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FINITE EXCEPTIONAL GROUPS OF LIE TYPE AND SYMMETRIC

DESIGNS

SEYED HASSAN ALAVI, MOHSEN BAYAT, AND ASHARF DANESHKHAH

Abstract. In this article, we study symmetric (v, k, λ) designs admitting a flag-transitive
and point-primitive automorphism group G whose socle X is a finite simple exceptional
group of Lie type. We prove a reduction theorem, severely restricting the possible pa-
rameters of such designs. We also prove that the parameters k and λ are not coprime,
and neither of these parameters can be prime. Moreover, if λ is at most 100, we show
that there are two such parameters sets, namely, (351, 126, 45) and (378, 117, 36) for
G = X = G2(3). Our analysis depends heavily on detailed information about actions of
finite exceptional almost simple groups of Lie type on the cosets of their large maximal
subgroups. In particular, properties derived in the paper about large subgroups and the
subdegrees of such actions may be of independent interest.

1. Introduction

A symmetric (v, k, λ) design is an incidence structure D = (P,B) consisting of a set P
of v points and a set B of v blocks such that every point is incident with exactly k blocks,
and every pair of blocks is incident with exactly λ points. If 2 < k < v−1, then D is called
a nontrivial symmetric design. A flag of D is an incident pair (α,B), where α and B are
a point and a block of D, respectively. An automorphism of a symmetric design D is a
permutation of the points permuting the blocks and preserving the incidence relation. An
automorphism group G of D is called flag-transitive if it is transitive on the set of flags of
D. If G acts primitively on the point set P, then G is said to be point-primitive. We also
adopt the standard Lie notation for groups of Lie type as in [17, 29], for more definitions
and notation see Subsection 1.2 below.

A series of interesting results on flag-transitive automorphism groups of symmetric
designs suggests investigating symmetric designs admitting point-primitive automorphism
groups whose socle X is a non-abelian finite simple group, see for example [10, 58, 64]. In
this direction, possible symmetric designs (up to isomorphism) have been studied when
X is Aǫ

n(q) with n 6 4 [1, 5, 6, 7, 19, 20], 2B2(q),
2G2(q),

2F4(q),
3D4(q) [60] or a sporadic

simple group [59]. This paper is devoted to studying symmetric designs admitting a flag-
transitive and point-primitive almost simple automorphism group G whose socle is a finite
simple exceptional group of Lie type, and our main result is the following theorem.

Theorem 1.1. Let D = (P,B) be a nontrivial symmetric (v, k, λ) design with λ > 1
admitting a flag-transitive and point-primitive automorphism group G. Let also H := Gα

with α ∈ P. If G is an almost simple group with socle X a finite simple exceptional group
of Lie type, then one of the following holds:

(a) X = G2(q), H ∩ X = [̂q5] : GL2(q) is a parabolic subgroup, v = (q6 − 1)/(q − 1),
k = q5 and λ = q4(q − 1);

(b) X = G2(q), H ∩ X = SLǫ
3(q) : 2 with ǫ = ±, v = q3(q3 + ǫ1)/2, k = q3(q3 − ǫ1)/6,

and λ = q3(q3 − ǫ3)/18, where q = 3a > 3;
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(c) X = E6(q) with q = pa, H ∩X = [̂q16] : D5(q) · (q − 1) is a parabolic subgroup, and
v = (q8+q4+1)(q9−1)/(q−1), k = m ·w(q)+1 and λ = q−1(q4+1)−1(m2 ·w(q)+m),

where w(q) = q3 +
∑11

i=0 q
i and m < q(q4 + 1).

In Section 2, we provide some examples of symmetric designs whose automorphism
groups are related to finite simple exceptional group of Lie types. In particular, for small q,
we know that the designs in part (a) and part (b) of Theorem 1.1 do exist and these designs
are flag-transitive and point-primitive, see Table 2. Although our further computational
evidence shows that the designs with parameters set in part (c) of Theorem 1.1 do not
exist, our method introduced in Subsection 6.1 does not work to rule out this case, and
so based on our further observations, we would like to propose the following conjecture:

Conjecture 1.2. If a nontrivial symmetric design D admits a flag-transitive and point-
primitive automorphism group whose socle X is a finite simple exceptional group of Lie
type with point-stabiliser H, then D has parameters set as in part (a) or part (b) of
Theorem 1.1, X = G2(q) and H ∩X is either SLǫ

3(q) : 2 with q = 3a > 3 and ǫ = ±, or
[̂q5] : GL2(q).

A historical problem of determining block designs with their replication numbers r
being coprime to λ and admitting flag-transitive automorphism groups G reduces to the
case where G is a primitive group of almost simple or affine type [64]. As an important
contribution to this problem, we apply Theorem 1.1 and prove in Corollary 1.3 below that
an almost simple automorphism group G with socle a finite simple exceptional group of
Lie type does not give rise to a symmetric (v, k, λ) design with gcd(k, λ) = 1. It is worth
noting that at the present time we know all possible flag-transitive automorphism groups
G of (symmetric) designs with gcd(r, λ) = 1 excluding the case where G 6 AΓL1(q),
see [9, 4, 12, 11, 13]. We moreover prove in Corollary 1.3 that symmetric designs with
k or λ prime cannot admit a flag-transitive and point-primitive automorphism groups
whose socle is a finite simple exceptional group of Lie type. In general, flag-transitive and
point-primitive almost simple automorphism groups of (symmetric) designs with prime
replication numbers or prime λ have been studied, see [2, 3].

Corollary 1.3. If D is a nontrivial symmetric (v, k, λ) design admitting a flag-transitive
and point-primitive automorphism group whose socle is a finite simple exceptional group
of Lie type, then k and λ are not coprime. Moreover, neither k, nor λ is prime.

We note here that if the socle X of G is a finite classical simple group, then the pa-
rameters k and λ can be coprime, for example, the Fano plane is a symmetric (7, 3, 1)
design with flag-transitive and point-primitive automorphism group A1(7), and the simple
groups C2(3) and A3(4) are flag-transitive and point-primitive automorphism groups of
symmetric designs with parameters (40, 13, 4) and (85, 21, 5), respectively, see [14].

Symmetric designs with λ small have been of most interest. Kantor [28] classifies flag-
transitive symmetric (v, k, 1) designs (projective planes). Regueiro [51], Zhou and Dong
[24] give a complete classification of biplanes (λ = 2) and triplanes (λ = 3) with flag-
transitive automorphism groups apart from those admitting a 1-dimensional affine auto-
morphism group, see also [52, 53, 62, 63] and therein references. Note that for λ 6 3,
there is no flag-transitive and point-primitive nontrivial symmetric design D whose auto-
morphism group is an almost simple group with socle a finite simple exceptional group of
Lie type [53, 54, 63]. As another consequence of Theorem 1.1, we show that there are only
two unique such designs for λ 6 100.

Corollary 1.4. Let D be a nontrivial symmetric (v, k, λ) design with λ 6 100. Then G is
a flag-transitive and point-primitive automorphism group of D with socle X a finite simple
exceptional group of Lie type if and only if G = X = G2(3), H ∩ X = SLǫ

3(3) : 2 for
ǫ = ± and D exists and is as in line 3 or 4 of Table 2 and has parameters (351, 126, 45)
or (378, 117, 36) respectively for ǫ = − or ǫ = +.
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In addition to some interesting constructions and examples given in Section 2, the
designs associated to G2(q) for q = 2, 3, 4 in Table 2 have a beautiful geometric description
and can be linked to a Cayley algebra. For example, in the case where G = G2(3), the
point-stabilisers SLǫ

3(q) : 2 are stabilisers of plus or minus points of the “mod 3 Cayley
algebra” and in each case, the point-stabilisers and block-stabilisers are interchanged by
an outer automorphism of G2(3) implying that the designs are self-dual. Therefore, we
have the following question:

Question 1.5. Suppose that D is a symmetric design with a point-primitive and flag-
transitive subgroup G of automorphisms which is an almost simple exceptional group of
Lie type. Is it true that G is of type G2 and D is some kind of design on a Cayley algebra?

In the process of proving Theorem 1.1, we also prove the following result, Theorem 1.6,
on large maximal subgroups of almost simple groups with socle a finite simple exceptional
group of Lie type, which we believe is of independent interest. In fact, the point-stabiliser
H of a flag-transitive automorphism group G of a rank 2 geometry must be a large sub-
group, that is to say, |G| 6 |H|3. Moreover, if G is point-primitive, then the subgroup H
is also a maximal subgroup of G. Alavi and Burness [8] study the large subgroups of finite
simple groups. We here study large maximal subgroups of almost simple groups G whose
socle X is a finite simple exceptional group of Lie type, and then we apply this result to
prove our main Theorem 1.1.

Theorem 1.6. Let G be a finite almost simple group whose socle X is a finite simple
exceptional group of Lie type, and let H be a maximal subgroup of G not containing X.
If H is a large subgroup of G, then H is either parabolic, or one of the subgroups listed in
Table 1.

1.1. Outline of proofs. We prove Theorem 1.1 and Corollaries 1.3-1.4 in Section 6.
The symmetric designs with λ 6 3 and automorphism groups satisfying the conditions
in Theorem 1.1 have been studied in [53, 54, 63], and so we may assume that λ > 4.
Since the group G is point-primitive, the point-stabiliser H is maximal in G, and flag-
transitivity implies that H is large, see Corollary 3.6. We now apply Theorem 1.6 and
analyse each possible case. In order to avoid repetition, we describe our method in details
in Subsection 6.1 and the required information are given in Table 11. However, in some
cases, in addition to applying our explained method in Subsection 6.1, we need some
extra argument which will be separately discussed. As a key tool, we frequently apply
Lemma 3.5. We also use several important results proved in Section 4 on subdegrees
of groups under discussion acting on the right cosets of their maximal subgroups, see
Theorem 4.1 and Proposition 4.3. We moreover use GAP [25], and apply Lemmas 3.7 and
Lemma 3.7 and Remark 3.8 for computational arguments.

In order to prove Theorem 1.6 in Section 5, we use the same method as in [8]. Note
that [8, Theorem 7] allows us only to find large maximal subgroups H of G satisfying
|H ∩ X|3 < |X| 6 b2 · |H ∩ X|3, where b is a divisor of |Out(X)|, see Remark 5.2. The
maximal subgroups of the low-rank groups have been determined, so the proof in these
cases is an easy exercise. For the remaining groups, our starting point here is a reduction
theorem of Liebeck and Seitz [42, Theorem 2], which essentially allows us to reduce to
the case where H is almost simple, with socle H0, say. At this point there are two
possibilities, which we consider separately. Write Lie(p) for the set of simple groups of Lie
type in characteristic p, and suppose G ∈ Lie(p) has untwisted Lie rank n. If H0 ∈ Lie(p)
has untwisted Lie rank r, then the possibilities with r > n/2 are given by Liebeck and
Seitz [47], but more work is needed to determine the large subgroups with r 6 n/2 (an
upper bound on |H| given in [48, Theorem 1.2] is useful here). Finally, if H0 6∈ Lie(p),
then the possibilities for H are determined in [44], and it is straightforward to read off the
large examples.
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Table 1. Large maximal non-parabolic subgroups H of almost simple
groups G with socle X a finite simple exceptional group of Lie type.

X H ∩X or type of H Conditions

2B2(q) (q = 22n+1 > 8) (q +
√
2q + 1):4 q = 8, 32

2B2(q
1/3) q > 8, 3 | 2n + 1

2G2(q) (q = 32n+1 > 27) A1(q)
2G2(q

1/3) 3 | 2n + 1
3D4(q) A1(q

3)A1(q), (q
2 + ǫ1q + 1)Aǫ

2(q), G2(q) ǫ = ±
3D4(q

1/2) q square

72 : SL2(3) q = 2
2F4(q) (q = 22n+1 > 8) 2B2(q) ≀ 2, B2(q) : 2,

2F4(q
1/3)

SU3(q) : 2, PGU3(q) : 2 q = 8

A2(3):2, A1(25), Alt6 · 22, 52:4Alt4 q = 2

G2(q) Aǫ
2(q), A1(q)

2, G2(q
1/r) r = 2, 3

2G2(q) q = 3a, a is odd

G2(2) q = 5, 7

A1(13), J2 q = 4

J1 q = 11

23.A2(2) q = 3, 5

F4(q) B4(q), D4(q),
3D4(q)

F4(q
1/r) r = 2, 3

A1(q)C3(q) p 6= 2

C4(q), C2(q
2), C2(q)

2 p = 2
2F4(q) q = 22n+1 > 2
3D4(2) q = 3

Alt9−10, A3(3), J2 q = 2

A1(q)G2(q) q > 3 odd

Sym6 ≀ Sym2, F4(2) q = 2

Eǫ
6(q) A1(q)A

ǫ
5(q), F4(q)

(q − ǫ)Dǫ
5(q) ǫ = −

C4(q) p 6= 2

E±
6 (q

1/2) ǫ = +

Eǫ
6(q

1/3)

(q − ǫ)2.D4(q) (ǫ, q) 6= (+, 2)

(q2 + ǫq + 1).3D4(q) (ǫ, q) 6= (−, 2)

J3, Alt12, B3(3), Fi22 (ǫ, q) = (−, 2)

E7(q) (q − ǫ)Eǫ
6(q), A1(q)D6(q), A

ǫ
7(q), A1(q)F4(q), E7(q

1/r) ǫ = ± and r = 2, 3

Fi22 q = 2

E8(q) A1(q)E7(q), D8(q), A
ǫ
2(q)E

ǫ
6(q), E8(q

1/r) ǫ = ± and r = 2, 3

1.2. Definitions and notation. Throughout this paper, all groups and incidence struc-
tures are finite. We here write Altn and Symn for the alternating group and the symmetric
group on n letters, respectively, and we denote by [n] a group of order n. We also adopt
the standard Lie notation for groups of Lie type, for example, we write An−1(q) and
A−

n−1(q) in place of PSLn(q) and PSUn(q), respectively, D
−
n (q) instead of PΩ−

2n(q), and

E−
6 (q) for

2E6(q). We may also assume q > 2 if G = G2(q) since G2(2) is not simple and
G2(2)

′ ∼= A−
2 (3). Moreover, we view the Tits group 2F4(2)

′ as a sporadic group. A group
G is said to be almost simple with socle X if X EG 6 Aut(X) where X is a nonabelian
simple group.
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Table 2. The parameters when X = G2(q) for q = 2, 3, 4.

