = f + 2. (Recall that g1 and g2 are the global surplus colors).

Now, we complete the proof of the main theorem.

Proof of Theorem 1. Consider any pair of vertices a1, a2 ∈ V (G). If a1 ∈ L S , let e1 be the edge incident on a1 that is colored 
with g1, and let a be the other end of e1. If a1 /∈ L S , let a = a1. If a2 ∈ L S , let e2 be the edge incident on a2 that is colored 
with g2, and let b be the other end of e2. If a2 /∈ L S , let b = a2. We know there is a rainbow path Pab from a to b that uses 
only colors in [ f ] due to Lemma 26. We define path P as follows. If a1, a2 ∈ L S , then P := a1aPabba2. If a1 ∈ L S but a2 /∈ L S , 
then P := a1aPab . If a2 ∈ L S but a1 /∈ L S , then P := Pabba2. If a1, a2 /∈ L S , then P := Pab . It is clear from the construction that 
P is a path between a1 and a2. Since edge a1a is colored with g1 = f + 1, edge ba2 is colored with g2 = f + 2, and path 
Pab uses only colors in [ f ], the path P is indeed a rainbow path. �
3. Conclusions

We gave an upper bound of f(G) + 2 on rc(G), strengthening the intuition that tree-like and dominating structures are 
helpful in rainbow-connecting graphs. Our bound is tight up to an additive factor of 3 as shown by any tree. The question 
remains whether the bound can be improved to f (G) − 1 so that the bound is tight even with respect to additive factors. 
Also, then the bound would be a strict improvement over the bound n − 1 obtained by coloring the edges of a spanning 
tree in distinct colors. From our insight developed during the current work, we conjecture such a slightly stronger bound.

Conjecture 1. A connected graph G has rc(G) ≤ f(G) − 1.

We expect that proving this conjecture requires further extensive case analysis. Further, we note that Lauri [12] pro-
posed the following stronger version of the above conjecture, discovered using the automated conjecture-making software 
GraPHedron [16].

Conjecture 2 ([12]). A connected graph G has src(G) ≤ f(G) − 1.

Another interesting direction is to discover other graph parameters that yield tight bounds on the rainbow connection 
number of general graphs or of particular graph classes.
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