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Abstract

A matching M in a graph G is acyclic if the subgraph of GG induced by the set of vertices that
are incident to an edge in M is a forest. We prove that every graph with n vertices, maximum
degree at most A, and no isolated vertex, has an acyclic matching of size at least (1—o0(1))3%, and

we explain how to find such an acyclic matching in polynomial time.
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1 Introduction

We consider simple, finite, and undirected graphs, and use standard terminology. Let M be a matching
in a graph G, and let H be the subgraph of G induced by the set of vertices that are incident to an
edge in M. If H is a forest, then M is an acyclic matching in G [7], and, if H is 1-regular, then M is
an induced matching in G [14]. If v(G), v4(G), and vs(G) denote the largest size of a matching, an
acyclic matching, and an induced matching in G, respectively, then, since every induced matching is
acyclic, we have

V(GQ) > vae(G) > vs(G).

In contrast to the matching number v(G), which is a well known classical tractable graph parame-
ter, both, the acyclic matching number v,.(G) as well as the induced matching number vs(G) are
computationally hard [3,[7,[13,14]. While induced matchings have been studied in great detail, see,
in particular, [8-I1] for lower bounds on v4(G) for graphs G of bounded maximum degree as well as
the references therein, only few results are known on the acyclic matching number. While the equal-
ity v(G) = vs(G) can be decided efficiently for a given graph G [2,[12], it is NP-complete to decide
whether v(G) = v,4.(G) for a given bipartite graph G of maximum degree at most 4 [6], and efficient
algorithms computing the acyclic matching number are known only for certain graph classes [11J4,6L13].
It is known [I] that v4.(G) > Rz for a graph G' with m edges and maximum degree A, which was

improved [5] to 7 for connected subcubic graphs G of order at least 7. Since, for every A-regular

graph G with m edges, a simple edge counting argument implies v4.(G) < 2(72—111), the constructive
proofs of these bounds yield an efficient A2 factor approximation algorithm for A-regular graphs,

2(A-1)
and an efficient %—faetor approximation algorithm for cubic graphs for the maximum acyclic matching

problem.
In the present paper we show a lower bound on the acyclic matching number of a graph G with
n vertices, maximum degree A, and no isolated vertex, which is inspired by a result of Joos [9] who

proved
n

(12]+1)(721+1)

provided that A > 1000. () is tight for the graph that arises by attaching L%J new vertices of degree

1 to every vertex of a complete graph of order [§] + 1. In view of these graphs, we conjectured [4,5]

vs(G) > (1)

that twice the right hand side of (I]) should be the right lower bound on the acyclic matching number
of the considered graphs for sufficiently large A, that is, we believe that our following main result can

be improved by a factor of roughly %.

Theorem 1. If G is a graph with n vertices, maximum degree at most A, and no isolated vertex, then

6n

Vee(G) > ————.
A2 +12A3

Note that, for graphs that are close to A-regular, the bound v4.(G) > X3 is stronger than Theorem
[l We prove Theorem [ in the next section. In the conclusion we discuss algorithmic aspects of its

proof and possible generalizations to so-called degenerate matchings [1].



2 Proof of Theorem [

We prove the theorem by contradiction. Therefore, suppose that G is a counterexample of minimum

order. Clearly, G is connected. If A =1, then G is K», and, hence, v4.(G) = §. If A =2, then G is
n—2

a path or a cycle, which implies v4.(G) > "5=. These observations imply A > 3. At several points
within the proof we consider an acyclic matching M in G, and we consistently use

e Vs to denote the set of vertices of G that are incident to an edge in M,

e Ny to denote the set of vertices in V(G) \ Vis that have a neighbor in Vjy,

e Gy to denote the graph G — (Vi U Nypy),

e I); to denote the set of isolated vertices of Gy, and

e G, to denote the graph Gy — Iy

Since G, is no counterexample, and the union of M with any acyclic matching in G’); is an acyclic

matching in G, we obtain

6 6(n—|Vayy UNpUIT
7n3>7/ac(G)Z|M|+ (n— |V M3 M)
A2 +12A2 A2 +12A2
which implies
A2 3
Varl + | Nag| + [ Iar] > F+2A2 |M]|. (2)

Claim 1. For every edge uv in G, we have dg(u) + dg(v) > 2VA.

Proof. Suppose, for a contradiction, that dg(u)+dg(v) < 2v/A for some edge uv of G. For M = {uv},
we obtain |Vs| + |[Naf| + [In| < 2+ (2\/Z - 2) + (2\/Z - 2) (A-1)< 2A%, contradicting (). O

Let S be the set of vertices of degree at most v/A. By Claim [ the set S is independent.

Claim 2. S is not empty.

Proof. Suppose, for a contradiction, that the minimum degree ¢ of G is larger than v/A. Let uv be
an edge of G such that u is of minimum degree. Let M = {uv}. Since every vertex in I, has degree

at least §, we have

(A+5-2)(A—1)

(A +6)?
5 .