Line v k λ G X H ∩X Comments References

1 36 15 6 G2(2) G2(2)
′ SL3(2) Menon design [14, 21]

2 63 32 16 G2(2) G2(2)
′ 4:S4 Menon design [14]

3 351 126 45 G2(3) G2(3) SL−

3 (3):2 Orthogonal design [14, 21]

4 378 117 36 G2(3) G2(3) SL3(3):2 Orthogonal design [14, 21]

5 1365 1024 768 G2(4) G2(4) 22+8:GL2(4) Complement of PG5(4) [14]

6 1365 1024 768 G2(4):2 G2(4) 22+8:GL2(4):2 Complement of PG5(4) [14]

Note: The last column references a construction of the corresponding design. The group
G2(2) is not simple.

Recall that a symmetric (v, k, λ) design is an incidence structure D = (P,B) consisting
of a set P of v points and a set B of v blocks such that every point is incident with exactly k
blocks, and every pair of blocks is incident with exactly λ points. If 2 < k < v− 1, then D
is called a nontrivial symmetric design. A flag of D is an incident pair (α,B), where α and
B are a point and a block of D, respectively. An automorphism of a symmetric design D
is a permutation of the points permuting the blocks and preserving the incidence relation.
An automorphism group G of D is called flag-transitive if it is transitive on the set of
flags of D. If G acts primitively on the point set P, then G is said to be point-primitive.
Further notation and definitions in both design theory and group theory are standard and
can be found, for example, in [17, 23, 29, 34].

2. Examples and comments

In this section, we provide some well-known examples of symmetric designs admitting
point-primitive automorphism groups. We also make some relevant comments on Theo-
rem 1.1 and Corollary 1.4.

In Table 2, we give some examples of the symmetric designs which arise from the study of
primitive permutation groups of small degrees, see [14, 21]. Although the group G = G2(2)
(lines 1-2) is not a simple group, it is point-primitive automorphism group of symmetric
(36, 15, 6) design which is one of the Menon designs. This design is antiflag-transitive
and its complement with parameters (36, 21, 12) is flag-transitive. The symmetric designs
admitting almost simple automorphism group with socle G2(3) and G2(4) (lines 3-6) can
be constructed in the following general manner. All designs in Table 2 do exist and are
flag-transitive.

The symmetric designs with parameters set in Theorem 1.1(a) are the complements of
symmetric designs with parameters set ((q6 − 1)/(q− 1), (q5 − 1)/(q− 1), (q4 − 1)/(q− 1))
for q = pa and p 6= 3, which is the parameters set of the well-known symmetric designs
D(H(q)∗) arose from generalized hexagons, see [22]. A generalized hexagon is a bipartite
graph H of diameter 6 and girth 12. We say that H is of order (s, t) if all vertices of one
partition class are of valency s+ 1, and vertices of the other partition class have valency
t+ 1. Let H = H(q) be a generalized hexagon of order (q, q). Then D(H) is a symmetric
((q6−1)/(q−1), (q5−1)/(q−1), (q4−1)/(q−1)) design with one partition class of vertices
of H as point set P, and blocks of the form α⊥ = {β ∈ P | d(α, β) 6 4} for α ∈ P. The
only known generalized hexagons of order (q, q) are H(q) associated with the Chevalley
group G2(q) and its dual hexagon H(q)∗. If q is odd, then D(H(q)) is isomorphic to
the orthogonal symmetric design of Higman with d = 5, and if q is even, then D(H(q))
is isomorphic to PG(5, q) for q = 3a and we have D(H(3a)∗) = D(H(3a)). For q = 2
and 4, we have the symmetric designs with parameters (63, 31, 15) and (1365, 341, 85)
and rank 4 antiflag-transitive point-primitive automorphism group Aut(G2(q)) [14, 22].
The corresponding complements of these symmetric designs with parameters (63, 32, 16)
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and (1365, 1024, 768) are flag-transitive and point-primitive. These designs arise from
Theorem 1.1(a).

The symmetric designs with parameters v = 3t(3t + ǫ1)/2, k = 3t−1(3t − ǫ1)/2 and
λ = 3t−1(3t−1 − 1)/2 for t > 1 and ǫ = ± can be related to the designs in Theorem 1.1(b).
These designs arise from a nondegenerate orthogonal space of dimension 2t+1 over a finite
field F3 with discriminant (−1)t. Two symmetric designs with parameters (351, 126, 45)
and (378, 117, 36) have been constructed in this way respectively for (t, ǫ) = (3,−) and
(3,+). These designs admit a flag-transitive automorphism group G2(3) of rank 3 and 4,
respectively, see [14].

3. Preliminaries

In this section, we state some useful facts in both design theory and group theory. The
first lemme is an elementary result on subgroups of almost simple groups.

Lemma 3.1. [1, Lemma 2.2] Let G be an almost simple group with socle X, and let H be
maximal in G not containing X. Then G = HX, and |H| divides |Out(X)| · |H ∩X|.
Lemma 3.2. Suppose that D is a symmetric (v, k, λ) design admitting a flag-transitive
and point-primitive almost simple automorphism group G with socle X of Lie type in
characteristic p. Suppose also that the point-stabiliser Gα, not containing X, is not a
parabolic subgroup of G. Then gcd(p, v − 1) = 1.

Proof. Note thatGα is maximal in G, then by Tits’ Lemma [55, 1.6], p divides |G : Gα| = v,
and so gcd(p, v − 1) = 1. �

If a group G acts on a set P and α ∈ P, the subdegrees of G are the size of orbits of the
action of the point-stabiliser Gα on P.

Lemma 3.3. [39, 3.9] If X is a group of Lie type in characteristic p, acting on the set
of cosets of a maximal parabolic subgroup, and X is not An−1(q), Dn(q) (with n odd) and
E6(q), then there is a unique subdegree which is a power of p.

Remark 3.4. We remark that even in the cases excluded in Lemma 3.3, many of the
maximal parabolic subgroups still have the property as asserted, see proof of [54, Lemma
2.6]. In particular, for an almost simple group G with socle X = E6(q), if G contains a
graph automorphism or H = Pi with i one of 2 and 4, then the conclusion of Lemma 3.3
is still true.

Lemma 3.5. [6, Lemma 2.1] Let D be a symmetric (v, k, λ) design, and let G be a flag-
transitive automorphism group of D. If α is a point in P and H := Gα, then v = |G : H|
and

(a) k(k − 1) = λ(v − 1);
(b) k | |H| and λv < k2;
(c) k | λd, for all nontrivial subdegrees d of G.

For a point-stabiliser H of an automorphism group G of a flag-transitive design D, by
Lemma 3.5(b), we conclude that λ|G| 6 |H|3, and so we have that

Corollary 3.6. Let D be a flag-transitive (v, k, λ) symmetric design with automorphism
group G. Then |G| 6 |Gα|3, where α is a point in D.

Lemma 3.7. Let D be a symmetric (v, k, λ) design with 2k 6 v admitting almost simple
flag-transitive automorphism group G with socle X and point-stabiliser H. Let mk = λd,
where d is a divisor of v − 1, for some positive integer m. Then the following properties
hold:

(a) m | (k − 1), and so gcd(m,k) = 1;
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(b) λ = λ1λ2, where λ1 = gcd(λ, k − 1) and λ2 = gcd(λ, k);
(c) If k1 := (k − 1)/λ1 and k2 := k/λ2, then k2 divides d. Moreover, λ1 divides m,

λ1 < k2/2, gcd(k1, k2) = 1 and gcd(λ1, k2) = 1.

Proof. (a) Since mk = λd divides λ(v − 1) and λ(v − 1) = k(k − 1), it follows that mk
divides k(k − 1), and so m is a divisor of k − 1, and hence m is coprime to k.

(b) This part follows immediately from part (a) and the fact that k(k − 1) = λ(v − 1).

(c) Note that λ1 is relatively prime to k2. Since mk = λd, it follows that k2m = λ1d, and
so k2 divides d and λ1 is a divisor of m. Since also λ < k, mk = λd implies that m < d,
moreover k2 6= 1. Note that k 6 v/2. Then λ1 = k(k−1)/λ2(v−1) 6 k2(v−2)/2(v−1) <
k2/2. The rest is obvious. �

Remark 3.8. To be precise how this algorithm works, let G be an almost simple group
with socle X a finite simple group of Lie type over a finite field of size q = pa. Let also
H be a maximal subgroup of G. Then v := |G : H|, and so following our arguments
in sections below, in particular, following Steps 1-6 in Subsection 6.1, at some stage, we
obtain some precise possible values for the parameter v for some specific q = pa, see
for example Table 11. In these cases, we can obtain z := |Out(X)| · |H ∩ X|, and then
compute the greatest common divisor d of v−1 and z. The input of the algorithm is a list
of possible (v, d, z), and, for each divisors k2 6= 1 of d, we can find k1 = (v− 1)/k2, and for
each λ1 6 k2/2, we obtain k = 1 + λ1k1, and then λ = k(k − 1)/(v − 1). We finally check
if the parameters (v, k, λ) satisfy the conditions in Lemma 3.5, and hence the output is a
list of all possible parameters (v, k, λ).

Algorithm 1: An algorithm based on Lemmas 3.5 and 3.7

Data: A list L1 of given parameters (v, d, z) defined in Remark 3.8
Result: A list L consits of possible parameters (v, k, λ)
L := [ ];
for (v, d, z) in L1 do

L2 := DivisorsInt(d) \ {1};
for k2 in L2 do

k1 := (v − 1)/k2;

λ1 := 0;

while λ1 6 k2/2 do
λ1 := λ1 + 1;

k := 1 + (λ1k1);

λ :=
k(k − 1)

(v − 1)
;

λ2 :=
k

k2
;

if IsInt(
z

k
) and IsInt(λ) and IsInt(λ2) and λ < k and k 6

[v

2

]

then

Add (L, [v, k, λ]);

end

end

end

end
return L

4. Some subdegrees of finite exceptional groups of Lie type

In this section, we prove Theorem 4.1, shown to us by Martin Liebeck. This will be
useful in reducing the cases we have to consider in the proof of Theorem 1.1.
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Theorem 4.1. Let G be an almost simple group with socle X = X(q) an exceptional
group of Lie type, and let H be a maximal subgroup of G as in Table 3. Then the action
of G on the cosets of H has subdegrees dividing |H : K|, where K is the subgroup of H
listed in the third column of Table 3.

Table 3. Some subdegrees of finite exceptional Lie type groups.

X H0 K Conditions

E8(q) A1(q)E7(q) A1(q)A1(q)D6(q)

E8(q) A1(q)E7(q) Eǫ
6(q) ǫ = ±

E7(q) A1(q)D6(q) Aǫ
5(q) ǫ = ±

E7(q) Aǫ
7(q) D4(q) q odd

E7(q) Aǫ
7(q) C4(q) q > 2 even

E7(q) Eǫ
6(q)T

ǫ
1 F4(q) (q, ǫ) 6= (2,−)

E7(q) Eǫ
6(q)T

ǫ
1 Dǫ

5(q) (q, ǫ) 6= (2,−)

Eǫ
6(q) A1(q)A

ǫ
5(q) Aǫ

2(q)A
ǫ
2(q)

Eǫ
6(q) A1(q)A

ǫ
5(q) A2(q

2)

Eǫ
6(q) Dǫ

5T
ǫ
1 D4(q)

Eǫ
6(q) Dǫ

5T
ǫ
1 Aǫ

4(q) (q, ǫ) 6= (2,−)

Eǫ
6(q) C4 C2(q)C2(q) q odd

Eǫ
6(q) C4 Aδ

3(q) q odd, δ = ±
F4(q) D4(q) G2(q) q > 2

F4(q) D4(q) Aǫ
3(q) ǫ = ±, (q, ǫ) 6= (2,−)

F4(q)
3D4(q) G2(q) q > 2

F4(q)
3D4(q) Aǫ

2(q) ǫ = ±

Remark 4.2. We offer some comments on the notation used in Table 3. In all but one
case, H is a subgroup of maximal rank in G, in the sense of [40], and in column 2 of the
table, for notational convenience we give a normal subgroup H0 of very small index in
H; the precise structure of H can be found in [40, Table 5.1]. In the exceptional case,
X = Eǫ

6(q) and H0 = C4(q): here q is odd and H ∩X ∼= PSp8(q)·2, the centralizer of a
graph automorphism of X (see for example [26, 4.5.1]). The subgroup K listed in column
3 is a central product of the indicated factors. In the table we have used Lie notation
for conciseness. Most, but not all, of the quasisimple factors of H0 and K are of simply
connected type. For example the first entry A1(q)A1(q)D6(q) in column 3 is a central
product of simply connected groups SL2(q), SL2(q) and Spin+12(q); we have chosen not to
give such precise information in the table to keep the notation concise, and also because
we do not need it in our application of the theorem. Also, T ǫ

1 denotes a rank 1 torus of
order q− ǫ. As a final comment, note that for the entry Aδ

3(q) in column 3, δ = ± for both
possible values of ǫ.

