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Abstract

A matching M in a graph G is acyclic if the subgraph of G induced by the set of vertices that

are incident to an edge in M is a forest. We prove that every graph with n vertices, maximum

degree at most ∆, and no isolated vertex, has an acyclic matching of size at least (1− o(1)) 6n

∆2 , and

we explain how to find such an acyclic matching in polynomial time.
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1 Introduction

We consider simple, finite, and undirected graphs, and use standard terminology. LetM be a matching

in a graph G, and let H be the subgraph of G induced by the set of vertices that are incident to an

edge in M . If H is a forest, then M is an acyclic matching in G [7], and, if H is 1-regular, then M is

an induced matching in G [14]. If ν(G), νac(G), and νs(G) denote the largest size of a matching, an

acyclic matching, and an induced matching in G, respectively, then, since every induced matching is

acyclic, we have

ν(G) ≥ νac(G) ≥ νs(G).

In contrast to the matching number ν(G), which is a well known classical tractable graph parame-

ter, both, the acyclic matching number νac(G) as well as the induced matching number νs(G) are

computationally hard [3, 7, 13, 14]. While induced matchings have been studied in great detail, see,

in particular, [8–11] for lower bounds on νs(G) for graphs G of bounded maximum degree as well as

the references therein, only few results are known on the acyclic matching number. While the equal-

ity ν(G) = νs(G) can be decided efficiently for a given graph G [2, 12], it is NP-complete to decide

whether ν(G) = νac(G) for a given bipartite graph G of maximum degree at most 4 [6], and efficient

algorithms computing the acyclic matching number are known only for certain graph classes [1,4,6,13].

It is known [1] that νac(G) ≥ m
∆2 for a graph G with m edges and maximum degree ∆, which was

improved [5] to m
6 for connected subcubic graphs G of order at least 7. Since, for every ∆-regular

graph G with m edges, a simple edge counting argument implies νac(G) ≤ m−1
2(∆−1) , the constructive

proofs of these bounds yield an efficient ∆2

2(∆−1) -factor approximation algorithm for ∆-regular graphs,

and an efficient 3
2 -factor approximation algorithm for cubic graphs for the maximum acyclic matching

problem.

In the present paper we show a lower bound on the acyclic matching number of a graph G with

n vertices, maximum degree ∆, and no isolated vertex, which is inspired by a result of Joos [9] who

proved

νs(G) ≥ n
(

⌊∆2 ⌋+ 1
) (

⌈∆2 ⌉+ 1
) (1)

provided that ∆ ≥ 1000. (1) is tight for the graph that arises by attaching ⌊∆2 ⌋ new vertices of degree

1 to every vertex of a complete graph of order ⌈∆2 ⌉+ 1. In view of these graphs, we conjectured [4,5]

that twice the right hand side of (1) should be the right lower bound on the acyclic matching number

of the considered graphs for sufficiently large ∆, that is, we believe that our following main result can

be improved by a factor of roughly 4
3 .

Theorem 1. If G is a graph with n vertices, maximum degree at most ∆, and no isolated vertex, then

νac(G) ≥ 6n

∆2 + 12∆
3

2

.

Note that, for graphs that are close to ∆-regular, the bound νac(G) ≥ m
∆2 is stronger than Theorem

1. We prove Theorem 1 in the next section. In the conclusion we discuss algorithmic aspects of its

proof and possible generalizations to so-called degenerate matchings [1].
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2 Proof of Theorem 1

We prove the theorem by contradiction. Therefore, suppose that G is a counterexample of minimum

order. Clearly, G is connected. If ∆ = 1, then G is K2, and, hence, νac(G) = n
2 . If ∆ = 2, then G is

a path or a cycle, which implies νac(G) ≥ n−2
2 . These observations imply ∆ ≥ 3. At several points

within the proof we consider an acyclic matching M in G, and we consistently use

• VM to denote the set of vertices of G that are incident to an edge in M ,

• NM to denote the set of vertices in V (G) \ VM that have a neighbor in VM ,

• GM to denote the graph G− (VM ∪NM ),

• IM to denote the set of isolated vertices of GM , and

• G′
M to denote the graph GM − IM .