0

Vil + INm| + [T <2+ (A+6—2) + <

If A =3, then § is 2 or 3, and in both cases 2+ (A +d§—2) + % is less than the right hand

2
side of (@), contradicting (2]). For A > 4, we obtain that (AJgé)Q < (AJ:/\%Z) is less than the right hand
side of (2]). Hence, also in this case, we obtain a contradiction (2]). O

Let N be the set of vertices that have a neighbor in S, and, for a vertex v in G, let dg(v) be the

number of neighbors of v in S. Since S is independent, the sets S and N are disjoint.

Claim 3. max{ds(v) : v € V(G)} = aA for some o with 0.2 < a < 0.8.
In other words, we have dg(v) < 0.8A for every vertex v of G, and dg(v) > 0.2A for some vertex
v of G.



Proof. Let the vertex v maximize dg(v). Suppose, for a contradiction, that dg(v) = aA for some «
with either o < 0.2 or @ > 0.8. Let u be a neighbor of v of minimum degree. By Claim 2, we have
dg(v) > 1, which implies dg(u) < VA. Let M = {uv}. Clearly,

IVar| + | Nas| < VA + A.

Let I be the set of vertices in ) that have a neighbor in Ng(u) U (Ng(v)NS), let Io = (Ipr \ 1) NS,
and let Is = Iy \ (Il U IQ)
We obtain

IN

Ll < (A-Dda(w) -1+ (VA-1) [Ne() NS
(Aa-1)(Va-1)+(VA-1)aa

< (1+a)ad - (VA+4).

IN

Let N’ = Ng(v) \ (Ng(u) US). Note that |N'| < (1 — «)A, and that the vertices in Iy U I3 have all
their neighbors in N’. By the choice of v, every vertex in N’ has at most aA neighbors in S, which
implies

|| < aA|N'| < a1 — o)A

Since there are at most A|N ! | edges between N " and I3, and every vertex in I3 has degree more than

VA, we obtain

A|N'|
VA

(MY

’Ig‘ <

< (1—-a)Az.

Altogether, we obtain

[Vl + | Na| + [ L]

IN

VA+A+(1+a)A% = (VA+A) +a(l —a)A? + (1 - a)A?
a(l — a)A2 4 2A3
< 0.16A2 +2A3,

contradicting (2)). O

Note that, so far in the proof of each claim, we had |M| = 1, and iteratively applying the corre-
sponding reductions would eventually lead to an induced matching in G similarly as in [9]. In order
to improve (II), we now choose M non-locally in some sense: Let M be an acyclic matching in G such
that

(i) M only contains edges incident to a vertex in S,
(ii) every vertex in Viy NS has degree one in the subgraph of G induced by Vyy,

(iii) every vertex v in Viy N N satisfies dg(v) > 0.2A, and

M maximizes

Z ds(v). (3)

veVy NN

among all acyclic matchings satisfying (i), (ii), and (iii). By Claim B the matching M is non-empty.

We now define certain relevant sets, see Figure [1 for an illustration.



Let X be the set of vertices in Nj; that are not adjacent to a vertex in Vi NS and that have

at least one neighbor in S that is not adjacent to a vertex in V).

(Note that X C N, and that the edges between vertices in X and suitable neighbors in S are
possible candidates for modifying M .)

Let Y be the set of vertices in Njs \ X that are not adjacent to a vertex in V3 N S.
(Note that Y contains Ny \ N = (Nayr NS)U (Nag \ (SUN)).)

Let Z=(NNNy)\ (XUY).

(Note that Z consists of the vertices in Nys that have a neighbor in Vyr N S.)

Let I; be the set of vertices in Iy NS that have a neighbor in Ny \ X.

(Note that, by the definition of X, no vertex in I can have a neighbor in' Y N N, which implies

that every vertex in Iy has a neighbor in Z.)
Let I3 be the set of vertices in I; \ S that have a neighbor in Z.

Let I3 be the set of vertices in Ip; N S that only have neighbors in X.
(Note that Iy Ul3 =IpNS.)

Finally, let Iy = I \ (Il Ul U Ig)

M o ] °
1

@
©

Figure 1: An illustration of the different relevant sets.

Clearly,

Vil + [Nyl < (VA+4) (6], )

Since every vertex in I1 U I3 has a neighbor in Z, and every vertex in Z has a neighbor in V3 NS, we

have

I UL| < (A—1)|Z] < (A-1) (\/Z—1> M| = (A% —A—\/Z+1> M. (5)

ot



Since every vertex in I has degree more than v/A and has all its neighbors in X UY, and every vertex
in X UY has a neighbor in Vjy N N, we have

A-DIXUY|[ _(A-12M| _ (2 1
A < T _<A 2\/Z+\/Z>|M|. (6)

Combining ), (@), and (@), we obtain

|14] <

3
Vil + [Nyl + [In| — [Is] < 24z, (7)

In order to estimate |I3], we partition the set X as follows:
e Let X be the set of vertices v in X with dg(v) < 0.2A,
e let Xy be the set of vertices in X \ X; with at least four neighbors in Vj;, and
o let X3 =X\ (X1UXo).