Proof of Theorem 4.1 For all but one entry in Table 3, we show that

NH(K) 6= NG(K). (4.1)

Then picking an element g ∈ NG(K) \ K, we have K ≤ H ∩ Hg, so that |H : H ∩ Hg|
divides |H : K|, giving the result. The exceptional entry in Table 3 is (X,H0,K) =
(Eǫ

6(q), C4(q), C2(q)C2(q)) which we shall deal with by a separate argument below.
In proving (4.1) we shall frequently use information about maximal rank subgroups of

exceptional groups, to be found mostly in [40, Table 5.1].
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Consider first X = E8(q), H0 = A1(q)E7(q). When K = A1(q)A1(q)D6(q), the two
factors A1(q) are interchanged by an element of a maximal rank subgroupD8(q) containing
K; since such an element cannot lie in H, this establishes (4.1) for this case. When
K = Eǫ

6(q), this subgroup K is centralized by a subgroup Aǫ
2(q) of X, and this is not

contained in H.
Next consider X = E7(q). For H0 = A1(q)D6(q), a subgroup K = Aǫ

5(q) is centralized
by a subgroup Aǫ

2(q) of X, not contained in H. Now let H0 = Aǫ
7(q). For q odd, let K be

a subgroup D4(q) of H. Then NG(K) induces a group S3 of graph automorphisms of K
(see [16, 2.15]), and this is not in H. And for q even, a subgroup C4(q) of H centralizes a
group of order q in X (see [43, 4.1]), and this can only lie in H when q = 2. Finally, let
H0 = Eǫ

6(q)T
ǫ
1 . A subgroup K = F4(q) of H is centralized in X by A1(q) (see [43, 4.1]),

which for (q, ǫ) 6= (2,−) does not lie in H; the same goes for a subgroup K = Dǫ
5(q) of H.

Now consider X = Eǫ
6(q). For H0 = A1(q)A

ǫ
5(q), the two subgroups K in Table 3

are centralized in X by a group A±
2 (q) that does not lie in H (see [40, Table 5.1]). For

H0 = Dǫ
5(q)T

ǫ
1 , a subgroup K = D4(q) satisfies (4.1), since NG(K) induces a group S3

of graph automorphisms of K that does not lie in H; and a subgroup K = Aǫ
4(q) is

centralized in X by A1(q) which does not lie in H for (q, ǫ) 6= (2,−).
Finally, suppose H0 = C4(q) (continuing with X = Eǫ

6(q)). A subgroup Aδ
3(q) of H is

centralized in X by a group A1(q) not lying in H. Now suppose K = C2(q)C2(q), still
with H0 = C4(q). Here we do not prove (4.1), but establish Theorem 4.1 by a different
argument as follows. There is an involution t ∈ H such that K ≤ CH(t). Also there is
an involution u in the coset of a graph automorphism of X, such that H = CX(u). The
restriction of the adjoint module L(E6) ↓ C4 = L(C4) + W (λ4), where the latter term
is the Weyl module of high weight λ4 (see [56, p.193]). Restricting this to K, we can
compute the eigenvalues of t, u and tu on L(E6), and we find that tu has fixed point space
of dimension 36. Hence CX(tu) = C4(q) and tu is X-conjugate to u. Picking x ∈ X such
that ux = tu, we then have H ∩ Hx = CX(u, tu) = CH(t) ≥ K, and so the subdegree
|H : H ∩Hx| divides |H : K|, as required.

It remains to consider X = F4(q). For H0 = D4(q), subgroups G2(q) and Aǫ
3(q) both

have centralizer in X containing A1(q) (see [43, 4.1]), and this is not contained in H for
q > 2 (the G2 case) and for (q, ǫ) 6= (2,−) (the Aǫ

3 case). Similarly, for H0 = 3D4(q),
subgroups G2(q), A

ǫ
2(q) have centralizer in X containing A1(q), A

ǫ
2(q) respectively, and

these do not lie in H (provided q > 2 in the G2 case). This completes the proof of Theorem
4.1.

Proposition 4.3. Let X = G2(q) (q = pa, p prime) and let H ∼= SL3(q)·2 be a maximal
subgroup of X. Then the subdegrees of X acting on the cosets of H are

q2(q3 − 1) (multiplicity 1
2(q − 3 + δp,2))

1
2q

2(q3 − 1) (multiplicity 1− δp,2)

(q3 − 1)(q2 − 1) (multiplicity 1)

2(q3 − 1) (multiplicity 1).

Proof. This is almost completely proved in [37, 6.8]. Let T = Ω7(q) acting on the cosets of
Tα = N+

1 , the stabilizer of a hyperplane of O7(q)-space of type O+
6 . Then X = G2(q) < T

and X ∩ Tα = H, so the action under consideration in Proposition 4.3 is contained in
the above action of T . Lemma 6.8 of [37] gives the subdegrees of T , and shows that
H is transitive on all but one of these suborbits, the exception being a suborbit of size
(q3 − 1)(q2 + 1). For q odd, if we let V = V7(q) be the underlying orthogonal space with
quadratic form Q, and α = 〈v〉 is the 1-space fixed by Tα = N+

1 , with Q(v) = 1, then the
proof of [37, 6.8] shows that the suborbit of size (q3 − 1)(q2 + 1) in question is

∆ = {〈v + w〉 : w ∈ v⊥, Q(w) = 0}.
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The action of Tα on ∆ is that of N+
1 on the set of nonzero singular vectors in the O+

6 (q)-
space v⊥, and it is straightforward to see that the subgroup H = SL3(q).2 has two orbits
on these, of sizes 2(q3 − 1) and (q3 − 1)(q2 − 1), as in the conclusion of the proposition.

For q even, the proof of [36, Proposition 1] again enables us to identify the suborbit ∆
on which H acts intransitively with the set of nonzero singular vectors in O+

6 (q)-space,
and again the orbits of H on these are as in the conclusion. This completes the proof. �

5. Large maximal subgroups of finite exceptional groups of Lie type

Recall that a proper subgroup H of G is said to be large if the order of H satisfies the
bound |G| 6 |H|3. In this section, we prove Theorem 1.6. Here we apply the same method
as in [8]. We will assume G is a finite almost simple group with socle an exceptional group
of Lie type. Note that the order of G is given in [29, Table 5.1.B]. We first observe the
following elementary lemma:

Lemma 5.1. Let G be a finite almost simple group with socle a non-abelian simple group
X, and let H be a maximal subgroup of G not containing X. Then H is a large subgroup
of G if and only if |X| 6 b2|H ∩X|3, where b = |G|/|X| divides |Out(X)|.
Proof. Let H be a maximal large subgroup of G and b = |G|/|X|. Since |H| = b · |H ∩X|
and |G| = b · |X|, it follows that |X| 6 b2 · |H ∩ X|3. Conversely, let b = |G|/|X| and
|X| 6 b2 · |H ∩ X|3. Note that |X| = |G|/b and |H| = b · |H ∩ X|. Thus H is a large
subgroup of G. �

Remark 5.2. By Lemma 5.1, to determine the large maximal subgroups H of G, we need
to verify

|X| 6 b2 · |H ∩X|3, (5.1)

where b | |Out(X)|. It is worth noting that such subgroups satisfying |X| 6 |H ∩X|3 have
been determined in [8, Theorem 7] and we use the same approach as in [8, Theorem 7] to
prove Theorem 1.6.

Proposition 5.3. The conclusion of Theorem 1.6 holds when X is one of the groups
Eǫ

6(2), F4(2),
2F4(q),

3D4(q), G2(q),
2G2(q) and

2B2(q).

Proof. In each of these cases, the maximal subgroups of G have been determined and the
relevant references are listed below (also see [61, Chapter 4]). Note that the list of maximal
subgroups of E−

6 (2) presented in the Atlas [17] is complete (see [27, p.304]).

G Eǫ
6(2) F4(2)

2F4(q)
3D4(q) G2(q)

2G2(q)
2B2(q)

Ref. [17, 32] [50] [49] [31] [18, 30] [30, p. 61] [57]

It is now straightforward to verify Theorem 1.6 for these groups. In particular, we note
that every maximal parabolic subgroup of G is large. �

Let us now turn our attention to the remaining cases:

F4(q), E
ǫ
6(q), E7(q), E8(q),

where ǫ = ±1, q = pa and p is a prime (and q > 2 if X = Eǫ
6(q) or F4(q)).

Let G be a simple adjoint algebraic group of exceptional type over an algebraically
closed field K of characteristic p > 0, and let σ be a surjective endomorphism of G such
that X = Op′(Gσ) is a finite simple group of Lie type. Let G be a finite almost simple
group with socle X, where X is an exceptional group of Lie type and let H be a maximal
subgroup of G, not containing X. Let also H0 := Soc(H ∩ X). Denote by Altn and
Symn, the alternating and symmetric groups of degree n, respectively. We will apply the
following reduction theorem of Liebeck and Seitz, see [45].
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Theorem 5.4. Let X = Op′(Gσ) be a finite exceptional group of Lie type, let G be a group
such that X 6 G 6 Aut(X), and let H be a maximal non-parabolic subgroup of G. Then
one of the following holds:

(i) H = NG(M̄σ), where M̄ is a σ-stable closed subgroup of positive dimension in G.
The possibilities are obtained in [40, 46].

(a) H is reductive of maximal rank (as listed in Table 5.1 in [40], see also [46]).
(b) G = E7, p > 2 and H = (22 × PΩ8(q) · 22) · Sym3 or 3D4(q).3.
(c) G = E8, p > 5 and H = PGL2(q)× Sym5.
(d) H = M̄σ with H0 = Soc(H) as in Table 4 below.

(ii) H is an exotic local subgroup recorded in [16, Table 1].
(iii) G = E8, p > 5 and H = (Alt5 ×Alt6).2

2.
(iv) H is of the same type as G over a subfield of Fq of prime index.
(v) H is almost simple, and not of type (i) or (iv).

Table 4. Possibilities for H0 in Theorem 5.4(i)(d).

X H0 Conditions

F4(q) A1(q)×G2(q) p > 2, q > 3

Eǫ
6(q) A2(q)×G2(q)

A−

2 (q)×G2(q) q > 2

E7(q) A1(q)×A1(q) p > 3

A1(q)×G2(q) p > 2, q > 3

A1(q)× F4(q) q > 3

G2(q)× C3(q)

E8(q) A1(q)×Aǫ
1(q) p > 3

A1(q)×G2(q)×G2(q) p > 2, q > 3

G2(q)× F4(q) q > 3

A1(q)×G2(q
2) p > 2, q > 3

Remark 5.5. Suppose that H is almost simple with socle H0, as in part (v) of Theorem
5.4. Then

(a) If H0 6∈ Lie(p) then the possibilities for H0 have been determined up to isomor-
phism, see [44, Tables 10.1–10.4].

(b) If H0 ∈ Lie(p) and rk(H0) > 1
2 rk(G) with q = pa > 2. Then by applying [41,

Theorem 3], G = Eǫ
6(q) and H0 = C4(q) (q odd) or H0 = F4(q).

(c) If H0 ∈ Lie(p) and rk(H0) 6 1
2rk(G), then |H| 6 12aq56, 4aq30, 4aq28 or 4aq20

accordingly as G = E8, E7, E
ǫ
6 or F4, see [48, Theorem 1.2]. Moreover, if H0

is defined over Fs for some p-power s, then one of the following holds (see [35,
Theorem 2] for the values of u(G) in part (3)):
(1) s 6 9;

(2) H0 = Aǫ
2(16);

(3) H0 ∈ {A1(s),
2B2(s),

2G2(s)} and s 6 (2, p − 1) · u(G), where u(G) is defined
as follows:

G G2 F4 E6 E7 E8

u(G) 12 68 124 388 1312

In what follows, we consider possible maximal subgroups H of the almost simple group
G with socle X a finite simple exceptional group, and determine whether or not (5.1)
holds.
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Proposition 5.6. Let H be a maximal non-parabolic subgroup of X = F4(q) with q =
pa > 2. Then H is large if and only if H is of type B4(q), D4(q),

3D4(q), A1(q)C3(q)
(p 6= 2), C4(q) (p = 2), C2(q)

2, C2(q
2) (p = 2), A1(q)G2(q),

2F4(q) (q = 2a, a odd),
F4(q0) with q = qr0 for r = 2, 3, or 3D4(2) (q = 3).

Proof. By Theorem 5.4, H is of one of the types (i)–(v). We note that H is non-large if
|H| < q16. So we restrict our attention to the case where |H| > q16. Here we need only to
deal with the subgroups satisfying (5.1).

Suppose H is of type (i). Here M̄ is listed in [46]. If H is of maximal rank, then the
possibilities for H can be read off from [40, Table 5.1]. It is now straightforward to check
that the only possibilities for H is A1(q)C3(q) with q odd, C4(q), C2(q)

2 and C2(q
2) with

p = 2, B4(q), D4(q) and 3D4(q). If the socle H0 of H is A1(q) × G2(q) with p > 2 and
q > 3 (see Table 4), then by [8, Theorem 5], we must have G 6= X.

Clearly H is not of type (iii). Suppose now H is of type (ii). Then H is too small to

be large. Let now H be of type (iv), then (5.1) holds only for F4(q
1

r ) with r = 2, 3. Note
that the latter case may occur when G 6= X.