Since G′
M is no counterexample, and the union of M with any acyclic matching in G′

M is an acyclic

matching in G, we obtain

6n

∆2 + 12∆
3

2

> νac(G) ≥ |M |+ 6(n − |VM ∪NM ∪ IM |)
∆2 + 12∆

3

2

,

which implies

|VM |+ |NM |+ |IM | >
(

∆2

6
+ 2∆

3

2

)

|M |. (2)

Claim 1. For every edge uv in G, we have dG(u) + dG(v) > 2
√
∆.

Proof. Suppose, for a contradiction, that dG(u)+dG(v) ≤ 2
√
∆ for some edge uv of G. For M = {uv},

we obtain |VM |+ |NM |+ |IM | ≤ 2 +
(

2
√
∆− 2

)

+
(

2
√
∆− 2

)

(∆− 1) ≤ 2∆
3

2 , contradicting (2).

Let S be the set of vertices of degree at most
√
∆. By Claim 1, the set S is independent.

Claim 2. S is not empty.

Proof. Suppose, for a contradiction, that the minimum degree δ of G is larger than
√
∆. Let uv be

an edge of G such that u is of minimum degree. Let M = {uv}. Since every vertex in IM has degree

at least δ, we have

|VM |+ |NM |+ |IM | ≤ 2 + (∆ + δ − 2) +
(∆ + δ − 2)(∆ − 1)

δ
≤ (∆ + δ)2

δ
.

If ∆ = 3, then δ is 2 or 3, and in both cases 2+ (∆+ δ− 2)+ (∆+δ−2)(∆−1)
δ

is less than the right hand

side of (2), contradicting (2). For ∆ ≥ 4, we obtain that (∆+δ)2

δ
≤ (∆+

√
∆)

2

√
∆

is less than the right hand

side of (2). Hence, also in this case, we obtain a contradiction (2).

Let N be the set of vertices that have a neighbor in S, and, for a vertex v in G, let dS(v) be the

number of neighbors of v in S. Since S is independent, the sets S and N are disjoint.

Claim 3. max{dS(v) : v ∈ V (G)} = α∆ for some α with 0.2 ≤ α ≤ 0.8.

In other words, we have dS(v) ≤ 0.8∆ for every vertex v of G, and dS(v) ≥ 0.2∆ for some vertex

v of G.
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Proof. Let the vertex v maximize dS(v). Suppose, for a contradiction, that dS(v) = α∆ for some α

with either α < 0.2 or α > 0.8. Let u be a neighbor of v of minimum degree. By Claim 2, we have

dS(v) ≥ 1, which implies dG(u) ≤
√
∆. Let M = {uv}. Clearly,

|VM |+ |NM | ≤
√
∆+∆.

Let I1 be the set of vertices in IM that have a neighbor in NG(u)∪ (NG(v)∩S), let I2 = (IM \ I1)∩S,

and let I3 = IM \ (I1 ∪ I2).

We obtain

|I1| ≤ (∆− 1)(dG(u)− 1) +
(√

∆− 1
)

|NG(v) ∩ S|

≤ (∆− 1)
(√

∆− 1
)

+
(√

∆− 1
)

α∆

≤ (1 + α)∆
3

2 −
(√

∆+∆
)

.

Let N ′ = NG(v) \ (NG(u) ∪ S). Note that |N ′| ≤ (1 − α)∆, and that the vertices in I2 ∪ I3 have all

their neighbors in N ′. By the choice of v, every vertex in N ′ has at most α∆ neighbors in S, which

implies

|I2| ≤ α∆|N ′| ≤ α(1− α)∆2.

Since there are at most ∆|N ′| edges between N ′ and I3, and every vertex in I3 has degree more than√
∆, we obtain

|I3| <
∆|N ′|√

∆
≤ (1− α)∆

3

2 .

Altogether, we obtain

|VM |+ |NM |+ |IM | ≤
√
∆+∆+ (1 + α)∆

3

2 −
(√

∆+∆
)

+ α(1 − α)∆2 + (1− α)∆
3

2

= α(1 − α)∆2 + 2∆
3

2

≤ 0.16∆2 + 2∆
3

2 ,

contradicting (2).