For a vertex v in Viy NN, let d3(v) be the number of neighbors of v in X3.

Claim 4. |I3] < 02A|X1| +08A|Xa|+2 Y ds(v)ds(v).

veVy NN
Proof. By Claim [3, we obtain that
I3 < Y ds(w) = > dg(w) < 0.2A1X |+ 0.8A|Xo[ + > ds(w).
weX weX1UX2UX3 weX3

Let w be a vertex in X3. By the definition of X, the vertex w has a neighbor u in S that is not
adjacent to a vertex in Vjs. If w has only one neighbor in V), then M U {wu} is an acyclic matching
satisfying (i), (ii), and (iii) that has a larger value in (3)), contradicting the choice of M. Hence, we
may assume that w has either £k = 2 or k = 3 neighbors vy, ..., v, in Vyy. Let ujvy, ..., upvr be edges
in M, and suppose that dg(vy) < ... < dg(vg). Since

M' = (M U{wu}) \ {ugvy, ..., up_1v5_1}

is an acyclic matching satisfying (i), (ii), and (iii), the choice of M implies that the value of M’ in (3))

is at most the one of M, which implies

k-1 Pk o K
d <) ds(v) < —— ) ds(v;)) < 5 ) ds(vy).
s(w)_; s(vi) < — ;s(v) 3; s(vi)

Now, we obtain

Z ds(w) < ; Z Z ds(v) = g Z ds(v)dg(v),

we X3 weEX3 veVyNNNNg(w) veVy NN
which completes the proof. O

For a vertex v in Vjy NN, let dj(v) be the number of neighbors of v in X7 U X5. By property (iii),
we have dg(v) > 0.2A, which implies that d;(v) < 0.8A. Using Claim [ zy < % for x,y > 0, and



ds(v) + di(v) + d3(v) < A and dy(v)? < 0.8Ad;(v) for v € Vjy N N, we obtain

2
T3] < 028X + 08A|Xz| + 5 D ds(v)ds(v)

veVy NN
1
< 02A(1X0 | + 4 X)) + ¢ > (ds(v) +ds(v)?
veVy NN
1
<02A > di(v) + ¢ > (A= dy(v)
veVy NN veVy NN
A? 1 1 1 5
:?|M|+A<5_§> > di(v) + ¢ > di(v)
veVy NN veVy NN
A? 2 2
< M|+A (= - = d
<5 M+ (15 15> >, @)
veVy NN

A2
:F’ML

and together with (7)), we obtain a final contradiction to (2)) completing the proof. O

3 Conclusion

While the choice of M after Claim Bl in the proof is non-constructive, the proof of Theorem [ easily
yields an efficient algorithm that returns an acyclic matching in a given input graph G as considered
in Theorem [l with size at least m. If the statements of Claims [I Bl or Bl fail, then their
proofs contain simple reduction rules, each fixing one edge in the final acyclic matching and producing
a strictly smaller instance G',;. Adding that fixed edge to the output on the instance G, yields
the desired acyclic matching. The matching M chosen after Claim Bl can be initialized as any acyclic
matching satisfying (i), (ii), and (iii). If Claim[@ fails, then its proof contains simple update procedures
that increase the value in ([B]). Since this value is integral and polynomially bounded, after polynomially
many updates the statement of Claim @l holds, and adding M to the output on the instance Gy, yields
the desired acyclic matching.

The acyclic matchings M produced by the proof of Theorem [ actually have a special structure
because the subgraph H of G induced by the set of vertices that are incident to an edge in M is not
just any forest but a so-called corona of a forest, that is, every vertex v of H of degree at least 2 in H
has a unique neighbor u of degree 1 in H, and all the edges uv form M.

As a generalization of acyclic matchings, [I] introduced the notion of a k-degenerate matching as
a matching M in a graph G such that the subgraph H of G defined as above is k-degenerate. If the
k-degenerate matching number v (G) of G denotes the largest size of a k-degenerate matching in G,

then v1(G) coincides with the acyclic matching number. We conjecture that

(k+1)n
) 2 BT ) (13T )

for every graph G with n vertices, sufficiently large maximum degree A, and no isolated vertex. A




straightforward adaptation of the proof of Theorem [ yields

4(k + 3)

v (G) (1—o(1))=gzg— for k€ {2.3,4,5,6} and
" (1- 0(1))’“;4 for k> 7.

for these graphs G.
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