Suppose H is of type (v). Then H is almost simple but not of type (i) and (iv). Let
H0 denote the socle of H. If H0 6∈ Lie(p) then the possibilities for H are recorded in [44,
Tables 10.1–10.4], and it is easy to check that no large examples arise if q > 3. However,
if q = 3 then H0 = 3D4(2) is a possibility for X = F4(3). Now assume H0 ∈ Lie(p) and
r = rk(H0) 6 2. Here [48, Theorem 1.2] gives |H| < 4aq20, so some additional work is
required. There are several cases to consider.

Write q = pa and H0 = Xǫ
r(s), where s = pb. First assume H0 = A2(s), so q16 6

|H| < s10 and thus b/a > 16/10. By considering the primitive prime divisor p3b of |H| we
deduce that b/a ∈ {4, 2, 8/3}. The case b/a = 4 is ruled out in the proof of [48, Theorem
1.2], and Remark 5.5(c) rules out the case b/a = 8/3. Therefore H0 = A2(q

2) is the only
possibility, and we calculate that |H|3 < |G| unless q = 4 and H = Aut(A2(16)). Similarly,
if H0 = A−

2 (s) then H is large if and only if q = 4 and H = Aut(A−
2 (16)). However, A

ǫ
2(16)

is not a subgroup of F4(4), see proof of [8, Lemma 5.7].
Next assume H0 = C2(s). Here b/a > 17/11 since |H| < s11, and by considering p4b

we deduce that b/a ∈ {2, 3}. The case b/a = 3 is eliminated in the proof of [48, Theorem
1.2], so we can assume H0 = C2(q

2). As noted in Remark 5.5(ii), such a subgroup is
non-maximal if q > 3, so let us assume q = 3. Note by [8, Lemma 5.7] that H0 = C2(9) is
not a subgroup of G = F4(3). The case H0 = B2(s) is in a similar manner. Finally, the
remaining possibilities for H0 can be ruled out in the usual manner. �

Proposition 5.7. Let H be a maximal non-parabolic subgroup of G = Eǫ
6(q), where q > 2.

Then H is large if and only if H is of type (q − ǫ)Dǫ
5(q) (ǫ = −), A1(q)A

ǫ
5(q), F4(q),

(q−ǫ)2.D4(q), (q
2+ǫq+1).3D4(q), C4(q) (p 6= 2), Eδ

6(q0) with q = qr0 for (ǫ, δ, r) = (+,+, 2),
(+,+, 3), (+,−, 2), (−,−, 3).

Proof. If |H| 6 q24, then |H|3 < |G|, so in this case we may assume that |H| > q24. We
now apply Theorem 5.4.

If H is of type (i), then by [40, Table 5.1], we have that H = NG(M̄σ), where M̄ = T1D5,
A1A5, T2D4.S3. If H is of type (ii) then H = 36.SL3(3) (with p > 5) is the only possibility,
and H is non-large. Case (iii) does not apply here. Now assume H is a subfield subgroup
of type Eδ

6(q0) with q = qr0, then it is easy to see that q = qr0 for (ǫ, δ, r) = (+,+, 2),
(+,+, 3), (+,−, 2), (−,−, 3).

Finally, let us assume H is almost simple and not of type (i) or (iv). Let H0 denote the
socle of H. First assume H0 6∈ Lie(p). Here the possibilities for H0 can be read off from
[44, Tables 10.1–10.4] and it is straightforward to check that no large subgroups of this
type arise. If H0 ∈ Lie(p) and rk(H0) > 3, the subgroups of type F4 and C4 (p 6= 2) are
large. Therefore, to complete the proof of the lemma we may assume that H0 ∈ Lie(p)
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and rk(H0) 6 3. Here [48, Theorem 1.2(iii)] gives |H| 6 4q28 logp q, so some additional
work is required.

We proceed as in the proof of [48, Theorem 1.2], using the method described in [38,

Step 3, p.310]. Write q = pa and H0 = Xǫ′
r (s), where r = rk(H0) and s = pb. We consider

the various possibilities for Xr (with r 6 3) in turn. Recall that if c > 2 and d > 3 are
integers (and (c, d) 6= (2, 6)), then cd denotes the largest primitive prime divisor of cd − 1.
Here we may assume by [15, Lemma .13] that |H| 6 q32.

To illustrate the general approach, consider the case H0 = A3(s) with ǫ = +. Here
q24 < |H| 6 |Aut(H0)| < s17, and thus b/a > 25/17. Now p4b divides |H|, and thus |G|,
so 4b divides one of the numbers 6a, 8a, 9a, 12a, whence b/a ∈ {3, 9/4, 2, 3/2}. Moreover,
since p3b divides |G| (note that (p, b) 6= (2, 2) since we are assuming that q > 2) we deduce
that b/a ∈ {3, 2, 3/2}. However, H0 6= A3(q

2) by the proof of [48, Theorem 1.2], and we

have |H| < q24 if H0 = A3(q
3/2), and |H| > q32 if H0 = A3(q

3). This eliminates the case
where H0 = A3(s). By the same manner, the other cases do not give rise to any large
subgroups, see also proof of [8, Lemma 5.6]. �

Proposition 5.8. Let H be a maximal non-parabolic subgroup of G = E7(q). Then H is
large if and only if H is of type (q− ǫ)Eǫ

6(q), A1(q)D6(q), A
ǫ
7(q), A1(q)F4(q), E7(q0) with

q = qr0 for r = 2, 3, or Fi22 for q = 2.

Proof. We proceed as in the proof of the previous proposition. If |H| < q43, then |H|3 <
|G|, so to complete the analysis of this case we may assume that |H| > q43. We now apply
Theorem 5.4.

By inspecting [46] and [16, Table 1], it is easy to check that the only examples of type
(i) are NG(M̄σ) with M̄ = T1E6.2, A1D6.2, A7.2 or A1F4. Next suppose H is a subfield
subgroup of type E7(q0) with q = qr0. If r > 5, then H is non-large. The cases (ii) and
(iii) do not arise.

To complete the analysis, let us assume H is almost simple, and not of type (i) or (iv).
Let H0 denote the socle of H. If H0 6∈ Lie(p) then by inspecting [44, Tables 10.1–10.4],
we deduce that H0 can be Fi22 for q = 2. Finally, we may assume H0 ∈ Lie(p) and
rk(H0) 6 3 (see Remark 5.5(ii)). Here [48, Theorem 1.2(ii)] states that |H| < 4q30 logp q,
and thus H is non-large. �

Proposition 5.9. Let H be a maximal non-parabolic subgroup of G = E8(q). Then H is
large if and only if H is of type A1(q)E7(q), D8(q), A

ǫ
2(q)E

ǫ
6(q) or E8(q0) with q = qr0 for

r = 2, 3.

Proof. Clearly, if |H| 6 q81, then H is non-large, so it remains to consider the maximal
subgroups H that satisfy the bounds |H| > q81. By Theorem 5.4, H is of type (i)–(v).

If H is of type (i) of maximal rank, then by [40, Table 5.1], the only possibilities for H
are D8(q), A1(q)E7(q) and Aǫ

2(q)E
ǫ
6(q). For other cases in type (i), |H| is in the desired

range (5.1). The possibilities in (ii) are recorded in [16, Table 1]; either |H| = 215|SL5(2)|,
or |H| = 53|SL3(5)| (both with q odd). In both cases, H is non-large. Clearly, we can
eliminate subgroups of type (iii), and a straightforward calculation shows that a subfield
subgroup H = E8(q0) with q = qr0, r prime is large only if r = 2, 3.

Finally, let us assume H is almost simple, and not of type (i) or (iv). Let H0 denote
the socle of H, and recall that Lie(p) is the set of finite simple groups of Lie type in
characteristic p. First assume that H0 6∈ Lie(p), in which case the possibilities for H0

are listed in [44, Tables 10.1–10.4]. If H0 is an alternating or sporadic group then |H| 6
|Th| and thus H is non-large. Similarly, if H is a group of Lie type then we get |H| 6
|PGL4(5)|2, and again we deduce that H is non-large. Finally, suppose H0 ∈ Lie(p). By
Remark 5.5(c) we have rk(H0) 6 4, so |H| < 12q56 logp q by [48, Theorem 1.2(i)], and thus
H is non-large. �
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Proof of Theorem 1.6 The proof follows immediately from Propositions 5.3 and 5.6-
5.9.

6. Proof of the main result

In this section, we prove Theorem 1.1 and Corollaries 1.3 and 1.4. Since our arguments
in many cases are similar, we here introduce our method in Subsection 6.1 below. However,
in some cases, we rather prefer to be precise in giving more details of our proof, see for
example Proposition 6.4.

6.1. Methodology. Suppose that G is a flag-transitive and point-primitive group. Then
by Corollary 3.6, the point stabiliser H := Gα is a large maximal subgroup of G, where
α is a point of D. Therefore, by Theorem 1.6, the subgroup H is a parabolic subgroup or
H ∩X is (isomorphic to) one of the subgroups listed in Table 1. Moreover, by Lemma 3.1,

v =
|X|

|H ∩X| . (6.1)

For the subgroups H with small values of q, we simply use the and Remark 3.8 to see if
these subgroups give rise to possible parameters set (v, k, λ). For the remaining subgroups
H, we first note by Lemma 3.5(b) that k divides |H|, and hence Lemma 3.1 implies that

k divides b · g(q), (6.2)

where b is a multiple of |Out(X)| and g(q) is a polynomial obtained from |H|. We note
here that in most cases, g(q) is equal to |H ∩ X|. We know the parameter v by (6.1),
and we next apply Lemma 3.5(a) and (b) and conclude that k divides λf(q) · |Out(X)|,
where f(q) is a polynomial which is multiple of gcd(v − 1, g(q)). If H is not a parabolic
subgroup, then in order to obtain f(q), we also use Tits’ Lemma 3.2 saying that v − 1 is
coprime to p. Moreover, in the cases where there are some suitable subdegrees of G, we
can find a multiple f(q) of the greatest common divisors of v − 1 and these subdegrees,
and then by Lemma 3.5(a) and (c), the parameter k divides λf(q). Therefore, k divides
b1λf(q), for some positive integer b1 which is mostly 1 or a multiple of |Out(X)|. Hence

mk = b1λf(q), (6.3)

for some positive integer m. Since λ < k, we conclude that

m < b1 · f(q), (6.4)

Again, by Lemma 3.5(a) and the fact that mk = b1λf(q), we find parameters k and λ in
terms of m, b1 and q as below:

k =
m · (v − 1)

b1 · f(q)
+ 1 and λ =

m2 · (v − 1) +mb1 · f(q)
b21 · f(q)2

, (6.5)

Therefore, (6.2) and (6.5) imply that

m · (v − 1) + b1 · f(q) divides b1b · f(q)g(q). (6.6)

and hence

m · (v − 1) + b1 · f(q) 6 b1b · f(q)g(q). (6.7)

Since m > 1, we must have

(v − 1) + b1 · f(q) 6 b1b · f(q)g(q). (6.8)

We now check if (6.8) holds. Let now this inequality hold for almost all q. Suppose
that v − 1 = v1(q)/c, where c is a positive integer and v1(q) is a polynomial with integer
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coefficient in terms q. Then we use Euclidian algorithm and obtain polynomials h(q) and
r(q) such that

f(q)g(q) = h(q) · v1(q) + r(q), (6.9)

and then mb1b · f(q)g(q) = b1bc · h(q)[m · (v − 1) + b1 · f(q)] + F (m, q, b, b1, c), where

F (m, q, b, b1, c) = mb1b · r(q)− b21bc · f(q)h(q). (6.10)

We always have to take case of those possible values of q for which F (m, q, b, b1, c) = 0.
Recall by (6.2) that k divides b · g(q), and so by (6.5), then we conclude that m · (v −

1) + b1 · f(q) divides mb1b · f(q)g(q), and if F (m, q, b, b1, c) 6= 0, then

m · (v − 1) + b1 · f(q) divide |F (m, q, b, b1, c)|, (6.11)

and hence, since m > 1, we have that

v < b1b · (|r(q)| + b1c · |f(q)h(q)|). (6.12)

We then obtain possible q = pa satisfying this inequality, and so for such values of q,
we can obtain possible parameters set (v, k, λ) and check if these parameters give rise to
possible designs.