Note that, so far in the proof of each claim, we had |M | = 1, and iteratively applying the corre-

sponding reductions would eventually lead to an induced matching in G similarly as in [9]. In order

to improve (1), we now choose M non-locally in some sense: Let M be an acyclic matching in G such

that

(i) M only contains edges incident to a vertex in S,

(ii) every vertex in VM ∩ S has degree one in the subgraph of G induced by VM ,

(iii) every vertex v in VM ∩N satisfies dS(v) ≥ 0.2∆, and

M maximizes

∑

v∈VM∩N

dS(v). (3)

among all acyclic matchings satisfying (i), (ii), and (iii). By Claim 3, the matching M is non-empty.

We now define certain relevant sets, see Figure 1 for an illustration.
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• Let X be the set of vertices in NM that are not adjacent to a vertex in VM ∩ S and that have

at least one neighbor in S that is not adjacent to a vertex in VM .

(Note that X ⊆ N , and that the edges between vertices in X and suitable neighbors in S are

possible candidates for modifying M .)

• Let Y be the set of vertices in NM \X that are not adjacent to a vertex in VM ∩ S.

(Note that Y contains NM \N = (NM ∩ S) ∪ (NM \ (S ∪N)).)

• Let Z = (N ∩NM ) \ (X ∪ Y ).

(Note that Z consists of the vertices in NM that have a neighbor in VM ∩ S.)

• Let I1 be the set of vertices in IM ∩ S that have a neighbor in NM \X.

(Note that, by the definition of X, no vertex in I1 can have a neighbor in Y ∩N , which implies

that every vertex in I1 has a neighbor in Z.)

• Let I2 be the set of vertices in IM \ S that have a neighbor in Z.

• Let I3 be the set of vertices in IM ∩ S that only have neighbors in X.

(Note that I1 ∪ I3 = IM ∩ S.)

• Finally, let I4 = IM \ (I1 ∪ I2 ∪ I3).

I1

I3

X

I2

I4

Y

M

NM

S N

Figure 1: An illustration of the different relevant sets.

Clearly,

|VM |+ |NM | ≤
(√

∆+∆
)

|M |. (4)

Since every vertex in I1 ∪ I2 has a neighbor in Z, and every vertex in Z has a neighbor in VM ∩S, we

have

|I1 ∪ I2| ≤ (∆− 1)|Z| ≤ (∆− 1)
(√

∆− 1
)

|M | =
(

∆
3

2 −∆−
√
∆+ 1

)

|M |. (5)
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Since every vertex in I4 has degree more than
√
∆ and has all its neighbors in X ∪Y , and every vertex

in X ∪ Y has a neighbor in VM ∩N , we have

|I4| ≤
(∆ − 1)|X ∪ Y |√

∆
≤ (∆ − 1)2|M |√

∆
=

(

∆
3

2 − 2
√
∆+

1√
∆

)

|M |. (6)

Combining (4), (5), and (6), we obtain

|VM |+ |NM |+ |IM | − |I3| ≤ 2∆
3

2 . (7)

In order to estimate |I3|, we partition the set X as follows:

• Let X1 be the set of vertices v in X with dS(v) < 0.2∆,

• let X2 be the set of vertices in X \X1 with at least four neighbors in VM , and

• let X3 = X \ (X1 ∪X2).

For a vertex v in VM ∩N , let d3(v) be the number of neighbors of v in X3.

Claim 4. |I3| ≤ 0.2∆|X1|+ 0.8∆|X2|+ 2
3

∑

v∈VM∩N
dS(v)d3(v).

Proof. By Claim 3, we obtain that

|I3| ≤
∑

w∈X

dS(w) =
∑

w∈X1∪X2∪X3

dS(w) ≤ 0.2∆|X1|+ 0.8∆|X2|+
∑

w∈X3

dS(w).