If, in particular, f(q) divides v1(q), where v − 1 = v1(q)/c, then by taking w(q) =
v1(q)/f(q), we have that

m · w(q) + b1c divides b1bc · g(q), (6.13)

and hence

w(q) 6 b1bc · g(q). (6.14)

If (6.14) is true, then we obtain h(q) and r(q) such that g(q) = h(q)w(q) + r(q), and so
mb1bc · g(q) = b1bc · h(q)[m · w(q) + b1c] +G(m, q, b, b1, c), where

G(m, q, b, b1, c) = mb1bc · r(q)− b21bc
2 · h(q). (6.15)

Then by the same manner as above, we first consider the possible solutions forG(m, q, b, b1, c) =
0, and next consider the fact that

mw(q) + b1c divides |G(m, q, b, b1, c)|, (6.16)

and so we must have

w(q) 6 b1bc · (|r(q)|+ b1c · |h(q)|). (6.17)

We can now summarise our method in the following steps:

Step 1: Consider the subgroup H as a parabolic subgroup of G or one of the sub-
group listed in Table 1, and consider the subgroup H ∩X, and then obtain v by
(6.1);

Step 2: Obtain |H|, and determine the polynomial g(q) and the parameter b such
that |H| divides bg(q), where b is a multiple of |Out(X)|;

Step 3: Obtain the polynomial f(q) satisfying (6.3). This can be done by determin-
ing the greatest common divisors of v− 1 and g(q). If we have some subdegrees of
G, we can find a multiple f(q) of the greatest common divisors of v − 1 and these
subdegrees;

Step 4: Check the solution of the inequality (6.8). If we obtain a finite number of
possibilities of q satisfying (6.8), then we apply Lemma 3.7 and Remark 3.8 to
obtain possible parameters set (v, k, λ);

Step 5: In the case where, (6.8) holds for almost all q, we obtain h(q) and r(q) sat-
isfying (6.9), and determine F (m, q, b, b1, c) as in (6.10), and then obtain possible
q satisfying F (m, q, b, b1, c) = 0 or (6.12). If f(q) divides v− 1, then we determine
G(m, q, b, b1, c) as in (6.15), and then obtain possible q satisfying G(m, q, b, b1, c) =
0 or (6.17);
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Table 5. Parameter v and possible parameter k for some small q in Proposition 6.1

X H ∩X v k divides

G2(3) 23·A2(2) 3528 192

G2(4) A1(13) 230400 2184

J2 416 1209600

G2(5) G2(2) 484375 12096

23·A2(2) 4359375 1344

G2(7) G2(2) 54925276 12096

G2(11) J1 2145199320 175560

F4(2) 3D4(2) 15667200 422682624

D4(2) 3168256 1045094400

Alt9 18249154560 362880

Alt10 1824915456 3628800

A3(3)·2 272957440 24261120

J2 2737373184 1209600

(Sym6 ≀ Sym2)·2 3193602048 2073600

E7(2) F i22 123873281581429293827751936 64561751654400

A+

7
(2) 373849134340755161088 21392255076846796800

A−

7
(2) 268914162119825424384 29739884203317657600

E−

6
(2) 2488042946297856 3214364146718543865446400

E−

6
(2) J3 253925177425920 301397760

Alt12 319549996007424 1437004800

B3(3):2 16690645565440 55024220160

F i22 1185415168 387370509926400

D−

5
(2) 1019805696 75046138675200

Step 6: For those values of q obtained in Step 5, by Lemma 3.7 and Remark 3.8,
we obtain possible parameters set (v, k, λ). At this stage, we sometimes obtain m
from (6.4), and check if (6.11) or (6.16)holds.

6.2. Parabolic, subfield and some numerical cases. In this section, we deal with the
case where H := Gα is a maximal parabolic subgroup or subfield subgroup of G or H ∩X
is one of the subgroups listed in Table 5. Note that the cases (X,H) = (E7(2), A

ǫ
7(2)),

(E7(2), E
−
6 (2)), (E−

6 ,D
−
5 (2)), and (F4(2),D4(2)) are included in Table 5. In what follows

by [60], we only need to consider the case where X is of type G2, F4, E
ǫ
6, E7 or E8.

Proposition 6.1. If X and H ∩X are as in Table 5, then there is no symmetric design
admitting G as its flag-transitive and point-primitive automorphism group.

Proof. If X and H ∩X are as in Table 5, then by (6.1) and Lemma 3.5, the parameters v
and k are as in the third and fourth columns of Table 5, respectively. For each value of v
and k, the equality k(k − 1) = λ(v − 1) does not hold for any positive integer λ. �

Proposition 6.2. If H∩X is a subfield subgroup of X, then there is no symmetric design
with G as its flag-transitive and point-primitive automorphism group.

Proof. LetX := X(qr0) andH∩X beX(q0) with q = qr0 and r prime. Then by Theorem 1.6,
X and H∩X are as in Tables 7 and 6, and so by (6.1), we obtain v for the correspondingX
andH∩X as in the same tables. We now follow the steps introduced in Subsection 6.1 with
replacing q by q0 in the statements of Steps 1-6. Note by Lemma 3.2 that gcd(v−1, p) = 1.
Therefore, for each (X,H∩X), we find the polynomial f(q0). Let g(q0) = |H∩X| = |X(q0)|
and b = b1 = |Out(X)|. Then by (6.8), we must have v− 1 6 f(q0)|Out(X)|2|H ∩X|, but
this inequality does not hold for the possibilities listed in Table 6 where q = q30 . For each
remaining cases recorded in Table 7, we assume that h(q0) is as the same table, and set
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Table 6. The parameters and polynomials for the cases where X = X(q)
and H ∩X = X(q0) is a subfield subgroup with q = q30 = p3t.

X = G2(q) H ∩X = G2(q0) X = F4(q) H ∩X = F4(q0)

v q12
0

Φ3Φ6Φ9Φ18 v q48
0

Φ2
3
Φ2

6
Φ12Φ2

9
Φ2

18
Φ24Φ36

f(q0) (q20 − 1)2 f(q0) Φ4
1Φ

4
2Φ

2
4Φ12

X = E6(q) H ∩X = E6(q0) X = E−

6
(q) H ∩X = E−

6
(q0)

v q72
0

Φ3
3
Φ2

6
Φ2

9
Φ2

18
Φ12Φ15Φ24Φ27Φ36 v q72

0
Φ2

3
Φ3

6
Φ2

9
Φ12Φ2

18
Φ24Φ30Φ36Φ54

f(q0) Φ6
1
Φ4

2
Φ5Φ2

4
Φ8 f(q0) Φ4

1
Φ6

2
Φ10Φ2

4
Φ8

X = E7(q) H ∩X = E7(q0) X = E8(q) H ∩X = E8(q0)

v q126
0

Φ4
3
Φ4

6
Φ2

9
Φ12Φ15Φ2

18
Φ27Φ21

Φ24Φ30Φ36Φ42Φ54

v q240
0

Φ4
3
Φ4

6
Φ3

9
Φ2

12
Φ15Φ3

18
Φ21Φ24Φ27

Φ30Φ2
36
Φ42Φ45Φ54Φ60Φ72Φ90

f(q0) Φ7
1
Φ7

2
Φ2

4
Φ5Φ7Φ8Φ10Φ14 f(q0) Φ8

1
Φ8

2
Φ4

4
Φ2

5
Φ7Φ2

8
Φ2

10
Φ14Φ20

Comments: q = q3
0
= p3t and Φn := Φn(q0) is the n-th cyclotomic polynomial in terms

of q0.

r(q0) = (v − 1)h(q0) − f(q0)g(q0). Therefore, for each (X,H ∩ X), the inequality (6.12)
holds for (p, a) as in Table 7. These possible cases can be ruled out by applying Lemma 3.7
and Remark 3.8. �

In what follows, we write Pi to denote a standard maximal parabolic subgroup cor-
responding to deleting the i-th node in the Dynkin diagram of X, where we label the
Dynkin diagram in the usual way, following [29, p. 180]. We also use Pi,j to denote the
intersection of appropriate parabolic subgroups of type Pi and Pj .

Proposition 6.3. If X = E6(q) and H is a parabolic subgroup of X, then H ∩X cannot
be P1. If H ∩ X = P3, then v = (q8 + q4 + 1)(q9 − 1)/(q − 1), k = m · w(q) + 1 and

λ = q−1(q4 + 1)−1(m2 · w(q) +m), where w(q) = q3 +
∑11

i=0 q
i and m < q(q4 + 1).

Proof. If H∩X is P1 or P3, then the parameter v in each case can be read off from Table 8.
We now analyse each case separately.

(i) Suppose first that X = E6(q) and H ∩X = P1. Then v = (q3+1)(q4+1)(q9−1)(q12−
1)/(q − 1)(q2 − 1). Moreover, by (6.2)

k | bg(q), (6.18)

where b = 2a gcd(3, q − 1) and g(q) = q36(q − 1)(q2 − 1)2(q3 − 1)(q4 − 1)(q5 − 1). In this
case, it follows from [33] that X has subdegrees q(q5 − 1)(q4 − 1)/(q − 1)2 and q13(q5 −
1)(q − 1)/(q − 1)2. Moreover, by Lemma 3.5(a) and (b), we have that k is a divisor of
λ gcd(v − 1, |H|). Therefore, by taking b1 := b, it follows from (6.5) that

k =
m · (v − 1)

bf(q)
+ 1, (6.19)

where f(q) = q(q4+q3+q2+q+1) andm is a positive integer. We first show that the p-part
of k is less than q6. Assume the contrary. Then q3 divides k, and so by (6.19), q3 must
dividem(q2+q+1)+b. Let now n1 be a positive integer such that n1q

3−b = m(q2+q+1).
Then

m =
n1q

3 − b

q2 + q + 1
= n1 · (q − 1) +

n1 − b

q2 + q + 1
. (6.20)

We now consider the following three cases:
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Table 7. The parameters and polynomials for the cases where X = X(q)
and H ∩X = X(q0) is a subfield subgroup with q = q20 = p2t.

X = G2(q) H ∩X = G2(q0)

v q60Φ
2
4Φ12

f(q0) gcd(3, q − ǫ1)2 · (4q2
0
− 1)

h(q0) 36q20 − 81

q0 2t with t 6 7, 3t with t 6 3, 5t with t 6 2, p with p = 7, . . . , 17

X = F4(q) H ∩X = F4(q0)

v q24
0

Φ2
4
Φ8Φ12Φ16Φ24

f(q0) Φ4
1Φ

4
2Φ

2
3Φ

2
6

h(q0) q16
0

− 4q14
0

+ 7q12
0

− 12q10
0

+ 22q8
0
− 28q6

0
+ 31q4

0
− 36q2

0
+ 29

q0 2t with t 6 5, 3t with t 6 2, p with p = 5, 7

X = E6(q) H ∩X = Eǫ
6
(q0) with ǫ = ±

v q36
0

Φ2
2
Φ2

4
Φ6Φ8Φ10Φ12Φ16Φ18Φ24

f(q0) Φ6
1Φ5Φ3

3Φ9

h(q0) q22
0

−ǫ2q21
0

−q20
0

+ǫ2q19
0

+4q18
0

−ǫ5q17
0

−3q16
0

+ǫ9q15
0

+q14
0

−ǫ15q13
0

+2q12
0

+ǫ22q11
0

−

14q10
0

− ǫ25q9
0
+ 27q8

0
+ ǫ27q7

0
− 47q6

0
− ǫ13q5

0
+ 68q4

0
− ǫ8q3

0
− 83q2

0
+ ǫ44q0 + 81

q0 2t with t 6 20, 3t with t 6 9, pt with p = 5, 7 and t 6 6, pt with p = 11, 13 and t 6 4,
19t with t 6 3, pt with p = 17, 23, . . . , 113 and t 6 2, p with p = 127, . . . , 3307

X = E7(q) H ∩X = E7(q0)

v q63
0

Φ5
4
Φ8Φ2

12
Φ16Φ20Φ24Φ28Φ36

f(q0) 3Φ7
1Φ

7
2Φ

3
3Φ

3
6Φ5Φ10Φ9Φ18

h(q0) 3q46
0

−15q44
0

+33q42
0

−57q40
0

+102q38
0

−159q36
0

+222q34
0

−306q32
0

+396q30
0

−516q28
0

+

681q260 − 858q240 + 1092q220 − 1383q200 + 1704q180 − 2076q160 + 2478q140 − 2934q120 +

3459q10
0

− 4056q8
0
+ 4719q6

0
− 5451q4

0
+ 6285q2

0
− 7149

q0 2t with t 6 9, 3t with t 6 6, 5t with t 6 4, 7t with t 6 3, pt with p = 11, 13, 17 and
t 6 2, p with p = 19, . . . , 179

X = E8(q) H ∩X = E8(q0)

v q120
0

Φ4
4
Φ2

8
Φ2

12
Φ2

16
Φ20Φ24Φ28Φ36Φ40Φ48Φ60

f(q0) Φ8
1
Φ8

2
Φ4

3
Φ2

5
Φ4

6
Φ7Φ9Φ14Φ2

10
Φ15Φ18Φ30

h(q0) q880 −4q860 +7q840 −10q820 +14q800 −15q780 +13q760 −10q740 +9q720 −14q700 +22q680 −32q660 +

39q64
0

−36q62
0

+20q60
0

+q58
0

−10q56
0

+4q54
0

+22q52
0

−58q50
0

+79q48
0

−66q46
0

+16q44
0

+42q42
0

−

73q40
0

+46q38
0

+34q36
0

−132q34
0

+186q32
0

−139q30
0

+8q28
0

+140q26
0

−209q24
0

+136q22
0

+

62q20
0

−278q18
0

+365q16
0

−234q14
0

−71q12
0

+377q10
0

−486q8
0
+290q6

0
+135q4

0
−548q2

0
+661

q0 2t with t 6 7, 3t with t 6 3, 5t with t 6 2, p with p = 7, . . . , 17

Notation: q = q2
0
= p2t and Φn := Φn(q0) is the n-th cyclotomic polynomial in terms of q0.

(i.1) Let n1 = b. Then m = b(q − 1), and so by (6.19), k = q3k1(q), where k1(q) =
q18− q17 + q16 + q14 + q11 + q8 − q7− 2q2 + q− 1. Then by (6.18), k1(q) must divide bg(q).
Since gcd(k1(q), g(q)) divides q

4+q3+q2+q+1, it follows that k1(q) < b(q4+q3+q2+q+1),
which is impossible.

(i.2) Let n1 < b. Since m is integer, by (6.20), q2 + q + 1 must divide b − n1. Then
n1 = b − n2 · (q2 + q + 1), for some positive integer n2. Since n1 > 0, it follows that
n2(q

2 + q + 1) < b, and hence q2 + q + 1 < b 6 6a, which is impossible.
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Table 8. Some parameters for some parabolic subgroups of almost simple
groups with socle X.

Line X H ∩X v |v − 1|p Comments

1 G2(q) P1 Φ1Φ2Φ3Φ6 q

2 G2(q) P1,2 Φ2
2Φ3Φ6 q q = 3a, H contains graph automorphism

3 F4(q) P1,4 Φ2
2Φ

2
3Φ4Φ

2
6Φ8Φ12 2q q = 2a, H contains graph automorphism

4 F4(q) P2,3 Φ2
2Φ

2
3Φ

2
4Φ

2
6Φ8Φ12 2q q = 2a, H contains graph automorphism

5 E6(q) P1 Φ2
3Φ6Φ9Φ12 q

6 E6(q) P3 Φ2Φ
2
3Φ4Φ

2
6Φ8Φ9Φ12 q

7 E6(q) P1,6 Φ2
3Φ5Φ6Φ8Φ9Φ12 gcd(2, p)q H contains graph automorphism

8 E6(q) P3,5 Φ2Φ
2
3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12 gcd(2, p)q H contains graph automorphism

Note: Here Φn := Φn(q) is the n-th cyclotomic polynomial with q = pa and p
prime.

(i.3) Let n1 > b. Since m is integer, by (6.20), q2 + q + 1 must divide n1 − b. Then
n1 = n2(q

2 + q + 1) + b, for some positive integer n2, and so by (6.20), we have that
m = n2q

3 + b(q− 1). Replacing, m in (6.19), we have that bk = q4t1(a, n2, q) + q3(n2 − b),
for some polynomial t1(a, n2, q). Since q

6 divide k, it follows that n2 − 6a = 0 or q divides
|n2− b|, where b = 2a · gcd(3, q − 1). We again consider the following three cases:

(i.3.1) Let n2 = b. Then m = b · (q3 + q − 1), and so by (6.19), k = q4k2(q), where
k2(q) = q19 +2q17 +3q15 +2q14 +3q13 +3q12 +3q11 +4q10 +4q9 +3q8 +4q7 +2q6 +3q5 +
3q4 + q3 +2q2 − q+2. Then by (6.18), k2(q) must divide b · g1(q), where g1(q) = g(q)/q36.
It follows that k2(q) < b · (q − 1)(q2 − 1)2(q3 − 1)(q4 − 1)(q5 − 1), which is impossible.

(i.3.2) Let n2 < b. Since q6 divides k, q must divide b−n2. Then q < b = 2a ·gcd(3, q−1).
This inequality holds only for q = 2, 4, 16. For these values of q, by Lemma 3.7 and
Remark 3.8, we cannot find any possible parameters set.

(i.3.3) Let n2 > b. Since q6 divide k, it follows that q must divide n2 − b, and so
n2 = n3q + b, for some positive integer n3. Since m = n2q

3 + b · (q − 1), we have that
m = n3q

4+b·(q3+q−1), and again by (6.19), we have that bk = q5t2(a, n3, q)+q4(n3+2b),
for some polynomial t2(a, n3, q). Since again q6 divides k, we obtain n3 = n4q − 2b, for
some positive integer n4. Therefore, m = n4q

5 − b · (2q4 + q3 + q − 1) and by (6.19),
we have that bk = q6t3(a, n4, q) + q5(n4 − 3b), for some polynomial t3(a, n4, q). By the
same argument, we conclude that n4 = n5q − 3b, for some positive integer n5, and hence
m = n5q

6 + b · (3q5 − 2q4 + q3 + q − 1). Note by (6.4) that m 6 bf(q), where f(q) =
q(q4+ q3+ q2+ q+1) and b = 2a gcd(3, q− 1). Thus q6 + b(3q5− 2q4 + q3+ q− 1) < 2bq5,
which is impossible.

Therefore, our claim is settled and the p-part of k is less than q6. Thus (6.18) implies that
k divides 2ag1(q), where g1(q) = q6(q−1)(q2−1)2(q3−1)(q4−1)(q5−1). We now apply the
method explained in Section 6.1, replace g1(q) with g(q), and taking h(q) = q3−q2−3q+1
and r(q) = f(q)g1(q)− h(q)(v − 1), we conclude by (6.12) that q = pa is as below

p 2 3 5 7 11, . . . , 19 31, . . . , 103

a 6 14 5 4 3 2 1

For these values of q, by Lemma 3.7 and Remark 3.8, we cannot find any possible param-
eters set.

(ii) Suppose that X = E6(q) and H ∩X = P3. Here v = (q8 + q4 + 1)(q9 − 1)/(q − 1).
Note by [54, p. 345] that G has nontrivial subdegrees q(q8 − 1)(q3 + 1)/(q − 1) and
q8(q5 − 1)(q4 + 1)/(q − 1), and so by Lemma 3.5(c), we conclude that k divides λf(q),
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where f(q) = q(q4 + 1). Then by (6.5) and (6.4), we have that k = m · w(q) + 1 and

λ = q−1(q4 + 1)−1(m2 · w(q) +m), where w(q) = q3 +
∑11

i=0 q
i and m < q(q4 + 1). �

Proposition 6.4. Let H be a maximal parabolic subgroup of G and (X,H ∩ X) 6=
(E6(q), Pi), for i = 1, 3. Then X = G2(q) and H ∩ X = [̂q5] : GL2(q) and v =
q5 + q4 + q3 + q2 + q + 1, k = q5 and λ = q5 − q4.

Proof. Recall by [60] that we only need to consider the case where X is of type G2, F4,
Eǫ

6, E7 or E8.
We first consider the possibilities recorded in Table 8. The case where (X,H ∩X) =

(E6(q), Pi) with i = 1, 3 as in lines 5 and 6 has been treated in By Proposition 6.3. In the
remaining cases, we prove that line 1 is the only possible case.

Let first X = G2(q) and H ∩X = P1 as in line 1 of Table 8. Here v = q5 + q4 + q3 +
q2 + q + 1, and so |v − 1|p = q, and by (6.5), we have that

k = m · (q4 + q3 + q2 + q + 1) + 1 and λ = m2 · (q3 + q2 + q + 1) +
m2 +m

q
. (6.21)

So by (6.4) and the fact that , we conclude that m = q− 1. Therefore, (6.21) implies that
k = q5 and λ = q5 − q4. This is part (a).

Let X = G2(q) and H ∩X = P1,2 as in line 2 of Table 8. Here we also have |v−1|p = q,
and by the same argument as above, since m < q and q divides m(2m + 1), we conclude

that m is (q − 1)/2 or (2q − 1)/2. In the latter case, we have that 2k = q5 + 2
∑6

i=1 q
i,

which is impossible as q = 3a. If m = (q − 1)/2, then k = q5(q + 1)/2, and so (q + 1)/2
divides k. Note by Lemma 3.5(b) that k divides 2aq6(q− 1)2. Then q+1 divides 16a, and
so q = 3 for which we have the parameters (1456, 486, 162), but by [14, p. 473], there is
no flag-transitive or antiflag-transitive design with this parameter set.

We now consider the case where the subgroup H contains a graph automorphism listed
in lines 3-4 and 7-8 of Table 8. We here note by Lemma 3.3 and Remark 3.4 that in
these cases we still have a prime power subdegree pt. Therefore, in each case, as |v − 1|p
divides 2q, it follows from Lemma 3.5 that k divides λf(q) where f(q) = 2q. We give our
argument for X = F4(q) and H ∩X = P1,4, and other cases can be ruled out in a similar
manner. In this case, we have that v = (q6 − 1)(q8 − 1)(q12 − 1)(q − 1)−2(q4 − 1)−1, and
so, as noted above, mk = b1λf(q), where b1 = 2, f(q) = q and m is a positive integer. By
(6.5), we have that

2k = m · w(q) + 2 and (6.22)

4λ = m2 · t(q) + 2m(m+ 1)

q
, (6.23)

where w(q) = (v − 1)/f(q) and t(q) is a polynomial in terms of q. Thus (6.23) implies
that q divides 2m(m + 1), and hence q divides 2m or 2m + 2. If q divides 2m, then
since m 6 2q by (6.4), it follows that m = iq/2 with i = 1, 2, 3. By replacing m in
(6.22), we have that 4k = qti(q) + 4 for i = 1, 2, 3, where ti(q) is a polynomial in terms
of q. This shows that if p | k, then p-part of k must divide 4, and hence the p-part
of k is at most q2. Therefore, by (6.2), we conclude that k must divide 2ag1(q), where
g1(q) = q2(q− 1)2(q2− 1)(q4− 1). Therefore, by (6.8), we must have v < 4af(q)g1(q), and
hence v < 4aq3(q − 1)2(q2 − 1)(q4 − 1), which is impossible.

We finally consider those parabolic subgroups which are not listed as in Table 8. Then
|v − 1|p = q and v − 1 = q · w(q), for some polynomial w(q) coprime to p. By Lemma 3.3
and Remark 3.4, there is a subdegree d which is a power of p. Then gcd(v− 1, d) = q. Let
f(q) = q. Then by Lemma 3.5, k must divide λf(q), and hence by (6.4), we have that

m < q, (6.24)
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Moreover, (6.5) implies that

k = mw(q) + 1 and (6.25)

λ = m2t(q) +
m2 +m

q
, (6.26)

where mk = λf(q) as in (6.3) and t(q) = (v − q − 1)/q2 is a polynomial in terms of q.
Since λ is a positive integer, it follows form (6.26) that q divides m2 +m. Note that q is
a prime power number. Then by (6.24), we conclude that m = q − 1. Now (6.25) implies
that k = (q − 1)w(q) + 1. In each case, we can find a polynomial l(q) which is a multiple
of gcd(k, |H ∩X|) satisfying k/l(q) > q4. On the other hand, by Lemmas 3.5(b) and 3.1,
k divides |Out(X)| · |H ∩X|, and so we conclude that k/l(q) divides |Out(X)|, and since
k/l(q) > q4, then |Out(X)| > q4, which is impossible. For example, suppose that X =
F4(q) and H∩X = P1. Then v = (q8−1)(q12−1)(q4−1)−1(q−1)−1, and so v−1 = q ·w(q),
where w(q) = q10 + q9 + q8 + q7 + q6 + q5 + q4 + q3 +

∑14
i=0 q

i. Thus k = q3(q12 + q8 − 1),
and hence l(q) = gcd(k, |H ∩X|) = q3. Therefore, k/l(q) = q12 + q8 − 1 > q4. �

6.3. Remaining cases. In this section, in order to prove Theorem 1.1, we need to consider
the remaining large maximal subgroups of G which are not parabolic, subfield and listed in
Table 5. In most cases, we follow our method which is explained in details in Subsection 6.1
but in some cases, namely Propositions 6.5 and 6.6, we need extra arguments.

Proposition 6.5. If X = G2(q) and H ∩X = SLǫ
3(q) : 2 with ǫ = ±, then v = q3(q3 +

ǫ1)/2, k = q3(q3 − ǫ1)/6, and λ = q3(q3 − ǫ3)/18, where q = 3a > 3.

Proof. Suppose now that H ∩X = SLǫ
3(q) : 2 with ǫ = ±. Then by (6.1), we have that

v = q3(q3 + ǫ1)/2, and so v − 1 = v1(q)/c, where v1(q) = (q3 − 1)(q3 + ǫ2) and c = 2.
Thus, Proposition 4.3, Proposition 1 in [36] and Lemma 3.5(c) implies that k divides λf(q)
where f(q) = q3 − ǫ1, and so there exists a positive integer m such that mk = λf(q). By
(6.5) and (6.4), we have that

k =
m · (q3 + ǫ2) + 2

2
, (6.27)

λ =
m2 · (q3 + ǫ2) + 2m

2(q3 − ǫ1)
, (6.28)

where

m < q3 − ǫ1. (6.29)

Note that λ is a positive integer. Then by (6.28), we conclude that

q3 − ǫ1 divides m(3m+ ǫ2). (6.30)

Moreover, since w(q) = v1(q)/f(q) = q3 + ǫ2 by (6.13), we have that

m · (q3 + ǫ2) + 2 divides 8ag(q), (6.31)

where g(q) = q3(q2 − 1)(q3 − ǫ1). Let h(q) = (q2 − 1)(q3 − ǫ3) and r(q) = 6(q2 − 1). Set
b1 := 1 and b := 4a. Since c = 2, it follows from (6.15) that G(m, q) := G(m, q, b, b1, c) =
48ma(q2 − 1)− 16ah(q) with q = pa. Therefore G(m, q) = 0 or by (6.16),

m · (q3 + ǫ2) + 2 divides |G(m, q)|. (6.32)

(1) If G(m, q) = 0, then 48ma(q2 − 1) − 16ah(q) = 0, and so m = (q3 − ǫ3)/3. Then we
must have q = 3a. By (6.27) and (6.28), we conclude that

k =
q3(q3 − ǫ1)

6
and λ =

q3(q3 − ǫ3)

18
,

as claimed.
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Table 9. Possible values of q = pa in Proposition 6.5.

Case q Conditions

2 2a with a 6 8, 3a with a 6 4, 5a with a 6 3, 7a with a 6 2, p with
p = 11, 13, . . . , 47

3.2 2a with a 6 7, 3a with a 6 4, 5a, 7a with a 6 2, p with 11, 13, 17, 19, 23

3.3 2a with a 6 20, 3a with a 6 11, 5a with a 6 7, 7a with a 6 5, 11a, 13a

with a 6 4, 17a, 19a, 23a, 29a with a 6 3, 31a, . . . , 109a with a 6 2, p
with 113, 127, . . . , 3067

ǫ = − and m < 32aq

3.3 2a with a 6 17, 3a with a 6 10, 5a with a 6 6, 7a with a 6

5, 11a, 13a, 17a, 19a with a 6 3, 23a, . . . , 53a with a 6 2, p with
61, 67, . . . , 761

ǫ = +

3.3 2a with a 6 9, 3a with a 6 5, 5a with a 6 3, 7a, 11a with a 6 2, p with
13, . . . , 73

ǫ = − and m > 32aq

(2) If G(m, q) > 0, then 48ma(q2 − 1) > 16ah(q), and so m > (q3 − ǫ3)/3, and by
(6.32), we obtain q < 48a. This inequality holds when q = pa is as in Table 9. Since
(q3 − ǫ3)/3 < m < q3 − ǫ1, for each q and a as in Table 9, we can find the value of m. For
these values of q and m, the statement (6.32) is not true.