Let w be a vertex in X3. By the definition of X, the vertex w has a neighbor u in S that is not

adjacent to a vertex in VM . If w has only one neighbor in VM , then M ∪ {wu} is an acyclic matching

satisfying (i), (ii), and (iii) that has a larger value in (3), contradicting the choice of M . Hence, we

may assume that w has either k = 2 or k = 3 neighbors v1, . . . , vk in VM . Let u1v1, . . . , ukvk be edges

in M , and suppose that dS(v1) ≤ . . . ≤ dS(vk). Since

M ′ = (M ∪ {wu}) \ {u1v1, . . . , uk−1vk−1}

is an acyclic matching satisfying (i), (ii), and (iii), the choice of M implies that the value of M ′ in (3)

is at most the one of M , which implies

dS(w) ≤
k−1
∑

i=1

dS(vi) ≤
k − 1

k

k
∑

i=1

dS(vi) ≤
2

3

k
∑

i=1

dS(vi).

Now, we obtain

∑

w∈X3

dS(w) ≤
2

3

∑

w∈X3

∑

v∈VM∩N∩NG(w)

dS(v) =
2

3

∑

v∈VM∩N

d3(v)dS(v),

which completes the proof.

For a vertex v in VM ∩N , let d1(v) be the number of neighbors of v in X1 ∪X2. By property (iii),

we have dS(v) ≥ 0.2∆, which implies that d1(v) ≤ 0.8∆. Using Claim 4, xy ≤ (x+y)2

4 for x, y ≥ 0, and
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dS(v) + d1(v) + d3(v) ≤ ∆ and d1(v)
2 ≤ 0.8∆d1(v) for v ∈ VM ∩N , we obtain

|I3| ≤ 0.2∆|X1|+ 0.8∆|X2|+
2

3

∑

v∈VM∩N

dS(v)d3(v)

≤ 0.2∆(|X1|+ 4|X2|) +
1

6

∑

v∈VM∩N

(dS(v) + d3(v))
2

≤ 0.2∆
∑

v∈VM∩N

d1(v) +
1

6

∑

v∈VM∩N

(∆ − d1(v))
2

=
∆2

6
|M |+∆

(

1

5
− 1

3

)

∑

v∈VM∩N

d1(v) +
1

6

∑

v∈VM∩N

d1(v)
2

≤ ∆2

6
|M |+∆

(

2

15
− 2

15

)

∑

v∈VM∩N

d1(v)

=
∆2

6
|M |,

and together with (7), we obtain a final contradiction to (2) completing the proof. �

3 Conclusion

While the choice of M after Claim 3 in the proof is non-constructive, the proof of Theorem 1 easily

yields an efficient algorithm that returns an acyclic matching in a given input graph G as considered

in Theorem 1 with size at least 6n

∆2+12∆
3

2

. If the statements of Claims 1, 2, or 3 fail, then their

proofs contain simple reduction rules, each fixing one edge in the final acyclic matching and producing

a strictly smaller instance G′
M . Adding that fixed edge to the output on the instance G′

M yields

the desired acyclic matching. The matching M chosen after Claim 3 can be initialized as any acyclic

matching satisfying (i), (ii), and (iii). If Claim 4 fails, then its proof contains simple update procedures

that increase the value in (3). Since this value is integral and polynomially bounded, after polynomially

many updates the statement of Claim 4 holds, and adding M to the output on the instance G′
M yields

the desired acyclic matching.

The acyclic matchings M produced by the proof of Theorem 1 actually have a special structure

because the subgraph H of G induced by the set of vertices that are incident to an edge in M is not

just any forest but a so-called corona of a forest, that is, every vertex v of H of degree at least 2 in H

has a unique neighbor u of degree 1 in H, and all the edges uv form M .

As a generalization of acyclic matchings, [1] introduced the notion of a k-degenerate matching as

a matching M in a graph G such that the subgraph H of G defined as above is k-degenerate. If the

k-degenerate matching number νk(G) of G denotes the largest size of a k-degenerate matching in G,

then ν1(G) coincides with the acyclic matching number. We conjecture that

νk(G) ≥ (k + 1)n
(

⌊∆2 ⌋+ 1
) (

⌈∆2 ⌉+ 1
)

for every graph G with n vertices, sufficiently large maximum degree ∆, and no isolated vertex. A

7



straightforward adaptation of the proof of Theorem 1 yields

νk(G)

n
≥











(1− o(1))
4(k + 3)

3∆2
for k ∈ {2, 3, 4, 5, 6} and

(1− o(1))
k + 4

∆2
for k ≥ 7.

for these graphs G.
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