(3) If G(m, q) < 0, then 48ma(q2 − 1) < 16ah(q), and so

m <
q3 − ǫ3

3
. (6.33)

We claim that gcd(k, q3) < q2. Assume to the contrary that q2 divides k. Since k−mq3/2 =
ǫm + 1, q2 must divide m + ǫ1. Thus m + ǫ1 = uq2 for some integer u. By (6.33), we
observe that

u <
q

3
. (6.34)

Recall that q3 − ǫ1 divides 3m2 + ǫ2m = (uq2 − ǫ1)(3uq2 − ǫ1) = 3u2(q3 − ǫ1)q + ǫ3u2q −
ǫ4uq2 + 1. Then

q3 − ǫ1 must divide |ǫ3u2q − ǫ4uq2 + 1|. (6.35)

Let now f ǫ
q(u) = ǫ3u2q− ǫ4uq2+1. For a fixed q, the map f ǫ

q(u) is decreasing (increasing)

if 1 6 u 6 2q/3 and ǫ = + (ǫ = −). As u < q/3 by (6.34), we conclude that |ǫ3u2q −
ǫ4uq2 + 1| = |f ǫ

q (u)| < |f ǫ
q(q/3)| = q3 − ǫ1, and this contradicts (6.35).

Therefore, gcd(k, q3) < q2, as claimed. Hence (6.27) implies that

m · (q3 + ǫ2) + 2 divides 8aq2(q2 − 1)(q3 − ǫ1). (6.36)

Note that 8maq2(q3 − ǫ1)(q2 − 1) = 8ah(q)[m(q3 + ǫ2) + 2] + Gǫ(m, q), where h(q) =
q4 − q2 − ǫ3q, r(q) = 3(q2 + ǫ2q) and Gǫ(m, q) = ǫ8mar(q) − 16ah(q) with q = pa and
ǫ = ±. Then Gǫ(m, q) = 0 or we conclude by (6.36) that

m · (q3 + ǫ2) + 2 divides |Gǫ(m, q)|, (6.37)

(3.1) Suppose that Gǫ(m, q) = 0. Then ǫ = +, and so 16ah(q) = 8mar(q). Then
3m = 2h(q)/r(q) = 2q4 − 4(q− 1)− 14/(q+2). This implies that q+2 is a multiple of 14,
and so we conclude that q = 5 in which case 3m = 1232, which is a contradiction.

(3.2) Suppose that Gǫ(m, q) > 0. Then ǫ = +. By (6.37), m(q3 + 2) + 2 < |Gǫ(m, q)| =
8mar(q) − 16ah(q) 6 8mar(q), and so q3 < 24ar(q). Since r(q) = 3(q2 + ǫ2q), it follows
that q3 < 24a(q2+2q), or equivalently, q2 < 24a(q+2). This inequality holds when q = pa

is as in Table 9, and for such q, we can obtain m by (6.33) but for these values of (q,m)
we cannot find any parameters satisfying (6.37).
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(3.3) Suppose that Gǫ(m, q) < 0. Let ǫ = +. Then (6.37) implies that m(q3 + 2) + 2 <
|Gǫ(m, q)| = 16ah(q) − 8mar(q) < 16ah(q), and so m < 16aq. Note by (6.30) that q3 − 1
divides 3m2 + 2m. Then q3 − 1 6 3m2 + 2m < 3 · 162a2q2 + 2 · 16aq, and this holds for
the q = pa as in Table 9. Again we can find m by (6.33) and in conclusion we cannot find
any parameters satisfying (6.37). Let ǫ = −. Then (6.37) implies that m(q3 − 2) + 2 <
|Gǫ(m, q)| = 16ah(q) + 8mar(q). If m > 32aq, then m[q3 − 8ar(q) − 2] < 16ah(q), and
so 32aq[q3 − 8ar(q) − 2] < 16ah(q). This implies that q < 74a. This is true for q = pa

as in Table 9 for which there is no possible parameters satisfying (6.37) when m is as
in (6.33). Therefore, m < 32aq. Note by (6.30) that q3 + 1 divides 3m2 − 2m. Then
q3+1 6 m(3m−2) < 32aq(3 ·32aq−2), and this holds for the q = pa as in Table 9. These
cases can also be ruled out as for m as in (6.33) we cannot find any parameters satisfying
(6.37). �

Proposition 6.6. If X = F4(q), then H ∩ X cannot be 2 · Ω9(q) with q odd and C4(q)
with p = 2.

Proof. Let H ∩ X be 2 · Ω9(q) with q odd or C4(q) with p = 2. Our argument in these
cases are similar, so we only deal with the case where H ∩X = 2 ·Ω9(q) with q odd. Then
|H∩X| = q16(q2−1)(q4−1)(q6−1)(q8−1), and so by (6.1), we have that v = q8(q8+q4+1).
Then by (6.2), we have that

k | bg(q), (6.38)

where b = 2a and g(q) = q16(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1). Note that gcd((q8 − 1)(q6 −
1)(q4 − 1)(q2 − 1), v − 1) = q4 + 1. By (6.3), (6.4) and Tits’ lemma 3.2, we conclude that
mk = b1λf(q) where b1 = 2a, f(q) = (q4 + 1) and m is a positive integer satisfying

m < 2a(q4 + 1). (6.39)

Therefore (6.5) implies that

k =
m(q12 + q4 − 1)

2a
+ 1, (6.40)

4a2λ = m2(q8 − q4 + 2)− 3m2 − 2ma

q4 + 1
(6.41)

Since λ is integer, q4 + 1 divides 3m2 − 2ma, and so

m >
q2 + 1√

3
. (6.42)

We claim that gcd(k, q16) < q4. Assume the contrary. Then q4 divides 2ak. Since
mq4(q8 + 1)− [m(q12 + q4 − 1) + 2a] = m− 2a, we have

mq4(q8 + 1)− 2ak = m− 2a,

and so q4 must divide m− 2a. Thus m− 2a = uq4 for some integer u. By (6.39),

u < 2a. (6.43)

Recall that q4 +1 divides 3m2 − 2ma = (3q4u2 +10au− 3u2)(q4 +1) + (2a− u)(4a− 3u).
Then

q4 + 1 must divide (2a− u) · |4a− 3u|. (6.44)

If 4a− 3u 6= 0, then q4 +1 < 8a2, which is a contradiction. If 4a− 3u = 0, then u = 4a/3,
and so m = 2a(2q4 + 3)/3. Then by (6.40), we have that k = q4(q4 + 1)(2q8 + q4 + 1)/3.
Therefore, by (6.38), we conclude that k divides 2ag1(q), where g1(q) = q4(q8 − 1)(q6 −
1)(q4 − 1)(q2 − 1). Then, 2q8 + q4 +1 must divide 24a(q6 − 1)(q4 − 1)2(q2 − 1), and hence
2q8 + q4 + 1 has to divide 3a(6q6 − 17q4 − 14q2 − 3), which is impossible.
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Table 10. Some parameters for Proposition 6.6.

q a m v k λ

3 1 28 43584723 7441295 1270465

3 1 82 43584723 21792362 10896181

9 2 772 1853302661435043 54508901806914 1603202994321

9 2 3604 1853302661435043 254469018279942 34940046551391

9 2 4376 1853302661435043 308977920086855 51512015326885

9 2 13124 1853302661435043 926651330717522 463325665358761

Therefore, gcd(k, q16) < q4, as claimed. Now by (6.38), the parameter k divides 2ag1(q),
where g1(q) = q4(q8−1)(q6−1)(q4−1)(q2−1). We continue our argument by replacing g1(q)
with g(q) in Subsection 6.1. Then (6.13) implies that m·w(q)+2a divides 4a2 ·g1(q), where
w(q) = q12+ q4−1. It follows from (6.16) that m(q12+ q4−1)+2a 6 4ma2r(q)+8a3h(q),
where h(q) = q12 − q10 − q8 − q4 + 3q2 + 2 and r(q) = q10 + q8 + 4q6 + 2q4 − 3q2 − 2, and
so (6.42) implies that

q2 <
(q2 + 1)(q12 + q4 − 4a2r(q)− 1)

h(q)
6 14a3.

As in this case q is odd, this inequality implies that q = 3 or 9, and so by (6.39), m is at
most 164 or 26248, respectively. For each such value of q and m, the parameters k and λ
obtained in (6.40) and (6.41) must be positive integers and all parameters must satisfy the
conditions of symmetric designs in Lemma 3.5, and this leads us to the parameters listed
in Table 10. However, by (6.38), k must divide 263139026617958400 = 216 ·316 ·52 ·7·13·41
or 88987349938389359442577906728960000 = 221 ·332 ·54 ·7·13·17·412 ·73·193, respectively
for q = 3 or 9, which is a contradiction. �

We are now ready to prove Theorem 1.1 and Corollaries 1.3-1.4. In what follows, we
assume that D is a nontrivial symmetric (v, k, λ) design admitting a flag-transitive and
point-primitive automorphism group G with socle X a finite simple exceptional group of
Lie type.

Proof of Theorem 1.1 By the main result in [60], we only focus on the cases where
X is of type G2, F4, E

±
6 , E7 or E8.

Since the group G is point-primitive, the point-stabiliser H is maximal in G, and by
Corollary 3.6, flag-transitivity implies that H is large that is to say |G| 6 |H|3. We now
apply Theorem 1.6 and analyse each possible case.

We first observe for q = 2 that the list of maximal subgroups H of G can be read off
from Atlas [17] and [32, 50]. Note that the list of maximal subgroups of E−

6 (2) presented
in the Atlas [17] is complete (see [27, p.304]). We also exclude the case where X = G2(2)

′

as it is not simple. Then it is easy to check these cases by Lemma 3.7 and Remark 3.8,
and so observe that no possible parameters sets arise in these cases.

We first conclude by Proposition 6.1 that the numerical cases listed in Table 5 can be
ruled out, and Proposition 6.2 shows that H cannot be a subfield subgroup. If H is a
parabolic subgroup, then by Proposition 6.4, part (a) or part (c) of Theorem 1.1 follows.
If X = G2(q) and H ∩X = SL3(q)

ǫ : 2, Proposition 6.5 implies part (b) of Theorem 1.1.
We note by Proposition 6.6 that (X,H ∩ X) ∈ {(F4(q), 2 · Ω9(q)), (F4(q), C4(q))} gives
rise to no possible parameters set. We now consider the remaining possibilities for pairs
(X,H ∩X) as in Table 1. All these cases can be ruled out in the same manner following
Steps 1-6 explained in Subsection 6.1. Note that the required information for each case
can be found in Table 11. Note also that as pointed out in Subsection 6.1, the subdegrees
in Theorem 4.1 are important tools to obtain the polynomial f(q) listed in Table 11. As
an example, in what follows, we show that X cannot be E8(q).
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Suppose that X = E8(q). Then H ∩X is one of the groups

cǫ4 · (Aǫ
2(q)× Eǫ

6(q)) · eǫ4 · 2, c1 ·D8(q) · c1 and c1 · (A1(q)× E7(q)) · c1,
where c1 = gcd(2, q−1), cǫ4 = gcd(3, q−ǫ1) and ǫ = ±. If H∩X = c4 ·(Aǫ

2(q)×Eǫ
6(q))·c4 ·2,

then by (6.1), we obtain parameter v as in Table 11. For f(q), g(q), b1 and b as in
Table 11, by Table 11, by (6.8), we must have (v − 1) + 2af(q) 6 4a2f(q)g(q), and so
q10 < 4a2, which is a contradiction. In the remaining cases, the parameter v, b1 and b,
and polynomials f(q), g(q), h(q) are given in Table 11. Let r(q) = f(q)g(q)− h(q) · v1(q),
where v − 1 = v1(q)/c. We note here that if H ∩ X = c4 · D8(q) · c4, then f(q) is the
polynomial which is divisible by gcd(v − 1, g(q)). Since (6.8) holds for almost all q, by
(6.12), we have that v < a2(|r(q)|+ a|f(q)h(q)|), and this follows that q ∈ {2, 3, 4, 8}. For
these values of q = pa, we have no possible parameters set by Lemma 3.7 and Remark 3.8.
In the case where H ∩ X = c1 · (A1(q) × E7(q)) · c1 with c1 = gcd(2, q − 1), we use the
subdegrees given in Theorem 4.1. Note by Theorem 4.1 that the subdegrees in this case
divide c41q

32(q6+1)(q14−1)(q18−1)/(q2−1)(q4−1) and q28(q2−1)(q5+ǫ1)(q9+ǫ1)(q14−1).
As v−1 and q are coprime by Tits’ Lemma 3.2, the greatest common divisors of v−1 and
these subdegrees divides f(q) = c21(q

2−1)(q4−1) as in Table 11. As (6.8) holds for almost
all q, it follows from (6.12) that v < a(|r(q)|+ |f(q)h(q)|). This implies that q = 2, 3, 5 for
which we can find m by (6.4), but these values of q and m do not satisfy (6.11), which is
a contradiction.

Proof of Corollary 1.3 Suppose to the contrary that gcd(k, λ) = 1. We apply Theo-
rem 1.1, and observe that the possibilities (a) and (b) can be ruled out as in these cases k
and λ are not coprime. Let now X = E6(q) with q = pa in cases (c). Then, k = mw(q)+1

divides q(q4 + 1), where w(q) = q3 +
∑11

i=0 q
i, which is impossible.

Therefore, k and λ must have at least one prime common divisor. Moreover, since
λ < k, the parameter k cannot be prime. Suppose now that λ is prime. Then since
gcd(k, λ) 6= 1, we conclude that λ divides k. Evidently, parts (a) and (b) of Theorem 1.1
cannot occur. In part (c), λ divides 6ap(qi − 1), for some i = 1, 2, 4, 5, 6, 8. Since also λ
is prime, we conclude that λ divides 2, 3, a, p, or qi − 1, for some i = 1, 2, 3, 4, 5. Thus
λ ∈ {2, 3, p} or λ 6 q4+ q3+ q2+ q+1, and so in all cases λ is at most q4+ q3+ q2+ q+1.
Note by Lemma 3.5(b) that λv < k2. Since k divides q(q4 + 1)λ, we conclude that
v < q2(q4 + 1)2λ, and since λ 6 q4 + q3 + q2 + q + 1, it follows that (q9 − 1)(q12 − 1) <
q2(q− 1)(q4 − 1)(q4 +1)2(q4+ q3+ q2+ q+1), which is impossible. Therefore, λ is neither
prime.

Proof of Corollary 1.4 Suppose that λ 6 100. Then by Theorem 1.1, we need to
consider one of the following cases:

(a) X = G2(q) and H ∩ X = [q5] : GL2(q). Then v = (q6 − 1)/(q − 1), k = q5 and
λ = q4(q − 1). If λ 6 100, then q = 2. Note that X = G2(2) is not simple but for this
non-simple group, we obtain v = 63, k = 32 and λ = 16, and this is the complement of a
symmetric (63, 31, 15) design which is antiflag-transitive, see Table 2 and [14, 21].

(b) X = G2(q) and H ∩ X = SLǫ
3(q) : 2 with ǫ = ±. Then v = q3(q3 + ǫ1)/2, k =

q3(q3 − ǫ1)/6, and λ = q3(q3 − ǫ3)/18, where q = 3a > 3. If λ 6 100, then q = 3, and
so [14, 21] implies that G = X = G2(3) and H ∩X = SLǫ

3(3) : 2 for ǫ = ± and D is of
parameters (378, 117, 36) or (351, 126, 45) respectively for ǫ = + or ǫ = −.

(c) X = E6(q) and the Levi factor of H is of type D5. Then v = (q8+q4+1)(q9−1)/(q−1)
and k divides q(q4 + 1)λ, and so by Lemma 3.5(b), we have that λv < k2. Therefore,
(q8 + q4 + 1)(q9 − 1) < 100q2(q − 1)(q4 + 1)2, which is impossible.
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Table 11: The parameters v, b1 and b and the polynomials f(q), g(q), h(q) for
some finite simple exceptional groups

Notation q = pa with p prime, c1 = gcd(2, q − 1), cǫ
2

= gcd(4, q − ǫ)/c1, cǫ
3

=

gcd(8, q − ǫ)/c1, cǫ4 = gcd(3, q − ǫ1), c5 = gcd(2, p), c6 = gcd(3, q2 − 1),

cǫ
7
= gcd(4, q − ǫ), cǫ

8
= gcd(4, q4 − 1) gcd(5, q − ǫ1), e1 | ac1, e2 | a2c1c5,

e3 | ac5, eǫ4 | 2acǫ
4

X = G2(q) H ∩X = c1 ·A1(q)2 : c1

v q4(q4 + q2 + 1)

b1 32a

b 2a

f(q) 1

g(q) q2(q2 − 1)2

q 2, 3, 4, 5, 7, 8, 9, 16, 32

X = G2(q) H ∩X = 2G2(q) with q = 32n+1 > 27

v q3(q3 − 1)(q + 1)

b1 2a

b 2a

f(q) q2 − q + 1)

g(q) q3(q3 + 1)(q − 1)

h(q) q3 − 3q + 5

q 3a with a = 3, 4, 5, 6, 7, 8

X = Eǫ
6(q) H ∩X = c1 · (A1(q) ×Aǫ

5(q)) · c1 · cǫ4

v c−ǫ
4

q20(q8 + q4 + 1)(q6 + ǫq3 + 1)(q4 + 1)(q2 + 1)

b1 1

b 2acǫ4
fǫ(q) cǫ2

4
c6(q5 − ǫ1)(q2 − 1)(q + ǫ1)

gǫ(q) q16(q6 − 1)(q5 − ǫ1)(q4 − 1)(q3 − ǫ1)(q2 − 1)2

hǫ(q) cǫ
4
(q6 + ǫq5 − 4q4 − ǫ6q3 + 2q2 + ǫ10q + 10),

q (cǫ
4
= 1) 2a with a 6 7, pa with p = 3, 5, 7 and a 6 2, p with p = 11, . . . ,19

q (cǫ4 = 3) 2a with a 6 14, 5a with a 6 5, 7a with a 6 4, pa with p = 11, 13, 17 and
a 6 3, pa with p = 19, . . . , 61 and a 6 2, p with p = 67, . . . , 1933

X = Eǫ
6
(q) H ∩X = c2

1
· (D4(q) × ( q−ǫ1

c1
)2) · c2

1
· S3

v 6−1c−ǫ
4

q24(q12 − 1)(q9 − ǫ1)(q8 − 1)(q5 − ǫ1)(q4 − 1)−2(q − ǫ1)−2

b1 12acǫ
4

b 12acǫ
4

fǫ(q) (cǫ4 = 1) (q − ǫ1)6(q + ǫ1)4(q2 + 1)2

fǫ(q) (cǫ
4
= 3) 26(q − ǫ1)6

g(q) q12(q6 − 1)(q4 − 1)2(q2 − 1)(q − ǫ1)2

X = Eǫ
6(q) H ∩X = (3D4(q)× (q2 + ǫq + 1)) · 3 with (ǫ, q) 6= (−, 2)

v 3−1c−ǫ
4

q24(q4 − 1)(q5 − ǫ1)(q8 − 1)(q9 − ǫ1)(q2 + ǫq + 1)−1

b1 6acǫ
4

b 6acǫ4
fǫ(q) (q8 + q4 + 1)(q4 + q2 + 1)(q2 + ǫq + 1)

gǫ(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)(q2 + ǫq + 1)

q 2 for ǫ = +

X = Eǫ
6
(q) H ∩X = cǫ

7
· (Dǫ

5
(q) × ( q−ǫ1

cǫ
7

)) · cǫ
7

v c−ǫ
4

q16(q12 − 1)(q9 − ǫ1)(q4 − 1)−1(q − ǫ1)−1

b1 1

b 2acǫ4
fǫ(q) cǫ

8
(q − ǫ1)2(q4 + 1)

– Continued
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Table 11 – Continued

gǫ(q) q20(q8 − 1)(q6 − 1)(q5 − ǫ1)(q4 − 1)(q2 − 1)(q − ǫ1)

hǫ(q) cǫ4(q
20−ǫ4q19+5q18−6q16+ǫ7q15−3q14−ǫq13−2q12+ǫ11q11−15q10+

ǫ4q9 + 15q8 − ǫ24q7 + 17q6 − ǫ4q5 + q4 − ǫ9q3 + 15q2 − ǫ9q − 12),

q (cǫ4 = 1) 2a with a 6 10, 3a with a 6 8, 5a with a 6 4, pa with p = 7, 11 and
a 6 3, pa with p = 13, . . . , 47 and a 6 2, p with p = 53, . . . , 1301

q (cǫ
4
= 3) 2a with a 6 12, 5a with a 6 5, pa with p = 7, 11, 13 and a 6 4, pa with

p = 17, . . . , 31 and a 6 3, pa with p = 37, . . . , 151 and a 6 2, p with
p = 157, . . . , 11821

X = Eǫ
6
(q) Soc(H) = C4(q) with q odd

v c−ǫ
4

q20(q5 − ǫ1)(q9 − ǫ1)(q12 − 1)(q4 − 1)−1

b1 1

b 2acǫ
4

fǫ(q) cǫ4(q
2 − ǫcǫ4 − 1)

g(q) q16(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1)

X = Eǫ
6
(q) Soc(H) = F4(q)

v c−ǫ
4

e−1

3
eǫ4q

12(q9 − ǫ1)(q5 − ǫ1)

b1 1

b 2ae3cǫ4
f(q) c+

4

g(q) q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)

X = E7(q) H ∩X = c1 · (A1(q) ×D6(q)) · c1

v q32(q18 − 1)(q14 − 1)(q6 + 1)/(q4 − 1)(q2 − 1)

b1 1

b a

fǫ(q) 4cǫ4 · (q2 − 1)(q8 − 1)

g(q) q31(q10 − 1)(q8 − 1)(q6 − 1)2(q4 − 1)(q2 − 1)2

h(q) 4q15 − 16q13 + 16q11 + 4q9 − 4q5 − 32q3 + 20q

q 2a with a 6 8, 3a with a 6 3, pa with p = 5, 7 and a 6 2, p with p = 11,
. . . ,31

X = E7(q) H ∩X = cǫ
2
· (Aǫ

7
(q) · cǫ

3
· (2× (2/cǫ

2
)) with ǫ = ± and q > 2

v q35(q18 − 1)(q12 − 1)(q7 + ǫ1)(q5 + ǫ1)/4 · (q4 − 1)(q3 − ǫ1)

b1 1

b 4a

f(q) (q − ǫ1)3(q + ǫ2)

g(q) q28(q8 − 1)(q7 − ǫ1)(q6 − 1)(q5 − ǫ1)(q4 − 1)(q3 − ǫ1)(q2 − 1)

X = E7(q) H ∩X = cǫ
4
· (Eǫ

6
(q) × (q − ǫ/cǫ

4
)) · c4 · 2 with ǫ = ± and (q, ǫ) 6= (2,−)

v q27(q5 + ǫ1)(q9 + ǫ1)(q14 − 1)/[2c1 · (q − ǫ)]

b1 1

b 2a

fǫ(q) cǫ4 · (q9 − ǫ1)

gǫ(q) 2q36(q − ǫ1)(q2 − 1)(q5 − ǫ1)(q6 − 1)(q8 − 1)(q9 − ǫ1)(q12 − 1)

hǫ(q) c1 · (4q34 − ǫ8q33 + ǫ8q31 − 4q30 − ǫ8q29 +12q28 + ǫ8q27 − 20q26 − ǫ4q25 +
36q24− ǫ16q23−40q22+ ǫ44q21+24q20− ǫ76q19+4q18+ ǫ92q17−52q16−
ǫ84q15 + 112q14 + ǫ56q13 − 168q12 + ǫ24q11 + 192q10 − ǫ124q9 − 164q8 +
ǫ228q7 + 72q6 − ǫ312q5 + 64q4 + ǫ320q3 − 236q2 − ǫ240q + 384),

q for ǫ = + 2a with a 6 12, 3a with a 6 7, 5a with a 6 4, 7a with a 6 4, 13a with
a 6 3, pa with p = 11, 17, . . . ,43 and a 6 2, p with p = 47, . . . ,997

q for ǫ = − 2a with a 6 11, 3a with a 6 7, 5a with a 6 5, 7a with a 6 3, 11a with
a 6 3, pa with p = 13,. . . , 23 and a 6 2, p with p = 29, . . . , 1013

X = E7(q) Soc(H) = A1(q)× F4(q) with q > 3

– Continued
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Table 11 – Continued

v e1q36(q4 + 1)(q2 + 1)(q12 − 1)/(c1e2)

b1 2a2

b 2a2

f(q) c31e
3
2(q

2 + 1)2(q4 + 1)(q4 − q2 + 1)

g(q) q25(q2 − 1)2(q6 − 1)(q8 − 1)(q12 − 1)

X = E8(q) H ∩X = c1 ·D8(q) · c1

v q64(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)/(q10 − 1)(q8 − 1)(q6 − 1)(q4 − 1)

b1 a

b a

f(q) (q2 − 1)8(q2 + 1)4(q4 + 1)2(q14 − 1)

g(q) q56(q8 − 1)
∏

7
i=1

(q2i − 1)

h(q) q36 − 4q34 +2q32 +10q30 − 14q28 +6q26 +2q24 − 30q22 +42q20 +3q18 −
28q16 + 38q14 − 44q12 − 14q10 + 41q8 − 33q6 + 16q4 + 30q2 − 3

X = E8(q) H ∩X = c1 · (A1(q) ×E7(q)) · c1

v q56(q30 − 1)(q24 − 1)(q20 − 1)/(q10 − 1)(q6 − 1)(q2 − 1)

b1 1

b a

f(q) c2
1
(q14 − 1)(q2 − 1)

g(q) q64(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1)2

h(q) c2
1
(q40−4q38+6q36−6q34+8q32−10q30+10q28−10q26+11q24−15q22+

18q20−20q18+22q16−22q14+23q12−19q10+16q8−17q6+14q4−12q2+8),

X = E8(q) H ∩X = cǫ4 · (Aǫ
2(q) ×Eǫ

6(q)) · c
ǫ
4 · 2

v 2−1q81(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)/(q9 − ǫ)(q6 − 1)(q5 −
ǫ)(q3 − ǫ)(q2 − 1)

b1 2a

b 2a

f(q) (q12 − 1)(q9 − ǫ)(q8 − 1)(q6 − 1)(q5 − ǫ)(q3 − ǫ)(q2 − 1)2

g(q) q39(q12 − 1)(q9 − ǫ)(q8 − 1)(q6 − 1)(q5 − ǫ)(q3 − ǫ)(q2 − 1)2
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